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ABSTRACT

Imaging the Earth’s interior requires seismic data to be free from the events which

reflect more than once in the subsurface (also referred to as multiples). For most seismic

imaging algorithms, multiples are considered noise since they shadow the useful

information about the subsurface, and they need to be removed from the seismic data.

However, the removal of multiples remains one of the most challenging tasks in seismic

data processing to this day.

The occurrence of multiples depends on a strong impedance contrast between two

adjacent subsurface structures and the strength of the multiples increases as the contrast

increases. The presence of complex overburden structures (e.g., salt bodies) in the

subsurface is one of the reasons for a strong impedance contrast. The solution of the

Marchenko equation retrieves the up- and down-going focusing functions which allow one

to account for the effects of complex overburden structures and enables the retrieval of the

Green’s functions for virtual source locations in the subsurface. I propose a

two-dimensional (2-D) Marchenko equation where the up- and down-going focusing

functions are not needed for the Green’s function retrieval. The proposed Marchenko

equation not only effectively retrieves the Green’s function for a virtual source location in

the subsurface, but also forms the basis for obtaining multiple-free images of the

subsurface. I also investigate the role of the background velocity model for a successful

Green’s function retrieval with the Marchenko equation for the reflected and refracted

waves. I show that a constant background model retrieves a high-accuracy Green’s

function as long as the average slowness can be obtained between the virtual source and

receiver locations. I also show that the refracted waves can only be incorporated into the

retrieved Green’s function with a background model that is detailed enough to model the

refracted waves during the Marchenko scheme.
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The presence of a free surface (or air-water interface) is another reason for a strong

impedance contrast. The free-surface effects can be seen in two different ways in the

seismic data; (1) free-surface multiples and (2) ghost reflections. Free-surface multiples

have at least one downward reflection at the free surface and are the most dominant set of

multiples in marine seismic data. Ghost reflections create notches in the frequency content

of the seismic data causing the low-frequency content to deteriorate. I develop a

Convolutional Neural Network (CNN) (which is an important building block of artificial

intelligence) solution to attenuate the free-surface multiples and remove ghost reflections

from seismic data, simultaneously. The developed CNN algorithm works on a single seismic

trace and does not need to interpolate, extrapolate, or regularize data gaps and near

offsets, avoiding the costs and time associated with such procedures. It is designed for use

in irregular surveys, such as ocean-bottom node seismic data or time-lapse monitoring

studies. I present synthetic examples to demonstrate that the CNN-based solution removes

free-surface effects from seismic data. I then apply the developed CNN-based simultaneous

free-surface multiple attenuation and ghost removal method on a 2-D field data set

acquired in the North Viking Graben. Lastly, I apply the developed CNN-based solution to

the simultaneously acquired seismic data (also referred to as blended data). I first

demonstrate the efficacy of the proposed algorithm on a 2-D synthetic blended data set.

Then, I apply the proposed algorithm to a 2-D field data set acquired in the North Sea.

The numerical examples demonstrate that the CNN algorithm effectively eliminates

free-surface effects on blended data.
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CHAPTER 1

INTRODUCTION

One of the most challenging tasks in seismic data processing is the removal of multiples

from seismic data. A multiple is a wave that has at least one downward reflection

somewhere along its ray path. Internal multiples are one of the most commonly

encountered multiples in seismic data. Internal multiples have at least one downward

reflection at a reflector below the subsurface (Berkhout & Verschuur, 1997); the green line

in Figure 1.1(a) illustrates an example of an internal multiple for a marine seismic

acquisition where the red star denotes a source located at depth near the sea surface, and

the white triangle denotes a receiver also located at depth near the sea surface.

Marchenko redatuming and imaging, a novel approach for generating multiple-free

seismic images using surface seismic data and a smooth velocity model, has the potential to

resolve problems related to internal multiples (Broggini & Snieder, 2012; Wapenaar et al.,

2014). Marchenko redatuming removes the effects of complex overburden structure by

creating virtual responses (also referred to as wavefield focusing) using the Marchenko

equation (Marchenko, 1955). Marchenko imaging creates artifact-free images of the

subsurface by applying an imaging condition. Marchenko redatuming and imaging

eliminates the effects of internal multiples and produces more accurate images of the

subsurface (Behura et al., 2014; Jia et al., 2018, 2021; Ravasi et al., 2016) compared to the

images obtained by the reverse-time migration (Baysal et al., 1983; McMechan, 1983).

The relationship between wavefield focusing and the Marchenko equation was

established by Rose (2001, 2002b) allowing for wavefield focusing in an unknown medium

once the Marchenko equation is solved. Broggini & Snieder (2012) demonstrate the

retrieval of the Green’s function between any subsurface point and surface acquisition point

without the need for a physical receiver at the virtual source location, using only one-sided
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illumination. Wapenaar et al. (2013) examine the retrieval of the three-dimensional

Green’s function and provide an example of the two-dimensional retrieval.

(a)

(b)

Figure 1.1 (a) Schematic illustration of the ray paths of primary reflection (blue line),
internal multiple (green line), free-surface multiple (black line), and source and receiver
side ghost reflections (red line). The white triangle denotes a receiver located at depth and
the red shape denotes a source located at depth before multiple and ghost removal. (b) The
ray paths in (a) after multiple and ghost removal.

A comprehensive explanation and numerical implementation of the Marchenko

redatuming and imaging method is provided by Wapenaar et al. (2014), van der Neut et al.

(2015), Thorbecke et al. (2017), and Lomas & Curtis (2019). Marchenko redatuming and
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imaging has been widely utilized for various purposes including internal multiple

elimination (Meles et al., 2015, 2016; Thorbecke et al., 2021), elastic wave applications

(da Costa Filho et al., 2014, 2015; Wapenaar, 2014), subsurface imaging and for

comparisons with the conventional imaging results (e.g., reverse time migration) (Behura

et al., 2014; Jia et al., 2018; Ravasi et al., 2016; Wapenaar et al., 2014). Marchenko

redatuming and imaging has been applied in various field data sets including imaging of a

North Sea field data set (Ravasi et al., 2016), target-oriented subsalt imaging of the Gulf of

Mexico data set (Jia et al., 2018), time-lapse monitoring of the Frio carbon sequestration

data set (Kiraz & Nowack, 2018), multiple suppression on an Arabian Gulf field data set

(Staring et al., 2021), and an offshore Brazil data set for imaging a reservoir under basalt

(Jia et al., 2021).

Multiples are generated when waves encounter strong impedance contrasts. In marine

seismic data, the main sources of impedance contrast are the free surface (air-water

interface) and the water bottom. The water bottom may have weak impedance contrast

(e.g., weak impedance contrast), but the free surface is always an almost-perfect reflector

(e.g., strong impedance contrast), producing two main problems in recorded seismic data:

(1) free-surface multiples and (2) ghost reflections.

Multiple reflections in recorded marine seismic data pose a significant challenge as they

interfere with the primary reflections. Free-surface multiples, with at least one downward

reflection at the sea surface (black line in Figure 1.1(a)), are particularly critical to address.

Surface-Related Multiple Elimination (SRME) is a data-driven method that predicts

multiples by utilizing the relationship between multiples and their sub-events (Verschuur

et al., 1992). The SRME technique has gained widespread use and has established itself as

the primary and industry-accepted solution for eliminating free-surface multiples (Ma

et al., 2019). It requires a dense and regular source and receiver distribution, a known

source wavelet, interpolated data, and near-offset data, but the method does not need

subsurface information. The SRME method consists of data pre-processing, multiple
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prediction, wavelet estimation through matching filtering, and adaptive subtraction

(Dragoset et al., 2010; Verschuur et al., 1992). Despite being widely used and one of the

most effective tools in seismic processing, SRME is computationally intensive and does not

always guarantee optimal results. During the subtraction process, there is a risk of

removing both primary and multiple reflections, as they can overlap (Dragoset et al.,

2010). While two-dimensional (2-D) SRME can be more computationally efficient, it may

not handle complex subsurface structures requiring three-dimensional (3-D) source and

receiver distribution effectively, especially in the presence of strong cross-line data

components, making this even harder to achieve in 3-D surveys.

Several efforts have been made to tackle free-surface multiples. One of them is

presented by Riley & Claerbout (1976) who discusses the theory and application of a

one-dimensional (1-D) free-surface multiple attenuation algorithm. Verschuur et al. (1992)

highlight the technique of predicting and subtracting free-surface multiples from seismic

data. Jakubowicz (1998) describes a method for eliminating interbed multiples, which is an

extension of SRME. There are numerous examples of field data applications of the SRME

method (Dragoset & MacKay, 1993; Dragoset & Jeričević, 1998; Kelamis & Verschuur,

2000; Verschuur et al., 1995).

Ghost reflections cause notches in seismic data frequency due to destructive interference

of the downward radiated wave with the wave reflected off the free surface, and alter the

source signature (Amundsen & Zhou, 2013). Attenuating ghost reflections (or deghosting)

is crucial for broadband processing and full-waveform inversion (Kragh et al., 2010; Virieux

& Operto, 2009). Ghost reflections in seismic data appear as delayed primary signals with

opposite polarity (Dondurur, 2018). There are three types of ghosts recorded in seismic

data: (1) source ghost, (2) receiver ghost, and (3) source and receiver ghost (shown as red

line in Figure 1.1(a)). Deghosting can be done through acquisition-based solutions such as

slanted streamer, over-under steamers, and dual-sensor streamer acquisitions (Carlson

et al., 2007; Moldoveanu et al., 2007; Soubaras & Whiting, 2011) or processing-based
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solutions such as low-frequency deghosting filtering and joint deconvolution (Amundsen &

Zhou, 2013; Soubaras, 2010). Recent advancements have also applied machine learning

techniques to remove ghost reflections (Almuteri & Sava, 2023; Vrolijk & Blacquière, 2021).

Seismic migration methods (Baysal et al., 1983; McMechan, 1983) presume that seismic

data only consists of primary reflections (the blue line in Figure 1.1). It is, hence, crucial

for the seismic data to be free of free-surface-generated events (represented by the red and

black lines in Figure 1.1(a)) that are reflected at least twice off reflectors in the subsurface.

A profound limitation of the existing algorithms that remove free-surface multiples and

ghost reflections is that they require a dense source and receiver distribution over a seismic

survey. These algorithms are sensitive to missing data gaps and it is computationally

demanding to fill these gaps in the data (e.g., interpolation, extrapolation, regularization).

For example, for a successful implementation of the SRME algorithm, shot and receiver

spacings along inline and crossline directions should be around tens of meters (Dragoset

et al., 2010). These specifications are unfeasible in reality, so some form of interpolation,

extrapolation, or regularization is required for the SRME method.

In recent years, the geophysics community has adapted a novel approach called

Convolutional Neural Networks (CNNs) to address various problems like SRME. A CNN is

a specific type of artificial intelligence commonly used for image recognition, natural

language processing, and for tasks that require an understanding of visual data (Ekman,

2021; Géron, 2019). CNNs use convolutional layers to extract features from the input

image. Network parameters are learned through training on a dataset, where the network

is optimized to minimize the difference between the predicted and actual output. The

resulting network can then be applied to new images to make predictions, which can be

improved through further training (Bishop, 2006; Ekman, 2021; Géron, 2019; Murphy,

2012).

CNNs have been used to address various problems in the exploration seismology such as

obtaining an elastic subsurface model using recorded normal-incidence seismic data (Das

5



et al., 2019), 3-D seismic fault segmentation (Wu et al., 2019), seismic interpretation (Di

et al., 2020), seismic deghosting (Almuteri & Sava, 2023), deblending the simultaneous

source seismic data (Cheng et al., 2022), magnetotelluric noise suppression (Li et al., 2023),

full-waveform inversion (Wu & McMechan, 2019), microseismic waveform classification and

arrival picking (Zhang et al., 2020), velocity model building (Alzahrani & Shragge, 2022),

random noise attenuation (Si et al., 2019), sparse least-square migration (Liu et al., 2020),

and free-surface multiple attenuation (Ovcharenko et al., 2021; Siahkoohi et al., 2018,

2019).

The central objective of this thesis is to design algorithms that eliminate multiples and

ghost reflections from seismic data while circumventing the need for a dense source and

receiver distribution. To achieve this goal, I first develop a Marchenko equation that,

unlike the previous algorithms, does not require decomposing the focusing function into

upgoing and downgoing components to accurately retrieve the Green’s functions for virtual

source locations in the subsurface. The algorithm that encodes the new Marchenko

equation forms the basis for obtaining images that are free of multiples caused by the

complex overburden structures in the subsurface (e.g., the green line in Figure 1.1(a)). I

then perform a sensitivity analysis to background models of the Marchenko algorithm for

the reflected and refracted waves. To tackle free-surface multiples and ghost reflections in

seismic data (e.g., the red and black lines in Figure 1.1(a)), I next develop a CNN-based

algorithm. In contrast to SRME, the proposed algorithm operates on a single trace at a

time and unlike the existing methods, can thus be used for surveys with sparse source and

receiver distributions. The CNN-based algorithm, therefore, does not require any

interpolation/extrapolation/regularization step and can be applied to surveys with

irregular acquisition such as ocean-bottom node seismic data or time-lapse monitoring

studies. I also apply the proposed CNN-based methodology to a 2-D data set acquired in

the North Sea. Finally, I extend the proposed CNN method for the simultaneous source

acquisition surveys. I present synthetic and field data applications to show that the
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CNN-based free-surface multiple attenuation and deghosting algorithm effectively removes

free-surface effects on blended data, and generalizes well for the field data.

1.1 Thesis Outline

The chapters in this thesis are based on publications. One chapter has been published

in a peer-reviewed journal, three chapters have been submitted for publication, and one

chapter will be submitted for publication. As the first author of the following technical

chapters, I developed the theory and performed numerical computations. As the thesis

advisor and coauthor of the following technical chapters, Dr. Roel Snieder supervised the

analytical and numerical findings. As a coauthor for the first two chapters, Dr. Kees

Wapenaar supervised the analytical and numerical findings. As a coauthor for the last

three chapters, Dr. Jon Sheiman supervised the analytical and numerical findings. The

authors discussed the results and contributed to writing the manuscripts and documenting

the research work.

In Chapter 2, entitled “Focusing waves in an unknown medium without wavefield

decomposition”, I present a novel Marchenko equation that does not require the up- and

down-going components of the focusing function to effectively retrieve the Green’s function

for a virtual source location in the subsurface. The outcomes of this chapter were presented

at a Society of Exploration Geophysicists (SEG) Annual Meeting, and were published in

JASA Express Letters :

• Kiraz, M. S. R., R. Snieder, and K. Wapenaar, 2020, Marchenko focusing without

up/down decomposition: 90th Annual International Meeting, SEG, Expanded

Abstracts, 3593-3597, doi: 10.1190/segam2020-3423471.1.

• Kiraz, M. S. R., R. Snieder, and K. Wapenaar, 2021, Focusing waves in an unknown

medium without wavefield decomposition: JASA Express Letters, 1, 055602, doi:

10.1121/10.0004962.
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In Chapter 3, entitled “The role of the background velocity model for the Marchenko

focusing of reflected and refracted waves”, I describe the role of the background model for

an accurate Green’s function retrieval using the Marchenko equation. I present different

background models and investigate the accuracy of the retrieved Green’s functions using

these models. I also show that the background velocity model, which is used to model the

direct wave for the Marchenko algorithm, must be sufficiently detailed to produce refracted

waves if these waves are to be recovered. The outcomes of this chapter were presented at

the First International Meeting for Applied Geoscience & Energy and have been submitted

for peer review in Geophysical Journal International :

• Kiraz, M. S. R., R. Snieder, and K. Wapenaar, 2021, Marchenko without up/down

decomposition on the Marmousi model and retrieval of the refracted waves: Are they

caused by the Marchenko algorithm?: First International Meeting for Applied

Geoscience & Energy, SEG/AAPG, Expanded Abstracts, 3280-3284, doi:

10.1190/segam2021-3583530.1.

• Kiraz, M. S. R., R. Snieder, and K. Wapenaar, 2023, The role of the background

velocity model for the Marchenko focusing of reflected and refracted waves:

Geophysical Journal International (under review).

In Chapter 4, entitled “Removing free-surface effects from seismic data using

convolutional neural networks – Part 1: Theory and sensitivity analysis”, I propose a novel

CNN-based approach to simultaneously attenuate free-surface multiples and remove ghost

reflections from seismic data. The proposed algorithm works on a trace-by-trace basis and

makes the algorithm applicable for surveys with sparse source and receiver distributions

(such as OBN data or time-lapse monitoring data). I analyze the sensitivity of the

CNN-based free-surface multiple attenuation and ghost removal by presenting different

numerical examples. The outcomes of this chapter have been submitted to Geophysical

Prospecting :
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• Kiraz, M. S. R., J. Sheiman, and R. Snieder, 2023, Removing free-surface effects from

seismic data using convolutional neural networks – Part 1: Theory and sensitivity

analysis: Geophysical Prospecting (under review).

