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Abstract
Inverse scattering, Green’s function reconstruction, focusing, imaging and the
optical theorem are subjects usually studied as separate problems in different
research areas. We show a physical connection between the principles because
the equations that rule these scattering principles have a similar functional
form. We first lead the reader through a visual explanation of the relationship
between these principles and then present the mathematics that illustrates the
link between the governing equations of these principles. Throughout this work,
we describe the importance of the interaction between the causal and anti-causal
Green’s functions.

1. Introduction

Inverse scattering, Green’s function reconstruction, focusing, imaging and the optical
theorem are subjects usually studied in different research areas such as seismology [1],
quantum mechanics [2], optics [3], non-destructive evaluation of material [4] and medical
diagnostics [5].

Inverse scattering [6–8] is the problem of determining the perturbation of a medium (e.g.
of a constant velocity medium) from the field scattered by this perturbation. In other words,
one aims to reconstruct the properties of the perturbation (represented by the scatterer in
figure 1) from a set of measured data. Inverse scattering takes into account the nonlinearity
of the inverse problem, but it also presents some drawbacks: it is improperly posed from the
point of view of numerical computations [9] and it requires data recorded at locations usually
not accessible due to practical limitations.

Green’s function reconstruction [10, 11] is a technique that allows one to reconstruct the
response between two receivers (represented by the two triangles at locations RA and RB in
figure 2) from the cross-correlation of the wavefield measured at these two receivers which are
excited by uncorrelated sources surrounding the studied system. In the seismic community,
this technique is also known as either the virtual source method [12] or seismic interferometry
[13, 14]. The first term refers to the fact that the new response is reconstructed as if one receiver
had recorded the response due to a virtual source located at the other receiver position; the
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Figure 1. Inverse scattering is the problem of determining the perturbation of a medium from its
scattered field.

Figure 2. Green’s function reconstruction allows one to reconstruct the response between two
receivers (represented by the two triangles at locations RA and RB).

second indicates that the recording between the two receivers is reconstructed through the
‘interference’ of all the wavefields recorded at the two receivers excited by the surrounding
sources.

In this paper, the term focusing [15, 16] refers to the technique of finding an incident wave
that collapses to a spatial delta function δ(x − x0) at the location x0 and at a prescribed time t0
(i.e. the wavefield is focused at x0 at t0) as illustrated in figure 3. In a one-dimensional medium,
we deal with a one-sided problem when observations from only one side of the perturbation
are available (e.g. due to the practical consideration that we can only record reflected waves);
otherwise, we call it a two-sided problem when we have access to both sides of the medium
and account for both reflected and transmitted waves.

In seismology, the term imaging [17, 18] refers to techniques that aim to reconstruct an
image of the subsurface (figure 4). Geologist and geophysicists use these images to study
the structure of the interior of the Earth and to locate energy resources such as oil and gas.
Migration methods [19, 20] are the most widely used imaging techniques and their accuracy
depends on the knowledge of the velocity in the subsurface. Migration methods involve a
single scattering assumption (i.e. the Born approximation) because these methods do not take
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Figure 3. Focusing refers to the technique of finding an incident wavefield (represented by the
dashed lines) that collapses to a spatial delta function δ(x−x0) at the location x0 and at a prescribed
time t0.

Sources

Scatterer

Receivers

Propagation Back-propagation

Figure 4. Imaging refers to techniques that aim to reconstruct an image of the subsurface.

Figure 5. The optical theorem relates the power extinguished from a plane wave incident on a
scatterer to the scattering amplitude in the forward direction of the incident field.

into account the multiple reflections that the waves experience during their propagation inside
the Earth; hence, the data need to be preprocessed in a specific way before such methods can
be applied.

The ordinary form of the optical theorem [2, 21] relates the power extinguished from a
plane wave incident on a scatterer to the scattering amplitude in the forward direction of the
incident field (figure 5). The scatterer casts a ‘shadow’ in the forward direction where the
intensity of the beam is reduced and the forward amplitude is then reduced by the amount of
energy carried by the scattered wave. The generalized optical theorem as originally formulated
in [22] is an extension of the previous theorem and it deals with the scattering amplitude in all
the directions; hence, it contains the ordinary form as a special case. This theorem relates the
difference of two scattering amplitudes to an inner product of two other scattering amplitudes.
The generalized optical theorem provides constraints on the scattering amplitudes in many
scattering problems [23, 24]. Since these theorems are an expression of energy conservation,
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Table 1. Principles and their governing equations in a simplified form. G is Green’s function, f is
the scattering amplitude and ∗ indicates complex conjugation.

Principle Equation

1 Inverse scattering u − u∗ =
∫

u∗ f
2 Green’s function reconstruction G − G∗ =

∫
GG∗

3 Optical theorem f − f ∗ =
∫

f f ∗

4 Imaging I =
∫

GG∗

they are valid for any scattering system that does not involve attenuation (i.e. no dissipation
of energy).

In this paper, we refer to the five subjects discussed above as scattering principles because
they are all related, in different ways, to a scattering process. These principles are usually
studied as independent problems but they are related in various ways; hence, understanding
their connections offers insight into each of the principles and eventually may lead to new
applications. This work is motivated by a simple idea: because the equations that rule these
scattering principles have a similar functional form (see table 1), there should be a physical
connection that could lead to a better comprehension of these principles and to possible
applications.

