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Cancellation of spurious arrivals in Green’s function retrieval of
multiple scattered waves
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The Green’s function for wave propagation can be extracted by cross-correlating field fluctuations
excited on a closed surface that surrounds the employed receivers. This study treats an acoustic
multiple scattering medium with discrete scatterers and shows that for a given source the
cross-correlation of waves propagating along most combinations of scattering paths gives
unphysical arrivals. Because theory predicts that the true Green’s function is retrieved, such
unphysical arrivals must cancel after integration over all sources. This cancellation occurs because
the scattering amplitude of each scatterer satisfies the generalized optical theorem. The
cross-correlation of scattered waves with themselves does not lead to the correct retrieval of
scattered waves, because the cross-terms between the direct and scattered waves is essential.
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I. INTRODUCTION

The extraction of the Green’s function for wave propa-
gation by correlation of field fluctuations is an active area of
research in a variety of different fields that has reached the
stage where material is documented in review papers and
books.1–7 The central idea is that field fluctuations recorded
at two points lead after cross-correlation to the superposition
of the causal and time-reversed Green’s function for wave
propagation between those points. This principle finds its
roots in the fluctuation dissipation theorem,8,9 and was
known for a considerable time for electrical systems.10,11

This principle has recently been extended to a general class
of physical fields,12–15 including static fields.16,17 Green’s
function retrieval for the acoustic waves treated here is based
on the cross-correlation of field fluctuations that are excited
by sources with equal power spectrum that are located on a
closed surface surrounding the used receivers.18,19 When
these sources are located on a spherical surface �V where the
waves satisfy a radiation boundary condition, the principle of
Green’s function extraction for acoustic waves is, in the fre-
quency domain, formulated as13

�
�V

G�rP,r�G��rQ,r�dS = −
�

2ik
�G�rP,rQ� − G��rP,rQ�� , �1�

where rP and rQ denote the locations of receivers. In this
expression we assumed that the mass density � and wave-
number k are constant on the boundary �V, and the asterisk
denotes complex conjugation. Throughout this paper we use
a formulation in the frequency domain using the following
Fourier convention: F�t�=�f���exp�−i�t�d�, with � the an-
gular frequency. For brevity we omit the frequency depen-
dence in the remainder of this work.

For media with discrete scatterers or reflectors, the
Green’s function can be seen as a superposition of the waves
that propagate along all possible scattering paths. Both
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Green’s functions in the left hand side of Eq. �1� contain a
sum over all scattering paths from the integration point r to
the locations rP and rQ, respectively. The left hand side of
expression �1� therefore consists of a double sum over scat-
tering paths that end at rP and rQ, respectively. An example
of two such paths is shown in Fig. 1. Let us denote the travel
time for the path on the left as tS1AP and the path on the right
as tS2BQ. In the time domain, the arrival time of the signal
obtained by cross-correlation is given by the difference of
the arrival times of the waves that are being cross-correlated.
The cross-correlation of the waves that propagate along the
paths of Fig. 1 thus produces a wave arriving at time tS1AP

− tS2BQ. This travel time does not correspond to a physical
wave that propagates between the points P and Q via the
scattering path A12B. Such a contribution thus is a spurious
arrival that does not correspond to a physical wave. These
spurious arrivals arise because of the cross-correlation of
wave propagating along different scattering paths, we refer
to such contributions as cross terms. Expression �1� guaran-
tees, though, that the left hand side gives the true Green’s
function after integration over surrounding sources, hence
the spurious arrivals should disappear after integration over
all sources. Earlier work treated the cancellation of spurious
arrival in the case of one scatterer,20 here we analyze the
mechanism by which spurious arrivals cancel upon integra-
tion over sources in multiple scattering acoustic media with
isolated scatterers.

