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§1. Introduction

The theory of elastodynamic wave scattering is based
on two foundations; continuum mechanics of elastic
media and the general principles of scattering theory.
In this chapter, the basic elements of the theory of elas-
todynamic scattering theory are presented. In later
chapters this is applied to scattering of body waves
(Chapter 1.7.2), scattering of surface waves (Chapter
1.7.3), seismic imaging (Chapter 1.8.1) and nonde-
structive testing (Chapter 1.8.2).

There is a wide body of literature on elastody-
namic wave scattering. In their treatise of theoretical
physics, Morse and Feshbach (1953a,b) include sev-
eral aspects of continuum mechanics and elastic wave
propagation. The foundations of continuum mechan-
ics are described in great detail by Malvern (1969).

PART 1 SCATTERING OF WAVES BY
MACROSCOPIC TARGETS

Topic 1.7 Elastodynamic Wave (Elastic)
Scattering: Theory

A comprehensive overview of scattering of acous-
tic, electromagnetic and elastic waves is presented in
a unified way by de Hoop (1995). The propaga-
tion of elastic waves forms the foundation of seis-
mology. The required theory and application to
seismological problems is presented in great detail
by Aki and Richards (1980) Hudson (1980) and by
Ben-Menahem and Singh (1981).

§2. Principles of Elasticity

In this section an outline is given of the principles of
elasticity that are of relevance for elastic wave scat-
tering. A more detailed description of the theory
of elastic waves needed for the description of elas-
tic wave scattering can be found in Aki and Richards
(1981). In general the derivations are given in the
frequency domain. The frequency-domain formula-
tion and the time-domain formulation are related by
the Fourier transform. For the temporal and spatial
Fourier transforms the following convention is used:

fit)= 5| Fojedo, ()
bix) = %J H(k)e** dk. 2)

For the inverse transform the exponents have the
opposite sign and the factor 27 is omitted.

A crucial element in the description of elastic waves
is the stress tensor 1. Consider an infinitesimal surface
with surface area dS with normal vector ii. The force
acting on this surface per unit surface area is called
the traction; this quantity is given by

T=f-1. (3)

The stress tensor is such a useful quantity because ex-
pression (3) makes it possible to compute the force
acting on any surface once the stress tensor is known.
The stress tensor is symmetric:

Tij = Tji. (4)

This property follows from the requirement that
angular momentum is conserved (Malvern, 1969;

Goldstein, 1980).
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For a general medium the stress in the medium de-
pends in a complicated way on the deformation of
the medium. The deformation of the medium results
from a displacement vector u(r) in the medium that
varies with position, because a constant displacement
vector u does not generate an internal deformation.
For small elastic deformations the relation between
the deformation and the resulting stress can be lin-
earised; this linearisation is expressed by Hooke’s
law:

Tij = Cijkl€kl- (5)

Throughout this chapter the summation convention
is used where one sums over repeated indices. In
expression (5) the infinitesimal strain tensor e;; is de-
fined by

1
¢ij = 5 (diuj + djuti), (6)

where the notation 9; stands for the derivative with
respect to the x; coordinate: 0;f = df/dx;. The
fourth-order tensor c;j, called the elasticity tensor,
generalises the concept of the spring constant of a sim-
ple spring to three-dimensional elastic media. One
should keep in mind that Hooke’s law (5) is a lin-
earisation that breaks down in situations when the
response of the medium is nonlinear. This is for exam-
ple the case at fractures or in the earthquake source
region, where nonlinear fracture behaviour governs
the response of the medium.

It follows from the definition (6) that the strain ten-
sor is symmetric:

ejj = eji. (7)

Because of this property, the elasticity tensor is sym-
metric when the last indices are exchanged: ¢ = ¢jjik.
Since according to (4) the stress tensor is also symmet-
ric, the elasticity tensor is also symmetric in the first
two indices: cjjr = cjir;. Energy considerations (Aki
and Richards, 1980) imply that the elasticity tensor is
also symmetric for exchange of the first and last pair
of indices: c¢;jr1 = cpij. The elasticity tensor therefore
has the symmetry properties

Cijkl = Cjikl = Cijlk = Cklij- (8)

Inserting (6) in (5) and using the symmetry of the elas-
ticity tensor in the first pair of indices, the relation be-
tween the stress and the displacement can be written
as

Tjj = CijIOk M- 9)

In general a tensor of rank 4 in three dimensions
has 81 components. The symmetry relations (8) re-
duce the number of independent components of the
elasticity tensor to the number of independent ele-
ments of a symmetric 6 x 6 matrix (Backus, 1970;
Helbig, 1994), which means that the elasticity tensor

has in three dimensions 21 independent elements. Of
special importance is the case of an isotropic elastic
medium. In such a medium the elasticity tensor does
not depend on some preferred direction, but only on
the Lamé parameters A and u

Cijkl = MOjjOpy + (8 81 + 6;10;1, ), (10)

where §;; is the Kronecker delta defined by &;; = 1 when
i=jand §;; = 0 when i #;. For the moment we consider
a general elasticity tensor.

The force associated with the stress acting on a vol-
ume is given by ¢ T dS, where the surface integral is
over the surface that bounds the volume. By the the-
orem of Gauss and expression (3), this force is given
by [ V-t dV. This implies that the force generated by
the internal stress per unit volume is given by the di-
vergence of the stress tensor (V-1). In addition to this
force, forces such as gravity or a seismic source that
are not resulting from the deformation may be opera-
tive. These forces per unit volume are denoted by the
force vector f. Since the mass per unit volume is given
by the density p, Newton’s law can be written as

pi=V-1+f. (11)

It should be noted that this is the linearised form of
Newton’s law. Since we are dealing with a continu-
ous medium the acceleration contains advective terms
as well; hence, the left-hand side should be written as
pav/dt+pv-Vv, with v being the velocity vector. How-
ever, when the material velocity v is much smaller than
the wave velocity, the advective terms can be ignored
(Snieder, 2001). By inserting (9) in Newton’s law,
one obtains the wave equation for the displacement
vector

piij = 0; (cijpiOpuy) + fi- (12)
In the frequency domain this corresponds to
po’u; + 3 (cijpidkts) = —fi. (13)

In a shorthand notation we will write this expression
also as

Lu=—f, (14)
where the operator L is defined by
Lij= pﬂ)zsl',' + 0k Cikljo]- (15)

