
Geophys. J .  Int. (1996) 127,363-378 

Ensemble inference in terms of empirical orthogonal functions 

H. Douma, R. Snieder and A. Lomax 
Department of Theoretical Geophysics, University of Utrecht, PO Box 80.021,3508 TA Utrecht, The Netherlands 

Accepted 1996 June 28. Received 1996 June 3; in original form 1996 January 29 

SUMMARY 
Many geophysical problems involve inverting data in order to obtain meaningful 
descriptions of the Earth‘s interior. One of the basic characteristics of these inverse 
problems is their non-uniqueness. Since computation power has increased enormously 
in the last few years, it has become possible to deal with this non-uniqueness by 
generating and selecting a number of models that all fit the data up to a certain 
tolerance. In this way a solution space with acceptable models is created. The remaining 
task is then to infer the common robust properties of all the models in the ensemble. 
In this paper these properties are determined using empirical orthogonal function 
(EOF) analysis. This analysis provides a method to search for subspaces in the solution 
space (ensemble) that correspond to the patterns of minimum variability. In order to 
show the effectiveness of this method, two synthetic tests are presented. To verify the 
applicability of the analysis in geophysical inverse problems, the method is applied to 
an ensemble generated by a Monte Carlo search technique which inverts group-velocity 
dispersion data produced by using vertical-component, long-period synthetic seismo- 
grams of the fundamental Rayleigh mode. The result shows that EOF analysis 
successfully determines the well-constrained parts of the models and in effect reduces 
the variability present in the original ensemble while still recovering the earth model 
used to generate the synthetic seismograms. Finally, an application of the method to 
examine the contrast in upper-mantle S-wave velocity across the Tornquist-Tesseyre 
Zone is presented, indicating a significant change in S-wave velocity in the upper 
mantle beneath this zone bordering the East European Platform and Tectonic Europe, 
and a significantly thicker crust beneath the East European Platform. 
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INTRODUCTION 

Many geophysical problems involve inverting data in order to 
obtain meaningful descriptions of the Earth’s interior. It is well 
known that these inverse problems are characterized by their 
non-uniqueness. In order to deal with this non-uniqueness, 
forward modelling has become popular in the last few years; 
one can often create an ensemble of models that all ‘fit the 
data’ to a certain tolerance by solving the forward problem 
repeatedly. The presentation of one model for the earth’s 
interior has been replaced by a search for the robust features 
shared by all the models in an ensemble of acceptable models. 

The conventional approach used to determine one model 
involves a minimization of a misfit function in a least-squares 
sense. This method requires a good starting model and there- 
fore needs a priori information. Since this information is often 
not available, there is a risk of converging to a local minimum 
instead of the global minimum of the objective function. 

To perform the forward modelling and to create an ensemble 

of acceptable models, a number of techniques can be used. 
Among these methods are genetic algorithms (Goldberg 1989; 
Nolte & Frazer 1994; Sambridge & Drijkoningen 1992 and 
Sen & Stoffa 1992), simulated annealing (e.g. Rothman 1985 
and Basu & Frazer 1990) and Monte Carlo search techniques 
(e.g. Mosegaard & Tarantola 1995). In this study, we are 
interested in the reliable information encompassed by the 
resulting ensemble of models obtained from such a forward 
search. In fact we are searching for the joint features shared 
by the ensemble of models, since they are expected to be the 
most reliable features. Empirical orthogonal function (EOF) 
analysis provides a method for investigating the patterns of 
variability within a set of models and thus can find the basis 
function that corresponds to the pattern of smallest variability 
within the ensemble. Normally, EOF analysis is used to 
determine the patterns of largest variability. For example, 
meteorologists are interested in the spatial and temporal 
variability of physical fields such as the sea surface temperature 
or an atmospheric pressure field, in order to be able to diagnose 
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or predict these fields in the future (e.g. Trenberth & Shin 
1984; Rinne, Karhila & Jarvenoja 1981). Often this technique 
is also used to decrease the number of parameters needed to 
describe an ensemble (e.g. Rao 1964). By only using the patterns 
with the largest variability this number can be effectively 
reduced, while leaving the total explained variance in the 
ensemble relatively high. 

In this study, empirical orthogonal functions are used to 
determine the common features of a population of models that 
fit the data with a prescribed tolerance. By defining a scatter 
probe which represents the total variability in the ensemble in 
a certain direction in model space, and searching the ensemble 
for the directions where this probe is minimized, we find a 
subspace of model space that corresponds to the pattern of 
smallest variability that will represent the similarities present 
in the ensemble-a subspace that encompasses the shared 
properties of the models. An outline of this method was hinted 
at by Kennett & Nolet (1978). Although their description 
differs in some sense from ours, especially with respect to the 
estimated resolution, the main characteristics of the methods 
are the same. Vasco, Johnson & Majer (1993) used the method 
to estimate the dimensionality of the subspace of acceptable 
models. 

Lomax & Snieder (1995a) (hereafter referred to by LS) used 
a genetic algorithm to study the contrast in upper-mantle 
shear-wave velocity between the stable Precambrian con- 
tinental crust in northeast Europe and the tectonically active 
continental and oceanic regions of central and western Europe 
and the western Mediterranean, by inversion of fundamental- 
mode Rayleigh-wave group dispersion curves. The acceptable 
models obtained in their inversion show regions of large scatter 
indicating parts of the model space that are not well con- 
strained. Some of these poorly constrained regions can be 
related to trade-off relationships while other regions are poorly 
constrained due to lack of data. This means that there are 
patterns of large variability present in the model space. This 
study was set up to identify and remove the trade-off relation- 
ships and reduce the variability in the regions that are poorly 
constrained. 