To investigate these potential connections, we follow two different paths to provide
maximum clarity and physical insights. We first show the relationship between different
scattering principles using figures which lead the reader towards a visual understanding of the
connections between the principles; then, we illustrate and derive the mathematics that shows
the link between the governing equations of some of these principles.

2. Visual tour

In this section, we lead the reader through a visual understanding of the connections between
different scattering principles.

2.1. Introduction of time–space diagrams

Before presenting the main results included in this section, we introduce and explain
the time–space diagrams that appear in this paper. This particular visual representation
is borrowed from the seismological community, where these time–space diagrams (called
seismic sections) show the motion of the ground recorded by suitable receivers. Wavefields are
represented as wiggle traces displaying travel time versus distance. We consider propagation
and scattering of waves in a one-dimensional acoustic medium. The field equation governing
the wave motion is Lu(x, t) = 0, where the acoustic wave equation differential operator
is L ≡ ρ(x) d

dx

(
ρ(x)−1 d

dx

)
− c(x)−2 d2

dt2 [25], when the velocity and density of the medium
are described by c(x) and ρ(x), respectively. To record the wavefield propagating inside the
one-dimensional medium, we imagine to have receivers in the medium itself. As illustrated
in figure 6(a), the white triangles correspond to receivers placed along the one-dimensional
medium. We use a time–space finite difference code with absorbing boundary condition to
simulate the propagation of the one-dimensional waves and to produce the numerical examples
shown in this section.

We first consider a homogeneous medium with constant velocity c(x) and density ρ(x)

shown in figures 6(c) and (d), respectively. We assume that a source injects energy at x = 2 km
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Figure 6. (a) The white triangles correspond to receivers in the one-dimensional medium with a
spacing of 100 m. (b) Time dependence of the source function. (c) Velocity profile c(x). (d) Density
profile ρ(x). (e), (f) Time–space diagrams for a source at x = 2 km. The traces are recorded by
the receivers shown in (a). (g) Close-up of of the superposition of the time–space diagrams of
(e) and (f).

with the source function described in figure 6(b) and measure the wavefield at every receiver.
In this case, the wavefield is for t > 0 given by u(x, t) = f (t − |x − xs|/c)+ f (t +|x − xs|/c),
where f (t) is the source function shown in figure 6(b) and xs is the source position. The
wavefield u(x, t) is shown in the time–space diagrams of figures 6(e) and (f). We show two
different visualizations of u(x, t) to facilitate the understanding of our wiggle representation.
Figure 6(g) illustrates a closeup of a superposition of the two representations. Each vertical
line (called trace) of figure 6(f) shows the wavefield measured by the receivers illustrated in
figure 6(a). When the wavefield u(x, t) assumes positive values, the area below u(x, t) is filled
to indicate such positive values in contrast to negative ones (as shown with the source function
in figure 6(b)). The advantage of the wiggle traces over the contour plots is that one can better
discern details of the waveforms. Causality ensures that the wavefield is nonzero only in the
region ct > |x − xsource| delimited by the first arrival (i.e. the direct waves). If we inject the
source function of figure 7(a), we obtain the wavefield shown in figure 7(b). A similar diagram,
for the same velocity and density profile, can be obtained for t > 0 if we simultaneously inject
the same source at the locations x = 0 and x = 4 km, as shown in figure 7(c). Note that the
two incident wavefields, emanating from x = 0 and x = 4 km, create a focus at x = 2 km at
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Figure 7. (a) Time dependence of the source signal. (b) Time–space diagram for a source at
x = 2 km. The traces are recorded by the receivers shown in figure 6(a). (c) Time–space diagram
when two sources are simultaneously present at x = 0 km and x = 4 km. (d) Velocity profile
cs(x). (e) Density profile ρs(x). (f) Time–space diagram when a source is present at x = 2 km
in a medium described by cs(x) and ρs(x). The traces are recorded by the receivers shown in
figure 6(a). The arrow indicates the reflected waves.

t = 0 s. The time–space diagram of figure 7(c) is similar to the light cones described in special
relativity [26].

This particular time–space diagram is easily created because the medium is homogeneous,
but in a more complicated medium this is not trivial. We now consider another one-dimensional
medium with velocity cs(x) and density ρs(x) described in figures 7(d) and (e), respectively.
In this case, the medium is not homogeneous; in fact, velocity and density are discontinuous.
The incident wavefield emanates from x = 2 km, propagates towards the discontinuity in the
model, interacts with it and generates transmitted and reflected scattered waves. The computed
wavefield u(x, t) is presented in the time–space diagram of figure 7(f) and the generation of
the transmitted and reflected scattered waves is clearly visible at x = 3 km, corresponding
to the step in the velocity and density profiles (figures 7(d) and (e)). The heterogeneity has
two effects. First, there are now reflected waves within the ‘light cone’, as indicated by the
arrow in figure 7(f). Second, the arrival time of the waves is crooked because of the changes
in velocity.
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Figure 8. Scattering experiment with a source located at x = 1.44 km in the model shown in
figure 9. The traces are recorded by receivers located in the model with a spacing of 40 m.

