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Abstract: The Gel’fand-Levitan equation, the Gopinath-Sondhi equation, and the Marchenko equation are developed for one-
dimensional inverse scattering problems. Recently, a version of the Marchenko equation based on wavefield decomposition
has been introduced for focusing waves in multi dimensions. However, wavefield decomposition is a limitation when waves
propagate horizontally at the focusing level. Here, the Marchenko equation for focusing without wavefield decomposition is
derived, and by iteratively solving the Marchenko equation, the Green’s function for an arbitrary location in the medium is
retrieved from the scattered waves recorded on a closed receiver array and an estimate of the direct-wave without wavefield
decomposition. VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Inverse scattering (Chadan and Sabatier, 1989; Colton and Kress, 1998; Gladwell, 1993) uses scattered waves to determine
the scattering properties of a medium. Burridge (1980) shows that the Gel’fand-Levitan equation and the Gopinath-Sondhi
equation have the same structure as the Marchenko equation, and shows that the Marchenko equation can be used for
medium reconstruction (Burridge, 1980; Newton, 1980a). The solution of the one-dimensional (1D) Marchenko equation
is an exact integral equation to make the connection between the scattered data and the scatterer potential. Rose (2001,
2002) defines focusing as finding an incident wave that becomes a delta function at a prescribed focus location and time
inside the medium. He shows that this incident wave follows from the scattered data and uses the Marchenko equation
for 1D inverse scattering problems. Broggini and Snieder (2012) utilize Rose’s approach and introduce a scheme in one
dimension to retrieve the Green’s function containing single-scattered and multiply scattered waves of the inhomogeneous
medium. Wapenaar et al. (2012) show the virtual source creation in two dimensions using the recorded data but the pro-
posed method excludes horizontally propagating energy at the virtual source level. Wapenaar et al. (2013, 2014) derive the
three-dimensional Marchenko equation for wavefield focusing and, therefore, for the Green’s function retrieval; however,
their solution requires up/down decomposition of the wavefield, which also excludes horizontally propagating energy at
the focusing level. This is a limitation when the medium has steeply dipping structures because the horizontally scattered
waves and refracted waves cannot be fully represented with the up/down decomposition. Recently, there have been several
studies to address the limitation of the Marchenko method due to the up/down separation of the Marchenko equation.
Kiraz et al. (2020) show wavefield focusing for an arbitrary point inside an unknown highly scattering inhomogeneous
medium using the data acquired on a closed boundary. Diekmann and Vasconcelos (2021) and Wapenaar et al. (2021)
present alternative approaches to Green’s function retrieval without up/down decomposition each with their own pros and
cons.

The Marchenko schemes proposed in one dimension provide an exact solution for focusing, and for Green’s
function retrieval in the medium. Green’s function retrieval is of importance for imaging applications in many fields. The
ability to focus waves opens up applications ranging from scattering kidney stones to performing imaging, monitoring in
seismology, and non-destructive testing.

In this paper, we propose a two-dimensional (2D) Marchenko equation for focusing waves in a highly scattering inho-
mogeneous medium. We show that by iteratively solving the Marchenko equation, the Green’s function for an arbitrary point in a
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strongly scattering inhomogeneous medium can be retrieved without wavefield decomposition at the focal point. As opposed to
the current Marchenko algorithms that use single-sided acquisition methods, we include waves propagating in all directions at the
focal point using the contributions from a closed array. Our scheme is an extension of the 1D Marchenko algorithms proposed by
Newton (1980a), Rose (2001, 2002), and Broggini and Snieder (2012) into two dimensions.

2. Theory

Consider the acoustic wave equation

qr � 1
q
rp

� �
þ x2

c2
p ¼ f ; (1)

where q is density, x is the angular frequency, f is the source term, p is pressure, and c is the velocity. We use the acoustic
wave equation for a constant velocity and variable density in the numerical examples in this paper.

We define the Green’s function Gðx; xs; tÞ as the solution to the wave equation LG¼ dðx � xsÞdðtÞ, with the dif-
ferential operator L ¼ qr � ðq�1rÞ � c�2@2=@t2. Here, xs is the source location and the Green’s function is the response
to a source at xs recorded at the receiver location x. We use the following convention for the Fourier transform:
f ðtÞ ¼ ð1=2pÞ

Ð
FðxÞ expð�ixtÞdx, where i is the imaginary unit. In the frequency domain Gðx; xs;xÞ satisfies