THEORY 

This section follows the main EOF theory outlined in 
Preisendorfer (1988, pp. 2544).  Let us consider an ensemble of 
real-valued functions (or models) m’(w, z)(w = 1, . . . , n, z E R) 
on the continuous domain R, where w denotes the model 
number within the ensemble and z is a spatial coordinate (e.g. 
depth). These functions can be centred around the mean model 
m(z) = (l/n) Z z = l  m’(w, z )  (see Fig. 1). The result is a centred 
ensemble m(w, z)  = m’(w, z )  - #i(z). The scatter (or uariability) 
Y along a vector probe e in an infinite-dimensional Euclidian 
space Em is defined as the sum of the squared projections of 
all the models onto e: 

where S is the (symmetric) scatter matrix [in fact (n - 1) times 
the covariance matrix] 

n 

S(z, z’)  = C m(w, z)m(w, z’) 
W = l  

Figure 1. 2-D visualization of EOF analysis. The uncentred ensemble 
of models m’ are centred around the mean model f i , resulting in the 
centred ensemble of models m. This ensemble is projected onto some 
vector probe e, which results in the scatter probe Y(e) .  

and the inner product [f, g] is defined as 
,. 

(3) 

where w(z) is a positive weighting function specific to the 
problem. 

Since we are interested in the patterns in the ensemble 
corresponding to the smallest variability, we need to determine 
the local minima of the scatter Y ( e ) .  Therefore e needs to be 
varied in E, until Y reaches these extrema. 

Before doing so, we reformulate the problem in the finite- 
dimensional context of EOF analysis (Preisendorfer 1988, 
pp. 75-81). Therefore we consider the problem in the subspace 
spanned by a p-dimensional orthonormal [with respect to the 
inner product defined in eq. (3)] family of p basis functions 
di(z)  on R. For a function in this subspace we can expand 

ei(z) = C cjdj(z)  9 (4) 

with the coefficients c j  still to be determined. Eq. (1) then 
becomes 

j = l  

(5 )  

If we now define a p x p (symmetric) matrix U as 

uij = jR s, W ( Z ) Q i ( Z ) S ( Z ,  z’)f$j(z’)w(z’) dz dz‘ , (6) 

we can write Y ( e i )  in the simple form 

Y ( e i ) = Y ( c i ) =  C 1 c;ujkc:.  

It should be pointed out that, if the ei are orthonormal, the 
vectors c‘, defined by expanding the ei with relation (4), are 
orthonormal with respect to the inner product: 

(7) 
p p .  

j = l  k = l  

P 
[c’, c’] = cic’k = a,, 

k =  1 

(see Preisendorfer 1988, p. 76). 
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Searching for the stationary values of Y ( c i )  under the 
constraint that the ci are orthonormal leads to an eigenvalue 
problem of the form 

b 2 u,C: = a ic j .  
k = l  

(9) 

Thus the problem of minimizing the scatter probe Y and 
determining the coefficients ci is replaced by a simple eigenvalue 
problem. After eq. (9) has been solved, eq. (4) can be used to 
determine the functions ei. These functions are the empirical 
orthogonalfunctions (in the following they will be called EOFs). 
It can easily be shown that the (non-negative) eigenvalue ,Ii 
represents the variability of the ensemble m(w, z )  in the direction 
ei in the subspace of Em spanned by the orthonormal set &z). 
Therefore the EOFs with the small eigenvalues span the 
subspace of patterns with small variability within the ensemble. 
This subspace encompasses the joint features shared by the 
models in the ensemble. 

Together, the EOFs form a complete basis for the original 
ensemble of models m(w, z )  within the subspace spanned by 
the &). Thus this ensemble can be projected onto the 
determined EOFs. 

P 
m(w, z )  = 1 a i (o )e i ( z )  w = 1 ,  ... , n, z E R ,  (10) 

i = l  

with 

ni(w) = [m(w), ei] = w(z)m(w, z)ei(z)  d z .  (11) s, 
However, we only want to use the EOFs with small eigen- 
values since they encompass the common features within the 
ensemble. We therefore have to define a cut-off point p' in the 
eigenvalue spectrum such that we can create a new ensemble 
or population, vp'(w, z) .  which consists of the projection of the 
original population on the subset of the EOFs that correspond 
to the patterns of smallest variability within the ensemble: 

vp'(w, z )  = *(z) + 1 ai(w)ei(z)  w = 1,  ... , n, z E R .  

This new population will be called the filtered ensemble. 
If we use p' = p EOFs to project, the filtered ensemble will 

be identical to the original ensemble since the EOFs form a 
complete set of basis functions (within the finite-dimensional 
subspace). If, however, we use the first p' < p EOFs in order 
to reduce the variability and to reveal the common robust 
properties in the ensemble, the basis functions for the filtered 
ensemble will no longer be complete. This results in a smearing- 
out effect of the information and therefore in a loss of resolution. 
To quantify this, we can project a delta function onto the p' 
EOFs that are accounted for in the filtered ensemble. The 
deviation of this filtered delta function from the true delta 
function is a measure of the resolution that can be obtained. 

P' 
(12) 

i = l  

Therefore we define a resolution kernel as 

RP'(z,  z') = 1 [D(z'), ej]ej(z), 

with 

P' 

j = 1  

D(z, z') = 6 ( ~  - 2'). 

The inner product is defined in eq. (3) and D(z, z') are 
coefficients of the vector D(z'). 

13) 

14) 

the 

SYNTHETIC TESTS 

In order to get a feeling of how EOF analysis works in 
ensemble inference and how the results should be interpreted, 
we first present a synthetic test. The test is set up to analyse 
an ensemble of models that satisfies only one constraint, viz: 

lo1 m'(x) d x  = 1 . 