The wave equation is a second-order differential
equation for the displacement vector u that needs to
be supplemented with boundary conditions at the sur-
face of the medium. At a stress-free surface S, the
tractions acting on the surface vanish:

T=n-1=0 atS§. (16)

This boundary condition is appropriate when the sur-
face S forms the outer boundary of the elastic body
that is surrounded by empty space. Ignoring the stress
imposed on an elastic body imposed by the gas or fluid
in which the body is possibly embedded, the tractions
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vanish at the surface. Using (3) and (9) this bound-
ary condition can be expressed as a condition for the
displacement at the free surface:

niciriOpu; =0 at . (17)

For a number of applications it is useful to define
the power flux in an elastic medium. When a force
F acts on a particle moving with velocity v (given by
u), the power delivered by the force is given by (F-v).
Consider a surface element dS, according to (3) the
force acting on that surface element is given by TdS =
T-0dS = 1-dS. The power delivered at the surface is
therefore given by v-1-dS. The vector dS points out of
a volume; to obtain the power delivered to a volume
we should consider the energy flow into the volume by
adding a minus sign. The power flux Jp is therefore
given by

Jp=—(tu). (18)

Expression (18) is the elastodynamic equivalent of the
Pointing vector in electromagnetism. The power that
flows through a surface is given by

P =j J Jp-ids.

It can be shown (Ben-Menahem and Singh, 1981)
that the energy density satisfies the conservation law

% +(V-Jp) = p(fu).
The power flux and energy density depend quadrat-
ically on the displacement because expression (18)
contains the product of the displacement and the
stress (which is a linear combination of partial deriva-
tives of the displacement). One should therefore not
simply replace the real time-domain quantities by the
complex counterpart in the frequency domain. With
the Fourier convention (1) in the frequency domain,
the power flux averaged over one period is given by

(19)

(20)

Jr = 2 Jm(vu®), (21)

2

where the asterisk denotes the complex conjugate.

§3. The Anatomy of a Seismogram

As an introduction to the different types of elastic
wave propagation, we consider Fig. 1 in which the
vertical component of the ground motion is shown
after an earthquake at Jan-Mayen Island in the North
Atlantic. The ground motion was recorded by one of
the stations of the Network of Autonomously Record-
ing Seismographs (NARS) that was placed in Naroch,
Belarus. The earthquake takes place at time ¢ = 0. In
the seismogram impulsive waves arrive around 300
and 550 s. After this, a strong extended wave train ar-
rives between 620 and 900 s. The impulsive arrivals
are waves that have propagated deep in the Earth;

Figure 1 Vertical component of the ground motion at a seismic
station in Naroch (Belarus) after an earthquake at Jan-Mayen Is-
land. This station, part of the Network of Autonomously Recording
Seismographs (NARS), is operated by Utrecht University.
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these waves are called body waves. In contrast to
these body waves, the wave train that arrives around
700 s corresponds to waves that are guided along the
Earth’s surface; for this reason such waves are called
surface waves. The paths of propagation of these
types of waves are sketched in Fig. 2. The surface
wave propagates effectively in only two dimensions
whereas the body waves propagate in three dimen-
sions. For this reason the surface wave suffers less
from geometrical spreading during the propagation
and therefore has in general a larger amplitude than

the body waves; this can be seen clearly in Fig. 1.
Elastodynamic waves are vector waves, with no re-

striction on the polarisation. Because there are three
spatial dimensions, elastodynamic waves can have
three different polarisations. In an isotropic medium,
the body waves separate into a longitudinal wave and

Figure 2 Sketch of the paths of propagation and polarisation of
P-waves, S-waves and surface waves in the Earth.
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transverse waves. The polarisation of these waves is
indicated by the arrows in Fig. 2. Longitudinal waves
propagate at a higher velocity than do the transverse
waves. The nomenclature “P wave” and “S waves”
historically denotes the first arriving (primary) and
later arriving (secondary) body waves. The wave ar-
riving around 300 s therefore is the P wave while the
wave arriving around 550 s is the S wave. There are
two directions of polarisation perpendicular to the
path of propagation; for this reason there are two
S waves in an isotropic medium that for reason of
symmetry propagate at the same velocity. When the
medium is anisotropic, there are still three polarisa-
tions of the body waves, but they do not correspond
to longitudinal and transverse directions of polarisa-
tions. This is treated in more detail under Plane Wave
Solutions.

The surface wave is guided along the Earth’s sur-
face. For an isotropic Earth model where the elas-
tic parameters and the density depend only on depth
there are two types of surface wave: Rayleigh waves
and Love waves. The Love wave is linearly polarised
in the horizontal direction perpendicular to the prop-
agation path, while Rayleigh waves have an ellip-
soidal polarisation in the vertical plane through the
path of propagation (Aki and Richards, 1980). Love
and Rayleigh waves propagate in different modes, the
number of modes depending in a nontrivial way on
the Earth model and on frequency.

The velocity of wave propagation changes with
depth in the Earth. Since the surface waves penetrate
to different depths at different frequencies, the phase
velocity of each surface wave mode in general depends
on frequency. This implies that surface waves are in
general dispersive. This can clearly be seen in the sur-
face wave that arrives in Fig. 1; the early part of the
wave train around 650 s has a frequency much lower
than that of the later part of the wave train, which
arrives around 800 s.

§4. The Representation Theorem

Green’s functions are very important in scattering
problems. In elasticity theory the Green’s function
gives the displacement generated by a point force in a
certain direction. Since both the point force and the
displacement are vectors with three components, the
Green’s function is a 3 x 3 tensor. The ith component
of a unit force in the 7 direction at location r’ is given
by 8,,6(r —r’). The Green’s tensor G,,(r,r’) is the dis-
placement at location r in the i direction due to this
point force

PO Gin(r, 1) +0j(cikdk Gru(r,1')) = =8iud(r —1'), (22)
or, using the shorthand notation of Eq. (15),

L,’,’G,‘n(l‘,r') ==8;,8(r—1’). (23)

In order to derive the representation theorem for
elastic waves, let us consider a displacement ul!) that
is generated by an excitation f'!), and a displacement
u'? that is caused by an excitation f?):

1 1
+8j<ci,-;<18ku(l )> = _fi< ),

2 2 2
pw-u ’+a,-(c,-,-klaku(l >> = _fi( ), (24)

Multiply the first equation by 14;2) and the second by

1 . .
ui ), subtract the two expressions and integrate over

a volume V:
J {Mi-z)ai (Ciiklakbif)) —uy 9y (Ciiklak“(12)> }dV

1 @
:_J {fz( )”‘5')