LG ¼ dðx � xsÞ, with the differential operator L ¼ qr � ðq�1rÞ þ x2=c2.
We describe an iterative solution to focus a wavefield in the medium to a pre-defined location at t¼ 0 when

injected into the medium. Our solution requires the direct-wave information modeled in the homogeneous medium (when
q and c are constant) for a source at the focusing point xs. This is the known Green’s function G0ðx; xs; tÞ in a homoge-
neous medium. Sending this direct-wave back into the inhomogeneous medium from a circular receiver array with the
radius R in a time-reversed order creates a focus at the focal point at t¼ 0; however, in addition to the focal spot, other
waves are present around the focusing point, and Fig. 1(a) shows the snapshot at t¼ 0 of the time-reversed direct-wave
injection into the heterogeneous medium shown in Fig. 2 (about which the details will be provided in Sec. 2.1). This shows
that emitting the time-reversed direct-wave into an inhomogeneous medium does not restrict the focused field to the
focusing point, and our goal is to remove the waves at other locations than the focusing point in Fig. 1(a). Figure 1(b)
shows the snapshot at t¼ 0 of the wavefield injection obtained by the iterative algorithm we propose. As shown in Fig.
1(b), our algorithm creates a wavefield that focuses to the pre-defined focal point, which acts as a virtual source, and sup-
presses other waves at t¼ 0. We obtain our focusing wavefield by only using the direct-wave information modeled in the
homogeneous medium (when q and c are constant) and the recorded scattering response. Unlike the conventional
Marchenko methods, our method does not require the decomposition of the Marchenko equation to achieve focusing. In
Sec. 2.1, we discuss the iterative Marchenko equation we propose for wavefield focusing and show how to obtain better
focuses in the medium than one can achieve with the direct waves only.

2.1 Iterative scheme and the Marchenko equation

We define the ingoing wavefield, Uinðn̂0; tÞ, and outgoing wavefield, Uoutðn̂; tÞ, where n̂0 and n̂ denote the locations on
the circle with radius R; they are related via the scattering response Aðn̂; n̂0; tÞ of the inhomogeneous medium. Following
Broggini and Snieder (2012), Rose (2001, 2002), Wapenaar et al. (2013), and Wapenaar et al. (2014), we design a wavefield
that becomes a delta function at the focus location with an iterative scheme that relates the ingoing wave Uin

k to the outgo-
ing wave Uout

k at iteration k as

Uout
k ðn̂; tÞ ¼

þ ð
Aðn̂; n̂0; t � sÞUin

k ðn̂0; sÞdsdn0: (2)

Fig. 1. (a) Snapshot at t¼ 0 of the time-derivative of the time-reversed modeled direct-wave injection. (b) Snapshot at t¼ 0 of the time-
derivative of the time-reversed retrieved homogeneous Green’s function injection obtained from our iterative Marchenko algorithm. The red
asterisk denotes the focal point xs and the blue line represents the transducer locations.
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The ingoing and outgoing waves and the scattering operator are defined on a circle with radius R, but for brevity, we omit
the parameter dependence on R in Eq. (2).

The iterative scheme starts with injecting a delta function into the medium and the ingoing wavefield for the first
iteration gives

Uin
0 ðn̂0; sÞ ¼ dðsþ tdðn̂0ÞÞ; (3)

where tdðn̂0Þ is the arrival time of the direct waves that propagates from the focusing point to the point n̂0 on the circle.
Following Broggini and Snieder (2012), the purpose of the iterative scheme is to reconstruct a wavefield that

after interacting with the heterogeneities in the medium collapses onto a delta function at the focusing point at t¼ 0. We
create a symmetric field in time for �tdðn̂0Þ < t < tdðn̂0Þ. We later show that the symmetry in time leads to focusing. To
achieve the symmetry for the iterative scheme, we define the ingoing wavefield as

Uin
k ðn̂ 0; sÞ ¼ Uin

0 ðn̂0; sÞ �Hðn̂0; sÞUout
k�1ðn̂;�sÞ; (4)

where Hðn̂0; sÞ is a window function and defined as Hðn̂0; sÞ ¼ 1 when �tdðn̂0Þ < s < tdðn̂0Þ, and otherwise Hðn̂0; sÞ ¼ 0.
When the iterative scheme converges (hence when Uout

k ¼ Uout
k�1), the iteration number can be dropped. Inserting

Eq. (4) into Eq. (2) then gives

Uoutðn̂; tÞ ¼
þ ð

Aðn̂; n̂0; t � sÞUin
0 ðn̂0; sÞdsdn0

�
þ ðt�d
�t�

d

Aðn̂; n̂0; t � sÞUoutðn̂0;�sÞ dsdn0; (5)

with t�d ¼ td � �, where we introduce � as a small positive constant to exclude the direct-wave at td. If we define
K ¼ �Uout and substitute this into Eq. (5) using Eq. (3), we obtain

Kðn̂; tÞ þ
þ
Aðn̂; n̂0; t þ tdðn̂0ÞÞdn0

þ
þ ðt�d
�t�d

Aðn̂; n̂0; t � sÞKðn̂0;�sÞ dsdn0 ¼ 0: (6)

Burridge (1980) shows that the 1D Marchenko equation, Gel’fand-Levitan equation, and the Gopinath-Sondhi
equations of inverse scattering can be written in symbolic notation as K þ Rþ

Ð
WRK ¼ 0 where

Ð
W shows the time inter-

val, R is the recorded data, and K is the function we solve for. Eq. (6) has the same structure as the equations derived by
Burridge (1980) and, therefore, gives a 2D Marchenko equation without using up/down decomposition. Eq. (6) also has a
similar relation with the equations derived by Newton (1980b, 1981, 1982) using the scattering data in multi-dimensional
media.

