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We compare two approaches for deriving the fact that the Green’s function in an arbitrary
inhomogeneous open system can be obtained by cross correlating recordings of the wave field at two
positions. One approach is based on physical arguments, exploiting the principle of time-reversal
invariance of the acoustic wave equation. The other approach is based on Rayleigh’s reciprocity
theorem. Using a unified notation, we show that the result of the time-reversal approach can be
obtained as an approximation of the result of the reciprocity approach. © 2005 Acoustical Society
of America. �DOI: 10.1121/1.2046847�
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I. INTRODUCTION

Since the work of Weaver and Lobkis,1,2 many research-
ers have shown theoretically and experimentally that the
cross correlation of the recordings of a diffuse wave field at
two receiver positions yields the Green’s function between
these positions. In most cases it is assumed that the diffuse
wave field consists of normal modes �with uncorrelated am-
plitudes� in a closed system. Less attention has been paid to
the theory of Green’s function retrieval in arbitrary inhomo-
geneous open systems. Nevertheless, the first result stems
from 1968, albeit for one-dimensional media, when
Claerbout3 showed that the seismic reflection response of a
horizontally layered earth can be synthesized from the auto-
correlation of its transmission response. Recently we gener-
alized this to three-dimensional �3D� arbitrary inhomoge-
neous media.4–6 Using reciprocity theorems of the
correlation type, we showed in those papers that the cross
correlation of transmission responses observed at the earth’s
free surface, due to uncorrelated noise sources in the subsur-
face, yields the full reflection response �i.e., the ballistic
wave and the coda� of the 3D inhomogeneous subsurface.
Weaver and Lobkis7 followed a similar approach for a con-
figuration in which the 3D inhomogeneous medium is sur-
rounded by uncorrelated sources. Independently, Derode et
al.8,9 derived expressions for Green’s function retrieval in
open systems using physical arguments, exploiting the prin-
ciple of time-reversal invariance of the acoustic wave equa-
tion. Their approach can be seen as the “physical counter-
part” of our derivations based on reciprocity. In this letter we
compare the time-reversal approach of Derode et al.8,9 with
our approach based on Rayleigh’s reciprocity theorem.4–6

Using a unified notation, we show that the result of the time-
reversal approach can be obtained as an approximation of the
result of the reciprocity approach.
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It should be noted that in both derivations we consider
the situation of impulsive point sources, uniformly distrib-
uted over a surface surrounding the configuration. We briefly
indicate how the resulting expressions can be modified for
the situation of uncorrelated noise sources.

II. TIME-REVERSAL APPROACH

In this section we summarize the time-reversal approach
of Derode et al.8,9 for deriving expressions for Green’s func-
tion retrieval. Consider a lossless arbitrary inhomogeneous
acoustic medium in a homogeneous embedding. In this con-
figuration we define two points with coordinate vectors xA

and xB. Our aim is to show that the acoustic response at xB

due to an impulsive source at xA �i.e., the Green’s function
G�xB ,xA , t�� can be obtained by cross correlating passive
measurements of the wave fields at xA and xB due to sources
on a surface S in the homogeneous embedding. The deriva-
tion starts by considering another physical experiment,
namely an impulsive source at xA and receivers at x on S.
The response at one particular point x on S is denoted by
G�x ,xA , t�. Imagine that we record this response for all x on
S, revert the time axis, and feed these time-reverted functions
G�x ,xA ,−t� to sources at all x on S. The superposition prin-
ciple states that the wave field at any point x� in S due to
these sources on S is then given by

�1�

where � denotes convolution and � “proportional to.” Ac-
cording to this equation, G�x� ,x , t� propagates the source
function G�x ,xA ,−t� from x to x� and the result is integrated
over all sources on S. Due to the invariance of the acoustic
wave equation for time-reversal, the wave field u�x� , t� fo-
cuses for x�=xA at t=0. McMechan10 exploited this property
in a seismic imaging method which has become known as
reverse time migration. Derode et al.8,9 give a new interpre-

tation to Eq. �1�. Since u�x� , t� focuses for x�=xA at t=0, the
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wave field u�x� , t� for arbitrary x� and t can be seen as the
response of a virtual source at xA and t=0. This virtual
source response, however, consists of a causal and an anti-
causal part, according to

u�x�,t� = G�x�,xA,t� + G�x�,xA,− t� . �2�

This is explained as follows: the wave field generated by the
anticausal sources on S first propagates to all x� where it
gives an anticausal contribution, next it focuses in xA at t
=0, and finally it propagates again to all x� giving the causal
contribution. The propagation paths from x� to xA are the
same as those from xA to x�, but are traveled in opposite
direction. Combining Eqs. �1� and �2�, applying source-
receiver reciprocity to G�x ,xA ,−t� in Eq. �1�, and setting
x�=xB yields

G�xB,xA,t� + G�xB,xA,− t� � �
S

G�xB,x,t� � G�xA,x,− t�d2x .