The volume integrals on the left-hand side can be
converted into surface integrals using the identi-
ties | v;0j(cikiOpu))dV = [ 0j(vicijriOru))dV — [ (Ojvi)cijki
(Oru))dV = § mvicipiopmy dS — [ (0jv;)cijri(Opu)dV,
where Gauss’s theorem is used in the last equality.
Applying this to both terms on the left-hand side of
(25) gives

2 1 1 2
<]g {n,uf >c,»,,<,aku§ ) _ n,-ui ’c,-,k,aku‘l )} ds

_J {<8iu£2>>clykl<8ku;1)> - (a,-ui.”)c,-,-k,(aku‘,z’)}dv
- _J (£~ (2 av. (26)

Because of the symmetry properties of the elasticity
tensor as shown in the last identity of (8), the terms in
the second line vanish so that this expression reduces
to

— 2 }dv. (25)

2 1 1 2
+ {n,uf )C,'jklaku; )—n/‘ug )Ci/klaku; )} das
1) (2 2) (1
o[ v

This general expression holds for any volume V,
which is not necessarily the complete extent of the
elastic body through which the waves propagate.

We now specialise momentarily for the case
wherein the Green’s function satisfies homogeneous
boundary conditions on the bounding surface S. This
means that either the Green’s function or its associ-
ated traction vanish on the boundary: Gj,(r,r’) =0
or n;cijki0k(Gpy) = 0 when r is located on S. When

(27)

point forces fl«(l)(r) =8;,(r—r1) and fi(z)(r) =8;u(r—rn)
are used to excite the wave fields u'!) and u(®), these
wave fields are by definition equal to the Green’s ten-

sors: uﬁ”(r) = Gju(r,r1) and uﬁz)(r) = Gju(r,1r2). For

this special excitation the following identity holds:
1) (2

[ £V = ] 8i(r=11)Gimlr,12)dV = Go(r1,12),

Inserting these results in (27) then gives the reciprocity

theorem:

Gum(r1,12) = Gun(r2,11). (28)
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This theorem states that # component of the displace-
ment at ry{ due to a point source excitation in ry in
the m direction is identical to the m component of
the displacement at r; due to a point source excita-
tion in rq in the n direction. In other words, when
the roles of source and receiver are exchanged, one
obtains exactly the same wave field.

Note that in deriving the representation theorem
the volume V can be any volume, and the wave-
field solution can have any value at the surface S that
bounds this volume. Let us now leave out the super-
scripts (1) in u" and £V and let the (2) solution be
the Green’s function for a unit point force at r’ in the
n direction. This means that fl-(z)(r) = dju(r—1'), and
the associated response is by definition given by the
Green’s tensor: 1452)
pression (27) yields

(r) = Gj(r,1’). Using this in ex-

n(r') = j Ginlr, )i (0)dV

+<J§ {Gin(r, " )njcijpi0pu(r)

—u;(0)njc;jkiO G (1, 1)} dS. (29)

The reciprocity theorem (28) can be applied to the
Green’s tensors on the right-hand side. Exchanging
the coordinates r < r’ in the resulting expression and
interchanging the indices i < n then gives the repre-
sentation theorem:

ui(r) = [ Ginlr, £l )V

++ {Gin(r, 1" )njcpj10,uy(x")

—tt(r')jcpjrid}, Gi(r, 1)} dS’. (30)

Note that the integration and differentiation are now
over the primed coordinates. When the exciting force
fu(r’) is known within the volume and when the wave
field u,(r’') and the associated traction #;c;j/dpu(r’)
are known on the surface S, one can compute the
wave field everywhere within the volume V. This ex-
pression forms the basis of the elastic equivalent of
the Kirchhoff integral.

§5. The Lippman-Schwinger Equa-
tion for Elastic Waves

In order to describe scattering it is necessary to define
a reference medium in which an unperturbed wave
propagates and a perturbation of the medium that
acts as a secondary source that generates scattered
waves. For this reason we divide the elasticity ten-
sor ¢ into a reference tensor ¢?) and a perturbation
¢V, and do the same for the density:

c(r) = cO(r) +cMV(r),

31
p(r) = pO(r) +p(r). By

With this decomposition one can also separate the
operator L defined in expression (15) into an oper-
ator L1 for the reference medium and an operator
LM associated with the perturbation of the medium.
It should be noted that the reference medium is not
necessarily a homogeneous medium. For the Earth,
for example, an Earth model in which the properties
depend only on depth is a natural reference model.
Let u'® be the solution for the reference medium, and
denote the Green’s function for the reference medium
by G; this means that in operator notation

LG (5,17) = =88l —1'). (32

Let us now assume that at the surface of the medium
the tractions vanish. This boundary condition holds
both for the reference medium and for the perturbed
medium.

The total wave field in the perturbed medium that
is excited by a force f(r) is given by

(L(O>+L(l)>u(1‘) = —f(r), (33)

or

LOy(r) = — (f(r)+L<1)u(r)). (34)
According to this expression the total wave field in the
perturbed medium is identical to the wave field in the
unperturbed medium that is generated by an effective

force given by f(r)+LMu(r). The representation theo-
rem (30) for the reference medium can be applied to
this result. Using that the effective force is given by

f(r)+LMu(r), the wave field is given by

ui(r) = j GO (e, e")fot) AV’

+J GO, L

nj

(" uj(x') AV’

0 0
+ (J; {ng)(r, r’)n,-cizﬂ)elal’eul(r’)

’ 0 0 '
—un(r' el 94 Gy (1,17} dS'. (35)
Note that the Green’s tensor for the reference medium
is used and that in the surface integral the elasticity
tensor ¢ of the reference medium is used. The first
term on the right-hand side is the unperturbed wave:
0 0 ’ ’

% (1) =J GO e, 1) fulr)d V' (36)
At this point we assume that the reference medium
has zero tractions at the surface:

nichn 0L Gy (') = 0. (37)
Because of this boundary condition the last term in
(35) vanishes. The perturbed medium also has zero
tractions at the surface S, but for this boundary con-
dition we must use the perturbed elasticity tensor and
the total wave field:

0 1
(i + ey ) Duan(r) = 0. (38)
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From this it follows that at the surface njc;;

lakuz( r)=
—n,-ci]-klakul(r). This expression can be used in the

third term of the right-hand side of (35). Using
these results and inserting also definition (15) for the
operator L1 one obtains that