Let us consider the cross-terms between different scat-
tering paths in more detail. When we consider two different
scattering paths that propagate from a source S to receivers P
and Q, there are two possibilities; the first scatterer along
these paths is the same �Fig. 2�, or the first scatterer on both
paths is different �Fig. 1�. Suppose that there are M scatterers
in the medium, then there are M ways in which one can
choose the first scatterer in Fig. 2. In contrast, for the cross-
terms along the paths shown in Fig. 1 the are M�M −1� ways
to choose the first scatterers along those paths. For a medium
with many scatterers, the cross-terms in Fig. 1 are thus more

prevalent than the cross-terms shown in Fig. 2. We show in
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this work that despite the fact that that number of scattering
paths shown in Fig. 1 is much larger than those in Fig. 2, it
is the superposition of the scattering paths in both figures
that leads to the cancellation of spurious arrivals.

We review the employed scattering theory in Section II.
In Section III we show how the integrals that arise in the
cross-correlation can be evaluated in the stationary phase ap-
proximation. In Section IV we derive the central result that
the sum of most of these contributions vanishes by virtue of
the generalized optical theorem. In Section V we evaluate the
final nonzero contribution of the cross-correlation of waves
that propagate from the source to scatterers to a common
scattering path, and show that this correctly gives the scat-
tered wave that propagates along that path. An essential ele-
ment in the retrieval of scattered waves is that one needs
cross-terms of the direct wave and scattered waves. In fact,
when the Green’s function retrieval is based on scattered
waves only, the spurious arrivals do not vanish and one does
not retrieve the scattered waves.

II. THE MULTIPLE SCATTERED WAVES

In this work we consider a homogeneous acoustic me-
dium in which isolated scatterers are embedded. The em-
ployed acoustic wave equation is given by

� · �1

�
� p� +

�2

�
p = q , �2�
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FIG. 1. Two scattering paths from a source S to receivers at points P and Q
where the first scatterer along each path is different.
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FIG. 2. Two scattering paths from a source S to receivers at points P and Q

that share the first scatterer along the paths.
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where � is the bulk modulus, and q the �injection� source.
The Green’s function G�r ,r0� is defined as the solution of
expression �2� with q�r�=��r−r0�. The Green’s function of
the homogeneous reference medium in which the scatterers
are embedded is

G0�r,r�� = −
�

4�

eik	r−r�	

	r − r�	
, �3�

with the wavenumber given by k=�
� /�. Scatterer j has
scattering amplitude f j�n̂ , n̂��,21 where n̂� is the direction of
the incoming wave and n̂ the direction of the outgoing wave.
The contribution to the Green’s function of the wave propa-
gating from a source at r0 via scatterers 1¯N at locations
r1 , ¯ ,rN to a receiver at r is given by

Gpath1¯N�r,r0� = −
�

4�

eik	r−rN	

	r − rN	
fN�n̂N,n̂N−1�

�
eik	rN−rN−1	

	rN − rN−1	
¯ f1�n̂1,n̂0�

eik	r1−r0	

	r1 − r0	
, �4�

where the unit vector n̂i points from ri to ri+1. In this expres-
sion, the propagation between scatterers i and j is denoted by
exp�ik	ri−r j	� / 	ri−r j	. This description of scattering is valid
when the scatterers are in each others far field. When this
condition is not valid one can expand the scattering coeffi-
cients in a sum over spherical harmonics and replace the
propagators by spherical Hankel functions;22 in that case the
analysis presented here is not applicable. The same scatterer
can occur twice, or more, along the path, allowing for loops.

In the remainder of this work we focus on one particular
scattering path, the treatment presented here is applicable to
each scattering path separately. For brevity we introduce the
following notation

G1¯N�n̂� =
eik	rN−rN−1	

	rN − rN−1	
fN−1�n̂N−2,n̂N−1�

¯

eik	r2−r1	

	r2 − r1	
f1�n̂1,n̂� , �5�

where the corresponding scattering path and variables are
defined in Fig. 3. This quantity describes the wave propaga-
tion for a wave incident from direction n̂ on scatterer 1, and
then propagates via scatterers 1 ,2 , ¯ ,N−1 to location rN. A
comparison of expressions �4� and �5� shows that

Gpath1¯N�r,r0� = −
�

4�

eikr01

r01
G1¯N�r̂01� . �6�

r
N�1

r
N

r
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r
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FIG. 3. Definition of geometric variables for a scattering path involving N
scatterers.
Throughout this work we use the notations
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rIJ = rJ − rI and rIJ = 	rIJ	 , �7�

hence in expression �6�, r01=r1−r0 is the vector pointing
from a source at r0 to the position r1 of the first scatterer
along the path considered.