3. Numerical example and Green’s function retrieval

We illustrate our method with a 2D numerical example. Figure 2 shows the source and receiver geometry of a 2D acoustic
medium. The red asterisk in Fig. 2 denotes the virtual source location and the blue line represents a circle on which 400
equidistant sources and receivers are placed. The virtual source location, xs ¼ ðx; zÞ, is at x¼ 4 cm and z¼ 0.8 cm. The
medium has a constant background velocity and density, c0¼ 2 km/s and q0¼ 2 g/cm3, respectively. Figure 2 also shows
four different elliptical-shaped scatterers located in the medium with densities q1¼ 4.5 g/cm3, q2¼ 5 g/cm3, q3¼ 7.5 g/cm3,

Fig. 2. Geometry of the 2D model. Sources and receivers (400 each) are located on the blue circle, and the red asterisk shows the virtual source
location xs. The elliptical scatterers have contrasting densities which are given on the right-hand side.
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and q4¼ 6 g/cm3, respectively. We use finite-difference modeling with absorbing boundaries and the source wavelet is a
Ricker wavelet (Ricker, 1953) with a central frequency of 2MHz. A challenge of the used geometry is that the focusing
point is located inside one of the scatterers, which has a reflection coefficient of about 40% at the boundaries. As a result,
the source generates strong reverberations within the scatterer (see supplementary material,1 movie 1).

The ingoing wavefield in the finite-difference modeling can be implemented by either changing the finite-
difference stencil at the circular array, or by using the equivalent sources f (in equation form) in the acoustic wave equa-
tion (1) to produce the desired ingoing wavefield. We use the equivalent sources in the acoustic wave equation (1) for the
finite-difference implementation where the equivalent sources are given by the normal derivative of the ingoing wavefield
(see supplementary material1). To solve the Marchenko equation iteratively, we start with Uin

0 ðn̂0; tÞ ¼ Udðn̂0;�tÞ where
Ud is the time-reversed direct-wave in the homogeneous background medium. We send the ingoing wave Uin

0 from the
receiver array into the medium and use the outgoing wave recorded at the array in Eq. (4) to determine the ingoing wave
for the next iteration. We use seven iterations to get close to convergence but more iterations might be needed for more
complicated media where velocity and density are varying.

We next inject the wavefield obtained by the iterative solution on the boundary. Figure 3(a) shows the total wave-
field, Utotalðn̂0; tÞ ¼ Uinðn̂0; tÞ þ Uoutðn̂0; tÞ, recorded on the boundary for the 7th iteration, which consists of the superposi-
tion of the ingoing and outgoing wavefield. The wavefield in Fig. 3(a) is symmetric in time for �tdðn̂0Þ < t < tdðn̂0Þ
(approximately between �5 and 5ls). If we take the difference between the total wavefield in Fig. 3(a) and its time-reversed
version, i.e., Utotalðn̂0; tÞ � Utotalðn̂0;�tÞ, all events in the interval �tdðn̂0Þ < t < tdðn̂0Þ vanish as shown in Fig. 3(b). A small
amount of energy remains in Fig. 3(b) for �tdðn̂0Þ < t < tdðn̂0Þ, this is due to numerical inaccuracies in our solution of the
Marchenko equation. Since Utotalðn̂0; tÞ � Utotalðn̂0;�tÞ is anti-symmetric in time, it vanishes for t¼ 0, also after injecting it
into the medium. Hence, we diagnose the focusing by showing the time derivative ð@=@tÞðUtotalðn̂0; tÞ � Utotalðn̂0;�tÞÞ,
injected into the medium.

Figure 3(b) shows that for positive times, the wavefield Utotalðn̂0; tÞ � Utotalðn̂0;�tÞ vanishes at the receivers for
t < tdðn̂0Þ. If we consider this wavefield at t¼ 0, the direct waves radiated at t¼ 0 from xs arrive at a receiver location
Rðn̂0Þ at tdðn̂0Þ. Suppose that waves would radiate at t¼ 0 from a point x 6¼ xs. For some receivers, those waves would
arrive at a time t < tdðn̂0Þ; however, as shown in Fig. 3(b), no waves arrive at time t < tdðn̂0Þ. This means that waves do
not radiate from any point x 6¼ xs at t¼ 0. Therefore, the time-derivative of the wavefield Utotalðn̂0; tÞ � Utotalðn̂0;�tÞ,
injected into the medium, is only non-zero at t¼ 0 at the point xs, and the wavefield focuses at t¼ 0 at the virtual source
location (also see supplementary material1).