0
ui(r) = uf )

(r) + mZJ G (e, )p W (x )us(x') AV
+J Gl 1105, (el 10 (e")) 4V’
—5# G, e i) () dS". (39)

Note that the perturbed elasticity tensor ¢! is present

in the surface integral as well as in the volume integral
in the second line. The theorem of Gauss can be used
to convert this volume integral in a surface integral:

J GES)(M')%( (nkl/( 1')0uj(r )> dv’'
=J 3 (G e, )y ja (') ) AV
_[ 0 (G (e 1)) ey (10 (x") AV
=4;n/eG£-2)(r, )1 )ju(x')dS’
’ (1) ,
_J 0 (Gi (rx") ) ey (10 (x") V.
The surface integral in this expression is the same as
the surface integral in expression (39) but it has the

opposite sign. When (40) is inserted in (39) these
terms cancel so that finally

(40)

wilr) = r) +0)2J G0 e, e)p M )i (x') V'
Jak( 2 1) ) ey (e") V.

This is the Lippman—Schwinger equation for elastic
wave scattering. In this expression the total wave field
is decomposed in the unperturbed wave plus scattered
waves that are generated by the perturbations of the
medium. The strength of these scattered waves de-
pends on the total wave field at the location of the
scatterers as well as on the size of the perturbations
from the reference medium. Conveniently, expression
(41) is simpler than the original expression (35) be-
cause the surface integral has disappeared. In addi-
tion, the Green’s function and the wave field appear
in a more symmetric way in the last term of (41) be-
cause the gradient of both terms is taken.

(41)

§6. The Born Approximation of Elastic
Waves

Up to this point no approximations have been made.
The simplicity of (41) is elusive because one needs to
know the total wave field at the scatterers in order
to compute the integrals on the right-hand side. For

many problems the Born approximation is a useful
tool for computing the scattered waves. This approx-
imation is obtained by replacing the total wave field
on the right-hand side of (41) with the unperturbed
wave. This means that in the Born approximation

the scattered waves u® are given by

Oy av’

1

ubr) =02 [ G e, (e
J % (G e ) gyt ) dV'. (42)

An alternative way to obtain the Born approximation
is to iterate the integral equation (41). This result-
ing series is nothing but the Neumann series solution
for elastodynamic wave scattering where the wave
field is written as a sum of the unperturbed wave, the
single-scattered waves, the double-scattered waves,
etc. Truncating this series after the second term gives
(42) for the scattered waves. This implies that the
Born approximation (42) retains the single-scattered
waves in an elastic medium. Analytic estimates of the
domain of applicability for the Born approximation
for elastic waves are given by Hudson and Heritage
(1982).

So far we have considered volumetric perturba-
tions of the density and elasticity tensor. In many ap-
plications, the perturbations of the medium are best
described by perturbations in the position of inter-
faces within the medium. Because the properties of
the reference medium are discontinuous at interfaces,
we consider perturbations of height » away from their
position in the reference medium. For perturbations
of the boundary height small compared to the wave-
length of elastic waves, the associated perturbation of
the density is equivalent to a volumetric perturbation
[p(o)] over a thickness b across the interface (Hudson,
1977). The straight brackets denote the contrast in
the density across the interface. Similarly the associ-
ated perturbation of the elasticity tensor is given a vol-
umetric perturbation [c!!!] over a thickness / across
the interface. Since b is assumed to be small com-
pared to a wavelength, the resulting volume integrals
in (42) reduce to surface integrals over the perturbed
interface multiplied with the height of the perturba-
tion. This then generalises the previous expression to
include perturbations of the interfaces in the reference
medium:
uB(r) = mzj G e, p V(e 1) AV

i if
J 0 (Gl 1)) ebigptr 12 () v
+Y ol [ Gy e, e be') [ )| (') d”
_z[ 0 (G4 e, ) bty [ el te)] 0 ) S
(43)

The summation is over the perturbed interfaces. The
details of this derivation are given by Hudson (1977).
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One must be careful in the application of this ex-
pression to the displacement of an interface that sep-
arates a fluid from a solid (Woodhouse, 1976). The
reason is that at such a boundary the component of
the displacement parallel to the interface is not contin-
uous, and the equivalence of a displacement of such
an interface with a volumetric perturbation is not
obvious. This is relevant for a variety of situations
such as the scattering of elastic waves at the core—
mantle boundary in the Earth, the scattering of waves
by irregularities in the ocean floor and engineering ap-
plications where an elastic body is surrounded by a

fluid.

§7. The Green’s Tensor in Dyadic
Form

In this section examples are given of the Green’s ten-
sor for different media. In all these examples the
Green’s tensor G(r,r’) can be written as a sum of
dyads of the form p(r)g(r,r’)p'(r’). (The dagger de-
notes the Hermitian conjugate defined as the complex
conjugate of the transpose: p' = (pT)*.) In this ex-
pression, the vectors p are polarisation vectors and
the scalar function g(r,r’) accounts for propagation.
The fact that the polarisation vectors at the source r
and the receiver r’ enter this expression in a symmet-
ric way is due to the reciprocity property (28) of the
Green’s tensor.

A Homogeneous Infinite Isotropic Medium

As a first example, consider the Green’s tensor for
a homogeneous, infinite isotropic medium. This
Green’s tensor is given in expression (4.12) of Ben-
Menahem and Singh (1981)

ike,

T 12n(h+2u)
ikB

12wy

G(r) (1 b (k) + (1 3227) h(21>(/e(xr)>

(—21 b (kgr) + (1 3227) hg”(/em)), (44)

where r is the relative location of the observation
point relative to the source. (In this expression I
denotes the identity matrix with elements I;; = §;;.)
The caret above a vector denotes the unit vector point-
ing in the same direction, hence  =r/r, where r is the
distance between the source and observation points.
In expression (44) the wave numbers ko and kg are
given by

ko =w/o. and kp=0om/p. (45)

where o is the wave velocity for compressive waves
and f is the wave velocity for shear waves:

o= }\,+2,Ll and BZ\/E
P P

(46)

These velocities are derived under An Isotropic

Medium (§8). In expression (44) the hii) are spherical
Bessel functions of the first kind. It should be noted
that Ben-Menahem and Singh (1981) use a Fourier
transform with the opposite sign in the exponent to
the convention (1) that is used here. For this reason,
the complex conjugate is taken, which implies that

the spherical Bessel function of the second kind by
in their expression is replaced by the spherical Bessel

function of the first kind hi,l’. These functions are
given by

(47)