In Chapter 5, entitled “Removing free-surface effects from seismic data using

convolutional neural networks – Part 2: An application to the Mobil AVO Viking Graben

data set”, I illustrate the efficacy of the CNN-based free-surface multiple attenuation and

ghost removal presented in Chapter 4 on the Mobil AVO Viking Graben field data set

acquired in the North Sea. The outcomes of this chapter have been submitted for

publication in Geophysical Prospecting :

• Kiraz, M. S. R., J. Sheiman, and R. Snieder, 2023, Removing free-surface effects from

seismic data using convolutional neural networks – Part 2: An application to the

Mobil AVO Viking Graben data set: Geophysical Prospecting (under review).

In Chapter 6, entitled “Free-surface multiple attenuation and seismic deghosting for

blended data using convolutional neural networks”, I extend the CNN-based free-surface

multiple attenuation and ghost removal presented in Chapter 4 to the simultaneously

acquired seismic data (or blended data). I present synthetic examples and show that the

CNN-based algorithm removes free-surface effects for blended data. Additionally, I blend

the Mobil AVO Viking Graben data set and present a blended field data set example for

free-surface multiple attenuation and ghost removal. The outcomes of this chapter will be

submitted for publication in Geophysics :

• Kiraz, M. S. R., J. Sheiman, and R. Snieder, 2023, Free-surface multiple attenuation

and seismic deghosting for blended data using convolutional neural networks:

Geophysics (to be submitted).

I also propose a CNN-based algorithm for the Green’s function retrieval in 1-D. I

illustrate the efficacy of the CNN-based method on 1-D synthetic data set. This method
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shows that once the CNN is trained to retrieve the Green’s function for a certain virtual

source location, we do not need to solve the Marchenko equation for wavefield focusing.

The outcomes of this work were presented at the Second International Meeting for Applied

Geoscience & Energy:

• Kiraz, M. S. R. and R. Snieder, 2022, Marchenko focusing using convolutional neural

networks: Second International Meeting for Applied Geoscience & Energy,

SEG/AAPG, Expanded Abstracts, 1930-1934, doi: 10.1190/image2022-3738167.1.

In Chapter 7, I present the general conclusions and propose future recommendations on

various applications of the presented methods in this thesis.
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CHAPTER 2

FOCUSING WAVES IN AN UNKNOWN MEDIUM WITHOUT WAVEFIELD

DECOMPOSITION

A paper published1 in JASA Express Letters

Mert Sinan Recep Kiraz2,3,4, Roel Snieder3 & Kees Wapenaar5

The Gel’fand-Levitan equation, the Gopinath-Sondhi equation, and the Marchenko

equation are developed for one-dimensional inverse scattering problems. Recently, a version

of the Marchenko equation based on wavefield decomposition has been introduced for

focusing waves in multi-dimensions. However, wavefield decomposition is a limitation when

waves propagate horizontally at the focusing level. Here, the Marchenko equation for

focusing without wavefield decomposition is derived, and by iteratively solving the

Marchenko equation, the Green’s function for an arbitrary location in the medium is

retrieved from the scattered waves recorded on a closed receiver array and an estimate of

the direct-wave without wavefield decomposition.

2.1 Introduction

Inverse scattering (Chadan & Sabatier, 1989; Colton & Kress, 1998; Gladwell, 1993)

uses scattered waves to determine the scattering properties of a medium. Burridge (1980)

shows that the Gel’fand-Levitan equation and the Gopinath-Sondhi equation have the

same structure as the Marchenko equation, and shows that the Marchenko equation can be

used for medium reconstruction (Burridge, 1980; Newton, 1980a). The solution of the

1Reproduced from JASA Express Lett. 1, 055602 (2021); https://asa.scitation.org/doi/10.1121/10.0004962
with the permission of The Acoustical Society of America.

2Primary researcher and author.
3Author for correspondence. Direct correspondence to mertkiraz@gmail.com.
4Center for Wave Phenomena, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA.
5Department of Geoscience and Engineering, Delft University of Technology, P.O. Box 5048, Delft, GA 2600,
The Netherlands.
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one-dimensional (1-D) Marchenko equation is an exact integral equation to make the

connection between the scattered data and the scatterer potential. Rose (2001, 2002a)

defines focusing as finding an incident wave that becomes a delta function at a prescribed

focus location and time inside the medium. He shows that this incident wave follows from

the scattered data and uses the Marchenko equation for 1-D inverse scattering problems.

Broggini & Snieder (2012) utilize Rose’s approach and introduce a scheme in 1-D to

retrieve the Green’s function containing single-scattered and multiply-scattered waves of

the inhomogeneous medium. Wapenaar et al. (2012) show the virtual source creation in

two dimensions using the recorded data but the proposed method excludes horizontally

propagating energy at the virtual source level. Wapenaar et al. (2013, 2014) derive the

three-dimensional Marchenko equation for wavefield focusing and, therefore, for the

Green’s function retrieval; however, their solution requires up/down decomposition of the

wavefield, which also excludes horizontally propagating energy at the focusing level. This is

a limitation when the medium has steeply dipping structures because the horizontally

scattered waves and refracted waves cannot be fully represented with the up/down

decomposition. Recently, there have been several studies to address the limitation of the

Marchenko method due to the up/down separation of the Marchenko equation. Kiraz et al.

(2020) show wavefield focusing for an arbitrary point inside an unknown highly scattering

inhomogeneous medium using the data acquired on a closed boundary. Diekmann &

Vasconcelos (2021) and Wapenaar et al. (2021) present alternative approaches to Green’s

function retrieval without up/down decomposition each with their own pros and cons.

The Marchenko schemes proposed in 1-D provide an exact solution for focusing, and for

Green’s function retrieval in the medium. Green’s function retrieval is of importance for

imaging applications in many fields. The ability to focus waves opens up applications

ranging from scattering kidney stones to performing imaging, monitoring in seismology,

and non-destructive testing.
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In this paper, we propose a two-dimensional (2-D) Marchenko equation for focusing

waves in a highly scattering inhomogeneous medium. We show that by iteratively solving

the Marchenko equation, the Green’s function for an arbitrary point in a strongly

scattering inhomogeneous medium can be retrieved without wavefield decomposition at the

focal point. As opposed to the current Marchenko algorithms that use single-sided

acquisition methods, we include waves propagating in all directions at the focal point using

the contributions from a closed array. Our scheme is an extension of the 1-D Marchenko

algorithms proposed by Newton (1980a), Rose (2001, 2002a), and Broggini & Snieder

(2012) into 2-D.

2.2 Theory

Consider the acoustic wave equation

ρ∇ ·
(

1

ρ
∇p
)

+
ω2

c2
p = f , (2.1)

where ρ is density, ω is the angular frequency, f is the source term, p is pressure, and c is

the velocity. We use the acoustic wave equation for a constant velocity and variable density

in the numerical examples in this paper.

We define the Green’s function, G(x,xs, t), as the solution to the wave equation LG=

δ(x− xs)δ(t), with the differential operator L = ρ∇ · (ρ−1∇)− c−2∂2/∂t2. Here, xs is the

source location and the Green’s function is the response to a source at xs recorded at the

receiver location x. We use the following convention for the Fourier transform:

f(t) = 1
2π

∫
F (ω)exp(−iωt)dω, where i is the imaginary unit. In the frequency domain

G(x,xs, ω) satisfies LG = δ(x−xs), with the differential operator L = ρ∇ · (ρ−1∇) +ω2/c2.
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(a)

(b)

Figure 2.1 (a) Snapshot at t = 0 of the time-derivative of the time-reversed modeled
direct-wave injection. (b) Snapshot at t = 0 of the time-derivative of the time-reversed
retrieved homogeneous Green’s function injection obtained from our iterative Marchenko
algorithm. The red asterisk denotes the focal point xs and the blue line represents the
transducer locations.

We describe an iterative solution to focus a wavefield in the medium to a pre-defined

location at t = 0 when injected into the medium. Our solution requires the direct-wave
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information modeled in the homogeneous medium (when ρ and c are constant) for a source

at the focusing point xs. This is the known Green’s function G0(x,xs, t) in a homogeneous

medium. Sending this direct-wave back into the inhomogeneous medium from a circular

receiver array with the radius R in a time-reversed order creates a focus at the focal point

at t = 0; however, in addition to the focal spot, other waves are present around the

focusing point, and Figure 2.1(a) shows the snapshot at t = 0 of the time-reversed

direct-wave injection into the heterogeneous medium shown in Figure 2.2 (about which the

details will be provided in the following section). This shows that emitting the

time-reversed direct-wave into an inhomogeneous medium does not restrict the focused

field to the focusing point, and our goal is to remove the waves at other locations than the

focusing point in Figure 2.1(a). Figure 2.1(b) shows the snapshot at t = 0 of the wavefield

injection obtained by the iterative algorithm we propose. As shown in Figure 2.1(b), our

algorithm creates a wavefield that focuses to the pre-defined focal point, which acts as a

virtual source, and suppresses other waves at t = 0. We obtain our focusing wavefield by

only using the direct-wave information modeled in the homogeneous medium (when ρ and

c are constant) and the recorded scattering response. Unlike the conventional Marchenko

methods, our method does not require the decomposition of the Marchenko equation to

achieve focusing. In the following section, we discuss the iterative Marchenko equation we

propose for wavefield focusing and show how to obtain better focuses in the medium than

one can achieve with the direct waves only.

2.2.1 Iterative Scheme and The Marchenko Equation

We define the ingoing wavefield, U in(n̂′, t), and outgoing wavefield, U out(n̂, t), where n̂′

and n̂ denote the locations on the circle with radius R; they are related via the scattering

response A(n̂, n̂′, t) of the inhomogeneous medium. Following Rose (2001), Rose (2002a),

Broggini & Snieder (2012), Wapenaar et al. (2013), and Wapenaar et al. (2014), we design

a wavefield that becomes a delta function at the focus location with an iterative scheme
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that relates the ingoing wave U in
k to the outgoing wave U out

k at iteration k as

U out
k (n̂, t) =

∮ ∫
A(n̂, n̂′, t− τ)U in

k (n̂′, τ)dτdn′ . (2.2)

The ingoing and outgoing waves and the scattering operator are defined on a circle with

radius R, but for brevity, we omit the parameter dependence on R in equation (2.2).

The iterative scheme starts with injecting a delta function into the medium and the

ingoing wavefield for the first iteration gives

U in
0 (n̂′, τ) = δ(τ + td(n̂

′)) , (2.3)

where td(n̂
′) is the arrival time of the direct waves that propagates from the focusing point

to the point n̂′ on the circle.

Following Broggini & Snieder (2012), the purpose of the iterative scheme is to

reconstruct a wavefield that after interacting with the heterogeneities in the medium

collapses onto a delta function at the focusing point at t = 0. We create a symmetric field

in time for −td(n̂′) < t < td(n̂
′). We later show that the symmetry in time leads to focusing.

To achieve the symmetry for the iterative scheme, we define the ingoing wavefield as

U in
k (n̂′, τ) = U in

0 (n̂′, τ)−Θ(n̂′, τ)U out
k−1(n̂,−τ) , (2.4)

where Θ(n̂′, τ) is a window function and defined as Θ(n̂′, τ) = 1 when −td(n̂′) < τ < td(n̂
′),

and otherwise Θ(n̂′, τ) = 0.

When the iterative scheme converges (hence when U out
k = U out

k−1), the iteration number

can be dropped. Inserting equation (2.4) into equation (2.2) then gives

U out(n̂, t) =

∮ ∫
A(n̂, n̂′, t− τ)U in

0 (n̂′, τ)dτdn′

−
∮ ∫ tεd

−tεd

A(n̂, n̂′, t− τ)U out(n̂′,−τ) dτdn′ , (2.5)

with tεd = td − ε where we introduce ε as a small positive constant to exclude the

direct-wave at td. If we define K = −U out, and substitute this into equation (2.5) using

equation (2.3), we obtain
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K(n̂, t) +

∮
A(n̂, n̂′, t+ td(n̂

′))dn′

+

∮ ∫ tεd

−tεd

A(n̂, n̂′, t− τ)K(n̂′,−τ) dτdn′ = 0 . (2.6)

Burridge (1980) shows that the 1-D Marchenko equation, Gel’fand-Levitan equation,

and the Gopinath-Sondhi equations of inverse scattering can be written in symbolic

notation as K +R+
∫
W
RK = 0 where

∫
W

shows the time interval, R is the recorded data,

and K is the function we solve for. Equation (2.6) has the same structure as the equations

derived by Burridge (1980) and, therefore, gives a 2-D Marchenko equation without using

up/down decomposition. Equation (2.6) also has a similar relation with the equations

derived by Newton (1980b, 1981, 1982) using the scattering data in multi-dimensional

media.

2.3 Numerical Example and Green’s Function Retrieval

We illustrate our method with a 2-D numerical example. Figure 2.2 shows the source

and receiver geometry of a 2-D acoustic medium. The red asterisk in Figure 2.2 denotes

the virtual source location and the blue line represents a circle on which 400 equidistant

sources and receivers are placed. The virtual source location, xs = (x, z), is at x = 4 cm

and z = 0.8 cm. The medium has a constant background velocity and density, c0 = 2 km/s

and ρ0 = 2 g/cm3, respectively. Figure 2.2 also shows four different elliptical-shaped

scatterers located in the medium with densities ρ1 = 4.5 g/cm3, ρ2 = 5 g/cm3, ρ3 = 7.5

g/cm3, ρ4 = 6 g/cm3, respectively. We use finite-difference modeling with absorbing

boundaries and the source wavelet is a Ricker wavelet (Ricker, 1953) with a central

frequency of 2 MHz. A challenge of the used geometry is that the focusing point is located

inside one of the scatterers, which has a reflection coefficient of about 40% at the

boundaries. As a result, the source generates strong reverberations within the scatterer.
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The ingoing wavefield in the finite-difference modeling can be implemented by either

changing the finite-difference stencil at the circular array, or by using the equivalent

sources f (in equation form) in the acoustic wave equation (2.1) to produce the desired

ingoing wavefield. We use the equivalent sources in the acoustic wave equation (2.1) for the

finite-difference implementation where the equivalent sources are given by the normal

derivative of the ingoing wavefield (see Appendix A). To solve the Marchenko equation

iteratively, we start with U in
0 (n̂′, t) = Ud(n̂

′,−t) where Ud is the time-reversed direct-wave

in the homogeneous background medium. We send the ingoing wave U in
0 from the receiver

array into the medium and use the outgoing wave recorded at the array in equation (2.4) to

determine the ingoing wave for the next iteration. We use seven iterations to get close to

convergence but more iterations might be needed for more complicated media where

velocity and density are varying.

We next inject the wavefield obtained by the iterative solution on the boundary.

Figure 2.3(a) shows the total wavefield, Utotal(n̂
′, t) = U in(n̂′, t) + U out(n̂′, t), recorded on

the boundary for the 7th iteration, which consists of the superposition of the ingoing and

outgoing wavefield. The wavefield in Figure 2.3(a) is symmetric in time for

−td(n̂′) < t < td(n̂
′) (approximately between -5 µs and 5 µs). If we take the difference

between the total wavefield in Figure 2.3(a) and its time-reversed version, i.e.,

Utotal(n̂
′, t)− Utotal(n̂′,−t), all events in the interval −td(n̂′) < t < td(n̂

′) vanish as shown in

Figure 2.3(b). A small amount of energy remains in Figure 2.3(b) for −td(n̂′) < t < td(n̂
′),

this is due to numerical inaccuracies in our solution of the Marchenko equation. Since

Utotal(n̂
′, t)− Utotal(n̂′,−t) is anti-symmetric in time, it vanishes for t = 0, also after

injecting it into the medium. Hence we diagnose the focusing by showing the time

derivative ∂
∂t

(Utotal(n̂
′, t)− Utotal(n̂′,−t)), injected into the medium.
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Figure 2.2 Geometry of the 2-D model. Sources and receivers (400 each) are located on the
blue circle, and the red asterisk shows the virtual source location xs. The elliptical
scatterers have contrasting densities which are given on the right hand side.

Figure 2.3(b) shows that for positive times, the wavefield Utotal(n̂
′, t)− Utotal(n̂′,−t)

vanishes at the receivers for t < td(n̂
′). If we consider this wavefield at t = 0, the direct

waves radiated at t = 0 from xs arrive at a receiver location R(n̂′) at td(n̂
′). Suppose that

waves would radiate at t = 0 from a point x 6= xs. For some receivers, those waves would

arrive at a time t < td(n̂
′); however, as shown in Figure 2.3(b), no waves arrive at time

t < td(n̂
′). This means that waves do not radiate from any point x 6= xs at t = 0.

Therefore, the time-derivative of the wavefield Utotal(n̂
′, t)− Utotal(n̂′,−t), injected into the

medium, is only non-zero at t = 0 at the point xs, and the wavefield focuses at t = 0 at the

virtual source location (see also, Appendix B).