�3�

The right-hand side of Eq. �3� can be interpreted as the inte-
gral of cross correlations of observations of wave fields at xB

and xA, respectively, due to impulsive sources at x on S; the
integration takes place along the source coordinate x. The
left-hand side is interpreted as the superposition of the re-
sponse at xB due to an impulsive source at xA and its time-
reversed version. Since the Green’s function G�xB ,xA , t� is
causal, it can be obtained from the left-hand side of Eq. �3�
by taking the causal part. The reconstructed Green’s function
contains the ballistic wave as well as the coda due to mul-
tiple scattering in the inhomogeneous medium.

III. RECIPROCITY APPROACH

In this section we summarize our derivation based on
Rayleigh’s reciprocity theorem.4–6 A reciprocity theorem re-
lates two independent acoustic states in one and the same
domain.11,12 Consider an acoustic wave field, characterized
by the acoustic pressure p�x , t� and the particle velocity
vi�x , t�. We define the temporal Fourier transform of a
space- and time-dependent quantity p�x , t� as p̂�x ,��
=�exp�−j�t�p�x , t�dt, where j is the imaginary unit and �
the angular frequency. In the space-frequency domain the
acoustic pressure and particle velocity in a lossless arbitrary
inhomogeneous acoustic medium obey the equation of mo-
tion j��v̂i+�ip̂=0 and the stress-strain relation j��p̂+�iv̂i

= q̂, where �i is the partial derivative in the xi direction �Ein-
stein’s summation convention applies for repeated lower-
case subscripts�, ��x� the mass density of the medium, ��x�
its compressibility, and q̂�x ,�� a source distribution in terms
of volume injection rate density. We introduce two indepen-
dent acoustic states, which will be distinguished by sub-
scripts A and B, and consider the following combination of
wave fields in both states: p̂Av̂i,B− v̂i,Ap̂B. Note that these
products in the frequency domain correspond to convolutions
in the time domain. Rayleigh’s reciprocity theorem is ob-
tained by applying the differential operator �i, according to
�i�p̂Av̂i,B− v̂i,Ap̂B�, substituting the equation of motion and the

stress-strain relation for states A and B, integrating the result
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over a spatial domain V enclosed by S with outward pointing
normal vector n= �n1 ,n2 ,n3� and applying the theorem of
Gauss. This gives

	
V

�p̂Aq̂B − q̂Ap̂B�d3x = �
S

�p̂Av̂i,B − v̂i,Ap̂B�nid
2x . �4�

Since the medium is lossless, we can apply the principle of
time-reversal invariance.13 In the frequency domain time-
reversal is replaced by complex conjugation. Hence, when p̂
and v̂i are a solution of the equation of motion and the stress-
strain relation with source distribution q̂, then p̂* and −v̂i

*

obey the same equations with source distribution −q̂* �the
asterisk denotes complex conjugation�. Making these substi-
tutions for state A we obtain

	
V

�p̂A
* q̂B + q̂A

* p̂B�d3x = �
S

�p̂A
* v̂i,B + v̂i,A

* p̂B�nid
2x . �5�

Next we choose impulsive point sources in both states, ac-
cording to q̂A�x ,��=��x−xA� and q̂B�x ,��=��x−xB�, with
xA and xB both in V. The wave field in state A can thus be
expressed in terms of a Green’s function, according to

p̂A�x,�� = Ĝ�x,xA,�� , �6�

v̂i,A�x,�� = − �j���x��−1�iĜ�x,xA,�� , �7�

where Ĝ�x ,xA ,�� obeys the wave equation

�i��−1�iĜ� + ��2/�c2�Ĝ = − j���x − xA� , �8�

with propagation velocity c�x�= ���x���x��−1/2; similar ex-
pressions hold for the wave field in state B. Substituting
these expressions into Eq. �5� and using source-receiver reci-
procity of the Green’s functions gives