Let us first analyse the Green’s tensor in the far
field. The far field is defined as the region of space
that is far away from the source compared to a wave-
length; hence it is defined by the condition kr > 1. In
the far field only terms 1/kr are retained, but terms of
higher powers in 1/kr are ignored. Using this in (47)
and (44) gives the Green’s tensor in the far field:

1 eik“rMT 1 eikgr T
+%T(I—rr ) (48)

FF(y _
G = ez
Note that this expression is not yet in the form of a
superposition of dyads pg(r,r’)pT. However, (48) can
be written in such form by using the closure relation

for the identity matrix: I= ffT+ééT+(f)(bT, where £, 6
and @ are the unit vectors in the direction of increas-
ing values of the variables 7, 0 and ¢ used in spherical
coordinates. The directions of these unit vectors are
shown in Fig. 3. Using this result and using the rela-
tions A+2u = po? = pw? /kZ and u = pp? = pmz/ké, the
far field Green’s function can be written as

G (r) = k%

oikar T kB ket /.1
T 4mpw? v

A AT
T +4np0)2 . 60 +0p ) (49)

Let us consider the first term. For a general exci-
tation f at the origin, the inner product of the force
with the Green’s tensor should be taken. This means
that the first term gives a contribution proportional

tot <eik“7 /r) (r-f), and the displacement of this wave

is in the radial direction. This term therefore corre-
sponds to a longitudinal wave. The wave propagates
with a wave number kg, through space, and the corre-
sponding wave velocity is given by o defined in (46).
It follows from (46) and the fact that the Lamé con-
stants positive that o is larger than B. This means that
the P wave arrives first in the time domain. During
the propagation the wave decays because of geomet-
rical spreading with a factor 1/r. The excitation of
this wave is given by the component (f-f) of the force
in the direction of propagation. Since the unit vector
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Figure 3 Definition of the unit vectors ¥, 6 and § that are used
in a system of spherical coordinates.
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t gives the polarisation of this wave, it will be called
the polarisation vector.

In the same way, the last terms in (49) describe
the propagation of S waves. These waves have a
wave number kg and propagate away from the source
with a velocity B defined in (46). For these waves,
oscillation is in the direction @ or &. As shown in
Fig. 3, both directions are orthogonal to the direc-
tion of propagation t. This implies that the waves de-
scribed by the last terms in (49) are transverse waves.
The excitation of each of these waves depends on the
components of the exciting force (0-f) or (&-f) along
the direction of polarisation. Note that there are
two directions of oscillation for the S wave because
in three dimensions two vectors are orthogonal to a
given direction of propagation.

These results imply that both the P wave and the
two S waves can be written in the same form. For
each of these waves a polarisation vector can be de-
fined; for the P wave the polarisation vector is given
by t, while for the S waves the polarisation vector is
given by 0 and & respectively. The far field Green’s
tensor can be written as a sum over these polarisation
vectors. Let the summation over the polarisation vec-
tors be denoted by a Greek subscript, then the far field
Green’s tensor can be written as
kz R ikvr
GFF( )= ZV4 pwzpv ,

by, (50)

where ky = ko for the P wave and ky = kg for the
S wave. Since the polarisation vectors are real, the
asterisk has no effect here but it is used because,
as shown in §1 of Chapter 1.7.3 the Green’s tensor
for Rayleigh waves has polarisation vectors that are
complex.

The terms in the first line of (44) depend only on
the P-wave velocity o, while the terms in the sec-
ond line depend only on the S-wave velocity B. It is
therefore tempting to identify the first line with the
P-wave motion and the second line with the S-wave
motion. It follows from (47), however, that each of
these terms has a 1 /r singularity in the near field
(kr < 1). A 1/r or 1/r* singularity of the Green’s ten-
sor poses no problem because these singularities are
integrable in three dimensions. (They are absorbed
by a contribution #* from the Jacobian in spherical
coordinates.) This means that the P-wave terms and
the S- wave terms separately have a nonintegrable sin-
gularity at the origin. As shown by Wu and Ben-
Menahen (19835), the sum of these terms is integrable

in the near field:
1 p* T
-5 (1 a2> (1-37).

The lesson we learn from this is that the notion of P
and S waves is meaningful only in the far field; in the
near field the compressive and shear motions combine
in an intricate way. Similarly, the distinction between
body waves and surface waves is physically meaning-
less in the near field.

GNF(r) = (51)

The Ray-Geometric Green’s Tensor for Body Waves

As a second example of the Green’s function we con-
sider the ray-geometric propagation of body waves in
elastic media. Because the algebraic complexity of ray
theory for elastic media hides the physical simplicity
a heuristic derivation is given here. Details are given

by Cerveny and Ravindra (1971), Cerveny and Hron
(1980) and Aki and Richards (1980). Here we con-
sider the wave field at location r due to a point force
f at source location r;.

When the variations of the properties of the
medium and of the amplitude of the waves is small
over a wavelength, the equations of elastodynamic
wave propagation are approximated well by the
eikonal equation for the phase and the transport
equation for the amplitude. Ray theory thus consti-
tutes a high-frequency approximation. The eikonal
and transport equations should be applied to the P
wave and the two S waves separately. Here we con-
sider a mode of propagation v that may be either the
P wave or an S wave. The corresponding velocity is
denoted by ¢y. The eikonal equation states that the
gradient of the phase in the ray direction is given by
®/cy. The arrival time of waves is determined by the
phase in the frequency domain. Integrating along the
ray, the phase of mode v is given by

Py =(oJ %ds:{ kvds. (52)

The transport equation ensures that energy is con-
served by requiring that pcJA? is conserved, where A



536 General Theory of Elastic Wave Scattering

Figure 4 Definition of the geometrical spreading factor J.
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is the amplitude of the wave field and ] is the geo-
metrical spreading factor. As shown in Fig. 4, JdQ is
the surface area spanned by a bundle of rays with a
solid angle dQ at the source. This result implies that
the amplitude of the wave is given by A = C/(1/pc]),
where the constant C needs to be determined. The
polarisation vector py is parallel to the ray direction
for the P wave and is orthogonal to the ray direction
for the S waves. Using these results one finds that the
displacement for mode v is given by

. C
Vpv(r)ey(r)y(r, 1s)

The value of the constant C follows from the fact
that close to the source, the medium can be treated as
if it is homogeneous with the properties of the source
region. The corresponding wave field in the vicinity of
the source is given by (50) contracted with the excita-
tion f. (The contraction means that the quantities are
combined using the rules for matrix multiplication,
ie., (Gf); stands for ¥;Gjf;.) For a homogeneous
medium, the rays are straight lines. It follows from
Fig. 4 that, near the source, the geometrical spread-
ing is given by J(r,r,) = [r —rs|>. These results lead to
the following constraint on the constant C:

1 (f’i(fs) 'f) ~ C
Anp(rs)cd(rs) =1l /p(rs)ey(rs)lr—rs2

Solving this expression for C leads to the displacement
of mode v

Pu(r)e®™.