We let p(x, t) denote the total wavefield in the interior that is associated with the

wavefield Utotal(n̂
′, t) on the boundary, and p(x,−t) denote the time-reversed version of this

wavefield. The homogeneous Green’s function (Gh(x,xs, t) = G(x,xs, t)−G(x,xs,−t))

(Oristaglio, 1989), for the virtual source location xs and the receiver location x is, up to a

multiplicative constant, obtained from (see also Appendix B)

Gh(x,xs, t) = p(x, t)− p(x,−t) . (2.7)

If we want to focus a wavefield at the virtual source location where there is no actual source

located, we must have a non-zero incident wavefield. The causal and acausal Green’s
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functions satisfy the inhomogeneous acoustic wave equation, but the homogeneous Green’s

function Gh satisfies the homogeneous wave equation (Oristaglio, 1989). Equation (2.7),

therefore, retrieves the Green’s function for t > 0 for the virtual source location xs. Unlike

other (interferometric) Green’s function retrieval methods (Campillo & Paul, 2003; Duroux

et al., 2010; Roux et al., 2004; Sabra et al., 2005; Schuster, 2009; Snieder & Larose, 2013;

Wapenaar et al., 2005; Weaver & Lobkis, 2001), no physical receiver is required at the

position of the virtual source; and unlike other Marchenko methods (Wapenaar et al., 2013,

2014), we do not rely on an up/down decomposition of the wavefield. When one applies the

Marchenko algorithm to two points in the interior, one obtains the Green’s function for

these two points recorded on the boundary. Using interferometric techniques, these Green’s

functions can be used to reconstruct the Green’s function for waves propagating between

two points in the interior (Brackenhoff et al., 2019; Singh & Snieder, 2017).

Figure 2.3(c) shows the Green’s function obtained from equation (2.7) with x taken at

the boundary (blue lines), superimposed on the directly-modeled Green’s function (red

lines). For clarity, the traces have been multiplied by exp(2t) to emphasize the scattered

waves. The latest arrival time for the single-scattered waves for our geometry is about

18 µs. All waves arriving after 18 µs therefore are multiply-scattered waves. For earlier

times, the Green’s function consists of a combination of single-scattered waves and

multiply-scattered waves. As a result of our iterative solution, we retrieve the direct-wave

and the scattered waves.

Figure 2.4 shows normalized vertical cross-sections of the wavefield at t = 0 taken from

Figure 2.1(a) and Figure 2.1(b) for x = 4 cm. The red trace denotes the cross-section of

Figure 2.1(a) and the blue trace denotes the cross-section of Figure 2.1(b). The snapshots

(see Figure 2.1) and the cross-sections (see Figure 2.4) show that the reconstructed Green’s

function creates a focus only around the focusing point and cancels other arrivals around

the focusing point to a large extent, whereas the results one can achieve with using only

direct waves contain other arrivals that distort the focusing.
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(a)

(b)

(c)

Figure 2.3 (a) Utotal(n̂
′, t) for the 7th iteration. (b) Utotal(n̂

′, t)− Utotal(n̂′,−t). (c)
Comparison of the calculated (red line) and the retrieved (blue line) Green’s functions.
The traces have been multiplied by exp(2t) to emphasize the scattered waves.
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Figure 2.4 A normalized vertical cross-section of the snapshot at x = 4 cm in Figure 2.1(a)
(red trace), and a normalized vertical cross-section of the snapshot at x = 4 cm in
Figure 2.1(b) (blue trace). The blue trace is more concentrated at the focusing point at
z = 0.8 cm than the red trace.

2.4 Conclusions

We derive the 2-D Marchenko equation for wavefield focusing and Green’s function

retrieval for an arbitrary point in an unknown highly scattering inhomogeneous medium

with a closed receiver array. We successfully retrieve the Green’s function for a pre-defined

location and the comparison to the directly-modeled Green’s function is found to be

excellent (see Figure 2.3(c)). The cross-sections in Figure 2.4 show that we can create

better focusing in the medium than one can achieve with the direct waves only. Our

retrieved Green’s function contains both the single- and multiply-scattered waves of the

heterogeneous medium model. Because we use a constant background velocity model, our

method requires the direct-wave information modeled only in the homogeneous medium

(when ρ is constant), and the recorded scattering response A(n̂, n̂′, t) to solve the

Marchenko equation iteratively like other multi-dimensional Marchenko methods proposed

earlier (Wapenaar et al., 2013, 2014); however, it does not require wavefield decomposition.

We show that after the convergence, we retrieve the Green’s function for any desired

location in the medium without relying on prior information about the scatterers in the

medium and wavefield decomposition to solve the Marchenko equation. The Marchenko

equation we propose forms the basis for imaging the interior of a medium inside a closed

array without up/down decomposition and makes the Marchenko methods more

appropriate for imaging steeply dipping structures.
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2.6 Appendix A: Source Selection In The Numerical Simulations

The main text of this paper shows that we use the ingoing wave at the boundary as

sources. However, to incorporate the ingoing wave in the finite difference simulation, we

use equivalent sources f for the source term in the acoustic wave equation (equation (2.1))

that produces the desired ingoing wave. In the numerical simulations, we radiate waves

from the boundary into the medium from sources f(x, ω), and the wavefield in the interior

in the frequency domain is given by

p(x, ω) =

∮
S
G(Rn̂,x, ω)f(x, ω)dS , (2.8)

where p(x, ω) denotes the wavefield in the interior, G denotes the Green’s function, R

denotes the radius of the boundary, n̂ denotes the location on the circle S, Rn̂ denotes the

location on the circle (see the main text), and ω denotes the angular frequency. To

determine the source f that corresponds to an ingoing wave pin, we use the representation

theorem (Snieder & van Wijk, 2015)

p(x, ω) =

∮
S

1

ρ

{
p(Rn̂, ω)

∂G(Rn̂,x, ω)

∂n
−G(Rn̂,x, ω)

∂p(Rn̂, ω)

∂n

}
dS , (2.9)

where p(Rn̂, ω) denotes the wavefield at the boundary. We decompose the wavefield at the

boundary into incoming and outgoing waves as p = pin + pout, and in the far field, the
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Green’s function G is outgoing, hence

∂G(Rn̂,x, ω)

∂n
= ikG(Rn̂,x, ω), and

∂p(Rn̂, ω)

∂n
= −ikpin(n̂, ω) + ikpout(n̂, ω) . (2.10)

By using the expressions in (2.10), we represent equation (2.9) as

p(x, ω) =
2

c
iω

∮
S

1

ρ

{
G(Rn̂,x, ω)pin(n̂, ω)

}
dS , (2.11)

where we used k = ω/c. If we substitute equation (2.11) into equation (2.8), we obtain in

the time domain

f(x, t) = − 2

ρc

∂pin(n̂, t)

∂t
, (2.12)

where, with the used Fourier convention, −iω corresponds in the time domain to

differentiation with respect to time.

Figure 2.5(a) shows the wavefield recorded at the boundary of the iteratively solved

Marchenko equation for the 7th iteration using the time-derivative in the source function.

This figure shows that the time-derivative in the source selection creates artifacts which

mainly reside in the time window −td(n̂) < t < td(n̂) (approximately between -5 µs and

5 µs). The artifacts are caused by waves that, in the iterative process, propagate along the

receiver array. Figure 2.5(c) - Figure 2.5(f) show the wavefield in the interior of the

iteratively solved Marchenko equation for the 7th iteration using the time-derivative in the

source selection. It is also shown in Figure 2.5(c) - Figure 2.5(f) that this choice for f leads

to numerical instabilities along the receiver array (the blue line in Figure 2.5).

To avoid this instability, we relate f to the normal derivative of the wavefield instead of

the time-derivative. With the far-field approximation used in the expressions in (2.10),

Green’s theorem in equation (2.9) can be written as

p(x, ω) = −2

ρ

∮
S

{
G(Rn̂,x, ω)

∂pin(n̂, ω)

∂n

}
dS , (2.13)
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which leads to the source function in the time domain

f(x, t) = −2

ρ

∂pin(n̂, t)

∂n
. (2.14)

Figure 2.5(b) shows the wavefield recorded at the boundary of the iteratively solved

Marchenko equation for the 7th iteration using the normal derivative in the source

function. This figure shows that the normal derivative removes the artifacts which are

mainly present in the time window −td(n̂) < t < td(n̂) (approximately between -5 µs and

5 µs) in Figure 2.5(a). Figure 2.5(g) - Figure 2.5(j) show the wavefield in the interior of the

iteratively solved Marchenko equation for the 7th iteration using the normal derivative in

the source selection. The artifacts which propagate along the receiver array in

Figure 2.5(c) - Figure 2.5(f) are eliminated by using the normal derivative. Because the

normal derivative removes the waves which propagate along the receiver array,

Figure 2.5(g) - Figure 2.5(j) show artifact-free snapshots along the receiver array (the blue

line in Figure 2.5).

Note that the normal derivative of the pressure field is equal to iωρvn, with vn the

component of the particle velocity normal to the surface, hence the source function is

proportional to the normal component of the acceleration.

2.7 Appendix B: The Homogeneous Green’s Function Reconstruction

We provide a reasoning for equation (2.7) in the main text that is based on kinematic

arguments, symmetry, and causality. In the following we assume that:

1. The wavefield satisfies the wave equation for the real system.

2. The reconstructed wavefield is source free.

3. The system is lossless and the wavefield is invariant for time-reversal.

4. The wavefield is anti-symmetric in time.
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5. For every point Rn̂ on the circle the wavefield vanishes for

−|Rn̂− xf |/c < t < |Rn̂− xf |/c.

In general, the wavefield from sources f(xs, τ) can be written as

ũ(x, t) =

∫∫
G(x,xs, t− τ)f(xs, τ)dτdVs , (2.15)

where ũ(x, t) denotes the wavefield in the interior, and G(x,xs, t) denotes the Green’s

function. Because the Green’s function satisfies the wave equation for the real system,

property 1 is satisfied for the wavefield in expression (2.15). This expression specifies the

wavefield in terms of the sources f(xs, τ). It is, however, known that the inverse source

problem is ill-posed (Bleistein & Cohen, 1977; Devaney & Sherman, 1982), hence for a given

value of the wavefield at the circle x = Rn̂, the source function f(xs, τ) is not unique. We

show, however, that properties 2-5 constrain this function up to a multiplicative constant.

Because of the property 4, the wavefield is anti-symmetric in time and using the

property 3, solutions are invariant for time-reversal, we can create an anti-symmetric

wavefield by taking the difference of ũ(x, t) and its time-reversed version ũ(x,−t) as

u(x, t) = ũ(x, t)− ũ(x,−t) =

∫∫
(G(x,xs, t− τ)f(xs, τ)−G(x,xs,−t− τ)f(xs, τ)) dτdVs .

(2.16)

By construction, this solution satisfies property 4.

The Green’s function satisfies

LG(x,xs, t) = δ(x− xs)δ(t) , (2.17)

where L denotes the differential operator for the acoustic wave equation. Applying the

operator L to the property (2.16) and carrying out the integrations over τ and xs gives

Lu(x, t) = f(x, t)− f(x,−t) . (2.18)

The right hand side of this expression gives the sources of the wavefield u(x, t). According

to property 2, the wavefield is source-free, therefore, the right hand side of expression
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(2.18) vanishes, so that

f(x, t) = f(x,−t) , (2.19)

showing that f(x, t) is symmetric in time.

By using expression (2.19), we can replace the last term f(xs, τ) in expression (2.16) by

f(xs,−τ). Replacing next the integration variable τ by −τ in the second term reduces

expression (2.16) to

u(x, t) =

∫∫
(G(x,xs, t− τ)−G(x,xs, τ − t)) f(xs, τ)dτdVs . (2.20)

This expression can be written as

u(x, t) =

∫∫
Gh(x,xs, t− τ)f(xs, τ)dτdVs , (2.21)

where Gh(x,xs, t) = G(x,xs, t)−G(x,xs,−t) is the homogeneous Green’s function defined

in equation (2.7). The homogeneous Green’s function is source-free (Oristaglio, 1989), so it

is natural that the homogeneous Green’s function arises from the requirement that the

wavefield is source-free.

We next apply the property 5 to further constrain f(xs, τ). For positive times, the

homogeneous Green’s function Gh(x,xs, t− τ) has a first arriving wave at location x that

is excited at xs and time τ at time

t = τ + |x− xs|/c . (2.22)

According to expression (2.19), the function f(xs, τ) is symmetric in time. This means that

for every time source at xs at time τ , there is an equal contribution from a source at xs at

time −τ , which generates a first arriving wave at

t = −τ + |x− xs|/c . (2.23)

The time τ can be either positive or negative. Hence the first arriving wave arrives at

t = min(τ,−τ) + |x− xs|/c. Since min(τ,−τ) = −|τ |, the first arrival excited by a source
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at xs at time ±τ arrives at the point x at time

t = −|τ |+ |x− xs|/c . (2.24)

For a point Rn̂ on the circle, the first arriving wave excited at a point xs at time ±τ

arrives at

t = −|τ |+ |Rn̂− xs|/c . (2.25)

Property 5 states that for positive time t and a point Rn̂ on the circle, the wavefield

vanishes when

t < |Rn̂− xf |/c , (2.26)

where xf is the focusing point. Since the wavefield vanishes for these times, the first

arriving waves that are excited at xs must have arrival times greater or equal to

|Rn̂− xf |/c. Using expression (2.25), this implies that

−|τ |+ |Rn̂− xs|/c ≥ |Rn̂− xf |/c , (2.27)

We can also write this inequality as

c|τ | ≤ |Rn̂− xs| − |Rn̂− xf | , (2.28)

Note that the focusing point xf is specified, while the point xs can be anywhere within the

circle of radius R.

Let us consider a point xs 6= xf , as shown in Figure 2.6. For the point P in that figure

|Rn̂− xs| < |Rn̂− xf |, the inequality (2.28) reduces to c|τ | ≤ |Rn̂− xs| − |Rn̂− xf | < 0, or

c|τ | < 0. This inequality cannot be satisfied for any value of τ , which means that a point

xs 6= xf cannot be a source of the wavefield.

Consider next the case xs = xf . In that case the inequality (2.28) reduces to c|τ | ≤ 0.

This inequality can only be satisfied for τ = 0. Together with the fact that f(xs, τ) is only

nonzero for xs = xf , this implies that the source-time function is local in space and time

f(xs, τ) = Sδ(xs − xf )δ(τ) , (2.29)
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where S is a multiplicative constant. Note that any even time derivative of δ(t) would also

give the required localization in time. Since in any physical experiment and computer

simulation the wavefield is convolved with a wavelet, we ignore this subtlety.

Inserting this source function into expression (2.21), and carrying out the integration

over xs and τ gives

u(x, t) = SGh(x,xf , t) . (2.30)

This implies that, up to a multiplicative constant S, the wavefield is given by the

homogeneous Green’s function with a source at the focusing point.
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 2.5 Boundary wavefield for the 7th iteration using (a) time-derivative in the source
selection and (b) normal derivative in the source selection. Note the cleaned artifacts for
the time interval −td(n̂) < t < td(n̂) (approximately between -5 µs and 5 µs) in (b). Also,
snapshots of the wavefield in the interior obtained by the iterative Marchenko algorithm for
the 7th iteration with the time-derivative in the source selection at (c) t = -5.1 µs, (d) t =
-4.2 µs, (e) t = -3 µs, and (f) t = 0 µs; with the normal derivative in the source selection at
(g) t = -5.1 µs, (h) t = -4.2 µs, (i) t = -3 µs, and (j) t = 0 µs. The blue line shows the
receiver locations. Note that the snapshots have different scaling than those shown in the
main text.
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Figure 2.6 Definition of the point P given locations xs and xf .
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CHAPTER 3

THE ROLE OF THE BACKGROUND VELOCITY MODEL FOR THE MARCHENKO

FOCUSING OF REFLECTED AND REFRACTED WAVES

A paper submitted to Geophysical Journal International

Mert Sinan Recep Kiraz 1,2,3, Roel Snieder3 & Kees Wapenaar4

Marchenko algorithms retrieve the wavefields excited by virtual sources in the

subsurface, these are the Green’s functions consisting of the primary and multiple reflected

waves. The requirements for these algorithms are the same as for conventional imaging

algorithms; they need an estimate of the velocity model and the recorded reflected waves.

We investigate the dependence of the retrieved Green’s functions using the Marchenko

equation on the background velocity model and address the question: “How well do we

need to know the velocity model for accurate Marchenko focusing?”. We present three

different background velocity models and compare the Green’s functions retrieved using

these models. We show that these retrieved Green’s functions using the Marchenko

equation give correlation coefficients with the exact Green’s function larger than 90% on

average except near the edges of the receiver aperture. We also examine the presence of

refracted waves in the retrieved Green’s function. We show with a numerical example that

the Marchenko focusing algorithm produces refracted waves only if the initial velocity

model used for the iterative scheme is sufficiently detailed to model the refracted waves.

3.1 Introduction

The inverse scattering community utilized the Marchenko equation to relate scattered

data to the scattering potential to determine the medium properties (Agranovich &

1Primary researcher and author.
2Author for correspondence. Direct correspondence to mertkiraz@gmail.com.
3Center for Wave Phenomena, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA.
4Department of Geoscience and Engineering, Delft University of Technology, P.O. Box 5048, Delft, GA 2600,
The Netherlands.