2.2. Main results

After this brief introduction regarding our visual notation, we can proceed to the core of this
section. Figure 8 illustrates a scattering experiment in a more complicated one-dimensional
acoustic medium where an impulsive source is placed at the position x = 1.44 km in the
model shown in figure 9. The incident wavefield, a spatial delta function, propagates towards
the discontinuities in the model, interacts with them and generates outgoing scattered waves.
The computed wavefield is shown in the time–space diagram of figure 8 and it represents the
causal Green’s function of the system, G+.

Due to practical limitations, we usually are not able to place a source inside the medium
we want to probe, which raises the following question: Is it possible to create the wavefield
illustrated in figure 8 without having a real source at the position x = 1.44 km? An initial answer
to such a question is given by Green’s function reconstruction. This technique allows one to
reconstruct the wavefield that propagates between a virtual source and other receivers located
inside the medium [10]. We remind the reader that this technique yields a combination of
the causal wavefield and its time-reversed version (i.e. anti-causal), because the reconstructed
wavefield is propagating between a receiver and a virtual source. Without a real (physical)
source, one must have non-zero incident waves to create waves that emanate from a receiver. In
the next section, we introduce a mathematical argument to explain the interplay of the causal
and anti-causal Green’s functions. The fundamental steps to reconstruct Green’s function
are [13]

(1) measure the wavefields G+(x, xsl, t) and G+(x, xsr, t) at a receiver located at x (x varies
from −1 km to 3 km) excited by impulsive sources located at both sides of the perturbation
xsl and xsr (a total of two sources in 1D) as shown in figure 10;

(2) cross-correlate G+(x, xsl, t) with G+(xvs, xsl, t), where xvs = 1.44 km and vs stands for
virtual source;

(3) cross-correlate G+(x, xsr, t) with G+(xvs, xsr, t);
(4) sum the results computed at the two previous points to obtain G+(x, xvs, t);
(5) repeat this for a receiver located at a different x.

The causal part of wavefield estimated by the Green’s function reconstruction technique is
shown in figure 11 and it is consistent with the result of the scattering experiment produced
with a real source located at x = 1.44 km, shown in figure 8.
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Figure 9. Velocity and density profiles of the one-dimensional model. The perturbation in the
velocity is located between x = 0.3–2.5 km and c0 = 1 km s−1. The perturbation in the density is
located between x = 1.0–2.5 km and ρ0 = 1 g cm−3.
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Figure 10. Diagram showing the locations of the real and virtual sources for seismic interferometry.
xsl and xsr indicate the two real sources. xvs shows the virtual source location.

We thus have two different ways to reconstruct the same wavefield, but often we are not
able to access a certain portion of the medium we want to study and hence we cannot place
any sources or receivers inside it. We next assume that we only have access to scattering
data R(t) measured on the left side of the perturbation, i.e. the reflected impulse response
measured at x = 0 km due to an impulsive source placed at x = 0 km. This further limitation
raises another question: Can we reconstruct the same wavefield shown in figure 8 having
knowledge only of the scattering data R(t)? Since there are neither real sources nor receivers
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Figure 11. Causal part of the wavefield estimated by the Green’s function reconstruction technique
when the receiver located at x = 1.44 km acts as a virtual source.

Delta
function Marchenko equation

Solution of the

t

Figure 12. Incident wave that focuses at location x = 1.44 km and time t = 0 s, built using the
iterative process discussed by [15].

inside the perturbation, we speculate that the reconstructed wavefield consists of a causal and
an anti-causal part, as shown in figure 14.

For this one-dimensional problem, the answer to this question is given in [15, 27]. The
author of [15, 27] shows that we need a particular incident wave in order to collapse the
wavefield to a spatial delta function at the desired location after it interacts with the medium,
and that this incident wave consists of a spatial delta function followed by the solution of the
Marchenko equation, as illustrated in figure 12.

The Marchenko integral equation [6, 28] is a fundamental relation of one-dimensional
inverse scattering theory. It is an integral equation that relates the reflected scattering amplitude
R(t) to the incident wavefield u(t, t f ) which will create a focus in the interior of the medium and
ultimately gives the perturbation of the medium. The one-dimensional form of this equation is

0 = R(t + t f ) + u(t, t f ) +
∫ t f

−∞
R(t + t ′)u(t ′, t f ) dt ′, (1)

where t f is a parameter that controls the focusing location. We solve the Marchenko equation,
using the iterative process described in detail in [27], and construct the particular incident
wave that focuses at location x = 1.44 km, as shown in figure 8. After seven steps of the
iterative process, we inject the incident wave in the model from the left at x = −1 km and
compute the time–space diagram shown in the top panel of figure 13: it shows the evolution in
time of the wavefield when the incident wave is the particular wave computed with the iterative
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Figure 13. Top: after seven steps of the iterative process described in [27], we inject at x =
−1 km the particular incident wave in the model and compute the time–space diagram. Bottom:
cross-section of the wavefield at t = 0 s.

method. The bottom panel of figure 13 shows a cross-section of the wavefield at the focusing
time t = 0 s: the wavefield vanishes everywhere except at location x = 1.44 km; hence,
the wavefield focuses at this location. Note that the time derivative of the wavefield (i.e. the
velocity) is not focused at x = 1.44 km; hence, the energy is also not focused at this location.
We can thus create a focus at a location inside the perturbation without having a source or a
receiver at such a location and without any knowledge of the medium properties; we only have
access to the reflected impulse response measured on the left side of the perturbation. With
an appropriate choice of sources and receivers, this experiment can be performed in practice
(e.g. in a laboratory).