The d i  from eq. (4) are defined as block functions: 

1 if ( i -  l ) A x < x <  iAx ,  

0 otherwise, 
4 i (x )  = 

with Ax = 0.1 and i = 1, . . . , 10. If we set the weighting function 
in eq. ( 3 )  to w ( x )  = 1/Ax, the #i are orthonormal with respect 
to the inner product defined in eq. (3). A Monte Carlo search 
provides an initial set of models with the search range for each 
m'(xi) set from -1.0 to 3.0 (symmetrically around 1.0). In 
order to be able to judge whether the models fit the data, a 
misfit function is defined as 

6 = [ 1 - [ f ( x )  d X ] 2  

Only models with a misfit 6 < 0.02 with the data are accepted, 
resulting in an ensemble m'(w, x )  with w = 1, . . . ,430. 

Fig. 2 shows the calculated EOFs, and Table 1 the eigen- 
values of the matrix U and the integrals of the EOFs over 
[0, 11. It can clearly be seen that el,  the eigenvector with the 
smallest eigenvalue, is almost exactly equal to unity over the 
interval [0, 11, while the other eigenvectors show a strongly 
oscillating behaviour; their integrals over [0, 13 are almost 
equal to zero (Table 1). Since the ensemble of models was 
designed to have only one joint feature, i.e. the integral of the 
function over the interval [0,1], we expect the only reasonable 
information we can extract from this ensemble to be a constant 
(the average). Because the smallest eigenvector el is almost 

x 

: 4  

. -  
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Figure2. The EOFs for the synthetic example with only one con- 
straint. The eigenvalues increase monotonically from e, to elo. 
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- 
i eigenvalue A; s,'e;(z)dz 

1 0.044 1.000 

2 

3 

4 

5 

~~ 

50.082 0.000 

51.635 -0.003 

55.270 0.001 

58.014 0.001 

60.703 -0.001 

62.043 0.001 

69.162 0.001 

10 

11 9 I 72.150 1 -0.002 

75.175 -0.003 

constant (1.0) it can be stated that the EOF with the smallest 
eigenvalue indeed represents the common robust feature present 
in the ensemble. 

As an explanation of why the first EOF corresponds to the 
single data kernel of the problem, consider a 2-D example of 
an ensemble that satisfies the constraint that the sum of the 
parameters almost equals unity. In this 2-D case, the models 
will sample a narrow subspace around the line y = 1 - x (see 
Fig. 3 ) .  If the ensemble contains very little noise (in other 
words the accepted misfit level is very low), the direction of 

I \ 

Figure 3. 2-D visualization of EOF analysis for an ensemble satisfying 
the constraint that the sum of two parameters equals unity. 

minimum variability (el) will be close to the direction y = x,  
meaning that the main information we can extract from this 
ensemble is indeed almost a constant. 

In order to calculate the subspace spanned by e, we can 
perform a projection of the ensemble onto this EOF, i.e. we 
can calculate the filtered ensemble vJ"(x) from eq. ( 1 2 )  for 
p' = 1. Fig. 4 shows the filtered ensembles for p' = 1 ,  . . . ,4. We 
can clearly see that, by using only el as a basis, we do indeed 
recover the average which is the robust information put into 
the ensemble by the one constraint (eq. 15). Using more than 
this one EOF to calculate vp'(x) results in an enormous increase 
of the variability. 

In general, an ensemble satisfies more than one constraint. 
In this case the joint features of the models will form a multi- 
dimensional subspace in model space. In order to verify whether 
EOF analysis is able to discover such a multi-dimensional 
subspace of well-constrained model features successfully, we 
present a synthetic test with two constraints instead of one. 
The constraints are set to 

f, m'(x) dx  = 0 ,  

j:l xm'(x) dx  = 1 .  

The d j  from eq. (4) are again defined as block functions: 

if ( i  - 1)Ax - 1 I x < iAx - 1 ,  1 
( 2 0 )  I 0 otherwise, 

d i (x )  = 

with Ax = 0.2 and i = 1, . . . , 10. The weighting function in eq. ( 3 )  
is again w ( x ) =  l / A x ,  resulting in an orthonormal set di. A 
Monte Carlo search generates the initial model space with the 
search range for each m'(xj )  set from -4.0 to 4.0, symmetrically 
around zero. The misfit function is defined as 

6 = !{ 2 [ 1 - j:, xm'(x) d x ] 2  + [ m'(x) dx ] ' }  . ( 2 1 )  

Models with a misfit 6 I 0.05 are accepted, leaving an ensemble 
m'(w, x )  with w = 1 ,  ... , 170 (see Fig. 5). 

Since eqs (18) and (19) define the projections of the models 
onto the kernels k l ( x )  = 1 and k,(x) = x,  these constraints 
restrict the projection of the model space onto the subspace of 
linear functions f ( x )  = a + bx. Therefore we expect the EOF 
analysis to produce eigenfunctions el and e,, corresponding 
to the smallest eigenvalues, which span this linear subspace. 

Fig. 6 shows the resulting EOFs. As expected, the two 
eigenfunctions el and e, corresponding to the smallest eigen- 
values are indeed almost perfect linear functions, which is not 
the case for the rest of the EOFs. If we consider the eigenvalues 
in Table 2 we see that there is a clear cut-off in the eigenvalue 
spectrum between el and e, on one side, and the other EOFs 
on the other, meaning that the variability for the linear 
functions is significantly smaller than for the other functions 
in the ensemble. Note that e3 to el, have a strongly oscillating 
character. For this example, EOFs e, and e, do indeed 
represent the shared properties in the ensemble-the projection 
of the models on the subspace of linear functions f ( x )  = a + bx. 

The data kernels of the two constraints in eqs ( 1 8 )  and (19) 
are k , (x )  = 1 and k,(x) = x .  Of course the subspace determined 
by the two constraints is spanned by these two data kernels. 
Since there is no a priori reason to expect EOF analysis to 
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Figure 4. The filtered ensembles (black) with p ’ =  1-4 compared with the original ensemble (grey) for the synthetic example with only one 
constraint. 