32



Marchenko, 1963; Burridge, 1980; Chadan & Sabatier, 1989; Colton & Kress, 1998;

Gel’fand & Levitan, 1955; Gladwell, 1993; Marchenko, 1955; Newton, 1980a). The

connection between wavefield focusing and the Marchenko equation was made by Rose

(2001, 2002b) so that the wavefield focusing at a location in an unknown medium can be

achieved once the Marchenko equation is solved. Broggini & Snieder (2012) connect the

Marchenko equation and seismic interferometry (Curtis et al., 2006; Derode et al., 2003;

Snieder & Larose, 2013; Wapenaar et al., 2005; Weaver & Lobkis, 2001) and show that one

can retrieve the Green’s function between any point in the subsurface and points on the

acquisition surface without a physical receiver at the virtual source location and with

one-sided illumination. Wapenaar et al. (2013) discuss the three-dimensional Green’s

function retrieval, and present an example of the two-dimensional Green’s function

retrieval.

A thorough description of the Marchenko redatuming and imaging method and its

numerical implementation is given by Wapenaar et al. (2014), van der Neut et al. (2015),

Thorbecke et al. (2017), and Lomas & Curtis (2019). Marchenko methods have been

widely used for various applications such as internal multiple elimination (Meles et al.,

2015, 2016; Thorbecke et al., 2021), elastic wave applications (da Costa Filho et al., 2014,

2015; Wapenaar, 2014), subsurface imaging and for comparisons with the conventional

imaging results (e.g., reverse time migration) (Behura et al., 2014; Jia et al., 2018; Ravasi

et al., 2016; Wapenaar et al., 2014). Additionally, various field data set applications of the

Marchenko method have been performed such as imaging of a North Sea field data set

(Ravasi et al., 2016), target-oriented subsalt imaging of the Gulf of Mexico data set (Jia

et al., 2018), time-lapse monitoring of the Frio carbon sequestration data set (Kiraz &

Nowack, 2018), multiple suppression on an Arabian Gulf field data set (Staring et al.,

2021), and an offshore Brazil data set for imaging a reservoir under basalt (Jia et al.,

2021). With growing interest in machine learning applications in seismology, a

convolutional neural network-based one-dimensional wavefield focusing is also proposed by
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Kiraz & Snieder (2022).

Recent studies have aimed to address the limitations of the up/down separation of the

Marchenko equation. Using the data collected on a closed received array, Kiraz et al.

(2020, 2021) retrieve the full-field (e.g., without component separation) Green’s function,

and show that the full-field Marchenko focusing provides better focusing results in the

subsurface than achievable using only the direct waves. Diekmann & Vasconcelos (2021)

and Wapenaar et al. (2021) show alternative methods where one can retrieve the Green’s

function using single-sided acquisition data without up/down decomposition.

In this paper, we use the one-sided Marchenko focusing to retrieve the Green’s function

at an arbitrary depth location using different subsurface models with variable velocity and

variable density profiles. In Section 3.2, we describe the Marchenko focusing algorithm and

show that it requires only two inputs; surface-recorded data and the initial estimate of the

velocity model, which are the same inputs as for conventional imaging algorithms. In

Section 3.3, we provide a visual tour to describe the iterative Marchenko focusing

algorithm. In Section 3.4, we investigate the background velocity model dependence of the

Marchenko method and show the accuracy of the retrieved Green’s function by presenting

Correlation Coefficients (CCs) between the retrieved and numerically modeled Green’s

functions. Lastly, in Section 3.4, we use the Marmousi model to investigate the presence of

the refracted waves in the Marchenko focusing, and show that the presence of the refracted

waves depends only on the initial estimate of the velocity model.

3.2 Methodology

We use the Marchenko algorithm proposed by Wapenaar et al. (2013) which builds on

the earlier work of Rose (2001), Rose (2002b), and Broggini & Snieder (2012). We denote

spatial coordinates as x = (x, z), and the receiver coordinates as xR = (xR, zR). The

receivers are located at the transparent acquisition surface at z = 0, and the multiples

caused by the free surface (e.g., air-water interface) are excluded.
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We relate the ingoing wave, U in
k , to the outgoing wave, U out

k , at iteration k as

U out
k (xR, t) =

∫
R(xR,x, t) ∗ U in

k (x, t)dx , (3.1)

where R corresponds to the reflection response of the medium and the asterisk denotes

temporal convolution. The iterative scheme starts with modeling the direct wave, and we

denote the arrival time of the direct wave from the virtual source location, xs, for which we

aim to retrieve the Green’s function, to the receivers at the surface as td. Following

Broggini & Snieder (2012), we design an iterative scheme so that at t = 0, the wavefield

becomes a delta function at the pre-defined focal (or virtual source) location. We start the

iterative algorithm by defining the ingoing wavefield at z = 0 for iteration k as

U in
k (x, t) = U in

0 (x, t)−Θ(x, t)U out
k−1(x,−t) , (3.2)

where Θ(x, t) defines a window function where Θ(x, t) = 1 when −tεd(x) < t < tεd(x) and

otherwise Θ(x, t) = 0 with tεd = td − ε where we introduce ε as a small positive constant to

exclude the direct wave at td. After the convergence is achieved (i.e., U out
k = U out

k−1) we can

drop the iteration number, and insert equation (3.2) into equation (3.1), and obtain

U out(xR, t) =

∫
R(xR,x, t) ∗ U in

0 (x, t) dx−
∫
R(xR,x, t) ∗Θ(x, t)U out(x,−t) dx . (3.3)

Once the convergence is achieved, we denote the recorded data at the receivers as

Utotal(x, t) = U in(x, t) + U out(x, t) which consists of the superposition of the ingoing and

outgoing wavefield. We then define p(x, t) as the total wavefield that is associated with

Utotal(x, t). We obtain the homogeneous Green’s function

(Gh(x,xs, t) = G(x,xs, t)−G(x,xs,−t)) (Oristaglio, 1989), for the virtual source location

xs and the receiver location x as

Gh(x,xs, t) = p(x, t)− p(x,−t) . (3.4)

Equation (3.4) satisfies the homogeneous wave equation, and, hence, retrieves the Green’s

function for times t > 0 for the virtual source location xs (Kiraz et al., 2021; Oristaglio,
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1989; Wapenaar et al., 2013). The iterative scheme we use follows the algorithm presented

by Wapenaar et al. (2013), and equations (3.1), (3.2), and (3.4) are given in Wapenaar

et al. (2013) in equations (13), (12), and (14), respectively.

(a)

(b)

Figure 3.1 (a) Velocity model and (b) density model of the synthetic example which are
extracted from the Sigsbee model. The black asterisk shows the virtual source location and
the white dots at the top indicate every 30th source/receiver location.

36



3.3 Visualizing The Iterative Scheme

In this section, we present a numerical example to aid the visual understanding of the

iterative scheme described in Section 3.2. Figure 3.1 shows the subsurface model and

source and receiver geometry of our first numerical experiment. Figure 3.1(a) and

Figure 3.1(b) show the variable velocity and density models used for the numerical

example, respectively, which are extracted from the Sigsbee model (Stoughton et al., 2001)

with 2.5 km horizontal and 1.2 km vertical extent. The virtual source location is at xs =

1.25 km and zs = 0.75 km in depth which is shown with the black asterisk in Figure 3.1.

The white dots located at the surface of the models in Figure 3.1 represent every 30th

receiver location. We use point impulsive sources and record pressure at the receivers, and

exclude the presence of the free surface. During the iterative Marchenko scheme, we use

the normal derivative of the pressure field to send the wavefield into the medium from the

receiver array (Kiraz et al., 2021).

Figure 3.2 Smoothed version of the velocity model used for the iterative algorithm. The
black asterisk shows the virtual source location and the white dots at the top indicate
every 30th source/receiver location.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3 (a) Modeled direct wave. (b) Time-reversed direct wave. (c) Recorded wavefield,
Utotal(x, t), for the first iteration after sending in the time-reversed direct wave. (d)
Wavefield after windowing applied. (e) Wavefield after multiplying with (-1). (f) Wavefield
after adding the modeled direct wave. This is also the input for the second iteration.
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(a)

(b)

(c)

Figure 3.4 (a) Utotal(x, t) for the fourth iteration. (b) Utotal(x,−t) for the fourth iteration.
(c) Gh(x,xs, t) = p(x, t)− p(x,−t) for the fourth iteration.
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Figure 3.2 shows the smoothed version of the velocity model which is obtained by

smoothing the slowness. This model is so strongly smoothed that it presents mostly

one-dimensional information about the velocity. As we follow the iterative scheme

described in Section 3.2, the first step is to model the direct wave using the smooth

background velocity model (shown in Figure 3.2). Figure 3.3(a) shows the modeled direct

wave. After modeling the direct wave, the next step is to time-reverse the direct wave

which is shown in Figure 3.3(b). We then inject the time-reversed direct wave on the

boundary (one can also convolve the time-reversed direct wave with the reflection

response). Figure 3.3(c) shows the total wavefield, Utotal(x, t). This is the recorded data at

the receiver array after sending in the time-reversed direct wave (Figure 3.3(b)) from the

receiver array located at the surface of the medium. We use Figure 3.3(a) and Figure 3.3(b)

to define the window function (Θ in equation (3.2)). After using this window function,

Figure 3.3(d) shows the muted data. Following the iterative algorithm, we next negate the

muted data and the resulting wavefield is shown in Figure 3.3(e). As the last step, we add

the direct wave (Figure 3.3(a)) to this wavefield (U in
0 in equation (3.2)) and Figure 3.3(f)

shows the combined wavefield (U in
k in equation (3.2)). The time-reverse version of the

wavefield shown in Figure 3.3(f) is, therefore, the input for the second iteration and is

ready to be sent back into the medium using the receiver array at the surface.

Figure 3.4(a) shows Utotal(x, t) for the fourth iteration of the iterative scheme. Note

that Figure 3.4(a) is nearly symmetric in time for the times −td < t < td, defined using the

arrival time of the direct wave (approximately between -1s and 1s). Figure 3.4(b) shows

Utotal(x,−t) for the fourth iteration which is the time-reversed recorded data at the

receivers after the fourth iteration. Figure 3.4(c) shows the homogeneous Green’s function,

Gh(x,xs, t) (see equation (3.4)), for the fourth iteration after muting the waves between

the direct arrivals.
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(a)

(b)

(c)

Figure 3.5 (a) Retrieved Green’s function using the Marchenko focusing (times when t > 0
of Gh in Figure 3.4(c)). (b) Numerically modeled Green’s function. (c) Difference between
the numerically modeled Green’s function in (a) and the retrieved Green’s function in (b).
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Figure 3.6 Trace-by-trace calculated correlation coefficient between the retrieved Green’s
function (Figure 3.5(a)) and the numerically modeled Green’s function (Figure 3.5(b)).

Figure 3.5(a) shows Gh(x,xs, t) for the fourth iteration for positive times only which is

the retrieved Green’s function and Figure 3.5(b) shows the numerically modeled Green’s

function for the virtual source location. The difference between the numerically modeled

and the retrieved Green’s functions is shown in Figure 3.5(c). Figure 3.5 shows that the

numerically modeled Green’s function closely matches the retrieved Green’s function for

t ≥ td. However, we also see in Figure 3.5(c) that there are overall mismatches in

amplitudes and right and left edges of the wavefield that are due to the limited aperture

used during the injection of the wavefield back into the medium from the receiver array.

We measure the accuracy of the Green’s function retrieval using the Marchenko

equation results by calculating trace-by-trace CCs between the retrieved Green’s function

and the numerically modeled Green’s function. The CCs between the retrieved Green’s

function (Figure 3.5(a)) using the smoothed version of the velocity model and the

numerically modeled Green’s function (Figure 3.5(b)) are shown in Figure 3.6. The average

CC in Figure 3.6 is 0.76. The low CCs around the right and left edges of the CC plot in

Figure 3.6 are due to the limited aperture used during the injection of the wavefield. For

the receivers where the limited aperture effects are not evident (receivers from 100 to 500),

the average CC is 0.91. This shows a high accuracy Green’s function retrieval by the

Marchenko focusing algorithm using the smoothed version of the velocity model
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(Figure 3.2).

Figure 3.7 Less smoothed version of the velocity model used for the iterative algorithm.
The black asterisk shows the virtual source location and the white dots at the top indicate
every 30th source/receiver location.

3.4 Importance Of The Initial Background Velocity Model

In this section, we investigate the effect of the smoothness of the background velocity

model on the retrieved Green’s function. The second numerical example consists of the

same velocity and density models as with the first example (see Figure 3.1(a) and

Figure 3.1(b)); however, this time we use a less smoothed version of the background

velocity model than the one presented in Figure 3.2 to retrieve the Green’s function using

the Marchenko focusing. Figure 3.7 shows a less smoothed velocity model which has more

detailed information about the subsurface structures than the one shown in Figure 3.2. As

with the iterative algorithm, we use the less smoothed velocity model to produce the direct

wave and initiate the iterative scheme. By following the steps presented in Figure 3.3, we

retrieve the Green’s function. Figure 3.8(a) shows Gh for the fourth iteration for positive

times only (being the retrieved Green’s function) and Figure 3.8(b) shows the numerically

modeled Green’s function for the virtual source location. The difference between the

numerically modeled Green’s function (Figure 3.8(b)) and the retrieved Green’s function

Figure 3.8(a) is shown in Figure 3.8(c). Similar to Figure 3.5(c), Figure 3.8(c) shows that
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the retrieved and modeled Green’s functions have mismatches in overall amplitude, and the

right and left wavefield edges.

(a)

(b)

(c)

Figure 3.8 (a) Retrieved Green’s function using the Marchenko focusing using the less
smooth velocity model. (b) Numerically modeled Green’s function (which is the same
wavefield as Figure 3.5(b)). (c) Difference between the numerically modeled Green’s
function in (a) and the retrieved Green’s function in (b).
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Figure 3.9 Trace-by-trace calculated correlation coefficient between the retrieved Green’s
function (Figure 3.8(a)) and the numerically modeled Green’s function (Figure 3.5(b) and
Figure 3.8(b)).

To quantify the quality of the retrieved Green’s function using the less smoothed

velocity model (Figure 3.7), we calculate the CCs between the retrieved Green’s function

(Figure 3.8(a)) and the numerically modeled Green’s function (Figure 3.8(b)), which are

shown in Figure 3.9. The average CC in Figure 3.9 is 0.83, and the average CC for

receivers from 100 to 500 is 0.98. Therefore, by using a less smoothed version of the

velocity model (Figure 3.7) for the iterative scheme, we retrieve a more accurate Green’s

function by the Marchenko focusing algorithm than the one presented in Figure 3.6.

Figure 3.10 Constant velocity model used for the iterative algorithm. The black asterisk
shows the virtual source location and the white dots at the top indicate every 30th
source/receiver location.
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(a)

(b)

(c)

Figure 3.11 (a) Retrieved Green’s function using the Marchenko focusing using the
constant velocity model. (b) Numerically modeled Green’s function (which is the same
wavefield as Figure 3.5(b) and Figure 3.8(b)). (c) Difference between the numerically
modeled Green’s function in (a) and the retrieved Green’s function in (b).
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Figure 3.12 Trace-by-trace calculated correlation coefficient between the retrieved Green’s
function (Figure 3.11(a)) and the numerically modeled Green’s function (Figure 3.5(b),
Figure 3.8(b), and Figure 3.11(b)).

As the last step of the velocity model sensitivity analysis, we use a constant velocity

model. As opposed to the first two velocity models used (see Figure 3.2 and Figure 3.7),

the constant velocity model does not include any geological or geophysical information,

including information about the possible dipping layers and the velocity variations. The

constant value of the velocity is calculated using the average slowness between the surface

and the depth of the focal point and is shown in Figure 3.10, which is used to model the

direct wave for the iterative algorithm. After following the iterative scheme, Figure 3.11(a)

shows Gh for the fourth iteration for positive times only (the retrieved Green’s function),

and Figure 3.11(b) shows the numerically modeled Green’s function for the virtual source

location. Figure 3.11(c) shows the difference between the numerically modeled

(Figure 3.11(b)) and the retrieved (Figure 3.11(a)) Green’s functions. The difference in

Figure 3.11(c) using the constant velocity model (Figure 3.10) is similar to the ones

presented in Figure 3.5(c) and Figure 3.8(c). There are also mismatches in overall

amplitudes, and the right and left wavefield edges.

Similar to the previous examples, we show the accuracy of the retrieved Green’s

function using the constant velocity model (Figure 3.10) by calculating the CCs between

the retrieved (Figure 3.11(a)) and the numerically modeled (Figure 3.11(b)) Green’s
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functions, which are shown in Figure 3.12. The average CC in Figure 3.9 is 0.73; however,

the average CC for receivers from 100 to 500 is 0.93. The CC for receivers from 100 to 500

in Figure 3.12 is higher than the one presented in Figure 3.6 for receivers from 100 to 500;

however, the CC for receivers from 0 to 600 in Figure 3.12 is lower than the CC presented

in Figure 3.6. Using a constant velocity model for the iterative scheme, we retrieve just as

accurate Green’s function as with using the smoothed velocity model for the Marchenko

focusing algorithm for receivers close to the virtual source location, however, as the offset

(or the horizontal extent of the model) increases, the accuracy of the retrieved Green’s

function decreases for the constant velocity model.