III. SPURIOUS ARRIVALS FROM CROSS-TERMS

The waves traveling from the source S to receivers at rP

and rQ either encounter different scatterers as the first scat-
terer along their paths, as shown in Fig. 1, or they may en-
counter the same first scatterer along their paths, see Fig. 2.
In the notation of Fig. 1 we first consider scatterers “1” and
“2.” The next points along these paths are denoted with the
labels “A” and “B.” These points can either be scatterers, or
the receivers where the wave field is recorded. The scatterers
along the path considered are not necessarily spatially adja-
cent, the figures only show them in spatial order for reasons
of clarity. The scattering paths beyond points A and B is
independent of the location of the source, and in the follow-
ing we don’t show the continuation of those paths to the
receivers P and Q.

We consider the scattering diagrams shown in Fig. 4.
These diagrams show all the waves that propagate from the
source and visit the scatterers 1 and 2 once or twice. As
mentioned earlier, we do not show the fate of the waves
beyond the points A and B because this part of the wave
paths does not change during the integration over the sources
on �V. There are five such diagrams, and in the following we
compute the contribution of each diagram to the cross-
correlation. We evaluate the contribution of each diagram
using the stationary phase approximation23,24 which becomes
exact as the surface �V goes to infinity.25 Note that the dia-
grams T1 and T2 are topologically identical in the sense that
both diagrams describe a cross term between scattered waves
that travel from the source to consecutive scatterers along the
scattering path. Diagram T2 follows from diagram T1 by sub-
stituting 1→A and 2→1. This equivalence of diagrams is
used in Section V where we sum over all scatterers along the
scattering path that we consider.

We first analyze the term T1 that corresponds to the dia-
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FIG. 4. Scattering diagrams for wave propagation from a source S to points
A and B that visit the scatterers 1 and 2 one or two times. For simplicity the
scattering paths from scatterer A to receiver P and scatterer B to receiver Q
are not shown.
gram in the top left of Fig. 4. Using expressions �4� and �5�,
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the wave that propagates along the left path of term T1 in
Fig. 4 from the source S via the scatterer A a receiver P is
given by

uleft = −
�

4�

eikrS1

rS1
f1�r̂1A, r̂S1�

eikr1A

r1A
GA¯P�r̂1A� , �8�

where GA¯P�r̂1A� accounts for the propagation from scatterer
A to receiver P along the scattering path. The subscript S
refers to the source location. The unit vector r̂1A is defined
using expression �7�. Similarly, the wave propagating along
the right path of term T1 in Fig. 4 is given by

uright = −
�

4�

eikrS2

rS2
f2�r̂2B, r̂S2�

eikr2B

r2B
GB¯Q�r̂2B� . �9�

The contribution to the cross-correlation of these two paths is
given by

T1 =� �−
�

4�

eikr1A

r1A
f1�r̂1A, r̂S1�

eikrS1

rS1
GA¯P�r̂1A��

��−
�

4�

eikr2B

r2B
f2�r̂2B, r̂S2�

eikrS2

rS2
GB¯Q�r̂2B���

dS , �10�

where the integration is over sources on a spherical surface
surrounding the scatterers and the receivers. Rearranging
terms, T1 can be written as

T1 = � �

4�
�2eik�r1A−r2B�

r1Ar2B
GA¯P�r̂1A�GB¯Q

� �r̂2B�

�� eik�rS1−rS2�

rS1rS2
f1�r̂1A, r̂S1�f2

��r̂2B, r̂S2�dS . �11�

The surface integral can be evaluated with the stationary
phase approximation following the steps taken in Refs. 20
and 26. Instead of repeating these steps, we recognize that,
apart from the terms containing the scattering amplitude, the
surface integral is equal to the superposition of the causal
and a-causal unperturbed Green’s function of Equation �3�:

� �

4�
�2� eik�rS1−rS2�

rS1rS2
dS =� G0�r1,r�G0

��r2,r�dS

= −
�

2ik
�G0�r1,r2� − G0

��r1,r2��

=
�2

8�ik
� eikr12

r12
−

e−ikr12

r12
� , �12�

where the first and last identities follow from Eq. �3� and the
second equality from expression �1�. We use this result in the
stationary phase approximation of the integral �11�, but must
insert the stationary phase locations for the source position in
the variables that depend on the source position.