Figure 5. Ensemble resulting from the Monte Carlo search with the 
two constraints (18) and (19) and a misfit level up to 0.05. 

produce two eigenfunctions corresponding to the smallest 
eigenvalues equal to the data kernels k , ( x )  and k,(x),  we 
expect the analysis to find these eigenfunctions to be a linear 
combination of the data kernels. 

Given both constraints we can calculate the solution of the 
form f ( x )  = a + bx that satisfies the constraints (18) and (19): 
f ( x )  = 3x/2.  In order to see if this function is embedded in the 
subspace spanned by el and e, we can calculate the filtered 
ensemble vp’(x)  from eq. (12). Fig. 7 shows the filtered 
ensembles v p ’ ( x )  with w = 1, ... , 170 and the cut-off point 
p‘ increasing up to 5. We can see clearly that if we project 
only on the first two eigenfunctions ( p ’ = 2 ) ,  the function 
f ( x )  = 3 x / 2  is well embedded in the filtered ensemble, which 
means that the information that was put into the ensemble 
by the two constraints is recovered by the analysis if we only 
use the two EOFs with the smallest eigenvalues. If we use 
more than these two eigenfunctions, the variability increases 
enormously. The eigenvalue spectrum shown in Table 2 is a 

s 
0 

0 
d 

-2.0 , 

9 

; 
8 
t 
d a *  

9 0 
0 0‘ %l-klLPk 

? 2.0 -2.0 0.0 2.0 -2.0 0.0 20  -2.0 0.0 2.0 -2.0 0.0 2.0 

-2.0 0.0 2.0 -2.0 0.0 2.0 
e(x) ehl 

Figure 6. The EOFs for the synthetic run with two constraints. The 
eigenvalues increase monotonically from el to elo. 

valuable tool for deciding how many EOFs to use for the 
filtered ensemble. 

INVERSION OF GROUP-VELOCITY 
DISPERSION FOR THE S VELOCITY 

LS performed a group-velocity inversion with noisy synthetic 
data using a genetic algorithm. The data consisted of vertical- 
component, long-period seismograms of the fundamental 
Rayleigh mode, generated by a shallow double-couple source 
recorded at a distance of 30” in the IASP91 model (Kennett 
& Engdahl 1991). Multiple-filter analysis (Dziewonski, Bloch 
& Landisman 1969) provided the group-velocity dispersion 
estimates (realistic noise was added to these estimates) that 
could be inverted by the genetic algorithm. A definition of the 
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Table2. Eigenvalues of the 
EOFs calculated for an ensem- 
ble satisfying two constraints. 

misfit function and the ensuing definition of acceptable models 
(LS) led to an ensemble of S-velocity models, in which depths 
where the velocity was poorly constrained showed up as depths 
where the variability in the ensemble was large. In this section, 
we apply the same method to calculate the synthetic data, but 
the ensemble is created using a Monte Carlo search technique. 
The EOFs are then used to remove the poorly constrained 
features and reveal the well-constrained robust features present 
in the ensemble. 

Model parametrization 

In order to create earth models for the shear-wave velocity, 
we need to specify a parametrization of depth. LS used a nodal 
parametrization with four ‘crustal’ and 14 ‘mantle’ nodes. The 
bottom ‘crustal’ and the top ‘mantle’ nodes were located at 
the same depth, allowing a step discontinuity between the 
crust and the mantle in order to model the Moho discontinuity. 
The crustal thickness was variable between 15 and 70km. 
Therefore in the study of LS the resulting models prescribed 
the shear-wave velocity /I as a function of the node number, 
while other parameters specified the node depth. 

EOF analysis uses a centring around the average to move 
the origin into the ensemble. A problem arises when we 
consider the models generated with the nodal parametrization 
as earth models showing the shear-wave velocity /I as a function 
of depth. Calculating the mean earth model p(z)  and centring 
the model space around this mean would then involve com- 
paring velocities at different depths, since every model contains 

Figure 7. Filtered ensembles with p’ = 1-5 for the synthetic test with two constraints. 
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a different depth parametrization. In fact, the nodal para- 
metrization with a variable crustal thickness prevents the 
calculation of the scatter matrix S. Therefore we created a new 
ensemble with a different depth parametrization. To create the 
ensemble we applied the above method that LS used to 
generate their ensemble, except that we used a Monte Carlo 
search technique and a fixed-depth parametrization. Table 3 
shows the fixed-depth model. The thickness of the layers 
increases with depth since the resolution of the fundamental- 
mode Rayleigh waves decreases with the penetration depth. 

Inversion using the Monte Carlo search technique 

LS used smoothing in their inversion to suppress node- 
to-node oscillation in the solution. Smoothing is a widely 
known method used to prevent the solution from having 
too many artificial artefacts. This study focuses on identifying 
well-constrained information and reducing poorly constrained 
information. The introduction of smoothing in the inversion 
results in a loss of unconstrained information. Thus to some 
extent it hampers EOF analysis from retrieving the physically 
well-constrained features from the ensemble, because in the 
presence of smoothing the pattern of the smallest variability 
is caused by a combination of the physics of the problem 
and the smoothness constraint. Therefore smoothing is not 
implemented in the construction of the ensemble of models 
that fit the group-velocity dispersion data. 

In the section on ‘theory’ we defined the inner product and 
introduced a weighting function w(z) specific to the problem. 
The fixed-depth parametrization we use consists of layers that 
increase in thickness with depth. Introducing the inner product 
as a simple integral over depth (e.g. w(z) = 1) would then result 
in an unequal weighting of the parameters; velocities in deep 
layers would affect the projection more strongly than velocities 
in shallow layers. This would contradict the fact that, for large 
depths, the velocity does not affect the surface wave very much. 
The original layers were chosen in such a way that each layer 
is of more or less the same importance in determining the 
group velocity of the surface waves. To maintain this in the 

EOF analysis we define 

1 
Azi ’ 

w(z) = w ( q )  = - 

so that 

[i, g1= {w(z)j(LJg(zl = w(zi)f(zi)g(zi)Azi = 9 i(zi)g(zi), 
i = l  i =  1 

(23) 
with Azi the thickness of layer i. 