Figure 3.13 Comparison of the modeled direct waves using the velocity models shown in
Figure 3.7 (thin blue lines) and Figure 3.10 (thick red lines), overlain with the direct wave
modeled using the true velocity model in Figure 3.1(a) (dashed green lines). The traces
have been multiplied by exp(2t).

As described and shown in Sections 2 and 3, we model the direct wave using the

background velocity model and start the iterative scheme. To evaluate the differences only

in the modeled direct waves using different velocity models (Figure 3.7 and Figure 3.10), we

show in Figure 3.13 the comparison of the modeled direct waves using the velocity models

shown in Figure 3.7 (thin blue lines) and Figure 3.10 (thick red lines), overlain with the
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direct wave modeled using the true velocity model in Figure 3.1(a) (dashed green lines).

For the receivers between 100 and 500 in Figure 3.13, the modeled direct waves are almost

identical for the less smoothed velocity model (thin blue lines) and constant velocity model

(thick red line) with the true velocity model (dashed green line). This high similarity in the

modeled direct waves also produces high-accuracy CCs (Figure 3.9 and Figure 3.12).

Figure 3.14 The retrieved Green’s function using the constant background velocity model
with 10% error (blue lines) and the modeled Green’s function (red lines). The traces have
been multiplied by exp(2t) to emphasize the match for the later times.

We further test the sensitivity of the Marchenko method to the velocity model by using

a 10% slower velocity model than the one shown in Figure 3.10 and assume the constant

velocity as 1.5 km/s. We show the retrieved Green’s function using the constant

background velocity model with 10% error (thin blue lines) and the modeled Green’s

function (thick red lines) superimposed in Figure 3.14 after multiplying traces by exp(2t).

The mismatch in time, amplitudes, and phase in Figure 3.14 indicate that the constant

value of the velocity should be calculated using the average slowness between the surface
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and the depth of the focal point, and erroneous constant velocity models will not retrieve

the accurate Green’s function.

Figure 3.15 Trace-by-trace calculated between the numerically modeled Green’s function
(Figure 3.5(b), Figure 3.8(b), and Figure 3.11(b)) and the retrieved Green’s functions using
the velocity models from Figure 3.2, Figure 3.7, Figure 3.10, and the velocity model in
Figure 3.10 with 10% error.

Lastly, we present the CCs in Figure 3.15 between the numerically modeled Green’s

function and the retrieved Green’s functions using the velocity models from Figure 3.2,

Figure 3.7, Figure 3.10, and the velocity model in Figure 3.10 with 10% slower velocity

model using the blue star markers, the grey cross markers, the red triangle markers, and

the green plus markers, respectively. We see in Figure 3.15 that the similarity in the

modeled direct wave for the Marchenko focusing creates a high accuracy in the retrieved

Green’s functions. The star, the cross, and the triangle markers show CCs around 0.9;

however, the plus marker shows a CC around 0. Therefore, we conclude that the Green’s

function retrieval using the Marchenko equation successfully retrieves the Green’s functions

as long as the correct average slowness between the surface and the depth of the focal point

is known.

3.5 Refracted Waves

In this section, we investigate the refracted wave presence in the retrieved Green’s

function using the Marchenko focusing. To model refracted waves in the Green’s functions,
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we use the Marmousi velocity model (Versteeg, 1994) for the numerical experiments in this

section. Figure 3.16(a) shows the Marmousi velocity model and Figure 3.16(b) shows the

density model of our experiment. The white dots in Figure 3.16 represent every 30th

receiver location at the surface and the black asterisk denotes the virtual source location

for which the Green’s function will be retrieved.

(a)

(b)

Figure 3.16 (a) Marmousi velocity model and (b) density model of the synthetic example.
The black asterisk shows the virtual source location and the white dots at the top indicate
every 30th source/receiver location.
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Figure 3.17 Smoothed version of the Marmousi velocity model used for the iterative
algorithm. The black asterisk shows the virtual source location and the white dots at the
top indicate every 30th source/receiver location.

In order to start the iterative algorithm, we model the direct wave using the smoothed

background velocity model shown in Figure 3.17, and the modeled direct wave is shown in

Figure 3.18(a). The red arrows in Figure 3.18(a) point to some of the triplicated arrivals

and the blue arrow points out the refracted wave. After following the iterative scheme, we

show the retrieved Green’s function after four iterations in Figure 3.18(b), and the

numerically modeled Green’s function for the virtual source location in Figure 3.18(c). The

red dashed curve in Figure 3.18(b) indicates the arrival of the direct wave (including some

triplicated waves), and the waves before the red dashed curve in Figure 3.18(b) can be

removed by applying a muting function. The main difference in Figure 3.18 between the

retrieved and the modeled Green’s functions (Figure 3.18(b) and Figure 3.18(c),

respectively) occurs between the receivers 800 and 1320 around the arrival time of the

direct wave (around the red dashed curve in Figure 3.18(b)). The numerically modeled

Green’s function (Figure 3.18(c)) contains refracted and horizontally propagating events

recorded between the receivers 800 and 1320 before the arrival time of the direct wave (also

indicated with the red dashed curve in Figure 3.18(b)); however, the refracted and

horizontally propagating events are not present before the arrival time of the direct wave in
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the retrieved Green’s function (Figure 3.18(b)).

(a)

 

(b)

(c)

Figure 3.18 (a) Modeled direct wave using the smoothed version of the Marmousi velocity
model given in Figure 3.17. The red arrows show some of the triplicated arrivals and the
blue arrow shows the refracted wave. (b) Retrieved Green’s function using the Marchenko
focusing using the smoothed version of the Marmousi velocity model. The red dashed
curve shows the arrival of the direct wave (including some triplicated waves),
approximately. (c) Numerically modeled Green’s function.
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To further investigate the presence of the refracted wave in the Marchenko focusing, we

use a less smoothed version of the Marmousi velocity model than the one shown in

Figure 3.17 which presents more detailed subsurface information. Figure 3.19 shows the

less smoothed Marmousi model and the white dots show every 30th receiver location and

the black asterisk denotes the virtual source location. The modeled direct wave using the

less smoothed Marmousi model is shown in Figure 3.20(a), and the red arrows indicate

some of the triplicated arrivals, and the blue arrows indicate the refracted wave.

Figure 3.20(b) shows the retrieved Green’s function by using the direct wave in

Figure 3.20(a), and Figure 3.20(c) shows the numerically modeled Green’s function. This

time, between the receivers 800 and 1320 and around the direct arrival times, the retrieved

Green’s function and the numerically modeled Green’s function match very well. The

refracted wave information in the modeled Green’s function is also present in the retrieved

Green’s function. The less smoothed version of the background velocity model used for the

iterative algorithm enables the refracted waves to appear in the retrieved Green’s function.

Figure 3.19 Less smoothed version of the Marmousi velocity model used for the iterative
algorithm. The black asterisk shows the virtual source location and the white dots at the
top indicate every 30th source/receiver location.
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(a)

(b)

(c)

Figure 3.20 (a) Modeled direct wave using the less smoothed version of the Marmousi
velocity model given in Figure 3.19. The red arrows show some of the triplicated arrivals
and the blue arrows show the refracted wave. (b) Retrieved Green’s function using the
Marchenko focusing using the less smoothed version of the Marmousi velocity model. (c)
Numerically modeled Green’s function (which is the same wavefield as Figure 3.18(c)).
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If we compare the modeled direct waves in Figure 3.18(a) and Figure 3.20(a), the

modeled direct wave in Figure 3.18(a) does not include most of the refracted waves (events

shown with blue arrows in Figure 3.20(a)). However, the modeled direct wave in

Figure 3.20(a) includes the refracted waves shown with the blue arrows. Figure 3.18(b) and

Figure 3.20(b) show that the refracted waves modeled using the smooth velocity model are

mapped directly in the retrieved Green’s functions. In other words, if the refracted waves

are modeled using the background velocity model, those events are also present in the

retrieved Green’s function. But, if the refracted waves are not present in the modeled direct

wave, they are not present in the retrieved Green’s function. We conclude that the presence

of refracted waves only depends on the background velocity model in the Marchenko

focusing and it is not a result of the iterations of the Marchenko focusing algorithm.

3.6 Conclusions

We present the Green’s function retrieval using Marchenko focusing and investigate the

background velocity model dependence of the Marchenko focusing. We compare the

retrieved Green’s functions for three different background velocity models used for

modeling the direct wave. We show that the Marchenko focusing algorithm can retrieve the

Green’s function with high accuracy. We also investigate the presence of the refracted

waves in the retrieved Green’s function using the Marmousi velocity model. We show that

the refracted waves are incorporated in the retrieved Green’s function by the background

velocity model used to model the direct wave for the iterative algorithm, and the

Marchenko algorithm does not produce the refracted waves.
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CHAPTER 4

REMOVING FREE-SURFACE EFFECTS FROM SEISMIC DATA USING

CONVOLUTIONAL NEURAL NETWORKS – PART 1:

THEORY AND SENSITIVITY ANALYSIS

A paper submitted to Geophysical Prospecting

Mert Sinan Recep Kiraz 1,2,3, Roel Snieder3 & Jon Sheiman

Multiple events reflect more than once in the subsurface, and they are considered as

noise since they shadow the useful information about the subsurface. In marine seismic

data, the strongest multiples are those which reflect at least once from the free surface (or

the air-water interface). The elimination of this type of multiple has been extensively

studied and numerous approaches have been used to suppress free-surface multiples.

However, free-surface multiple elimination is an expensive seismic data processing step that

often results in removing primary events from the seismic data along with the free-surface

multiples when primary and multiple events overlap. We present an algorithm to attenuate

free-surface multiples using Convolutional Neural Networks (CNNs) and show that data

from the CNN-based free-surface multiple elimination results give a correlation coefficient

of 0.97 on average with the numerically modeled data without free-surface multiples. We

train a network using subsets of the Marmousi and Pluto velocity models, and make

predictions using subsets of the Sigsbee velocity model. We demonstrate the robustness of

CNNs for free-surface multiple elimination using three numerical examples and show that

CNNs are able to attenuate surface-related multiples even in the presence of overlapping

primary and multiple events without removing the primary reflections. The network

1Primary researcher and author.
2Author for correspondence. Direct correspondence to mertkiraz@gmail.com.
3Center for Wave Phenomena, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA.
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processes a single trace at a time, and therefore is not sensitive to missing traces or to

sparse data acquisition, as is the case for ocean-bottom nodes.

4.1 Introduction

Although the presence of multiples in seismic data once was a doubtful question and

was not considered as a serious limitation (Dix, 1948; Ellsworth, 1948), there is no doubt

now that the removal of multiples from seismic data is one of the most challenging

problems in seismic data processing. In general, there are three main categories on which

the multiple elimination algorithms rely: (1) Periodicity - so that the multiples can be

attenuated if they have a periodic behavior. To address this type of periodic multiple, one

can use deconvolution, τ -p deconvolution, deconvolution after stack (Backus, 1959; Diebold

& Stoffa, 1981; Yilmaz, 2001). (2) Moveout - so that the multiples can be attenuated if

they have a moveout that is sufficiently different than that of the primaries. To address

this type of multiple, one can use stacking, f -k filtering (Mayne, 1962; Yilmaz, 2001). (3)

Data-driven techniques - so that the multiples can be attenuated based on the information

recorded in seismic data. Although there are several ways to address this type of multiple

(e.g., Inverse Scattering Multiple Attenuation (ISMA), Interbed Multiple Prediction

(IMP)) (Araújo et al., 1994; Weglein et al., 1997), they are out of the scope of this paper,

and in this category, we only focus on Surface-Related Multiple Elimination (SRME)

method (Verschuur et al., 1992).

Multiple reflections are one of the most challenging problems in recorded marine seismic

data since they contaminate the primary reflections. The multiples directly related to the

free surface (or the sea surface) have at least one downward reflection at the free surface

and are the most significant multiples to address. SRME (Verschuur et al., 1992) is a

data-driven technique, and it predicts multiples by exploiting the physical relationship

between multiple reflections and their sub-events. The arrival time of a particular surface

multiple can be predicted by convolving the traces that contain the multiples’ sub-events.

SRME has been widely used to predict and iteratively subtract the multiples from the
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seismic data, and it is one of the most effective tools in seismic processing. However, it is

computationally demanding and it does not always guarantee perfect solutions. For

instance, during the subtraction step, one can remove the primary reflections from the

seismic data in addition to the unwanted multiple reflections because of the overlapping

primary and multiple events. Additionally, a profound limitation of SRME is that it

requires a dense source and receiver distribution which makes it computationally

demanding and which makes missing data gaps a complication that must be dealt with.

Although two-dimensional (2-D) versions of SRME can be computationally efficient, they

fall short in the presence of complex subsurface requiring three-dimensional (3-D) spatial

distribution of source and receiver distribution (Dragoset et al., 2010) (e.g., when multiples

with strong cross-line ray path components present in the data). This condition becomes

even more difficult to fulfill in 3-D surveys.

There have been several attempts to address free-surface multiple elimination. Riley &

Claerbout (1976) present free-surface multiple elimination theory applied to

one-dimensional (1-D) data, and they also present an algorithm for surface-generated

diffracted multiple elimination. Verschuur et al. (1992) show that free-surface multiples can

be eliminated by predicting the multiples and subtracting them from the seismic data.

Jakubowicz (1998) shows that interbed multiples can be removed using a technique that is

an extension of SRME. There have been field data applications of SRME (Dragoset &

MacKay, 1993; Dragoset & Jeričević, 1998; Kelamis & Verschuur, 2000; Verschuur et al.,

1995).

SRME removes the events that reflect at least once from the free surface (or the

air-water interface). To predict the surface-related multiples only, the measured field data

are usually used and no information about the subsurface is needed. However, SRME

makes great requirements about the data acquisition. For a successful implementation of

SRME, some of the requirements are; a dense distribution of the source and receiver

wavefields, known source wavelet, interpolation/extrapolation of the data, and available
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near-offset data. Conventionally, an SRME processing flow follows; (1) Data

pre-processing, (2) Prediction of the surface-related multiples, (3) Matching filtering (or

estimation of wavelet), (4) Adaptive subtraction.

We present and discuss a CNN-based approach to attenuate free-surface multiples. We

train a network using 2-D subsets of Marmousi velocity model (Versteeg, 1994), and Pluto

velocity model (Stoughton et al., 2001), and make predictions using three subsets of

Sigsbee velocity model (Paffenholz et al., 2002) with salt bodies in the subsurface. As the

training input data, we use 2-D data modeled with free-surface multiples using the

finite-difference forward modeling, and also use 2-D data modeled without free-surface

multiples using the finite-difference forward modeling as the training output data.

Although we use 2-D subsets of the velocity models for the training, we use 1-D

convolutional filters to find the optimal weights for the network that relate the input and

output datasets. After training the network using the input and output data, we make

predictions using three new datasets which were not involved in the training process. We

show that CNNs are able to make predictions that give a Correlation Coefficient (CC) of

0.97 on average between the numerically modeled results and the CNN predictions, and

when the free-surface multiples overlap with the primary events, the CNN-based solution is

able to remove the unwanted free-surface multiple reflections effectively (e.g., CC of 0.95)

from the seismic data while preserving the primary reflections.

4.2 CNN Architecture and Training

Machine Learning (ML) is a subset of artificial intelligence and it uses mathematical and

statistical methods to let machines and computers improve specified tasks with experience.

Deep Learning (DL) is a subset of ML and it is inspired by the structure of our brains and

the interconnections between its neurons. DL uses multiple layers of computational units

and every layer learns its own representation of the input data (Ekman, 2021).
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Figure 4.1 A sketch of a simple one-hidden-layer neural network with an input layer,
hidden layer, and an output layer. For illustration purposes, the input layer, hidden layer,
and the output layer have three neurons.

Figure 4.1 shows a simple one-hidden-layer (and in total three-layer) neural network

where the input layer, hidden layer, and the output layer have three neurons to illustrate

the propagation of a neuron in the input layer through the network. In Figure 4.1, the

black arrows indicate that the three neurons in the input layer are connected to the first

neuron in the hidden layer. As the number of hidden layers increases, the network extracts

more complex information, and the networks with many hidden layers are called “deep

neural networks”.

We obtain the output value of a neuron shown in Figure 4.1 by

akj = σ
( N∑
i=1

(a
(k−1)
i wkij) + bkj

)
, (4.1)

where N denotes the number of neurons in the previous layer, akj denotes the value a to be

calculated of the jth neuron in the kth layer, a
(k−1)
i denotes the value a of the ith neuron in

the (k − 1)th layer, wkij denotes the weight w of the ith neuron which is connected to the

jth neuron in the kth layer, bkj denotes the bias b of the jth neuron in the kth layer, and σ

denotes the activation function. Training is a process in ML such that we adjust the
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weights, w, and biases, b, by an iterative data-fitting process. During the start of the

training process, a set of initial adjustable random weights and biases are assigned. As the

training progresses, the weights and biases are updated. The activation function introduces

the non-linearity in machine learning algorithms. If there is no non-linearity between

layers, using several linear transformations of stack of layers, we only get linear

transformations and are not able to solve complex problems (Ekman, 2021; Géron, 2019).