Following the analysis of Refs. 20 and 26, the surface
integral in Eq. �11� has two stationary phase points that are
shown in Fig. 5. For the stationary phase point in the left
panel of Fig. 5, r̂S1= r̂S2= r̂12, and rS1−rS2=−r12. For the sta-
tionary phase point of the right panel r̂S1= r̂S2=−r̂12, and
rS1−rS2=r12. Using these results, expression �11� is in the

stationary phase approximation given by
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T1 =
�2

8�ik

eik�r1A−r2B�

r1Ar2B
� eikr12

r12
f1�r̂1A,− r̂12�f2

��r̂2B,− r̂12�

−
e−ikr12

r12
f1�r̂1A, r̂12�f2

��r̂2B, r̂12��
� GA¯P�r̂1A�GB¯Q

� �r̂2B� . �13�

Note that apart from contributions from the scattering ampli-
tude, the phase of the first term in this expression is given by

1 2

BA

S
1

T
11

1 2

BA

S
2

T
12

FIG. 5. Stationary points for the source integration in expression �11� for
term T1.
interchanging points A and B, points 1 and 2 and taking the
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k�r1A+r12−r2B�. In the time domain this corresponds to a
wave arriving at time t= �r1A+r12−r2B� /c, where c is the
wave velocity of the reference medium. This wave, with an
arrival time that depends on the difference of the travel times
�rA1+r12� /c and r2B /c along the scattering path rather than
its sum, does not correspond to a physical arrival. The same
consideration holds for the second term in expression �13�,
whose phase depends on k�r1A−r12−r2B�. Hence both terms
of T1 are spurious arrivals that must ultimately be cancelled
by other terms.

IV. CANCELLATION OF THE SPURIOUS ARRIVALS

In this section we analyze the contributions of the dia-
grams T2 through T5 shown in Fig. 4. Using expression �4�,
the term T can be written as
2
T2 =� �−
�

4�

eikrSA

rSA
GA¯P�r̂SA���−

�

4�

eikr2B

r2B
f2�r̂2B, r̂12�

eikr12

r12
f1�r̂12, r̂S1�

eikrS1

rS1
GB¯Q�r̂2B���

dS

= � �

4�
�2e−ikr2B

r2B

e−ikr12

r12
f2

��r̂2B, r̂12�GB¯Q
� �r̂2B�� eik�rSA−rS1�

r2ArS1
GA¯P�r̂SA�f1

��r̂12, r̂S1�dS . �14�
The integral can be evaluated in the stationary phase ap-
proximation We consider the contribution of the stationary
phase using expression �12� and evaluate the scattering am-
plitude for incoming waves excited at each stationary source
position. The stationary phase points are shown in Fig. 6, and
their contribution is given by

T2 = T21 + T22, �15�

with

T21 =
�2

8�ik

eik�r1A−r2B�

r1Ar2B

e−ikr12

r12
f1

��r̂12, r̂1A�

�f2
��r̂2B, r̂12�GA¯P�r̂1A�GB¯Q

� �r̂2B� , �16�

and

T22 = −
�2

8�ik

e−ik�r1A+r2B�

r1Ar2B

e−ikr12

r12
f1

��r̂12, r̂A1�

�f2
��r̂2B, r̂12�GA¯P�r̂A1�GB¯Q

� �r̂2B� , �17�

where we used r̂S1= r̂A1 for the stationary phase point in the
left panel of Fig. 6, and r̂S1= r̂1A for the other stationary
point. Note that the directions 1A and A1 are reversed in
expressions �16� and �17� because of the opposite orientation
of the stationary phase points in Fig. 6. In the time domain
term T21 corresponds to a wave arriving at time t= �r1A

−r2B−r12� /c. Because it contains the difference of arrival
times, it does not correspond to any physical wave that
propagates between the scatterers.