We let pðx; tÞ denote the total wavefield in the interior that is associated with the wavefield Utotalðn̂0; tÞ on the
boundary, and pðx;�tÞ denote the time-reversed version of this wavefield. The homogeneous Green’s function
[Ghðx; xs; tÞ ¼ Gðx; xs; tÞ � Gðx; xs;�tÞ] (Oristaglio, 1989), for the virtual source location xs and the receiver location x is,
up to a multiplicative constant, obtained from (also see supplementary material1)

Ghðx; xs; tÞ ¼ pðx; tÞ � pðx;�tÞ: (7)

If we want to focus a wavefield at the virtual source location where there is no actual source located, we must have a non-
zero incident wavefield. The causal and acausal Green’s functions satisfy the inhomogeneous acoustic wave equation, but
the homogeneous Green’s function Gh satisfies the homogeneous wave equation (Oristaglio, 1989). Equation (7), therefore,
retrieves the Green’s function for t> 0 for the virtual source location xs. Unlike other (interferometric) Green’s function
retrieval methods (Campillo and Paul, 2003; Duroux et al., 2010; Roux et al., 2004; Sabra et al., 2005; Schuster, 2009;
Snieder and Larose, 2013; Wapenaar et al., 2005; Weaver and Lobkis, 2001), no physical receiver is required at the position
of the virtual source, and unlike other Marchenko methods (Wapenaar et al., 2013, 2014), we do not rely on an up/down
decomposition of the wavefield. When one applies the Marchenko algorithm to two points in the interior, one obtains the

Fig. 3. (a) Utotalðn̂ 0; tÞ for the 7th iteration. (b) Utotalðn̂ 0; tÞ � Utotalðn̂ 0;�tÞ. (c) Comparison of the calculated (red line) and the retrieved (blue
line) Green’s functions. The traces have been multiplied by exp(2t) to emphasize the scattered waves.
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Green’s function for these two points recorded on the boundary. Using interferometric techniques, these Green’s functions
can be used to reconstruct the Green’s function for waves propagating between two points in the interior (Brackenhoff
et al., 2019; Singh and Snieder, 2017).

Figure 3(c) shows the Green’s function obtained from Eq. (7) with x taken at the boundary (blue lines), superim-
posed on the directly modeled Green’s function (red lines). For clarity, the traces have been multiplied by exp(2t) to
emphasize the scattered waves. The latest arrival time for the single-scattered waves for our geometry is about 18ls. All
waves arriving after 18 ls, therefore, are multiply scattered waves. For earlier times, the Green’s function consists of a com-
bination of single-scattered waves and multiply scattered waves. As a result of our iterative solution, we retrieve the direct-
wave and the scattered waves.

Figure 4 shows normalized vertical cross-sections of the wavefield at t¼ 0 taken from Figs. 1(a) and 1(b) for
x¼ 4 cm. The red trace denotes the cross section of Fig. 1(a) and the blue trace denotes the cross section of Fig. 1(b). The
snapshots (see Fig. 1) and the cross-sections (see Fig. 4) show that the reconstructed Green’s function creates a focus only
around the focusing point and cancels other arrivals around the focusing point to a large extent, whereas the results one
can achieve with using only direct waves contain other arrivals that distort the focusing.

4. Conclusion

We derive the 2D Marchenko equation for wavefield focusing and Green’s function retrieval for an arbitrary point in an
unknown highly scattering inhomogeneous medium with a closed receiver array. We successfully retrieve the Green’s func-
tion for a pre-defined location and the comparison to the directly modeled Green’s function is found to be excellent [see
Fig. 3(c)]. The cross-sections in Fig. 4 show that we can create better focusing in the medium than one can achieve with
the direct waves only. Our retrieved Green’s function contains both the single- and multiply scattered waves of the hetero-
geneous medium model. Because we use a constant background velocity model, our method requires the direct-wave infor-
mation modeled only in the homogeneous medium (when q is constant), and the recorded scattering response Aðn̂; n̂0; tÞ
to solve the Marchenko equation iteratively like other multi-dimensional Marchenko methods proposed earlier (Wapenaar
et al., 2013, 2014); however, it does not require wavefield decomposition. We show that after the convergence, we retrieve
the Green’s function for any desired location in the medium without relying on prior information about the scatterers in
the medium and wavefield decomposition to solve the Marchenko equation. The Marchenko equation we propose forms
the basis for imaging the interior of a medium inside a closed array without up/down decomposition and makes the
Marchenko methods more appropriate for imaging steeply dipping structures.
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