Figure 4.2 A sketch of a fully connected neural network with an input layer, hidden layer,
and an output layer. The input layer, hidden layer and the output layer have three neurons.

When each neuron of a layer is connected to every neuron in the other layer, the

network is called a fully connected network. Figure 4.2 shows an example of a fully

connected network with an input layer, hidden layer, and an output layer where the input

layer, hidden layer and the output layer have three neurons. Convolutional neural networks

(CNNs) are important building blocks in DL methods inspired by the brain’s visual cortex

and they have been widely incorporated in image recognition studies since the 1980’s

(Géron, 2019). CNNs are different from other DL algorithms because the neurons in the

CNN architecture are connected to the region of pixels/neurons (receptive fields) in the

input image as opposed to every individual pixels/neurons (for more detailed information

about CNNs, we refer readers to Appendix A).
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During the training phase, once an output of a network (or the output of each neuron

in the output layer) is obtained, we compare the output of the network to the desired

output (or the ground truth) by defining an error function. One of the most commonly

used error functions is the Mean-Squared Error (MSE) metric that measures the difference

between the predicted and the ground truth results,

MSE =
1

m

m∑
i=1

(ŷi − yi)2 , (4.2)

where ŷi is the output of the network, yi is the ground truth data for a given input data

during the training, and m is the number of training examples. To update the parameters,

the MSE function is minimized commonly using the gradient descent method by calculating

the gradient of the error function with respect to the weights, and training CNNs is

commonly done by backpropagation where the choice loss function and gradient descent

optimization algorithm play essential roles (Bishop, 2006; Ekman, 2021; Géron, 2019).

Different DL/CNN methods and their subsets have been used in exploration seismic

studies to address different problems. Siahkoohi et al. (2018) utilize CNNs to remove the

free-surface multiples and numerical dispersion; Das et al. (2019) use CNNs to obtain an

elastic subsurface model using recorded normal-incidence seismic data; Wu et al. (2019) use

CNNs for 3-D seismic fault segmentation; Almuteri & Sava (2023) use CNNs to address to

ghost removal from seismic data; Kiraz & Snieder (2022) utilize CNNs for 1-D wavefield

focusing where the solution of the Marchenko equation is not needed to retrieve the

Green’s function once the network is trained. Recently, CNNs have been used to tackle

free-surface multiples in various ways (Ovcharenko et al., 2021; Siahkoohi et al., 2018, 2019;

Tao et al., 2021; Zhang et al., 2021). In this paper, our network predicts a single trace at a

time, and this makes our algorithm insensitive to the data gaps in the acquisition and does

not require a meticulous data-filling pre-processing step.

64



Figure 4.3 Cartoon of the 1-D network used for surface-related multiple elimination on 2-D
data. The height of each trace corresponds to the sample size in our experiment which is
1126 samples. The numbers located below each trace represents the number of
convolutional filters used (e.g., 1, 32, 32, 8, ...). Each blue area visually represents the
kernel size used for each layer in the network (e.g., 1125, 101, 51).

(a)

(b)

Figure 4.4 (a) ReLU activation function. (b) Derivative of the ReLU activation function.
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4.2.1 Network Architecture

For the prediction of the free-surface multiple attenuated data, the CNN architecture

we use consists of an input layer, nine hidden 1-D convolutional layers, and an output

layer. The first and second, fourth and fifth, and seventh and eighth hidden layers have 32

filters; the third, sixth, and ninth hidden layers have eight filters (see Appendix A for more

information about the action of the filters). The length of the 1-D convolutional window

(kernel size) for the first three hidden layers is 1125 samples; for the following five hidden

layers is 101 samples; and for the last hidden layer is 51 samples. Overall, the network

consists of 1,773,697 total parameters all of which are trainable. Figure 4.3 shows a cartoon

of the network architecture used for this study.

For the input layer and the hidden convolutional layers, we use the Rectified Linear Unit

(ReLU) activation function (Ekman, 2021) which computes the function f(x) = max(0, x).

The ReLU activation function helps optimize the model easily using the gradient-based

methods (Géron, 2019). While minimizing the error function, a backpropagation (or a

backward pass) (Ekman, 2021) is used to update the weights of the network. The

derivative of the activation function is calculated at this step, and the derivative of the

ReLU activation function does not suffer from “vanishing gradients” phenomena (Ekman,

2021; Géron, 2019). Figure 4.4(a) shows the ReLU activation function and Figure 4.4(b)

shows its derivative. Lastly, the output layer does not have an activation function.

For all the layers, we use a stochastic gradient descent optimization algorithm with

momentum along with the mean-squared loss function as the objective function (Géron,

2019). To prevent our model from overfitting, and for an accurate evaluation, we split the

input data into training dataset, testing dataset, and validation dataset using 60%, 20%,

and 20% ratios, respectively. The testing data are used to monitor the network training,

and adjust hyperparameters if needed. We tune the hyperparameters using this testing

dataset and compare the output to the ground truth. One should be careful at this step

because we want the network to learn the relationship between the input and output
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training data pairs, and if we tune the hyperparameters only according to the testing

dataset, the network would memorize the relationship between the input and output data

pairs instead of learning. This would also introduce the risk of overfitting, and the network

would perform poorly when we use a different dataset which is not involved in the training

process. After defining the network parameters (or hyperparameters), we use 100 epochs

(iterations) to train the network. Figure 4.5 shows the learning curve of our network where

the blue and red curves denote validation and training data, respectively.

Figure 4.5 Learning curve for the convolutional neural network trained using the training
and validation datasets.

The choice of hyperparameters in this paper is based on trial and error. After changing

a set of hyperparameters, we evaluate the performance of the network by comparing the

predictions to the expected results, by observing the training and validation curves in

Figure 4.5) to make sure that we are not overfitting the data (one of the most common

ways to check overfitting is to observe the training and validation curves during training

(Ekman, 2021; Géron, 2019)).
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(a)

(b)

Figure 4.6 (a) Marmousi velocity model. (b) Pluto velocity model.

68



Figure 4.7 Subsets of Marmousi velocity model used for training.
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Figure 4.8 Subsets of Pluto velocity model used for training.
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(a)

(b)

Figure 4.9 (a) One of the training velocity sub-models extracted from Marmousi velocity
model. (b) One of the training density sub-models scaled from the velocity model in (a).
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(a)

(b)

Figure 4.10 (a) 5 of 192 shot gathers of the input training data (with a free surface). (b) 5
of 192 shot gathers of the output training data (without a free surface).

4.3 Network Training

We create 192 input shot gathers where each gather consists of 600 traces (total of

115,200 input traces) using 2-D finite-difference forward modeling through the models with

free-surface effects, and 192 output shot gathers where each gather consists of 600 traces
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(total of 115,200 output traces) using 2-D finite-difference forward modeling through the

models without free-surface effects. Throughout the forward modeling for each model, 600

receivers are placed along 2.4 km horizontal extent with the receiver sampling of 4 m, and

are located at 8 m depth. We use one source per model, and the coordinates of the source

coordinates are (xs, zs) = (25,7) m.

For the training model selection, we use the Marmousi and Pluto velocity models.

Figure 4.6(a) shows the Marmousi velocity model and Figure 4.6(b) shows the Pluto

velocity model. We extract 36 sub-models from the Marmousi model and 156 sub-models

from the Pluto model. We also add 640 m of water layer to the top of each model with

1500 m/s velocity. Each one of 192 models used for training has 2.4 km horizontal extent,

and 2.4 km depth which includes the water column, 600 receivers, and a single shot

location. Figure 4.7 shows 36 sub-models of the Marmousi velocity model used for the

training, and Figure 4.8 shows 156 sub-models of the Pluto velocity model used for the

training. For each velocity model, we use a density model that is a scaled version of the

velocity model by a factor two (and the units are converted from km/s to g/cm3), and has

a water layer of 640 m with the velocity of 1500 m/s. Figure 4.9 shows 1 of 192 velocity

and density models used during the data generation for training. Figure 4.9(a) shows a

training velocity sub-model extracted from Marmousi velocity model. Figure 4.9(b) shows

a training density sub-model scaled from the velocity model presented in Figure 4.9(a).

Scaling the velocity model by two and adding the water layer into the density model

creates a range of reflection coefficients that changes from approximately 0.33 to 0.89. The

minimum reflection coefficient at the water bottom is set to mimic the seafloor conditions

which is comparable to the seafloor reflection coefficient given by Kim et al. (2004).

Figure 4.10 shows 5 of 192 shot gathers of the input and output data displayed next to

each other used for training after removing the direct arrival. We remove the direct arrival

from the recorded data during the training and prediction steps. Figure 4.10(a) shows 5 of

192 shot gathers of the data modeled with free-surface effects which are used as the
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training input, and Figure 4.10(b) shows 5 of 192 shot gathers of the data modeled without

free-surface effects which are used as the training output. Figure 4.10(a) shows the first

appearance of free-surface multiples at each shot gather starting around 1.7 s in the first

trace of a shot gather, and ending around 2.3 s in time. Although not as strong, the shot

gathers also have other types of multiples (e.g., top and/or bottom salt peg-legs, internal).

Figure 4.11 A sub-model of Sigsbee velocity model used for the prediction.

4.4 Numerical Examples and CNN Prediction

For the numerical simulation, we use three different sub-models of the Sigsbee velocity

model which are not used in the training process and are unknown to the network to

demonstrate our CNN-based solution for free-surface multiple elimination.

For the first example, Figure 4.11 shows a subset of the Sigsbee velocity model which

consists of relatively flat subsurface structures along with a part of a salt body located at

the deeper parts of the model. Similar to the training models, 600 receivers are placed

along 2.4 km horizontal extent with the receiver sampling of 4 m at a depth of 8 m. The

coordinates of the source coordinates are (xs, zs) = (25,7) m. The water column is 640 m

deep with a velocity of 1500 m/s and a density of 1 gr/cm3. The sea bottom for this

example also has a reflection coefficient of approximately 0.33.
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(a) (b)

(c) (d)

Figure 4.12 (a) Numerically modeled shot gather with the free-surface multiples (input
data) obtained using the velocity model given in Figure 4.11. (b) Numerically modeled
shot gather without the free-surface multiples (output data/ground truth) obtained using
the velocity model given in Figure 4.11. (c) Predicted shot gather without the free-surface
multiples using CNNs. (d) Difference between the ground truth data (Figure 4.12(b)) and
the CNN prediction (Figure 4.12(c)).
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Figure 4.13 Trace-by-trace calculated correlation coefficient between the ground truth data
(Figure 4.12(b)) and the CNN prediction (Figure 4.12(c)).

Figure 4.12(a) shows the data modeled with free-surface effects using the velocity model

shown in Figure 4.11, and Figure 4.12(b) shows the waveforms modeled without

free-surface effects using the velocity model shown in Figure 4.11. Figure 4.12(a) shows the

input data, and starting around 1.7 s in time at 0 km in offset, and ending around 2.3 s in

time at 2.4 km in offset, the first multiple caused by the free surface is located.

Additionally, starting around 2.55 s in time at 0 km in offset, and ending around 2.75 s in

time at 1.5 in km offset, another multiple caused by the free surface is present. Although

not as strong as these two events, there are other multiples arriving after the first multiple

which are caused by the free surface. Figure 4.12(b) shows the desired output, the ground

truth. The free-surface multiples described in Figure 4.12(a) are not present in this figure

because of the excluded free-surface effects. For a successful CNN network training, we

expect the CNN predictions to be similar to the ground truth (Figure 4.12(b)). After

training the network, Figure 4.12(c) shows our CNN-based free-surface multiple elimination

results. Figure 4.12(d) shows the difference between the ground truth data (Figure 4.12(b))

and our CNN-based free-surface multiple elimination results (Figure 4.12(c)).

We measure the accuracy of the CNN-based free-surface multiple elimination results by

calculating trace-by-trace CCs between the ground truth and the CNN prediction.

Figure 4.13 shows the CCs between the ground truth (Figure 4.12(b)) and the CNN

prediction (Figure 4.12(c)), and the average CC is 0.98.
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(a)

(b)

(c)

Figure 4.14 Trace comparison of the input (solid blue line), ground truth (solid red line),
CNN prediction (solid black line), and the difference between the ground truth and the
CNN prediction (solid green line) data from the zero-, mid-, and far-offsets, respectively,
extracted from the data shown in Figure 4.12. (a) Comparison of the zero-offset traces. (b)
Comparison of the mid-offset (offset 1.2 km) traces. (c) Comparison of the far-offset (offset
2.3 km) traces.
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Figure 4.14 shows several trace comparisons of the input data (solid blue line), output

data (or ground truth) (solid red line), the CNN predictions (solid black line), and the

difference between the ground truth and the CNN prediction (solid green line) shown in

Figure 4.12 for the zero-, mid-, and far-offsets. Figure 4.14(a) shows the trace used as an

input to the network which is the zero-offset trace extracted from Figure 4.12(a) (solid blue

line), the ground truth that is the expected result from the CNN prediction which is the

zero-offset trace extracted from Figure 4.12(b) (solid red line), the predicted zero-offset

trace using our CNN-based free-surface multiple elimination operator extracted from

Figure 4.12(c) (solid black line), and the difference zero-offset trace between the ground

truth and our CNN-based free-surface multiple elimination operator extracted from

Figure 4.12(d) (solid green line). In Figure 4.14(a), the two strongest multiples caused by

the free surface in the input trace (solid blue line) at times around 1.7 s and 2.7 s have

been successfully eliminated in the CNN prediction trace (solid black line) which matches

the ground truth trace (solid red line). Figure 4.14(b) shows the mid-offset (offset 1.2 km)

trace used as an input to the network from Figure 4.12(a) (solid blue line), the ground

truth that is the expected result from the CNN prediction which is the mid-offset (offset

1.2 km) trace extracted from Figure 4.12(b) (solid red line), the predicted mid-offset (offset

1.2 km) trace using our CNN-based free-surface multiple elimination operator extracted

from Figure 4.12(c) (solid black line), and the difference mid-offset trace between the

ground truth and our CNN-based free-surface multiple elimination operator extracted from

Figure 4.12(d) (solid green line). In Figure 4.14(b), the strongest multiple caused by the

free surface in the input trace (solid blue line) at time around 1.85 s has been successfully

eliminated in the CNN prediction trace (solid black line) which matches the ground truth

trace (solid red line). Lastly, Figure 4.14(c) shows the far-offset (offset 2.3 km) trace used

as an input to the network from Figure 4.12(a) (solid blue line), the ground truth that is

the expected result from the CNN prediction which is the far-offset (offset 2.3 km) trace

extracted from Figure 4.12(b) (solid red line), the predicted far-offset (offset 2.3 km) trace
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using our CNN-based free-surface multiple elimination operator extracted from

Figure 4.12(c) (solid black line), and the difference far-offset trace between the ground

truth and our CNN-based free-surface multiple elimination operator extracted from

Figure 4.12(d) (solid green line). In Figure 4.14(c), the strongest multiple caused by the

free surface in the input trace (solid blue line) at time around 2.35 s has been successfully

eliminated in the CNN prediction trace (solid black line) which matches the ground truth

trace (solid red line). The difference traces for the near-, mid-, and far-offset traces indicate

a small amplitude mismatch between the ground truth and the CNN-based free-surface

multiples. Figure 4.14 shows that the CNN-based free-surface multiple elimination is able

to attenuate the free-surface multiples despite their different arrival times due to the offset

change. The CNN-based free-surface multiple elimination is able to preserve the primary

events after removing the unwanted multiples from the data. Additionally, the phase

change in the input trace is successfully accounted for through the CNN prediction. The

presence of the free surface changes the phase and the amplitude spectrum by the

interference with the ghost wave. Thus, the algorithm suppresses multiples and does the

deghosting simultaneously (Amundsen & Zhou, 2013; Riley & Claerbout, 1976).

Figure 4.15 A sub-model of Sigsbee velocity model used for the prediction.

79



For the second example, Figure 4.15 shows another subset of the Sigsbee velocity model

which consists of relatively flat subsurface structures with a fault near the far-offsets and a

salt body located at the deeper parts of the model. Similar to the training models, 600

receivers are placed along 2.4 km horizontal extent with the receiver sampling of 4 m, and

are located at 8 m depth. The coordinates of the source coordinates are (xs, zs) = (25,7)

m. The water column has 640 m depth with a velocity of 1500 m/s. The sea bottom for

this example also has a reflection coefficient of approximately 0.33.

Figure 4.16(a) shows the data modeled with free-surface effects using the velocity model

shown in Figure 4.15, and Figure 4.16(b) shows the data modeled without free-surface

effects using the velocity model shown in Figure 4.15. Figure 4.16(a) shows the input data,

and starting around 1.7 s in time at 0 km in offset, and ending around 2.3 s in time at 2.4

km in offset, the first multiple caused by the free surface appears. The challenge in this

example is that the first event caused by the free surface overlaps with a primary event

around 1.5 km in offset and 1.85 s in time in Figure 4.16(a). Conventional SRME

techniques require an adaptive subtraction step in which the presence of overlapping

primary and multiple events might result in removal or reduction of the primary energy.

Although not as strong as the first event caused by the free surface, there are other

multiples arriving after the first multiple which are caused by the free surface.