Term T3 can be obtained from the analysis for T2 by
complex conjugate. Applying these substitutions to expres-
sion �16� gives for the spurious arrival of T31 due to one of
the stationary phase points

T31 = −
�2

8�ik

eik�r1A−r2B�

r1Ar2B

eikr12

r12
f1�r̂1A,− r̂12�f2�− r̂12, r̂2B�

�GA¯P�r̂1A�GB¯Q
� �r̂2B� , �18�

where we used that r̂21=−r̂12. This is, again, a spurious ar-
rival because it corresponds to a wave arriving at a time
difference t= �r1A−r2B+r12� /c. The contribution from the
other stationary phase point follows by making the substitu-
tions given above in expression �17� and is given by

1 2
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S
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T
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FIG. 6. Stationary points for the source integration in expression �14� for

term T2.
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T32 =
�2

8�ik

eik�r1A+r2B�

r1Ar2B

eikr12

r12
f1�r̂1A,− r̂12�f2�− r̂12, r̂B2�GA¯P�n̂1A�GB¯Q

� �n̂B2� . �19�

Using Eq. �4� the contributions to term T4 of the paths shown in Fig. 4 are given by

T4 =� �−
�

4�

eikr1A

r1A
f1�r̂1A, r̂S1�

eikrS1

rS1
GA¯P�r̂1A��

��−
�

4�

eikr2B

r2B
f2�r̂2B, r̂12�

eikr12

r12
f1�r̂12, r̂S1�

eikrS1

rS1
GB¯Q�r̂2B���

dS

=
�2

16�2

eik�r1A−r2B�

r1Ar2B

e−ikr12

r12
f2

��r̂2B, r̂12�� 1

rS1
2 f1�r̂1A, r̂S1�f1

��r̂12, r̂S1�dS � GA¯P�r̂A1�GB¯Q
� �r̂2B� . �20�
The surface element dS is related to the increment d� in
solid angle by the relation �1 /rS1

2 �dS=d�. Replacing r̂S1,
which depends on the source position over which we inte-
grate, by a new integration variable r̂ gives

T4 =
�2

16�2

eik�r1A−r2B�

r1Ar2B

e−ikr12

r12
f2

��r̂2B, r̂12�

��� f1�r̂1A, r̂�f1
��r̂12, r̂�d��GA¯P�r̂A1�GB¯Q

� �r̂2B� .

�21�

Term T5 of Fig. 4 follows from this expression by inter-
changing A↔B, 1↔2, and taking the complex conjugate

T5 =
�2

16�2

eik�r1A−r2B�

r1Ar2B

eikr12

r12
f1�r̂1A,− r̂12�

��� f2
��r̂2B, r̂�f2�− r̂12, r̂�d��GA¯P�r̂A1�GB¯Q

� �r̂2B� .

�22�

Note that T4 and T5 also depend on the difference of path
lengths, and thus are unphysical arrivals.

The sum Tspur=T1+T21+T31+T4+T5 of the spurious
terms of Eqs. �13�, �16�, �18�, �21�, and �22� gives after a
rearrangement of terms

Tspur =
�2eik�r1A−r2B�

4�kr1Ar2B
� eikr12

r12
f1�r̂1A,− r̂12�F2

��r̂2B,− r̂12�

+
e−ikr12

r12
f2

��r̂2B, r̂12�F1�r̂1A, r̂12��
� GA¯P�r̂A1�GB¯Q

� �r̂2B� �23�

with

F1�r̂1A, r̂12� = −
1

2i
f1�r̂1A, r̂12� +

1

2i
f1

��r̂12, r̂1A�

+
k

4�
� f1�r̂1A, r̂�f1

��r̂12, r̂�d� , �24�
and
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F2
��r̂2B,− r̂12� =

1

2i
f2

��r̂2B,− r̂12� −
1

2i
f2�− r̂12, r̂2B�

+
k

4�
� f2

��r̂2B, r̂�f2�− r̂12, r̂�d� . �25�

The scatterers 1 and 2 must both satisfy the generalized op-
tical theorem

1

2i
�f j�r̂A, r̂B� − f j

��r̂B, r̂A�� =
k

4�
� f j�r̂A, r̂�f j

��r̂B, r̂�d� .