Figure 13 however does not resemble the wavefield shown in figures 8 and 11. But if
we denote the wavefield in figure 13 as w(x, t) and its time-reversed version as w(x,−t), we
obtain the wavefield shown in figure 14 by adding w(x, t) and w(x,−t). With this process,
we effectively go from one-sided to two-sided illumination because in figure 14, waves are
incident on the scatterer from both sides for t < 0 s. Reference [29] shows similar diagrams and
explains how to combine such diagrams using causality and symmetry properties. The upper
cone in figure 14 corresponds to the causal Green’s function and the lower cone represents
the anti-causal Green’s function; the relationship between the two Green’s functions is a key
element in the next section, where we introduce the homogeneous Green’s function Gh. Note
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Figure 14. Wavefield that focuses at x = 1.44 km at t = 0 s without a source or a receiver at this
location. This wavefield consists of a causal (t > 0) and an anti-causal (t < 0) part.

Figure 15. An incident plane wave created by an array of sources is injected in the subsurface.
This plane wave is distorted due to the variations in the velocity inside the overburden (i.e. the
portion of the subsurface that lies above the scatterer). When the wavefield arrives in the region
that includes the scatterer, we do not know its shape.

that the wavefield in figure 14, with a focus in the interior of the medium, is based on reflected
data recorded at the left side of the heterogeneity only. We did not use a source or receiver
in the medium, and did not know the medium. All necessary information is encoded in the
reflected waves. Note that a small amount of energy is present outside the two cones. This is
due to numerical inaccuracies in our solution of the Marchenko equation.

The extension of the iterative process in two dimensions still needs to be investigated;
but we conclude this section with a conjecture illustrated in figure 15. An incident plane
wave created by an array of sources is injected in the subsurface where it is distorted due to
the variations of the velocity inside the overburden (i.e. the portion of the subsurface that lies
above the scatterer). Since we do not know the characteristics of the wavefield when it interacts
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Figure 16. Focusing of the wavefield ‘at depth’. A special incident wave, after interacting with the
overburden, collapses to a point in the subsurface creating a buried source.

xrxA xB x

cs
−1 +1

xl

c0

Figure 17. Geometry of the problem for the scattering of acoustic waves in a one-dimensional
medium with constant density. xA, xB, xl and xr are the coordinates of the receivers (represented
by the triangles) and the left and right bounds of our domain, respectively. The perturbation cs is
superposed on a constant velocity profile c0.

with the region of the subsurface that includes the scatterer, it is difficult to reconstruct the
properties of the scatterer without knowing the medium. Hence, following the insights gained
with the one-dimensional problem, we would like to create a special incident wave that,
after interacting with the overburden, collapses to a point in the subsurface creating a buried
source, as illustrated in figure 16. In this case, assuming that the medium around the scatterer
is homogeneous, we would know the shape of the wavefield that probes the scatterer and
partially removes the effect of the overburden, which would facilitate accurate imaging of the
scatterer.

3. Review of scattering theory

We review the theory for the scattering of acoustic waves in a one-dimensional medium (also
called line) with a constant density (in contrast with the previous section where we also
considered variable density), where the scatterer is represented by a perturbation of a constant
velocity profile. Here, we introduce the wave equation and Green’s functions that are used in
the following section of the paper. Figure 17 shows the geometry of the scattering problem.
The perturbation cs(x) is superposed on a constant velocity profile c0. The following theory
is developed in the frequency domain because it simplifies the derivations (e.g. convolution
becomes a multiplication and derivatives become multiplications by −iω). We also show
the time domain version of some of the following equations because they are more intuitive
and allow us to understand the important role played by time reversal. The Fourier transform
convention is defined by f̂ (t) =

∫
f (ω) exp(−iωt) dω and f (ω) = (2π )−1

∫
f̂ (t) exp(iωt) dt.

Throughout this work, when we deal with a one-dimensional problem, the direction of
propagation n assumes only two values, 1 and −1, which correspond to waves propagating to
the right and to the left (figure 17), respectively.
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The equation that governs the motion of the waves in an unperturbed medium with constant
velocity c0 is the constant-density acoustic homogeneous wave equation

L0(x,ω)u0(n, x,ω) = 0, (2)

where u0 is the displacement wavefield propagating in the n direction and the differential
operator is

L0(x,ω) ≡
[

d2

dx2
+ ω2

c2
0

]
. (3)

The solution of equation (2) is u0(n, x,ω) = exp(inxω/c0) and its time-domain version is
û0(n, x, t) = δ(t − nx/c0), which is a delta function that propagates with velocity c0 in the
direction n representing a physical solution to the wave equation. The unperturbed Green’s
function satisfies the equation

L0(x,ω)G±
0 (x, x′,ω) = −δ(x − x′), (4)

and, in the acoustic one-dimensional case, its frequency-domain expression is [30]