Figure 4.16(b) shows the desired output. The events described in Figure 4.16(a) caused by

the free surface are not present in this figure because of the excluded free surface. For a

successful CNN network training, we expect the CNN predictions to be similar to the

ground truth (Figure 4.16(b)). After training the network, Figure 4.16(c) shows our

CNN-based free-surface multiple elimination shot gather. Figure 4.16(d) shows the

difference between the ground truth data (Figure 4.16(b)) and our CNN-based free-surface

multiple elimination shot gather (Figure 4.16(c)).
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(a) (b)

(c) (d)

Figure 4.16 (a) Numerically modeled shot gather with the free-surface multiples (input
data) obtained using the velocity model given in Figure 4.15. (b) Numerically modeled
shot gather without the free-surface multiples (output data/ground truth) obtained using
the velocity model given in Figure 4.15. (c) Predicted shot gather without the free-surface
multiples using CNNs. (d) Difference between the ground truth data (Figure 4.16(b)) and
the CNN prediction (Figure 4.16(c))
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Figure 4.17 Trace-by-trace calculated correlation coefficient between the ground truth data
(Figure 4.16(b)) and the CNN prediction (Figure 4.16(c)).

Figure 4.17 shows the CCs between the ground truth (Figure 4.16(b)) and the CNN

prediction (Figure 4.16(c)), and the average CC is 0.95 which indicates a strong similarity

between the ground truth data and the CNN prediction. Figure 4.18 shows several trace

comparisons of the input data (solid blue line), output data (or ground truth) (solid red

line), the CNN predictions (solid black line), and the difference between the ground truth

and the CNN prediction (solid green line) shown in Figure 4.16 for the zero-, mid-, and

far-offsets. Figure 4.18(a) shows the trace used as an input to the network which is the

zero-offset trace extracted from Figure 4.16(a) (solid blue line), the ground truth that is

the expected result from the CNN prediction which is the zero-offset trace extracted from

Figure 4.16(b) (solid red line), the predicted zero-offset trace using our CNN-based

free-surface multiple elimination operator extracted from Figure 4.16(c) (solid black line),

and the difference zero-offset trace between the ground truth and our CNN-based

free-surface multiple elimination operator extracted from Figure 4.16(d) (solid green line).

In Figure 4.18(a), the strongest multiple caused by the free surface in the input trace (solid

blue line) at time around 1.7 s has been successfully eliminated in the CNN prediction trace

(solid black line) which matches the ground truth trace (solid red line). Figure 4.18(b)

shows the mid-offset (offset 1.5 km) trace used as an input to the network from

Figure 4.16(a) (solid blue line), the ground truth that is the expected result from the CNN

prediction which is the mid-offset (offset 1.5 km) trace extracted from Figure 4.16(b) (solid
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red line), the predicted mid-offset (offset 1.5 km) trace using our CNN-based free-surface

multiple elimination operator extracted from Figure 4.16(c) (solid black line), and the

difference mid-offset trace between the ground truth and our CNN-based free-surface

multiple elimination operator extracted from Figure 4.16(d) (solid green line). However, in

Figure 4.18(b), the strongest multiple caused by the free surface in the input trace (solid

blue line) at time around 1.9 s overlaps with a primary event. Although the free-surface

reflection is embedded in the high-amplitude energy around 1.9 s in Figure 4.18(b), the

CNN prediction is able to remove the free-surface multiple without removing the primary

events. The CNN prediction trace (solid black line) closely matches the ground truth trace

(solid red line) in Figure 4.18(b). Lastly, Figure 4.18(c) shows the far-offset (offset 2.3 km)

trace used as an input to the network from Figure 4.16(a) (solid blue line), the ground

truth that is the expected result from the CNN prediction which is the far-offset (offset 2.3

km) trace extracted from Figure 4.16(b) (solid red line), the predicted far-offset (offset 2.3

km) trace using our CNN-based free-surface multiple elimination operator extracted from

Figure 4.16(c) (solid black line), and the difference far-offset trace between the ground

truth and our CNN-based free-surface multiple elimination operator extracted from

Figure 4.16(d) (solid green line). In Figure 4.18(c), the strongest multiple caused by the

free surface in the input trace (solid blue line) at time around 2.35 s has been successfully

eliminated in the CNN prediction trace (solid black line) which matches the ground truth

trace (solid red line). The difference traces for the near-, mid-, and far-offset traces indicate

a small amplitude mismatch between the ground truth and the CNN-based free-surface

multiples. Figure 4.18 shows that the CNN-based free-surface multiple elimination is able

to predict and remove the free-surface multiples and preserve the primary reflection even

when the primary reflection and the free-surface multiple arrive simultaneously.
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(a)

(b)

(c)

Figure 4.18 Trace comparison of the input (solid blue line), ground truth (solid red line),
CNN prediction (solid black line), and the difference between the ground truth and the
CNN prediction (solid green line) data from the zero-, mid-, and far-offsets, respectively,
extracted from the data shown in Figure 4.16. (a) Comparison of the zero-offset traces. (b)
Comparison of the mid-offset (offset 1.5 km) traces. (c) Comparison of the far-offset (offset
2.3 km) traces.
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So far in this paper, we used different sub-models from Sigsbee velocity model for

prediction with a reflection coefficient of around 0.33 at the sea-bottom. However, to test

the accuracy of the CNN-based free-surface multiple elimination prediction, without

changing the training data, we use a sub-model from Sigsbee velocity model for prediction

with a reflection coefficient of approximately 0.5 at the sea-bottom (we create the reflection

coefficient of approximately 0.5 at the sea-bottom by scaling the density model accordingly

and adding the water layer). Figure 4.19(a) shows the data modeled with free-surface

effects using the velocity model shown in Figure 4.11, but this time with a reflection

coefficient of approximately 0.5 at the sea-bottom, and Figure 4.19(b) shows the waveforms

modeled without free-surface effects using the velocity model shown in Figure 4.11 with a

reflection coefficient of approximately 0.5 at the sea-bottom. Figure 4.19(a) shows the

input data, and starting around 1.7 s in time at 0 km in offset, and ending around 2.3 s in

time at 2.4 km in offset, the first multiple caused by the free surface (or the first-order

free-surface multiple) is located. Additionally, starting around 2.55 s in time at 0 km in

offset, and ending around 2.75 s in time at 1.5 in km offset, another multiple caused by the

free surface is present. Note that in Figure 4.19(a) the multiples are of higher amplitude

than in Figure 4.12(a) because of the higher reflection coefficient at the sea-bottom.

Figure 4.19(b) shows the desired output. Figure 4.19(c) shows our CNN-based free-surface

multiple elimination results. Figure 4.19(d) shows the difference between the ground truth

data (Figure 4.19(b)) and our CNN-based free-surface multiple elimination results

(Figure 4.19(c)). This example shows that our CNN-based method attenuates the

free-surface multiples with different reflection coefficients at the sea-bottom.
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(a) (b)

(c) (d)

Figure 4.19 (a) Numerically modeled shot gather with the free-surface multiples (input
data) with a reflection coefficient of 0.5 at the sea-bottom obtained using the velocity
model given in Figure 4.11. (b) Numerically modeled shot gather without the free-surface
multiples (output data/ground truth) obtained using the velocity model given in
Figure 4.11. (c) Predicted shot gather without the free-surface multiples using CNNs. (d)
Difference between the ground truth data (Figure 4.19(b)) and the CNN prediction
(Figure 4.19(c)).
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Figure 4.20 Trace-by-trace calculated correlation coefficient between the ground truth data
(Figure 4.19(b)) and the CNN prediction (Figure 4.19(c)).

Figure 4.20 shows the CCs between the ground truth (Figure 4.19(b)) and the CNN

prediction (Figure 4.19(c)), and the average CC is 0.98 which indicates a strong similarity

between the ground truth data and the CNN prediction. Figure 4.21 shows the trace view

comparison of the input, ground truth, and predicted data with a reflection coefficient of

0.5 at the sea bottom. Figure 4.21(a) shows a zero-offset trace comparison with the

first-order free-surface multiple arriving around 1.7 s, and some other free-surface multiples

arriving at 2.55 s and 2.7 s. Figure 4.21(b) shows a mid-offset (1.2 km) trace comparison

with the first-order free-surface multiple arriving around 1.85 s, and some other free-surface

multiples arriving at 2.4 s and 2.65 s. Figure 4.21(c) shows a far-offset (2.4 km) trace

comparison with the first-order free-surface multiple arriving around 2.35 s. The difference

traces for the near-, mid-, and far-offset traces indicate a small amplitude mismatch

between the ground truth and the CNN-based free-surface multiples. Figure 4.21 shows

that our CNN-based free-surface multiple elimination method successfully attenuates the

surface-related multiples caused by a different reflection coefficient at the sea-bottom.
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(a)

(b)

(c)

Figure 4.21 Trace comparison of the input (solid blue line), ground truth (solid red line),
CNN prediction (solid black line), and the difference between the ground truth and the
CNN prediction (solid green line) data from the zero-, mid-, and far-offsets, respectively,
extracted from the data shown in Figure 4.19. (a) Comparison of the zero-offset traces. (b)
Comparison of the mid-offset (offset 1.2 km) traces. (c) Comparison of the far-offset (offset
2.3 km) traces.
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4.5 Discussion and Conclusions

The examples presented in this paper show that the CNN-based free-surface multiple

elimination is able to remove the multiples caused by the free surface so that the CC

between the numerically modeled data without the free-surface multiples and the CNN

predictions is found to be around 0.97 on average. The change in the arrival time of the

free-surface multiples with offset is correctly predicted by the CNN and the multiples are

removed from the shot gathers without removing the primary events even when the

primary and multiple reflections overlap. Although the data obtained by the CNN

prediction mostly match the numerically modeled data, for late times of the shot gathers

(i.e., for times around 2.75 s), there are mismatches between the CNN prediction and the

ground truth. This is due to the length of the 1-D convolutional window (kernel size)

running into the zero-padding towards the end of each trace to match the input and output

data size in the network (see Figure 4.22). Kernel size (which changes between 51, 101, and

1125 samples in our case) determines the sliding window length to perform convolution

along the sample, and to match the size of the input and output samples, we use

zero-padding at the beginning and the end of each trace of a layer (see Figure 4.22). This

causes both the early and late arrivals of the CNN predictions to have more mismatches

than the rest of the data. Although the same happens for the early times of the shot

gathers (i.e., for times around 0.75 s), there are no events recorded at such early times in

the shot gathers. Although the CNN prediction and the desired output have a strong

similarity (see Figure 4.13, Figure 4.17, and Figure 4.20), Figure 4.12(d), Figure 4.16(d),

and Figure 4.19(d) show that there is an overall amplitude mismatch between the desired

output and CNN prediction. The network is able to make predictions where the

free-surface multiples are mostly eliminated, however for a better amplitude match between

the desired output and CNN prediction, further hyperparameter tuning may be required

(e.g., different combinations of the activation functions, number of hidden layers, number

of filters, kernel sizes, strides, iterations (or epochs), choice of the loss function).
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As we describe above, in the conventional SRME workflow, it is hard to accurately

know if the predicted multiples have the precise amplitude information with the matching

filtering, and/or if the adaptive subtraction step only removes the multiples without

removing the primary events from the data. Additionally, the dense source/receiver

distribution requirement makes SRME computationally expensive and hard to implement

in case of sparse data acquisition (e.g., Ocean-Bottom Node (OBN) data acquisition).

Since our CNN-based approach does not require dense source/receiver distribution, once

the network is trained it can be applied to any type of acquisition where we have either 1

trace or 1,000,000 traces available. It also does not require an additional step to subtract

the multiples from the data because the network predicts the data without free-surface

multiples.

The CNN-based free-surface multiple elimination is able to remove the surface-related

multiples caused by different sea-bottom reflection coefficients. To further test the accuracy

of our CNN-based free-surface multiple elimination method, we can also test the conditions

where we have variations in the source signature, source and receiver depth, water column

depth, and application to the OBN and/or Carbon Capture, Utilization and Storage

(CCUS) data. However, the variations of these parameters fall out of the scope of this

paper and will be discussed in a future paper.

The use of 1-D convolutional filters makes our CNN-based free-surface multiple

elimination computationally efficient (e.g., training takes 81 minutes and prediction of a

trace takes 2.4 ms). Additionally, trace-by-trace elimination of free-surface multiples does

not require a dense spatial distribution of sources and receivers. Our CNN-based method is

suitable for irregular and sparse source/receiver acquisition geometry, and the accuracy of

the prediction does not rely upon the availability of the near-offset and neighboring traces

(which is one of the important requirements for the conventional SRME algorithms).

Our numerical examples show that free-surface multiples for subsurface models with

variable velocity and density profiles with salt structures can be attenuated using CNNs
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once a network is trained. We show that when the primary and multiple reflections

overlap, our CNN-based free-surface multiple elimination method successfully removes the

multiples while preserving the primary reflections. Unlike the conventional SRME

methods, our algorithm does not require modeling and subtraction of the multiples from

the full dataset for free surface multiple elimination, and eliminates the risk of removing

the primary energy from the recorded seismic data by providing a fast and effective

alternative to the existing free surface multiple elimination methods. Our algorithm does

not require dense spatial distribution of source and receivers, and it is also independent of

the availability of the near-offset and neighboring traces.
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4.7 Appendix A - Convolutional Neural Networks

Figure 4.22 shows a sketch of a two-layer 1-D convolutional neural network with a

three-sample 1-D convolutional window (kernel). In Figure 4.22, there are 4 neurons,

a
(1)
1 , ..., a

(1)
4 in layer 1, and 4 neurons, a

(2)
1 , ..., a

(2)
4 in layer 2 where the subscript denotes

the neuron number, and the superscript denotes the layer number. Note that the term

neuron is usually used in the context of a sample. For example, if we consider the neurons

in layer 1 or layer 2 as a column vector, each neuron corresponds to an element in that

column vector. There is also a three-sample temporal window in Figure 4.22 denoted with

w1, w2, and w3. The temporal window (or kernel) size is defined by the user in CNNs, and

this kernel is initialized with random weights, which will later be updated during the
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training process. We slide this kernel from the beginning to the end of the sample in

layer 1. As the kernel slides down, we calculate a centered dot product between layer 1

and assign the result of the dot product to the neurons in layer 2. We preserve the size of

the neurons in each layer by zero padding at the beginning and the end of the neurons, and

the zero padding is represented by the red neurons with zeros in Figure 4.22. Therefore,

the result of the zero-padded centered convolution in layer 2 matches the shape of the

input trace in layer 1. Note that if we do not use zero padding, the number of neurons in

layer 2 does not match the number of neurons in layer 1.

Figure 4.22 A sketch of a zero-padded 1-D convolutional neural network for a two-layer
network where the number of output traces for a layer is three.

As the kernel slides down, we calculate a centered dot product between zero-padded

layer 1 and the kernel, and assign the result of the dot product to the neurons in layer 2 as;

a
(2)
1 = σ

(
(a

(1)
1 w2) + (a

(1)
2 w3) + b1

)
,

a
(2)
2 = σ

(
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1 w1) + (a
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(1)
3 w3) + b1

)
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(1)
4 w3) + b1

)
,

a
(2)
4 = σ

(
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3 w1) + (a

(1)
4 w2) + b1

)
,

(4.3)

where b1 denotes the bias term and the subscript denotes the number of output traces for a

layer, and σ denotes the activation function. The trainable parameters of the network
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shown in Figure 4.22 are w1, w2, w3, and b1. However, due to the zero padding around the

beginning and the end of the sample, the prediction around these edges tends to be less

accurate than the ones around the middle of the sample.

The number of output traces for a layer is another hyperparameter that needs to be

determined. Figure 4.23 shows a cartoon of a 1-D convolutional neural network for a

two-layer network where the number of output traces for a layer is three and kernel size is

also three. Similar to the example with one filter (see Figure 4.22), as the three filters slide

down, we calculate a centered dot product between layer 1 and each filter, and assign the

result of the dot product to the neurons in layer 2. Figure 4.23(a) shows the first filter

acting on layer 1, Figure 4.23(b) shows the second filter acting on layer 1, and

Figure 4.23(c) shows the third filter acting on layer 1. Figure 4.23(d) shows the input

layer, layer 1, and the outputs of three filters on layer 2. The trainable parameters of the

network shown in Figure 4.23 are w1, w2, w3, w4, w5, w6, w7, w8, w9, b1, b2, and b3.

In summary, for each input trace to a layer and each output trace from a layer, an

independent filter is applied, the number of such filters is the number of input traces times

the number of output traces. For each output trace, these results are summed over the

input traces, a bias term is added (one bias for each output trace), and then the activation

function is applied as;

akj =
N∑
i

σ(wji ∗ ak−1i + bj) , (4.4)

where ak−1i is the ith output trace from layer k − 1, akj is the jth output trace from layer k,

wji is the filter connecting input trace i to output trace j, and bj is the bias for output trace

j, ∗ denotes convolution in time, and N is the number of neurons in the previous layer.
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(a)

(b)

(c)

(d)

Figure 4.23 A sketch of a 1-D convolutional neural network for a two-layer network along
with three three-sample temporal windows. (a) The first filter and its output on layer 2.
(b) The second filter and its output on layer 2. (c) The third filter and its output on
layer 2. (d) Output of three three-sample windows on layer 2.
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Networks with multiple filters extract more information from the training input and

output data pairs. However, increasing the number of filters also increases the

computational demand of the network. Note that in Figure 4.22 and Figure 4.23 the

kernels slides down one sample at a time and this parameter (which is one of the

hyperparameters) is called stride. For a 1-D output in the next layer (layer 3), we define

three different sets of weights which will be applied to the output on layer 2 shown in

Figure 4.23(d), and the linear combination of these three different filtered outputs will form

the output in layer 3 after adding the bias term and applying the activation function.