(53)

Uy (I', I

(54)

1 R

pv(r
41ty /p(r)p(rs)cy(r)cs (rs)
g \/Jv(l‘,l‘s) <pV(rS) f>.

Summing over the polarisations v the complete ray-
geometric Green’s tensor can then be written as

Gty = ¥ ! ;

Pv(r
v 4m/p(r)p(rs) ey (r)es (x)

exp (i [ kyds) .+
R

)

uy(r,rg) =

(55)

)

Note the similarity between this expression and
Eq. (50) for the Green’s tensor in a homogeneous
medium. The polarisation vectors py(r) and py(rs)
are defined by the ray direction at the point r and
the source point rg respectively. In (50) these vectors
are identical because the reference medium is homoge-
neous in that development. Since the rays in general
are curved, the polarisation vectors py(r) and py(rs)
usually have a different direction. The integral of the
phase is computed along the ray that joins the points r
and rg. In the ray-geometric approximation the waves
with different polarisations are not coupled; this is re-
flected by the fact that expression (56) contains a sin-
gle sum over the different modes of polarisations.

The reader may be puzzled by the fact that the
Green’s tensor (56) appears to violate the principle
of reciprocity (28) because the velocity at the source
enters through a factor ¢J(r), whereas the velocity
at location r is present with a factor ¢y(r). Snieder
and Chapman (1998) show that for a point source
in three dimensions the geometrical spreading factor
satisfies the reciprocal rule J(r,rs)c2(rs) = J(rs, 1)c?(r).
The velocity term in this expression ensures that the
Green’s tensor (56) indeed satisfies the reciprocity
property (28).

Other Examples of Dyadic Green’s Tensors

Itis shown in §1 of Chapter 1.7.3 that the Green’s ten-
sor for surface waves in an isotropic half-space that
varies only with depth can be written as

pillyX41/4)

G(r,r5) = ¥ pu(z, @) ———Dpv(2s, 0).
T o

In this expression the py are appropriate polarisa-
tion vectors that describe the particle motion of Love
and Rayleigh waves, and X is the horizontal distance
between r and r;. Again, the Green’s tensor is given
by a sum over polarisation vectors that correspond
to the (surface wave) modes v of the system. The
term exp (tkyX)/ \/ kyX accounts for the phase shift
and geometrical spreading in the horizontal propaga-
tion from the source at r to the point r and ¢ denotes
the azimuth of the source-receiver direction.

The Green’s tensor of the Earth can be expressed as
a sum over normal modes of the Earth. These normal
modes also incorporate self-gravitation in the Earth.
The theory of the Earth’s normal modes is described
in detail by Dahlen and Tromp (1998). Let the dis-
placement of a normal mode v be denoted by py(r)
and let the mode have eigenfrequency ®,. According
to Section 6.3.3.2 of Ben-Menahem and Singh (1981),
the modes are orthogonal and can be normalised to
form an orthonormal set with respect to the inner
product

(57)

<PV|P,U>=5V,ua (58)
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where the inner product is defined by

<u|V>52J p(r)uj-‘(r)vi(r)dV=J p(r)uf(r)-v(r)dV. (59)
i
Note the presence of the mass density in this in-
ner product. As shown in Ben-Menahem and Singh
(1981) the displacement for a point source f at
location ry is given by

22 0)2

where o is the angular frequency of the excitation.
This implies that the Green’s tensor is given by

ZPV

Again the Green’s tensor is written as a sum over
dyads composed of the polarisation vector multiplied
with a function that measures the strength of the
response. Note that the response is strongest when
the excitation has a frequency close to a resonance
(o~ my). At a resonance (® = ®y) expression (61) for
the Green’s tensor is infinite, but anelastic damping
prevents a singularity in the solution. In the presence
of anelastic damping, however, the eigenfunctions are
not orthogonal so one of the polarisation vectors in
each term of (61) must be replaced by the polarisa-
tion vector of the dual eigenfunctions. The reader is
referred to Dahlen and Tromp (1998) for details.

(r){pv(rs)If), (60)

Glr,1s) (61)

PT(rs)~
Cl)

Physical Interpretation of Dyadic Green’s Tensor

In Egs. (50), (56), (57) and (61) the far field Green’s
function is written as a sum of dyads:

va

G(r, 1) (r, 1 )ph (). (62)

In this expression R(r,rs) is a response function that
measures the strength of the response. The displace-
ment generated by a force f is given by

ZPV

Reading this expression from right to left one can fol-
low the life history of each mode v. A mode can refer
to either a normal mode of the Earth or a surface wave
mode, but it may also refer to the three polarisations
of body wave propagation. At the source the mode is
excited, the excitation given by the projection of the
force on the polarisation vector: (py(rs)|f). The wave
then travels from the source to the receiver; this is ac-
counted for by the response function R(r,r). Finally,
at the receiver location r the mode oscillates in the
direction given by the polarisation vector py(r). The
general expression (62) therefore not only unifies the
various Green’s tensors from a mathematical point of

(r, 16)(py(rs)If). (63)

view, it also provides a physical description of the role
played by the Green’s tensor in the life history of the
waves.

An Example of a Complicated Green’s Tensor

The Green’s tensors given in the previous sections are
for simple models of elastic media. These Green’s ten-
sors could be obtained because of the symmetries of
the models considered and the simplifying assump-
tions that have been made (such as smoothness of the
model). In practice the response of an arbitrary elastic
medium can be very complex. The Green’s function
gives the impulse response of the medium. This means
that for a localised earthquake, the recorded ground
motion gives a direct measurement of the Green’s
function in the Earth.