In order to pose the problem in a finite-dimensional context, 
we introduced a finite set of orthonormal functions #i in 
the theory section. Since the continuous depth domain is 
parametrized into layers, the models in the ensemble are 
block-shaped functions. Therefore we can again define di as 
normalized block functions with respect to the inner product 
defined in eq. (23): 

1 if 

0 otherwise. 
#i(z) = 

In order to clarify our figures, we represent the models using 
a linear interpolation between the velocities at the centres of 
the layers rather than using the block functions. The EOFs 
and resolution kernels are also plotted in this way for 
consistency. 

Fig. 8 shows the ensemble generated by a Monte Carlo 
inversion of synthetic fundamental-mode Rayleigh-wave dis- 
persion data. The ensemble contains 143 models that show 
strong node-to-node oscillations. The IASP91 model used to 
generate the synthetic seismograms of the fundamental 
Rayleigh mode is contained within the scatter of the ensemble. 
We now apply EOF analysis to this ensemble to see if we can 
in effect remove the unconstrained information. Fig. 9 shows 
the resulting EOFs. 

The first five eigenfunctions clearly show that the most 
robust information is concentrated in the crust and upper 
mantle. The rest of the eigenfunctions mainly contain infor- 
mation about the deeper part of the earth. This is exactly what 
is to be expected, considering the data employed. The synthetic 

Table 3. Depth parametrization for inversion of group-velocity dispersion for the S velocity. 

a depth zi (km) thickness Az; (km) i depth z; (krn) thickness Az; (km) 

1 5.0 5.0 10 301.8 79.9 

5.3 98.7 II 

Table 3. Depth parametrization for inversion of group-velocity dispersion for the S velocity. 

a depth zi (km) thickness Az; (km) i depth z; (krn) thickness Az; (km) 

3 17.8 7.5 12 519.8 119.3 

4 29.3 11.5 13 662.0 142.2 

5 47.1 17.8 14 829.0 167.0 

6 73.2 26.1 15 1022.9 193.9 

7 109.6 36.4 16 1245.9 223.0 

8 158.5 48.9 17 1500.0 254.1 

9 221.9 63.4 U 
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Monte Carlo ensemble 

Figure 8. Ensemble resulting from the Monte Carlo inversion of fundamental-mode Rayleigh-wave group-velocity dispersion curves. 

seismograms needed to generate the group-velocity estimates 
were generated using fundamental Rayleigh modes with periods 
larger than 10s and less than 300s. Given the penetration 
depth of the fundamental Rayleigh wave, we expect the models 
resulting from the Monte Carlo search to be poorly constrained 
at depths greater than about 400 km. Since the data do not 
constrain the model at these depths, the scatter in the ensemble 
is a result of the search algorithm, the search bounds and 
the parametrization. This deep scatter is almost entirely 
represented by the EOFs e6-e1,. 

The eigenvalue spectrum (Fig. 10) shows a clear cut-off between 
EOFs e5 and e6: A, = 8.9 and 16  = 23.8, while kin = A1 = 1.0 
and La, = A,, = 112.2. As already mentioned in the section on 
theory, the eigenvalue li reflects the variability (or scatter) of 
the models in the direction ei. Since there is a large increase 
in the variability from e5 to e6, we can conclude that the first 
five EOFs do indeed reflect the well-constrained information 
(or shared properties) of the models in the ensemble. The 
eigenvalue spectrum therefore clearly indicates the transition 
from well-constrained to poorly constrained information. 

To verify whether the EOFs with small eigenvalues are 
stable with respect to the number of models in the ensemble, 
we calculate the EOFs resulting from different ensembles with 
a comparable misfit level but an increasing number of models. 
Fig. 11 shows the results for both an EOF with a small 
eigenvalue (e,) and one with a large eigenvalue (e15). Since the 
shape of e2 tends to converge rapidly with the size of the 
ensemble ( N ) ,  e, seems to be stable with respect to the variation 
in the number of models in the ensemble ( N ) ,  whereas the 

overall change in shape of e15 does not indicate stability at all. 
This is to be expected, since e, is supposed to encompass part 
of the robust information present in the ensemble, and therefore 
should not depend heavily on the number of models in the 
ensemble. 

Based on the shapes of the EOFs and their eigenvalues we 
can decide to use only the first five EOFs to calculate the 
filtered ensemble vP’(w, z) with o = 1, ... , 143 and p‘ = 5. The 
next issue to be considered, however, is the depth resolution 
that can be obtained with these five eigenfunctions only. 

The resolution kernels as calculated here depict the 
sensitivity at a certain depth of the filtered ensemble to a 
perturbation in the original ensemble of models. In other 
words they estimate the smearing-out in the filtered ensemble 
due to a perturbation in the original ensemble. Since the 
analysis is performed in a finite-dimensional subspace spanned 
by the functions #i(z), we cannot obtain perfect resolution as 
defined by the delta function in eq. (14). Therefore we redefine 
the resolution kernels in eq. (13) to denote the degree to which 
the basis functions #i can be reconstructed by using the first 
p‘ EOFs only: 

In this context the best resolution that can be obtained is a 
triangle function with its maximum (equal to unity) at the 
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Figure 9. EOFs for the ensemble resulting from the Monte Carlo inversion of fundamental-mode Rayleigh-wave group-velocity dispersion curves. 
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Figure 10. Eigenvalue spectrum for the ensemble resulting from the 
Monte Carlo inversion of fundamental-mode Rayleigh-wave group- 
velocity dispersion curves. 

centre of a layer. First of all it should be noted that, if all 
EOFs are used to generate the filtered ensemble vP’(o, z), the 
original ensemble created by the Monte Carlo search is found 
again. The bottom panel of Fig. 12 shows the resolution kernel 

at a depth of about 135 km and the resulting filtered ensemble 
vp’(o,  z) using all eigenfunctions. If all the EOFs are used to 
calculate the filtered ensemble, the original ensemble is indeed 
recovered (cf: Fig. 8) and the input function (a triangle centred 
at z x  135 km) can be perfectly described using all the 
EOFs. 