2R�Ĝ�xB,xA,��� = �
S

− 1

j���x�
��iĜ�xB,x,��Ĝ*�xA,x,��

− Ĝ�xB,x,���iĜ
*�xA,x,���nid

2x , �9�

where R denotes the real part. Note that the left-hand side is
the Fourier transform of G�xB ,xA , t�+G�xB ,xA ,−t�; the prod-

ucts �iĜĜ*, etc., on the right-hand side correspond to cross
correlations in the time domain. Expressions like the right-
hand side of this equation have been used by numerous re-
searchers �including the authors� for seismic migration in the
frequency domain. Esmersoy and Oristaglio14 explained the
link with the reverse time migration method, mentioned in
Sec. II. What is new �compared with migration� is that Eq.
�9� is formulated in such a way that it gives an exact repre-

sentation of the Green’s function Ĝ�xB ,xA ,�� in terms of
cross correlations of observed wave fields at xB and xA. Note
that, unlike in Sec. II, we have not assumed that the medium

outside surface S is homogeneous. The terms Ĝ and �iĜ
under the integral represent responses of monopole and di-
pole sources at x on S; the combination of the two correla-
tion products under the integral ensures that waves propagat-
ing outward from the sources on S do not interact with those

propagating inward and vice versa. When a part of S is a free
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surface on which the acoustic pressure vanishes, then the
surface integral in Eq. �5� and hence in Eq. �9� need only be
evaluated over the remaining part of S. Other modifications
of Eq. �9�, including the elastodynamic generalization, are
discussed in Refs. 4–6. Van Manen and Robertsson15 pro-
pose an efficient modeling scheme, based on an expression
similar to Eq. �9�.

Note that for the derivation of expressions �3� and �9�
we assumed that impulsive point sources were placed on the
surface S. This is the approach taken, e.g., by Bakulin and
Calvert16 in their experiment on virtual source imaging. Our
derivation also holds for uncorrelated stationary noise
sources on S whose source-time function satisfies

N�x , t��N�x� ,−t��=��x−x��C�t�, where 
·� denotes a spatial
ensemble average and C�t� the autocorrelation of the noise
�which is assumed to be the same for all sources�. When the
noise is distributed over the surface, the cross-correlation of
the observations at xA and xB leads to a double surface inte-
gral. The delta function reduces this to the single surface
integral in the theory presented here.4–7,9,17 A further discus-
sion is beyond the scope of this letter.

IV. COMPARISON

Equation �9� is an exact representation of the real part of

the Green’s function Ĝ�xB ,xA ,��. In comparison with Eq.
�3�, the right-hand side of Eq. �9� contains two correlation
products instead of one. Moreover, each of the correlation
products in Eq. �9� involves a monopole and a dipole re-
sponse instead of two monopole responses. Last but not
least, Eq. �9� is formulated in the frequency domain and Eq.
�3� in the time domain.

First we discuss how we can combine the two correla-
tion products in Eq. �9� into a single term. To this end we
assume that the medium outside S is homogeneous, with
constant propagation velocity c and mass density �. In the
high frequency regime, the derivatives of the Green’s func-
tions can be approximated by multiplying each constituent
�direct wave, scattered wave, etc.� by −j�� /c��cos ��, where
� is the angle between the pertinent ray and the normal on S.
The main contributions to the integral in Eq. �9� come from
stationary points on S.17–19 At those points the ray angles for
both Green’s functions are identical �see also the example in
Sec. V�. This implies that the contributions of the two terms
under the integral in Eq. �9� are approximately equal �but
opposite in sign�, hence

2R�Ĝ�xB,xA,��� 

− 2

j��
�

S

�iĜ�xB,x,��Ĝ*�xA,x,��nid
2x .

�10�

The accuracy of this approximation is demonstrated with a
numerical example in Sec. V.

Our next aim is to express the dipole response ni�iĜ in

terms of the monopole response Ĝ. As explained earlier, this
could be done by multiplying each constituent by
−j�� /c��cos ��. However, since � may have multiple values

and since these values are usually unknown �unless the in-
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homogeneous medium as well as the source positions are

accurately known�, we approximate ni�iĜ by −j�� /c�Ĝ,
hence

2R�Ĝ�xB,xA,��� 

2

�c
�

S

Ĝ�xB,x,��Ĝ*�xA,x,��d2x . �11�

This approximation is quite accurate when S is a sphere with
very large radius so that all rays are normal to S �i.e., �

0�. In general, however, this approximation involves an
amplitude error that can be significant, see the numerical
example in Sec. V. However, since this approximation does
not affect the phase it is considered acceptable for many
practical situations. Transforming both sides of Eq. �11� back
to the time domain yields Eq. �3� �i.e., the result of Derode et
al.8,9�, with proportionality factor 2 /�c.