The top panel of Fig. 5 shows the vertical compo-
nent of the ground motion recorded with the Park-
field array in California (Fletcher et al., 1992) after
a local earthquake. The signals have a noisy appear-
ance. At almost the same location a second earth-
quake occurred on the same day; the resulting ground
motion measured by the same array is shown in the
bottom panel of Fig. 5. The ground motion recorded
after these two earthquakes is virtually identical, each
trace in the top panel matches the corresponding trace
in the bottom panel “wiggle by wiggle.” In fact, the
discrepancies between the corresponding traces are on
the same order of magnitude as the fluctuations in the
traces before the first impulsive arrival.

This similarity implies that the “noisy” signals in
Fig. 5 are not noise but deterministic Earth response.
At these frequencies the Earth is a strongly scattering
medium, and the resulting ground motion is a com-
plex interference pattern of multiply scattered and
mode-converted elastic waves. The complexity of the
waves that propagate through the Earth is a strong
function of frequency. At present it is not known
to what extent these complex waves can be used for
imaging purposes. This issue and the possible re-
lationship between classical chaos and wave chaos
are discussed further in Scales and Snieder (1997),
Snieder (1999) and Snieder and Scales (1998).

§8. Anisotropic Media

Plane-Wave Solutions

When the elastic medium is anisotropic, interest-
ing wave phenomena that have no counterpart in
isotropic media occur. The phenomena are intro-
duced here by considering a plane wave that prop-
agates in a homogeneous elastic medium

u(r) = p e, (64)
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Figure 5 Wave field recorded at the Parkfield array (Fletcher
et al., 1992) in California after two nearby earthquakes (top and
bottom, respectively). Note the extreme resemblance of each
trace in the top panel with the corresponding trace in the bottom
panel. (Courtesy of Peggy Hellweg of the USGS).
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where p is the polarisation vector and k the wave vec-
tor. As illustrated in Fig. 6, the wave fronts of this
plane wave are perpendicular to a unit vector fi. With
the phase velocity denoted by v the wave vector can
be written as

k= —A. (65)

@
v
Inserting the solution (64) into the equation of mo-
tion (13) and using that p and ¢ do not depend on the
position one finds that

pw’pi — cijnikjkipr = 0. (66)

With expression (65) for the wave vector this result
can also be written as

I'p = pv’p, (67)

with I defined by

Fii = Cik[iﬂkﬂl. (68)

Let us consider the direction of wave propagation
f to be specified. This defines the matrix I' through
expression (68). Equation (67) then constitutes an
eigenvalue problem; the eigenvectors of I' define the
polarisation vectors p and the eigenvalues are given by

Figure 6 The phase velocity v = vii and the group velocity U
in relation to the orientation of the wave fronts in an anisotropic
medium. The transverse gradient V4 is defined in expression
(76).

pv?, so that the eigenvalues provide the phase velocity
of the plane wave. Three important issues should be
noted: (i) I' is a real symmetric 3 x 3 matrix; hence
there are three real eigenvalues. (ii) Each eigenvalue
gives a velocity v of the plane wave with polarisation
vector p that corresponds to that mode of propaga-
tion. The eigenvalues of I' are equal to pv?; these
eigenvalues are positive.! This means that when v is a
solution, then another solution is —v; this reflects the
reciprocity of waves in an elastic medium. (iii) The
polarisation vectors and the phase velocity do not de-
pend on frequency, this means that there is no disper-
sion for the homogeneous medium.

The divergence and the curl of the displacement
(64) are given by

& (69)

For an anisotropic medium one cannot state that one
solution is polarised in the direction of propagation
(p//n) and that two solutions are polarised in the
transverse directions (p L n). It follows from (69)
that the wave is curl-free when the polarisation is
longitudinal (p//n) and that the wave is divergence-
free when the wave is transversely polarised ( p L fi).
Therefore, in a general anisotropic medium the plane
wave solutions are neither divergence-free nor curl-
free.

Wave propagation in smoothly varying elastic me-
dia can be described by a formulation of geometric ray
theory that is suitable for such media (Vlaar, 1968;
Cerveny, 1972). From the analysis of their work the
local polarisation vectors and the local phase velocity
again follow from the eigenvalue problem (67), where
the density and elasticity tensor are now evaluated at
the position of the ray for a given ray direction fi.
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An Isotropic Medium

Let us now for the moment consider the special case
of an isotropic elastic medium for which the elasticity
tensor is given by (10). Using that 7;n; = (h-n) = 1 one
finds that in this special case the matrix I' from ex-
pression (68) is given by I'jj = (A +u)n;n; + ud;j, so that
in vector notation

= (A+p)hf’ +pl (70)
One eigenvector is given by p =1,
I'p = (A+2u)p. (71)

Hence the associated wave velocity is given by pv? =
A+2u. This velocity is the P velocity, which is denoted

by a,
o= ﬂ}wpﬁ (46) again.

Note that since f = p, this means that the waves
are longitudinally polarised. For this type of wave
n x p = 0; with (69) this implies that the P waves are
curl-free. The P waves thus involve only compressive
motion, but no shear motion.

Another eigenvector is such that the polarisation
is orthogonal to the direction of propagation: p L A,
which means we now consider transverse waves. It
follows from (70) that

I'p = up. (72)
According to (67) this corresponds to a wave velocity
for which pv? = u. This is called the S velocity, which
is denoted by B:

B= \/g (46) again.

For these waves p L i hence (p-fi) = 0. With (69) this
implies that the S waves are divergence-free. S waves
do not lead to compressive motion; they entail shear
motion in the medium.

Distinction between Phase and Group Velocity

Let us now return to a general anisotropic medium.
For a given direction of propagation 0, the polar-
isation vectors follow from the eigenvalue problem
(67). In general the polarisation vectors p are no
longer related in a simple way to the direction of
propagation; they are not necessarily parallel or or-
thogonal to the direction of propagation, but they
are mutually orthogonal. With (69) this implies that
the waves in an anisotropic medium are neither curl-
free nor divergence-free. In a general anisotropic
medium one cannot therefore speak of the P wave
and of S waves. However, when the anisotropy is
weak, one of the waves is polarised almost in the
longitudinal direction and two waves are polarised

almost orthogonally. This means that in a weakly
anisotropic medium one speaks of “quasi P waves”
and “quasi S waves”(Coates and Chapman, 1990).
The quasi P waves are not quite curl-free and the quasi
S waves are not completely divergence-free.