G±
0 (x, x′,ω) ≡ ± i

2k
e±ik|x−x′|, (5)

where k ≡ ω/c0. The + and − superscripts of Green’s function represent the causal and anti-
causal Green’s function with outgoing or ingoing boundary conditions [31], respectively. In
the time domain, causality implies that

Ĝ±
0 (x, x′, t) = 0 ± t < |x − x′|/c0. (6)

Physically, the time-domain Green’s function Ĝ+
0 (x, x′, t) represents the displacement at a

point x at time t due to a point source of unit amplitude applied at x′ at time t = 0, while
Ĝ−

0 (x, x′, t) gives the displacement at x that is annihilated by a point source at x′ at t = 0.
Next we consider the interaction of the wavefield u0 with the perturbation cs(x) (see

figure 17). This interaction produces a scattered wavefield u±
sc; hence, the total wavefield can

be represented as u± = u0 + u±
sc. The + and − superscripts in the total wavefield indicate an

initial and a final condition of the wavefield in the time domain, respectively:

û±(n, x, t) → û0(n, x, t) t → ∓∞. (7)

Physically, condition (7) with a plus sign means that the wavefield u+, at early times,
corresponds to the initial wavefield u0 propagating forward in time in the n direction. The
causal and anti-causal wavefields u+ and u− are related by time reversal; in fact, each one is
the time-reversed version of the other u−(t) = u+(−t). In the frequency domain, time reversal
corresponds to complex conjugation: u−(ω) = u+∗(ω). Their time reversal relationship is
better understood by comparing figures 18(a) and (b), which are valid for the velocity model
of figure 9. Figure 18(b) is obtained by reversing the time axis of figure 18(a). We produced
both figures using the same velocity model we used in section 2 of this paper (figure 9). In
figure 18(a), the initial wavefield is a narrow Gaussian impulse injected at −1.5 km whereas
in figure 18(b), the initial wavefield corresponds to the wavefield at t = 6 s in figure 18(a) and
it coalesces to an outgoing Gaussian pulse.

The total wavefield u± satisfies the wave equation

L(x,ω)u±(n, x,ω) = 0, (8)

where the differential operator is

L(x,ω) ≡
[

d2

dx2
+ ω2

c(x)2

]
. (9)
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Figure 18. (a) The causal wavefield u+ originated by a narrow Gaussian impulse injected at
−1.5 km in the velocity model of figure 9. (b) The anticausal wavefield u−. Note that each panel
is the time-reversed version of the other.

The velocity varies with position, c(x) = c0 + cs(x), as illustrated in figure 17. Using the
operator L, we define the perturbed Green’s function as the function that satisfies the equation

L(x,ω)G±(x, x′,ω) = −δ(x − x′), (10)

with the same boundary conditions as equation (5). Green’s function G± takes into account all
the interactions with the perturbation and hence it corresponds to the full wavefield propagating
between the points x′ and x, due to an impulsive source at x′.

4. Mathematical tour

In this part of the paper, we lead the reader through a mathematical tour and show that the
different scattering principles have a common starting point, i.e. the following fundamental
equation that reveals the connections between them:

G+(xA, xB) − G−(xA, xB)

=
∑

x′=xl ,xr

m
[

G−(x′, xA)
d
dx

G+(x, xB)|x=x′ − G+(x′, xB)
d
dx

G−(x, xA)|x=x′

]
(11)

with

m =
{
−1 if x′ = xl

+1 if x′ = xr,
(12)
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where xA, xB, xl and xr (see figure 17) are the coordinates of the receivers located at xA

and xB and the left and right bounds of our domain, respectively. Equation (11) (derived in
appendix A) shows a relation between the causal and anti-causal Green’s function and we refer
to this expression, throughout the paper, as the representation theorem for the homogeneous
Green’s function Gh ≡ G+ − G− [31], which satisfies the wave equation (10) when its source
term is set equal to zero. G+ and G− both satisfy the same wave equation (10) because the
differential operator L is invariant to time reversal (LG+ = −δ and LG− = −δ); hence, their
difference is source free: L(G+ − G−) = 0. The fact that G+ − G− satisfies a homogeneous
equation suggests that a combination of the causal and anti-causal Green’s functions is needed
to focus the wavefield at a location where there is no real source. This fact has been illustrated
in the previous section when we reconstructed the same wavefield using the Green’s function
reconstruction technique and the inverse scattering theory (see figures 11 and 14); in both
cases, we obtained a combination of the two Green’s functions.

For the remainder of this paper, to be consistent with [32–34], we use the superscripts +

and − to indicate the causal and anti-causal behaviour of wavefields and Green’s functions,
and, for brevity, we omit the dependence on the angular frequency ω.