If we only use five eigenfunctions, we are interested in the 
resolution that can be obtained at depths where the shear 
velocity is well constrained. Since we know that, based on the 
data used, the upper-mantle part (z<400km) is well con- 
strained, we display the resolution kernel for a depth of about 
135 km. Fig. 12 shows the resolution kernels and the resulting 
filtered ensembles for p’ = 4, 5, 6 and 17. It can clearly be seen 
that if we increase p’ the resolution improves but the variability 
at depths where the velocity is poorly constrained increases. 
This reflects the trade-off relation between resolution and 
variability. Therefore by choosing p’ = 5 we effectively reduce 
the variability at depths where the velocity is poorly con- 
strained (>400 km) while still retaining good resolution at 
depths where the velocity is well constrained. 

The filtered ensemble using the first five EOFs (p‘  = 5) is 
shown in Fig. 13, together with the original ensemble. The 
filtered ensemble shows an effective reduction of the overall 
scatter, especially for the deeper (> 400 km) parts of the models. 
The IASP9 1 model used to create the synthetic seismograms 
is clearly embedded within the filtered ensemble up to a depth 
of about 400 km. One should remember that the parametrization 
we used was different from the one Kennett & Engdahl(l991) 
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Figure 11. Estimated stability with respect to the number of models 
in the ensemble (N) for both an EOF with a small eigenvalue (ez) and 
one with a large eigenvalue (eJ. Both EOFs are calculated for an 
increasing number of models N. 

used to determine the IASP91 model. Therefore it is possible 
that the IASP91 model at some depths falls slightly out of the 
scatter of the filtered ensemble. 

Fig. 14 shows the filtered ensemble and two resolution 
kernels calculated for depths of 190 and 590 km respectively 
with p’ = 5. The resolution kernel for 190 km indicates that 
the velocity at this depth is indeed well constrained. The 
filtered ensemble shows a broad velocity range at this depth. 
This range can be interpreted as an estimation of the variance 
of the velocity averaged over a depth range defined by the 
resolution kernel. The resolution kernel for 590 km is almost 
equal to zero. This is due to the fact that the first five EOFs 
all practically vanish at this depth. This reflects the fact that 
the filtered ensemble does not constrain the model at depths 
greater than the penetration depth of the surface waves. The 
fact that the variance in the filtered ensemble is small at a 
depth of 590 km should not be interpreted as a sign that the 
velocity at this depth is well constrained; it is due to the fact 
that the filtered ensemble does not constrain the velocity at 
this depth at all. At well-constrained depths (z 6 400 km), the 
filtered ensemble reflects an estimation of the variance of the 
velocity at these depths. 

APPLICATION TO THE CONTRAST I N  
UPPER-MANTLE S VELOCITY ACROSS 
THE TORNQUIST-TESSEYRE ZONE 

The Tornquist-Tesseyre zone (TTZ) is a NW-SE-trending 
suture zone which separates the stable Precambrian East 
European Platform (EEP) in the east from the younger, 
tectonically active areas of central and western Europe, referred 

Figure 12. (Left) Resolution kernels calculated at 135 km depth using 
eqs (25) and (26). The dashed line represents the resolution kernel 
calculated using all EOFs and the solid line the kernel calculated 
using only the first p’ EOFs. (Right) The filtered ensembles for 
p’ = 4, 5, 6 and 17. The grey ensemble represents the initial ensemble. 

to as Tectonic Europe (TE), in the west (Fig. 15). Some 
geophysical studies have indicated a change in crustal thickness 
of 25-35 km beneath TE and 40-55 km under EEP (Guterch 
et al. 1986; Meissner 1986; Blundell, Freeman & Mueller 1992). 
Other studies using S body- and surface-wave data (Snieder 
1988; Zielhuis & Nolet 1994; Lomax & Snieder 1995a) indicate 
a significant contrast in S-velocity structure in the uppermost 
mantle in the region of the TTZ, with higher velocities beneath 
EEP. In order to show the power of the method of EOF 
analysis, we present an application of the method to examine 
this contrast in the upper-mantle S-wave velocity across the 
TTZ. The observations we use consist of digital seismograms 
and are the same as the ones used by LS. For a detailed 
description of the data employed we therefore refer the reader 
to LS. 

To invert the fundamental-mode Rayleigh-wave group- 
velocity estimates obtained from these digital seismograms we 
use a Monte Carlo search technique (MC) rather than the 
genetic algorithm that LS used. Since this latter method tends 
to cluster very quickly around some optimal solution, the 
model space is poorly sampled, whereas MC samples the 
model space very well (Lomax & Snieder 1995b). By using 

0 1996 RAS, G J I  127, 363-378 



Ensemble inference 313 

shear-velocity ( k d s )  

Figure 13. The filtered ensemble obtained using only the first five EOFs. The grey ensemble represents the initial ensemble of S-velocity models. 

Figure 14. Resolution kernels for z = 190 km and z = 590 km (calculated using eqs 25 and 26) related to the filtered ensemble for p' = 5. The 
dotted kernels are the kernels calculated using all EOFs. At depths where the velocity is well constrained (e.g. 190 km) we have good resolution 
and the filtered ensemble gives an estimation of the variance of the velocity averaged over a depth range defined by the resolution kernel. For 
depths where the velocity is poorly constrained (e.g. 590 km) the resolution kernels are almost equal to zero. From the filtered ensemble we 
therefore cannot make an estimation of the variance of the velocity at these depths. 