For surface waves the situation is similar; in an
anisotropic medium one cannot speak of “Rayleigh
waves” and “Love waves”, although for weak
anisotropy one can distinguish “quasi Rayleigh
waves” and “quasi Love waves” (Maupin, 1989).
When the surface wave modes are nearly degener-
ate (in the sense that their phase velocities are nearly
equal) these concepts must be used with care.

In an anisotropic medium the relation between the
phase velocity and the group velocity is not trivial.
This leads to observable phenomena. A plane wave
has in the time domain the form expi(k-r — t). The
phase slowness s (defined as the reciprocal of the
phase velocity) is given by s = k/®. The phase slow-
ness is used rather than the phase velocity because this
is a tensor of rank 1, while the phase velocity does not
transform as a tensor. With (65) the phase slowness
can be related to the direction of propagation f and
the magnitude of the phase velocity v as

s=—n. (73)

v
The phase slowness is shown in Fig. 7 for a number
of points in the (ky, k) plane by the dashed arrows.
The phase slowness is parallel to the wave vector k.

The group velocity of the plane wave is in contrast
given by

U=vVo. (74)

In this expression, Vj is the gradient operator in
wave-number space. The group velocity describes the
energy flow of the waves in the medium (Babuska
and Cara, 1991; Wolfe, 1998). Shown in Fig. 7 is
the contour ® = constant in the (k., k;) plane. Since
the gradient of w(k) is orthogonal to the contour lines
o = constant, the group velocity is orthogonal to the
surface of constant values of ®. The direction of
group velocity vectors at points 1, 2, 3 and 4 in the
wave-number plane is indicated by the solid arrows in
Fig. 7. It follows from the geometry of this figure that
the group velocity and the phase slowness at any point
in an anisotropic medium in general have a different
direction. This is possible because the directional-
ity contained in the elasticity tensor of an anisotropic
medium breaks the symmetry of the system so that
the direction propagation of the wave fronts and the
energy flow are not necessarily aligned.

The difference in direction of propagation between
the wave front and the wave group can be quanti-
fied by decomposing the gradient V; into a compo-
nent parallel to the wave vector and an orthogonal
component
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Figure 7 Surface ® = const. in the wave-number plane. The
phase slowness s = k/w for the points 1, 2, 3 and 4 is indicated
by arrows. The direction of the group velocity U = Vw is given by
the solid arrows.

U= Vo

= Cons[an ¢

.0 1
Vk = nﬁ + Evl N
where V7 is the component of the gradient perpen-
dicular to the direction of propagation. Using spheri-
cal coordinates in wave-number space, the orthogonal
component can be written as

_pd, ® 9
T 700 sinBog’

(75)

Vi (76)

Inserting ® = vk in (74) and using (75), the group
velocity is given by

U(f) = v(n) + Viv(n). (77)
With (76) it then follows that
. dv. 1 ov.
U(9,<p)=v(9,<p)n+%e+m%<p. (78)

Thus, in general the phase velocity v = vn and group
velocity U have different directions. The difference in
direction is proportional to the change in the phase
velocity to the direction of propagation as described
by the derivatives dv/d8 and dv/de.

Using that V1 L i, one finds from (77) and from
v = vn that the components of the phase velocity and
the group velocity in the direction of propagation are
identical:

(7-U) = (A-v) = v. (79)

This means that the group velocity differs from the
phase velocity only because it also has a component
along the wave fronts, as is illustrated in Fig. 6. In
anisotropic media the energy flow is therefore not

necessarily orthogonal to the wave fronts. It follows
from the geometry of Fig. 6 and expression (77) that
the angle between the group velocity and phase veloc-
ity is given by

[V1v|
tany = .
v

(80)

The nontrivial relationship between phase slow-
ness and group velocity has interesting consequences.
As an example, consider once again the group velocity
at the points 1, 2, 3 and 4 in Fig. 7. The correspond-
ing group velocities at these points are shown in the
group velocity plane in Fig. 8. The group velocities
indicated by the solid arrows have the same direction
as the group velocity shown by the solid arrows in
Fig. 7. When we move from point 1 through point 2
to point 3 in Fig. 7, the group velocity vector rotates
in the counterclockwise direction. However, at point
3, the curve ® = constant has an inflection point, and
the group velocity vector at point 4 is rotated clock-
wise compared to the group velocity vector at point
3. This means that the group velocity vector traces
the folded curve that is shown in Fig. 8. At point 3
the group velocity is stationary for perturbations in
the direction of propagation. Therefore point 3 cor-
responds to a caustic in the wave field. This example
shows that caustics can form in a homogeneous elas-
tic medium.

Such caustics can be observed experimentally.
Fig. 9 shows snapshots of waves that have propa-
gated through a rectangular block of silicon at three
different times. (This figure was made available by
J.P. Wolfe (1998) who also describes the experiment
in detail.) The waves are excited at one side of the
block. At ¢ =1.76 us the waves have propagated to
the opposing face where the wave field is measured,
and at later times one sees the wave fronts spread over
the face of the crystal. Note that the wave fronts have
the same cusped structure as the group velocity shown
in Fig. 8. This type of measurement provides informa-
tion about the elasticity tensor of the crystal, which in
turn gives information about the symmetry axes and
elastic constants of the crystal.

It should be noted that in three dimensions the
slowness and the group velocity as shown in Figs. 7
and 8 are described by surfaces that can have a
very complex shape, which gives rise to caustics in
the wave field with a complicated geometry (Helbig,
1994; Wolfe, 1998). The only ingredients used in this
section were that the phase velocity is anisotropic and
independent of frequency, and that the group velocity
follows from expression (74). For this reason the the-
ory of this section is not particular for elastic waves.
In fact, the theory is equally applicable to other types
of nondispersive anisotropic media. The analogue of
the theory of this section applied to electromagnetic
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Figure 8 The group velocity for the points 1, 2, 3 and 4 that
are also shown in the previous figure. The solid arrows indicate
the group velocity. Note the cusps in the group velocity surface,
which correspond to caustics in the wave field.

U,

&Y

Figure 9 Snapshots of the wave field that has propagated
through a homogeneous silicon crystal recorded at three times
after excitation on the other side of the crystal. Details of the
experiment are given by Wolfe (1998). (Courtesy of J.P. Wolfe.)

waves can for example be found in Chapter III and
Section V.2 of Kline and Kay (1965).
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Note

1. When the strain energy is positive, the quantity cjjv;npvn; is
positive. It follows from this that I';; is positive definitely so
that the eigenvalues pv? of T are positive.
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