4.1. Newton–Marchenko equation and generalized optical theorem

In this section, we show that equation (11) is the starting point to derive a Newton–Marchenko
equation and a generalized optical theorem. In other words, we demonstrate how lines 1 and
3 of table 1 are linked to Gh. The Newton–Marchenko equation differs from the Marchenko
equation because it requires both reflected and transmitted waves as data [35]. In contrast
to the Marchenko equation (1), the Newton–Marchenko equation can be extended to two
and three dimensions. The Marchenko and the Newton–Marchenko equations deal with the
one-sided and two-sided problem, respectively. Following the work in [32–34], we manipulate
equation (11) and show how to derive the equations that rule these two principles. Before
starting with our derivation, we introduce some useful equations:

u±(n, x) = u0(n, x) + u±
sc(n, x)

= u0(n, x) +
∫

dx′G±
0 (x, x′)L′(x′)u±(n, x′), (13)

u±(n, x) = u0(n, x) +
∫

dx′G±(x, x′)L′(x′)u0(n, x′), (14)

G±(n, x, x′) = G±
0 (n, x, x′) +

∫
dx′′G±(x, x′′)L′(x′′)G±

0 (n, x′′, x′), (15)

f (n, n′) = −
∫

dx′ e−nikx′
L′(x′)u+(n′, x′), (16)

where L′(x) ≡ L(x) − L0(x) describes the influence of the scatterer (perturbation).
Equations (13), (14) and (15) are three different Lippmann–Schwinger equations [2]; they
are a reformulation of the scattering problem using linear integral equations with a Green’s
function kernel. In particular, equation (13) shows that the total field is the summation of the
incident wave u0(n, x) and the scattered wave u±

sc(n, x). The integral approach is also well
suited for the study of inverse problems [8]. Equation (16) is the scattering amplitude [2] for
an incident wave travelling in the n direction and that is scattered in the n′ direction. We insert
equation (15) into (11), simplify considering the fact that xr > xA, x′′, xB and xl < xA, x′′, xB,
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and using expression (14)

G+(xA, xB) − G−(xB, xA) =
(

i
2k

) (
− i

2k

)
[iku−(+1, xA)u+(−1, xB)

+ iku+(−1, xB)u−(+1, xA) + iku−(−1, xA)u+(+1, xB)

+ iku+(+1, xB)u−(−1, xA)]. (17)

In a more compact form, this can be written as

G+(xA, xB) − G−(xB, xA) =
(

i
2k

) ∑

n=−1,1

u−(n, xA)u+(−n, xB). (18)

Equation (18) is the starting point to derive a Newton–Marchenko equation; we show the full
derivation in appendix B and write the final result:

u+(+1, xA) − u−(+1, xA) = − i
2k

∑

n=−1,1

u−(n, xA) f (n, xB), xB > xA, x′′ (19)

and

u+(−1, xA) − u−(−1, xA) = − i
2k

∑

n=−1,1

u−(n, xA) f (n,−xB), xB < xA, x′′. (20)

The system of coupled equations (19) and (20) is our representation of the one-dimensional
Newton–Marchenko equation [35]. Recognizing that u− = u∗, equations (19) and (20)
correspond to line 1 of table 1.

Next, following a similar derivation that led to equations (19) and (20), we insert expression

u±(n, x) = u0(n, x) +
∫

dx′G±
0 (x, x′)L′(x′)u±(n, x′) (21)

into equation (19), we use the relation u−(n, x) = u+∗(−n, x) and equation (16), and we
finally obtain a generalized optical theorem:

f (−n, n) + f ∗(−n, n) = −
∑

n′=−1,1

f (−n, n′) f ∗(n, n′), (22)

where f (n, n′) represents the scattering amplitude [2] and n′ assumes the value −1 or +1 (see
line 3 of table 1). The obtained results are exact because in this one-dimensional framework
we do not use any far-field approximations.

4.2. Green’s function reconstruction and the optical theorem

Starting from the three-dimensional version of equation (11), reference [36] showed the
connection between the generalized optical theorem and Green’s function reconstruction.
Following their three-dimensional formulation, we illustrate the same result for the one-
dimensional problem and show the connection between lines 2 and 3 of table 1. In this part
of the paper, we show the results and leave the mathematical derivation to appendix C. The
expression for the one-dimensional Green’s function reconstruction is

i
2k

[G+(xA, xB) − G−(xA, xB)] =
∑

x′=xl ,xr

G+(xA, x′)G−(xB, x′); (23)

where Green’s function excited by a point source at xB recorded at xA can be separated into an
incident and a scattered part and is given by

G±(xA, xB) = ∓ i
2k

e±ik|xB−xA|

︸ ︷︷ ︸
direct

∓ i
2k

e±ik|xB| f (n, n′) eik|xA|

︸ ︷︷ ︸
scattered

. (24)
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c0tA c0tB

Figure 19. Configurations of the system used to show the connection between Green’s function
reconstruction and the optical theorem. In both cases, the receivers xA and xB are located outside
the scatterer cs, which is located at x = 0.

Unlike the three-dimensional case, we obtain two different results depending on the
configuration of the system. In the first case (figure 19(a)), the ordinary optical theorem
is derived:

f (n, n) + f ∗(n, n) = −
∑

n′=−1,1

| f (n, n′)|2; (25)

in the second case (figure 19(b)), we obtain a generalized optical theorem

f (−n, n) + f ∗(−n, n) = −
∑

n′=−1,1

f (−n, n′) f ∗(n, n′), (26)

where n assumes the value −1 or +1.
The above expressions of the optical theorem in one dimension agree with the work of the

authors of [37] and differ from their three-dimensional counterpart because they contain the real
part of the scattering amplitude instead of the imaginary part: 2Re f (n, n) ≡ f (n, n)+ f ∗(n, n),
where Re indicates the real part. We note that the ordinary form of the optical theorem (25) also
follows from its generalized form (26) (the former is a special case of the latter). Furthermore,
equation (26) is equivalent to the expression for the optical theorem derived in the previous
section, equation (22). This is not surprising because both equations (26) and (22) have been
derived from the same fundamental equation (11).