MC we create 100 000 models, and, by defining a misfit 
acceptance level comparable with the acceptance level resulting 
from the definition of acceptable models that LS used, two 
ensembles of 300 and 132 models are created for the EEP and 
TE respectively. These ensembles will be referred to as the 

original ensembles in the context of EOF analysis. The depth 
parametrization we use is identical to the one in the synthetic 
example (Table 3). 

Fig. 16 shows the original ensembles for both EEP (in grey) 
and TE (in black). Since no smoothing is used, both ensembles 
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Figure 15. Figure taken from Lomax & Snieder (1995a). (a) Map showing major tectonic boundaries (medium-width grey lines), Tornquist- 
Tesseyre Zone (TTZ, thick grey line), stations (A) and events (0). (b) Great-circle paths between sources and receivers for observed seismograms 
for the group-velocity estimates in this study. Long-dashed lines indicate paths used for East European Platform (EEP) inversion; solid lines 
indicate paths used for Tectonic Europe (TE) inversion. The short-dashed lines in TE indicate the paths that produce anomalous dispersion estimates. 

show strong node-to-node oscillations as in the synthetic 
example, and they overlap to a very large degree. From these 
original ensembles it is virtually impossible to extract any 
direct information about the contrast in upper-mantle S velocity. 
There is a slight indication of a somewhat lower S velocity 
beneath TE, but we need to perform EOF analysis to examine 
the robust S-velocity patterns present in both ensembles. The 
eigenvalue spectra (Fig. 17) indicate a cut-off in eigenvalues 
between e3 and e4 for both EEP and TE: for EEP Icut-off= 8.1 
and for TE Acut-off = 4.8. Therefore, for both EEP and TE, 

EOFs e, to e3 are expected to encompass the robust shear- 
wave velocity patterns in both regions. The difference in I,,, 
(see Fig. 17) between EEP and TE is caused by the difference 
in the number of models in the original ensembles. 

If we want to examine the contrast in S velocity between 
EEP and TE we should compare only the robust subspaces of 
the model spaces for both areas. Therefore the filtered 
ensembles calculated using only EOFs el to e3 should be 
compared. It should be noted that these EOFs vanish at larger 
depths (2400 km). Considering the data employed, this is to 
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shear-velocity ( k d s )  
Figure 16. Original ensembles resulting from the group-velocity inversion for both EEP (grey) and TE (black). Both ensembles tend to overlap, 
although there is a slight indication of a somewhat lower S-velocity beneath TE. 
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Figure 17. Eigenvalue spectra for EEP (a) and TE (b). A cut-off in the eigenvalues can be identified for both regions at 1 = 8.1 and 1 = 4.8 
respectively. These levels correspond to the first p‘ = 3 EOFs that encompass the robust patterns in the ensembles for both regions. 

be expected since the group-velocity estimates were created 
using only fundamental-mode Rayleigh waves with periods of 
between 10 and 300 s for EEP and between 7 and about 150 s 
for TE. Therefore the S velocity beneath both regions is poorly 
constrained at depths larger than about 400 km. 

Fig. 18 shows the filtered ensembles calculated using only 
the first p’ = 3 EOFs for both EEP and TE, and the resolution 
kernels (calculated from eqs 25 and 26) for both regions at 
depths of about 135 and 460 km. It is clearly seen that there 
is a significant contrast in S velocity in the upper mantle 

between about 50 and 225 km, with higher velocities beneath 
EEP and a reasonable corresponding resolution for both areas 
(see left-hand figure). This confirms earlier results from studies 
by Snieder (1988), Zielhuis & Nolet (1994) and Lomax & 
Snieder (1995a). At larger depths the velocities also differ 
slightly. The right-hand figure, however, indicates that the 
resolution vanishes at these depths, which means that the 
velocity is not constrained and that the small scatter in models 
at these depths should not be interpreted as an indication of 
a well-constrained difference in S velocities in either region. 
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Figure 18. (Left) Resolution kernels for EEP and TE calculated at zo x 135 km. (Middle) Filtered ensembles using p’ = 3 EOFs for both EEP and 
TE. (Right) Resolution kernels for both regions calculated at zo x 460 km. 

The left-hand figure shows a slightly better resolution at 
shallower depths (zs400km) for EEP than for TE. This is 
probably caused by the difference in the number of accepted 
models present in the original ensembIes. The middle panel of 
Fig. 18 also indicates a shallower Moho discontinuity beneath 
TE than under EEP: for TE, zMoHo-30 km, and for EEP, 
zhlOHO - 50 km. These depths agree with results from earlier 
studies by Guterch et al. (1986), Meissner (1986) and Blundell 
et al. (1992). 

CONCLUSIONS A N D  DISCUSSION 

The results of the synthetic tests and the application of the 
analysis to the geophysical problem of group-velocity inversion 
show the effectiveness of EOF analysis in determining the well- 
constrained information hidden in an ensemble of models. In 
the synthetic tests it is shown that the constraints that were 
imposed upon the model space are recovered and that EOF 
analysis can effectively separate this constrained information 
from the unconstrained information in the ensemble. The 
application to the group-velocity inversion shows the same 
thing; the deep (2400 km) scatter reflecting an artificial scatter 
produced by the search algorithm can in effect be removed 
(see Fig. 13). However, the EOF decomposition technique 
cannot always be expected to work well. 

The applicability of EOF analysis depends strongly on the 
pattern of clustering in the population. If we have a problem 
where the ensemble is formed by one cluster, EOF analysis can 
effectively determine the directions of minimum (or maximum) 
variability (see Fig. 19). The centring around the mean is 
needed in order to analyse the variability within the cluster. If 
centring were omitted, the direction of maximum variability 
would be almost equal to the direction of the vector pointing 
to this mean. 