�26�

This theorem has been derived for quantum mechanics27,28

and acoustics.29 By virtue of this theorem, both F1 and F2 in
expressions �24� and �25� vanish. Because of Eq. �23� the
sum Tspur of the spurious arrivals of the diagrams of Fig. 4 is
thus equal to zero:

T1 + T21 + T31 + T4 + T5 = 0. �27�

Since this sum vanishes, the only nonzero contribution of the
sum of the terms T1 through T5 comes from the terms T22 and
T32, hence the sum T=T1+T2+T3+T4+T5 of all diagrams in
Fig. 4 is given by

T =
�2

8�ik

eik�r1A+r12+r2B�

r1Ar12r2B
f1�r̂1A,− r̂12�

�f2�− r̂12, r̂B2�GA¯P�r̂1A�GB¯Q
� �r̂B2�

−
�2

8�ik

e−ik�r1A+r12+r2B�

r1Ar12r2B
f1

��r̂12, r̂A1�f2
��r̂2B, r̂12�

�GA¯P�r̂A1�GB¯Q
� �r̂2B� . �28�

In the next section we consider the sum of the diagrams T1

through T5 and their contribution to expression �28� for all
scatterers along the scattering path, and we treat the sum of
all those contributions.

V. SUMMING THE CONTRIBUTIONS ALONG THE
SCATTERING PATH

According to Eq. �28� the total contribution of the dia-
grams T1 through T5 of Fig. 4 reduces to the term T22 of Fig.

6 and a corresponding diagram T32 that connects to scatterer
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B. We show later in this section that these remaining terms
gives the superposition of scattered waves that propagate in
opposite direction along the path.

Consider waves propagate that from a scatterer A to an-
other point C, which can either be the next scatterer along
the path or a receiver, as shown in Fig. 7. There is an ambi-
guity how we label the different terms for adjacent groups of
four points. Consider first the right panel of Fig. 7. Compar-
ing it with Fig. 4 it can be considered to be either term T4 for
the points A12B or term T5 for the points CA12, because in
both interpretations the waves that are cross-correlated
propagate from the source to scatterer 1 and then continue in
opposite ways along the scattering path. Similarly, a com-
parison with Fig. 4 shows that the cross-terms in the left
panel of Fig. 7 can be interpreted either as term T2 for the
points A12B or as term T1 for points CA12. A similar ambi-
guity exists between terms T3 and T1 when continuing the
scattering path beyond scatterer B in Fig. 7.

One must take care not to count ambiguous terms twice
when summing over all cross-terms of scattered waves along
the scattering path. This can be avoided by assigning weights
as shown in Fig. 8 to the different cross-terms. The entries in
the figure should be interpreted as follows. The term T4 in
the column “1” denotes, for example, the diagram shown in
the right panel of Fig. 7. It is entered in the middle column
because scatterer 1 is the first scatterer encountered after
leaving the source. The entry is shown in the middle row,
because this row denotes terms for the points A12B. We
know from the right panel of Fig. 7 that this term equals term
T5 for the points CA12, hence term T5 is also indicated in
column marked “1” in the bottom row that is applicable to
the points CA12. By giving each of these terms a weight 1

2 ,
as shown in Fig. 8, we avoid counting these terms twice.

1 2

B
A

S

T
2

A12B

C

T
1

CA12
or

1 2

B
A

S

T
4

A12B

C

T
5

CA12
or

FIG. 7. Two different ways of accounting for the cross-terms of two scat-
tering paths.
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FIG. 8. Weights given to terms T1 through T5 for adjacent groups of scat-
terers along the path to ensure that each diagram is counted once. Column
“1” denotes, for example, cross-terms of scattered waves that both meet
scatterer 1 as first scatterer, while column “A1” denotes cross-terms of
waves that encounter scatterers A and 1, respectively, as first scatterer along
their paths. The bottom row denotes the contribution for points CA12, the
middle row the contribution of points A12B, etc. There are rows above and