5. Conclusions

In section 2, we described the connection between different scattering principles, showing
that there are three distinct ways to reconstruct the same wavefield. A physical source, the
Green’s function reconstruction technique, and inverse scattering theory allow one to create
the same wavestate (see figure 8) originated by an impulsive source placed at a certain location
xs (x = 1.44 km in our examples). Green’s function reconstruction show us how to build an
estimate of the wavefield without knowing the medium properties, if we have a receiver at
the same location xs of the real source and sources surrounding the scattering region. Inverse
scattering goes beyond this and allows us to focus the wavefield inside the medium (at location
xs) without knowing its properties, using only data recorded at one side of the medium. We
showed that the interaction between causal and anti-causal wavefields is a key element to
focus the wavefield where there is no real source; in fact, Gh = G+ − G−, which satisfies
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the homogeneous wave equation (10), is a superposition of the causal and anti-causal Green’s
functions.

We speculate that many of the insights gained in our one-dimensional framework are still
valid in higher dimensions. An extension of this work in two or three dimensions would give
us the theoretical tools for many useful practical applications. For example, if we knew how
to create the three-dimensional version of the incident wavefield shown in figure 12, we could
focus the wavefield to a point in the subsurface to simulate a source at depth and to record
data at the surface (figure 16); these kind of data are of extreme importance for full waveform
inversion techniques [38] and imaging of complex structures (e.g. under salt bodies in seismic
exploration [39]). Furthermore, we could possibly concentrate the energy of the wavefield
inside a hydrocarbon reservoir to fracture the rocks and improve the production of oil and
gas [40].

In the second part of this paper, the mathematical tour, we demonstrated that the
representation theorem for the homogeneous Green’s function Gh, equation (11), constitutes a
theoretical framework for various scattering principles. We showed that all the principles and
their equations (see table 1) rely on Gh as a starting point for their derivation. As mentioned
above, the fundamental role played by the combination of the causal and anti-causal Green’s
functions has been evident throughout the mathematical tour: it is this combination that allows
one to focus the wavefield to a location where neither a real source nor a receiver can be
placed.
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Appendix A. Derivation of equation (11)

Here, we derive equation (11), i.e. the representation theorem for the homogeneous Green’s
function. We start with the equations

d2

dx2
G+(x, xB) + ω2

c(x)2
G+(x, xB) = −δ(x − xB) (A.1)

and
d2

dx2
G−(x, xA) + ω2

c(x)2
G−(x, xA) = −δ(x − xA), (A.2)

where xA, xB and x indicate a position between xl and xr in figure 17. Next, we multiply
equation (A.1) by G−(x, xA), and equation (A.2) by G+(x, xB); then, we subtract the two
results and integrate between xl and xr, yielding
G+(xA, xB) − G−(xB, xA)

=
∫ xr

xl

dx
[

G−(x, xA)
d2

dx2
G+(x, xB) − G+(x, xB)

d2

dx2
G−(x, xA)

]
. (A.3)

The right-hand side of the last equation is an exact derivative:∫ xr

xl

dx
[

G−(x, xA)
d2

dx2
G+(x, xB) − G+(x, xB)

d2

dx2
G−(x, xA)

]

≡
∫ xr

xl

dx
d
dx

[
G−(x, xA)

d
dx

G+(x, xB) − G+(x, xB)
d
dx

G−(x, xA)

]
; (A.4)
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hence, we obtain the expression for Gh:

G+(xA, xB) − G−(xA, xB)

=
∑

x′=xl ,xr

m
[

G−(x′, xA)
d
dx

G+(x, xB)|x=x′ − G+(x′, xB)
d
dx

G−(x, xA)|x=x′

]
(A.5)

with

m =
{
−1 if x′ = xl

+1 if x′ = xr,
(A.6)

where we have used the source–receiver reciprocity relation G±(xA, xB) = G±(xB, xA) for the
acoustic Green’s function [41].

Appendix B. Derivation of the Newton–Marchenko equation

Inserting expression (15) into the left-hand side of equation (18), using the relation u+ =
u0 + u+

sc on the right-hand side of (18), and then inserting (13) into the right-hand side, we get

e+ik|xA−xB| +
∫

dx′′G+(xA, x′′)L′(x′′) e+ik|x′′−xB| + e−ik|xA−xB| +
∫

dx′′G−(xA, x′′)L′(x′′) e−ik|x′′−xB|

= u−(+n, xA) e−ikxB + u+(+n, xA) e+ikxB

+ i
2k

u−(+n, xA)

∫
dx′′ e+ik|xB−x′′|L′(x′′)u+(−n, x′′)

+ i
2k

u−(−n, xA)

∫
dx′′ e+ik|xB−x′′|L′(x′′)u+(+n, x′′). (B.1)

In this one-dimensional problem, we need to consider two different cases: (1) xB > xA, x′′ and
(2) xB < xA, x′′. Without loss of generality, we choose xB > xA, x′′, and hence obtain

e+ikxB

[
e−ikxA +

∫
dx′′G+(xA, x′′)L′(x′′) e−ikx′′

]
+ e−ikxB

[
eikxA +

∫
dx′′G−(xA, x′′)L′(x′′) e+ikx′′

]