The geophysical problem of group-velocity inversion using 
the fundamental Rayleigh mode is a fairly linear problem. 
Therefore the resulting ensemble of S-velocity models generated 
by MC will probably form a hyperellipsoid in p-dimensional 
Euclidian space. A weak non-linearity will deform the hyper- 
ellipsoid to a different form, such as that shown in Fig. 19. In 

Figure 19. EOF analysis of an ensemble consisting of only one cluster. 

this case, EOF analysis remains applicable. Strong non-linearities 
can, however, have two complicating effects. 

First, non-linearity can cause the shape of the solution space 
to become very different from an ellipsoid, such as the hyper 
‘banana’ in Fig. 20. If EOF analysis were applied to such an 
ensemble the directions of minimum and maximum variability 
would not be representative of the variability within the 
ensemble. The basic orthonormality property of the analysis 
prevents it from effectively determining the representative 
directions of minimum and maximum variability. The direction 
of minimum variability (e;) is, however, reasonably well deter- 
mined compared with the direction of maximum variability 
( e i t s e e  Fig. 20. If we want to perform the EOF analysis as 
presented in this paper, we need to reparametrize the model 
space, in order to transform the curved cluster to a more 
ellipsoidal cluster. The linearizing transformation introduced 
by Vasco (1995) can be used for this purpose. 

Second, the ensemble can be split up into several clusters 
because of the presence of secondary minima of the misfit 
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Figure 20. EOF analysis of a ‘banana’-shaped ensemble, which can 
be the result of a strongly non-linear problem. 

function. Because of the centring with respect to the mean, the 
effectiveness of EOF analysis might in this case break down 
(see Fig. 21). The direction of maximum variability will then 
lie along the line of centres of the two clusters, with the 
minimum-variability direction orthogonal to it (in 2-D). Of 
course these directions in general do not represent the 
minimum- and maximum-variability directions within the two 
separate clusters. In order to find the representative directions 
for both clusters individually, the clusters first need to be 
identified and separated. One possible way to do this is to use 
minimal spanning trees (Preisendorfer 1988, pp. 285-287; 
Preisendorfer & Mobley 1982). 

The method of minimal spanning trees (MST) provides a 
way to detect natural families or clusters in an ensemble. The 
vectors in the ensemble are normalized to lie on a unit sphere. 
By starting at any particular seed vector in the ensemble, 
searching for the nearest neighbour, linking them up, searching 
for their joint nearest neighbour, linking them up, and so on, 
recursively different MSTs can be formed for different seed 
vectors. Each MST can produce a pair of clusters (A,  B): by 

Figure21. EOF analysis of an ensemble consisting of two clusters. 
The clustering can be the result of a strongly non-linear problem. 

removing the link of maximal length li. By defining the ratio 
Ri = l i / d i ,  with di  the average diameter of the cluster pair (A, b)i 
(the diameter can for example be defined as the maximum 
distance between the vectors in the ensemble), and searching 
for the cluster pair with the largest ratio R,, two clusters can 
be identified. 

After the clusters in the ensemble have been recognized, 
EOF analysis can be applied to the individual clusters in order 
to determine the shared properties in each cluster. In general, 
EOF analysis will not be able to detect clusters in the ensemble 
by itself. Since the EOFs form an orthonormal set of functions, 
it is unlikely (if not impossible) that the analysis will come up 
with eigenvectors that point to the different clusters. 

EOF analysis appears to be very similar to singular value 
decomposition (SVD), which is used to analyse linear inverse 
problems of the form 

d=Gm, (27) 

where d are the data, G is a matrix holding the sensitivity 
kernels for the initial model, and m is a vector holding the 
model deviations from the initial model. The matrix G is then 
decomposed using SVD. The eigenfunctions with the largest 
eigenvalues are then considered to be the most important ones 
since they influence the data most strongly. SVD thus calculates 
the eigenfunctions from the sensitivity kernels G, the known 
physics of the problem. EOF analysis calculates the eigen- 
functions from the ensemble of acceptable models represented 
in the scatter matrix. Therefore it extracts the relevant physics 
of the problem out of the ensemble, instead of relying directly 
on physical theory as SVD does. 

Nolet & Snieder (1990) proposed a projection technique 
using Lanczos’ method (Lanczos 1950) to solve large linear 
inverse problems. This method tries to remove the redundancy 
of a subspace in 4, the Hilbert space of earth models spanned 
by the G i ( x )  ( i  = 1, ... , N,  N is large) that form the sensitivity 
kernels of the projection defined as 

G:(x)m(x)  dx = d i .  

In this way a sujicient subspace X of &, spanned by a 
different basis p l ( x ) ,  ._. , p&) with K << N, is defined such that 
for arbitrary d a model m(x) E X can be found that satisfies 
(28) within the precision of d. The Lanczos iteration method 
provides the basis of the proposed technique which describes 
a sequence of projections and backprojections. In EOF analy- 
sis, the unconstrained part of the model space is effectively 
filtered, as shown by the synthetic examples, by determining 
the directions of small variability. This means that the redun- 
dancy of the model space can be reduced without explicit 
knowledge of the sensitivity kernels Gi(x) ,  which is required in 
the projection method of Nolet & Snieder (1990). 

Since the EOFs with the smaller eigenvalues (selected by 
defining the cut-off level in the eigenvalue spectrum) encompass 
the robust patterns present in an ensemble of models, they 
are candidates for reparametrization of the inverse problem. 
Reparametrization using these functions might increase the 
efficiency of the inversion for a specific problem in a certain 
area, since the number of parameters has been reduced. 
But, more importantly, future inversions in this area will be 
more focused on the well-constrained properties using the 
reparametrization, and therefore will be more effective. 
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Summarizing, we can conclude that EOF analysis provides 
a method to extract the robust patterns out of an ensemble, 
that it is able to estimate the variance of the patterns, and 
that the calculated EOFs can be used for an intelligent 
reparametrization of the models. 
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