V. NUMERICAL EXAMPLE

We illustrate Eq. �10� with a simple example. We con-
sider a two-dimensional configuration with a single point
diffractor at �x1 ,x3�= �0,600�m in a homogeneous medium
with propagation velocity c=2000 m/s, see Fig. 1, in which
C denotes the diffractor. Further, we define xA

= �−500,100�m and xB= �500,100�m, denoted by A and B in
Fig. 1. The surface S is a circle with its center at the origin
and a radius of 800 m. The solid arrows in Fig. 1 denote the
propagation paths of the Green’s function G�xB ,xA , t�. For
the Green’s functions in Eq. �10� we use analytical expres-
sions, based on the Born approximation �hence, the contrast
at the point diffractor is assumed to be small�. To be consis-
tent with the Born approximation, in the cross correlations
we also consider only the zeroth- and first-order terms. Fig-
ure 2�a� shows the time-domain representation of the inte-
grand of Eq. �10�, convolved with a wavelet with a central
frequency of 50 Hz. Each trace corresponds to a fixed source
position x on S; the source position in polar coordinates is
�� ,r=800�. The sum of all these traces �multiplied by rd��
is shown in Fig. 2�b�. This result accurately matches the
time-domain version of the left-hand side of Eq. �10�, i.e.,

FIG. 1. Single point diffractor �C� in a homogeneous model. The receivers
are at A and B. The numerical integration is carried out along the sources on
the surface S. The main contributions come from the stationary points a–d.
The contributions from stationary points e and f cancel.
G�xB ,xA , t�+G�xB ,xA ,−t�, convolved with a wavelet, see
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Fig. 3. The events labeled “a” and “c” in Fig. 2 are the direct
and scattered arrivals; the events “b” and “d” are the corre-
sponding anticausal arrivals. This figure clearly shows that
the main contribution to these events come from Fresnel
zones around the stationary points of the integrand.17–19 The
sources at these stationary points are marked in Fig. 1 with
the same labels. We discuss event “c” in more detail. The
path “cCB” in Fig. 1 represents the scattered wave in
G�xB ,x , t�, for x at the stationary point “c.” The path “cA”
represents the direct wave in G�xA ,x , t�. By correlating these
two waves, the travel time along the path “cA” is subtracted
from that along the path “cCB,” leaving the travel time along
the path “ACB,” which corresponds to the travel time of the
scattered wave in G�xB ,xA , t�. This correlation result is indi-
cated by “c” in Fig. 2�a� and the integral over the Fresnel
zone around this point is event “c” in Fig. 2�b�. The other
events in Fig. 2�b� can be explained in a similar way. Finally,
note that there are two more stationary points, indicated by
“e” and “f” in Figs. 1 and 2�a�, of which the contributions
cancel each other.

The numerical evaluation of Eq. �11� for the same con-
figuration yields the result represented by the dashed curve in
Fig. 3. We observe that the travel time of the scattered wave
is accurately captured by this equation, but the amplitude is
overestimated �apparently the assumption �
0 is not ful-

FIG. 2. �a� Time domain representation of the integrand of Eq. �10�. �b� The
sum of all traces in �a�.

FIG. 3. Zoomed-in version of event c in Fig. 2�b�. The solid line is the
time-domain version of the left-hand side of Eq. �10�. The circles represent
the numerical integration result of the right-hand side of Eq. �10� �i.e., the
sum of the traces in Fig. 2�a��. The dashed line represents the numerical

integration result of Eq. �11�.

2786 J. Acoust. Soc. Am., Vol. 118, No. 5, November 2005
filled here�. By increasing the radius of S to 10 000 m we
obtained a result with Eq. �11� that again accurately matches
the directly modeled wave field �not shown�.

VI. CONCLUSIONS

In the literature several derivations have been proposed
for Green’s function retrieval from cross correlations of wave
fields in inhomogeneous open systems. In this letter we com-
pared a derivation based on the time-reversal approach8,9

with one based on Rayleigh’s reciprocity theorem.4–6 One of
the conclusions is that the expression obtained by the time-
reversal approach is an approximation of that based on Ray-
leigh’s reciprocity theorem.
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