= u−(+1, xA) e−ikxB + u−(−1, xA) e+ikxB − i
2k

u−(+1, xA) e+ikxB

∫
−dx′′ e−ikx′′

L′(x′′)

× u+(−1, x′′)− i
2k

u−(−1, xA) e+ikxB

∫
−dx′′ e−ikx′′

L′(x′′)u+(+1, x′′). (B.2)

The terms inside the brackets on the left-hand side correspond to u+(−1, xA) and u−(+1, xA),
respectively, whereas the integrals on the right-hand side correspond to f (+1,−1) and
f (+1,+1), respectively. We rewrite equation (B.2) using (13), (14) and the relation
f (+n,+n′) = f (−n′,−n) to give

u+(+1, xA) − u−(+1, xA) = − i
2k

∑

n=−1,1

u−(n, xA) f (n, xB). (B.3)

For the second case xB < xA, x′′, the solution is

u+(−1, xA) − u−(−1, xA) = − i
2k

∑

n=−1,1

u−(n, xA) f (n,−xB). (B.4)
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Appendix C. Green’s function reconstruction and the optical theorem

In this appendix, we derive the mathematics that shows the connection between the Green’s
function reconstruction equation and the optical theorem in one dimension. The expression
for Green’s function reconstruction is

i
2k

[G+(xA, xB) − G−(xA, xB)] =
∑

x′=xl ,xr

G+(xA, x′)G−(xB, x′), (C.1)

and Green’s function excited by a point source at xs recorded at xr is given by

G+(xr, xs) = − i
2k

eik|xs−xr |

︸ ︷︷ ︸
T d

− i
2k

eik|xs| f (n, n′) eik|xr |

︸ ︷︷ ︸
T s

, (C.2)

where f (n, n′) represents the scattering amplitude [2], and n′ and n represent the directions of
the incident wave and the scattered wave, respectively. In the expression above, T d represents
the wave travelling directly from the source to the receiver, and T s corresponds to the
scattered wave that reaches the receiver after interacting with the scatterer. Considering the
first configuration (figure 19(a)), inserting equation (C.2) into the right-hand side of equation
(C.1), we get
∑

x′=xl ,xr

G+(xA, x′)G−(xB, x′) = − i
2k

[
− i

2k
eik(xB−xA ) − i

2k
e−ik(xB+xA ) f (−1, 1)

]

︸ ︷︷ ︸
T 1

− i
2k

[
− i

2k
e−ik(xB−xA ) − i

2k
eik(xB+xA ) f ∗(−1, 1)

]

︸ ︷︷ ︸
T 2

−
(

i
2k

)

(
i

2k

)
eik(xB − xA )[ f (−1,−1) + f ∗(−1,−1) + | f (−1,−1)|2 + | f (−1, 1)|2]

︸ ︷︷ ︸
T 3

.

(C.3)
The terms T 1 and T 2 correspond to G+(xA, xB) and −G−(xA, xB), respectively, while the
term T 3 represents the unphysical wave previously discussed in the mathematical tour; hence,
equation (C.3) simplifies to
∑

x′=xl ,xr

G+(xA, x′)G−(xB, x′) = i
2k

[G(xA, xB) − G−(xA, xB)]

−
(

i
2k

)2

eik(xB − xA)[ f (−1,−1)+ f ∗(−1,−1)+ | f (−1,−1)|2 + | f (−1, 1)|2].

(C.4)
For the right-hand side of equation (C.4) to be equal to the left-hand side of equation (C.1),
the expression between the square brackets in term T 3 should vanish:

f (−1,−1) + f ∗(−1,−1) = −| f (−1,−1)|2 + | f (−1, 1)|2. (C.5)
Equation (C.5) is the expression for the one-dimensional optical theorem [37]. The second
configuration (figure 19(b)) gives
∑

x′=xl ,xr

G+(xA, x′)G−(xB, x′) = i
2k

[G+(xA, xB) − G−(xA, xB)] −
(

i
2k

)2

eik(xB+xA )

× [ f (−1, 1) + f ∗(1,−1) + f (−1,−1) f ∗(1,−1) + f (−1, 1) f ∗(1, 1)]︸ ︷︷ ︸
T 4

.

(C.6)
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In this case, term T 4 corresponds to the generalized optical theorem in one
dimension [37].

The connection between Green’s function reconstruction and the generalized optical
theorem has not only a mathematical proof but also a physical meaning. The cross-correlation
of scattered waves in equation (C.3) produces a spurious arrival [36], i.e. an unphysical wave
that is not predicted by the theory. In the first configuration shown in figure 19(a), such spurious
arrival has the same arrival time as the direct wave, tB + tA, but its amplitude is not correct (see
term T 3 in equation (C.3)). In the second case (figure 19(b)), tA and tB correspond to the time
that a wave takes to travel from the origin x = 0 to xA and xB, respectively. Here, the spurious
arrival corresponds to a wave that arrives at time tB − tA when no physical wave arrives; in fact,
it would arrive before the direct arrival at time tB + tA. But since the ordinary and generalized
optical theorem hold, the spurious arrival cancels in both cases.
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