below for other sets of four scattering points along the scattering paths.
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Similarly, according to the left panel of Fig. 7 we should
avoid double counting term T2 for the points A12B and term
T1 for the points CA12, because these terms denote the same
cross-term of scattered waves. Term T2 is indicated in the
column “A1” and the middle row of Fig. 8, because, as
shown in Fig. 7, this term is a cross term of waves with
scatterers A and 1 as the first scatterers encountered along the
paths considered. This term is also entered as a
T1-contribution to the bottom row in the column “A1.” We
assign weights to these terms so that when one sums along
all groups of four scatterers along the path the total contri-
bution of these terms adds up to a weight 1. This can be seen,
for example in the column “12” of Fig. 8. It may seem sur-
prising that the term T1 is assigned a zero weight, but, as we
show later, the contribution of this term is covered by the
terms T2 and T3 of adjacent groups of four points.

Next we sum the contributions of each adjacent group of
four points. This corresponds to a sum over the rows in Fig.
8 or Fig. 9. We first compute the sum over the elements in
the middle row of Fig. 9, it is equal to

1
2T2

A12B + 1
2T4

A12B + 0 · T1
A12B + 1

2T5
A12B + 1

2T3
A12B

= 1
2 �T21

A12B + T22
A12B + T1

A12B + T5
A12B + T31

A12B + T32
A12B�

− 1
2T1

A12B

= 1
2T22

A12B + 1
2T32

A12B − 1
2T11

A12B − 1
2T12

A12B, �29�

where we added and subtracted 1
2T1

A12B in the first identity,
and used expression �27� in the second identity. We also used
Eq. �15� that expresses the contribution of terms T1 through
T3 into the two stationary point contributions. Expression
�29� holds for each row. Applying this expression to the bot-
tom row of Fig. 9 gives a contribution 1

2T32
CA12 which is the

opposite of the remaining term − 1
2T12

A12B in Eq. �29� for the
middle row. �This equivalence of these diagrams can be veri-
fied by drawing a diagram similar to that in the left panel of
Fig. 7.� These terms thus cancel, this is indicated in Fig. 9 by
the solid arrow pointing upward in column “12.” Using the
same reasoning, the remaining term 1

2T22 of the top row can-
cels the remaining contribution − 1

2T11
A12B in Eq. �29� for the

middle row, this is indicated by the solid arrow pointing
downward in column “12” of Fig. 9. The terms 1

2T22
A12B

+ 1
2T32

A12B in expression �29� for the middle row cancel
T1-contributions in the rows below and above, respectively.
This cancellation is indicated by solid arrows in Fig. 9. Ul-
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FIG. 9. Cancellation of terms T1+T21+T31+T4+T5 for adjacent groups of
scatterers along the path. Rows and columns have the same meaning as in
Fig. 8. The sum of all terms in each dashed box cancels when the contribu-
tions from rows above and below indicated by solid arrows are included.
timately all contributions of terms in Fig. 9 cancel, with the
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exception of remaining terms at the end points on the scat-
tering path.

In the following we evaluate the contribution of Eq. �28�
at the end points of the scattering path. As argued above, the
contributions of expression �28� that end at the receivers P or
Q are the only terms that give a nonzero contribution. For
ease of notation, we rename the scatterers along the path
with indices 1 ,2 , . . . ,N; this index enumerates the scatterers
along the path starting at receiver P. We first consider the
cross-term that remains at the end of scattering path at re-
ceiver P as shown in Fig. 10. This cross-term consists of the
direct wave G0 that travels to receiver P with the scattered
wave GS

path 1¯N that propagates along the scatterers 1 , . . . ,N
to receiver Q.

The contribution of this cross-term is, in the notation of
Fig. 10, given by

T22 =� �−
�

4�

eikrSP

rSP
��−

�

4�

eikrS1

rS1
G1¯NQ�r̂S1���

dS

= �−
�

4�
�2� eik�rSP−rS1�

rSPrS1
G1¯NQ

� �r̂S1�dS . �30�

Since we only need to account for the equivalent of term T22

we consider the contribution of the stationary phase point
shown in Fig. 10, and using Eq. �12�, the contribution of this
stationary phase point is given by

T22 = −
�2

8�ik

e−ikrP1

rP1
G1¯NQ

� �r̂S1�

= −
�2

8�ik
�−

4�

�
��Gpath 1¯N�rP,rQ���

=
�

2ik
�Gpath 1¯N�rP,rQ���, �31�

where we used that at the stationary point r̂S1= r̂P1, and ex-
pression �6� in the second identity. As indicated in Fig. 10,
this contribution consists of the correlation of the direct wave
G0�rP ,rS�, that propagates from the source to the receiver at
rP with the scattered wave GS

path 1¯N�rQ ,rS�, that travels
from the source via scatterers 1¯N to the receiver at rQ.
The contribution from the term T32 at the other end of the
scattering path follows by taking the complex conjugate, re-
placing P and Q, and reversing the order of the scatterers

1 N

P Q

S

2
N �1

G
S

path 1LN

G
0

FIG. 10. The stationary source position that gives a nonzero contribution the
scattering path P1¯NQ.
�1¯N→N¯1�, which gives
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T32 = −
�

2ik
Gpath N¯1�rQ,rP� = −

�

2ik
Gpath 1¯N�rP,rQ� ,

�32�

where we used reciprocity in the last identity. Adding the
contributions from Eqs. �31� and �32� finally yields

T22 + T32 = −
�

2ik
�Gpath 1¯N�rP,rQ� − �Gpath 1¯N�rP,rQ���� .

�33�

This is nothing but expression �1� for the wave propagating
along the scattering path under consideration.

VI. DISCUSSION

We have shown for a multiple scattering system with
discrete scatterers that the cross-correlation of different scat-
tering paths vanishes when one integrates over all sources on
a surface that bound the region with scatterers and receivers.
One might think that the cancellation of spurious arrivals
occurs because the phase of each of these arrivals is different
for different pairs of scattering paths which results in de-
structive interference of spurious arrivals, but this is not the
reason. The cancellation process involves the sum of the five
scattering diagrams shown in Fig. 4, and the sum of scatter-
ing diagrams vanishes because every scatterer must satisfy
the generalized optical theorem. The cancellation of spurious
arrivals for multiple scattered waves shown here comple-
ments an earlier proof that for an isolated scatterer the spu-
rious arrivals cancel.20 Because of the extremely large num-
ber of spurious cross-terms in a multiple scattering medium,
the cancellation of spurious arrivals is much more important
in a multiple scattering medium than in a medium with just
one scatterer. For weakly scattering media where scattering
can be treated in the Born approximation, the cross-terms of
scattered waves with scattered waves is of higher order and
can thus be ignored in Green’s function extraction.30,31

It is essential in the cancellation of the spurious arrivals
that the power spectrum of the sources on the boundary �V is
constant and that sources are present everywhere on this
boundary because these requirements ensure that the surface
integral in the Green’s function extraction is adequately
sampled. If these conditions are not met, the angular inte-
grals in the terms T1 through T5 are multiplied with varia-
tions in the power spectrum and/or spatial density of sources,
and as a result the spurious arrivals may not cancel.20,32 This
is important for practical reasons, since in applications there
may be gaps in the source distribution on �V, and even if
sources are present everywhere on �V, the power spectrum of
these source may vary. In that case the spurious arrivals may
contaminate estimates for the Green’s function obtained from
cross-correlation of field fluctuations.

As shown in Section V, the extraction of the wave
propagating along the scattering path considered follows
from the cross-correlation of the direct wave propagating to
one receiver with the scattered wave propagating along the
scattering path to the other receiver, because the cross-terms
between scattered waves ultimately cancel. Suppose one es-

timates the Green’s function by cross-correlating scattered
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waves only. In that case the cross-terms of scattered waves
with the direct wave is missing and the extracted Green’s
function contains spurious arrivals. It has been noted earlier
that the cross-correlation of scattered waves with scattered
waves does not give the scattered waves,20,33 and this study
confirms that conclusion for multiple scattering media. The
failure to extract scattered waves by cross-correlating only
scattered waves is ultimately due to the fact that the scattered
waves do not satisfy the wave equation.34
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