Although there is more hyperparameter selection and tuning involved during the

training process, the illustration and description of each one of them are out of the scope of

this paper. For more detailed information about DL methods and CNNs, we refer the

reader to Ekman (2021), Géron (2019), Bishop (2006), and Higham & Higham (2019).
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CHAPTER 5

REMOVING FREE-SURFACE EFFECTS FROM SEISMIC DATA USING

CONVOLUTIONAL NEURAL NETWORKS – PART 2: AN

APPLICATION TO THE MOBIL AVO

VIKING GRABEN DATA SET

A paper submitted to Geophysical Prospecting

Mert Sinan Recep Kiraz 1,2,3, Roel Snieder3 & Jon Sheiman

The presence of the air-water interface (or free surface) creates two major problems in

marine seismic data; free-surface multiples and ghost reflections. The attenuation of

free-surface multiples remains one of the most challenging noise attenuation problems in

seismic data processing. Current solutions suffer from the removal of the primary event

along with the multiple events especially when the primary and multiple events overlap

(e.g., adaptive subtraction). The effective attenuation of ghost reflections (or deghosting)

requires acquisition- and/or processing-related solutions which generally address the

source-side and receiver-side ghosts separately. Additionally, an essential requirement for a

successful implementation of free-surface multiple attenuation and dehosting is the

requirement of dense seismic data acquisition parameters which is not realistic for

two-dimensional (2-D) and/or three-dimensional (3-D) marine cases. We present a

Convolutional Neural Network (CNN) approach for free-surface multiple attenuation and

for seismic deghosting, simultaneously. Unlike the existing solutions, our approach operates

on a single trace at a time, and neither relies on the dense acquisition parameters nor

requires a subtraction process to eliminate free-surface multiples, and it removes both the

source ghost and receiver ghost simultaneously. We illustrate the efficacy of the free-surface

1Primary researcher and author.
2Author for correspondence. Direct correspondence to mertkiraz@gmail.com.
3Center for Wave Phenomena, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA.
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multiple attenuation and seismic deghosting technique using the Mobil AVO Viking

Graben field data set. The application of our algorithm demonstrates that our CNN-based

approach removes different orders of free-surface multiples (e.g., 1st and 2nd orders) and

recovers the low-frequency content of the seismic data (which is essential for, for instance,

full-waveform inversion applications and broadband processing) by successfully removing

the ghost reflections while preserving and increasing the continuity of the primary

reflections.

5.1 Introduction

The occurrence of multiples arises when waves interact with a strong impedance

contrast. In marine seismic data, the free surface (or air-water interface) and water bottom

are the two main impedance contrasts. Although the water bottom can be soft (e.g., weak

impedance contrast) depending on the geology of the area, the free surface always is almost

a perfect reflector (e.g., strong impedance contrast). This strong impedance contrast

creates two main issues in the recorded seismic data; free-surface multiples and ghost

reflections.

Free-surface multiples have at least one downward reflection at the free surface and are

the most dominant set of multiples in marine seismic data. Free-surface multiples can have

different numbers of orders which define the multiples’ number of bounces from the free

surface. With a higher number of orders, free-surface multiples become harder to attenuate

later during the processing stage. Figure 5.1 shows an example of a 1st-order free-surface

multiple (black line). The red star in Figure 5.1 denotes the source location at depth and

the white triangle denotes the receiver location at depth. One of the widely used

techniques to address free-surface multiples is called Surface-Related Multiple Elimination

(SRME) (Verschuur et al., 1992). This technique effectively predicts and iteratively

subtracts the multiples (also known as adaptive subtraction) from the seismic data but

does not always guarantee perfect solutions. During the subtraction step, the primary

reflections might be removed from the seismic data along with the unwanted multiple
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reflections because of the overlapping primary and multiple events. Additionally, with a

complex subsurface, SRME techniques fall short and require dense spatial distribution of

source and receiver distribution (Dragoset et al., 2010). This condition becomes even more

difficult to fulfill in 3-D surveys.

Figure 5.1 Schematic illustration of the ray paths of primary reflection (blue line),
free-surface multiple (black line), and source- and receiver-side ghost reflections (red line).
The white triangle denotes a receiver located at depth and the red shape denotes a source
located at depth.

Ghost reflections create notches in the frequency content of the seismic data through

destructive interference (Amundsen & Zhou, 2013). It is important to attenuate the effects

of ghost reflections, especially for broadband data processing and full-waveform inversion

applications (Kragh et al., 2010; Virieux & Operto, 2009). The ghost reflections are

recorded in the seismic data as the delayed version of the primary seismic signal with an

opposite polarity (Dondurur, 2018). There are three types of ghost reflections that are

present in the seismic data; source ghost, receiver ghost, and source and receiver ghosts.

Figure 5.1 shows an example of the source and receiver ghost reflection (red line).

Removing the ghost reflections from seismic data (or deghosting) is mainly performed in

two different categories; acquisition-based solutions and processing-based solutions.

Acquisition-based solutions include, but not limited to, slanted streamer acquisition
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(Soubaras & Whiting, 2011), over/under streamer acquisition (Moldoveanu et al., 2007),

and dual-sensor streamer acquisition (Carlson et al., 2007). Processing-based solutions

include, but not limited to, deriving a low-frequency deghosting filter (Amundsen & Zhou,

2013), and joint deconvolution (Soubaras, 2010). Recently, Almuteri & Sava (2023) and

Vrolijk & Blacquière (2021) have also utilized machine learning applications for removing

ghost reflections from seismic data.

Seismic migration techniques assume that the input data only contain primary

reflections and an example of a primary reflection is shown in Figure 5.1 (blue line).

Therefore, it is imperative for seismic data to be free from the events caused by the

presence of free surface (red and black lines in Figure 5.1). We propose a CNN-based

solution that is designed to remove free-surface effects, namely, attenuating the free-surface

multiples and seismic deghosting, simultaneously. We only use synthetic data set for

training and make predictions using the field data set. We first introduce the CNN

architecture we use in Section 5.2, then we illustrate the effectiveness of our CNN-based

solution with a 2-D Mobil AVO Viking Graben field data set acquired in the North Viking

Graben (Keys & Foster, 1998) in Section 5.3. The application of our CNN algorithm to

field data demonstrates that we can attenuate free-surface multiples and remove ghost

reflections simultaneously from the seismic data using the CNN. The CNN-based solution

we propose requires neither dense source/receiver distribution nor is affected by the

missing traces in the recorded data. We also show that during the simultaneous multiple

attenuation and seismic deghosting using CNNs, primary reflections have been preserved

and their continuity has been increased.

5.2 CNN Architecture and Training

Recently, different machine learning (ML) and/or convolutional neural network (CNN)

methods have been proposed to attenuate free-surface multiples or remove ghost reflections

from seismic data (Almuteri & Sava, 2023; Hu et al., 2019; Ovcharenko et al., 2021;

Siahkoohi et al., 2018, 2019; Tao et al., 2021; Vrolijk & Blacquière, 2021; Zhang et al.,
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2021). In this paper, we propose a CNN that predicts a single trace at a time, making our

algorithm insensitive to the data gaps in the acquisition and does not require a meticulous

data-filling pre-processing step, unlike the current techniques.

CNN is a subset of ML and is based on the mathematical and statistical methods that

let machines and computers improve specified tasks with experience (Bishop, 2006; Ekman,

2021; Géron, 2019). CNNs consist of layers of filters and as the number of layers increases,

the network extracts more complex information, and the networks with many layers are

called “deep neural networks”. Every sample in a layer is called a neuron and the output

value of a neuron is obtained by

akj = σ
( N∑
i=1

(a
(k−1)
i wkij) + bkj

)
, (5.1)

where N denotes the number of neurons in the previous layer, akj denotes the value a to be

calculated of the jth neuron in the kth layer, a
(k−1)
i denotes the value a of the ith neuron in

the (k − 1)th layer, wkij denotes the weight w of the ith neuron which is connected to the

jth neuron in the kth layer, bkj denotes the bias b of the jth neuron in the kth layer, and σ

denotes the activation function. The activation function is a nonlinear function so that the

action of the neural network is nonlinear as well.

The process in which we adjust the weights, w, and biases, b, by an iterative

data-fitting process is called training. During the training, once an output of a network is

obtained, we define an error function to compare the output of the network to the desired

output. The most commonly used error function is the Mean-Squared Error (MSE) metric

that measures the difference between the predicted and the ground truth results,

MSE =
1

m

m∑
i=1

(ŷi − yi)2 , (5.2)

where ŷi is the output of the network, yi is the ground truth data for a given input data

during the training, and m is the number of training examples. We minimize the MSE

function by using the gradient descent method by calculating the gradient of the error
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function with respect to the weights. Training a CNN is commonly done by

backpropagation where the choice loss function and gradient descent optimization

algorithm are essential (Bishop, 2006; Ekman, 2021; Géron, 2019).

In this study, we use the network architecture proposed by Kiraz et al. (2023a) for

simultaneous free-surface multiple attenuation and deghosting. Our CNN architecture

consists of an input layer, nine one-dimensional (1-D) convolutional layers, and an output

layer. The first and second, fourth and fifth, and seventh and eighth layers have 32 filters

(Kiraz et al., 2023a); the third, sixth, and ninth layers have eight filters. The length of the

1-D convolutional window for the first three layers is 1110 samples; for the following five

layers is 101 samples; and for the last layer is 51 samples. Overall, the network consists of

1,754,017 total parameters all of which are trainable. For the input layer and the

convolutional layers, we use the Rectified Linear Unit (ReLU) activation function, σ,

(Ekman, 2021) which computes the function σ(x) = max(0, x). We use a stochastic

gradient descent optimization algorithm with momentum along with the mean-squared loss

function as the objective function Géron (2019). To prevent the network from over-fitting,

we split the input data into training data set, testing data set, and validation data set

using 60%, 20%, and 20% ratios, respectively.

For the training model selection, we use the Marmousi (Versteeg, 1994) and Pluto

(Stoughton et al., 2001) velocity models. For the training source and receiver geometry, we

use the source and receiver geometry of the field data set. We extract sub-models from the

Marmousi and Pluto models and add a water layer to the top of each model using the

water column depth of the field data set. For each velocity model, we use a density model

that is a scaled version of the velocity model by a factor of two (and the units are

converted from km/s to g/cm3) and has the same water layer as the velocity models.

Scaling the velocity model by two and adding the water layer into the density model

creates a range of reflection coefficients for training purposes that helps generalize the

network applicability. We use 52 input shot gathers with free-surface multiples and ghost
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reflections each of which consists of 100 traces (total of 5,200 input traces) using 2-D

finite-difference forward modeling, and 52 output shot gathers without free-surface

multiples and ghost reflections each of which consists of 100 traces (total of 5,200 output

traces) using 2-D finite-difference forward modeling.

5.3 Field Data Experiment: The Mobil AVO Viking Graben Data Set From
The North Viking Graben

The Mobil AVO Viking Graben data set was acquired in the North Sea over the Viking

Graben (Keys & Foster, 1998). The initial purpose of this data set was to test different

AVO methods using a single data set; however, when the results were presented at a

workshop at the 64th SEG International Exposition and Annual Meeting in 1994, this data

set was also used to cover problems related to geology, inversion, data processing, wave

propagation, rock properties, and AVO (Keys & Foster, 1998; Lumley et al., 1998).

The seismic line consists of 1,001 shot gathers each of which has a 6 s recording length

with a 4 ms sampling rate. For each shot gather, 120 receivers are used, and the near-offset

receiver is located at 262 m and the far-offset receiver is located at 3,237 m. Both the shot

and receiver group interval is 25 m. The receivers are placed at a 10 m depth, and the

air-gun array is placed at a 6 m depth (Keys & Foster, 1998).

The study area has a water depth of approximately 350 m. Strong water-bottom and

interbed multiples contaminate the data and are a major source of noise (Keys & Foster,

1998; Madiba & McMechan, 2003). We use a CNN-based algorithm to attenuate

free-surface multiples and ghost reflections, simultaneously, from this data set.
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(a)

(b)

Figure 5.2 (a) Raw shot gather. (b) Shot gather in (a) after applying the pre-processing
steps.
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As part of the pre-processing of the seismic data for the CNN application, we first

account for the geometric spreading in both the field data set and the synthetic data set

used for training. The 3-D effects of geometric spreading (Liner, 2016) can be accounted

for by

A3D ∝
1

t
, (5.3)

and similarly, the 2-D effects of geometric spreading (Liner, 2016) can be accounted for by

A2D ∝
1√
t
, (5.4)

where A denotes the amplitude and t denotes time. Therefore, we apply a t gain and
√
t

gain to the field data set and the synthetic data set, respectively. Because we use 1-D

convolutional layers, we mimic the amplitudes in 1-D by applying the geometric spreading

corrections given in equations (5.3) and (5.4). Next, we apply a band-pass filter with 15 Hz

and 50 Hz cuts to the field data set to match the frequency content of the training data set

and the field data set. We also normalize the data prior to using for the CNN application

(Ekman, 2021; Géron, 2019). As a last step of the pre-processing, we only use the first 3.0 s

of the seismic data for computational efficiency purposes.

Figure 5.2(a) shows the raw shot gather number 88 from the field data set and following

the pre-processing steps described above, Figure 5.2(b) shows the shot gather shown in

Figure 5.2(a) after applying t gain, band-pass filter, and keeping the data recorded from 0 s

to 3.0 s only.

After applying the pre-processing steps to the entire field data set, we apply the

CNN-based free-surface multiple attenuation and seismic deghosting. Figure 5.3(a) shows

the shot gather number 88 before free-surface multiple attenuation and seismic deghosting.

Figure 5.3(b) shows the shot gather number 88 after free-surface multiple attenuation and

seismic deghosting using a CNN. The arrows in Figure 5.3(a) indicate some of the 1st- and

2nd-order free-surface multiples and the arrows in Figure 5.3(b) point to areas in the data

where these multiples have been attenuated.
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(a)

(b)

Figure 5.3 (a) Shot gather before free-surface multiple attenuation and deghosting. (b)
Shot gather after free-surface multiple attenuation and deghosting using the CNN-based
algorithm.
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(a)

(b)

Figure 5.4 (a) Near-trace gather of the seismic line before free-surface multiple attenuation
and deghosting shown only 0-2 s. (b) Near-trace gather of the seismic line after free-surface
multiple attenuation and deghosting using a CNN shown only 0-2 s.
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Figure 5.4(a) shows the near-offset trace of each shot gather (or the near-trace gather)

of the entire data set before free-surface multiple attenuation and seismic deghosting, and

Figure 5.4(b) shows the near-trace gather of the entire data set after free-surface multiple

attenuation and seismic deghosting. The arrows between 1 s and 1.2 s on the left and right

sides in Figure 5.4(a) point to the 1st-order free-surface multiples, and the three arrows

between 1.5 s and 1.7 s on the left side in Figure 5.4(a) point to the 2nd-order free-surface

multiples. Figure 5.4(b) shows that these multiples have been attenuated by our

CNN-based algorithm.

To better evaluate the CNN prediction, we use auto-correlation plots as a diagnostic for

periodicity in the records that is associated with multiples (Yilmaz, 2001). Figure 5.5(a)

shows the auto-correlation of the near-trace gather shown in Figure 5.4(a) before

free-surface multiple attenuation and seismic deghosting. Figure 5.5(b) shows the

auto-correlation of the near-trace gather shown in Figure 5.4(b) after free-surface multiple

attenuation and seismic deghosting. The arrows around 0.5 s and 1 s in Figure 5.5(a)

indicate the periodicity of the 1st- and 2nd-order free-surface multiples, respectively.

Figure 5.5(b) shows that both 1st- and 2nd-order free-surface multiples have been

attenuated and their periodicity is not evident in the auto-correlation of the data after the

application of our CNN-based algorithm.

Next, we evaluate the CNN-prediction results for seismic deghosting by comparing the

average amplitude spectra before and after CNN-based free-surface multiple attenuation

and seismic deghosting using the near-trace gathers shown in Figure 5.4. Figure 5.5(c)

shows the average amplitude spectrum before free-surface multiple attenuation and seismic

deghosting (red line) using the near-trace gather shown in Figure 5.4(a), and the average

amplitude spectrum after free-surface multiple attenuation and seismic deghosting (blue

line) using the near-trace gather shown in Figure 5.4(b). The average amplitude spectra

before and after deghosting in Figure 5.5(c) show that the low frequencies have been

recovered as a result of the CNN-based seismic deghosting.
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(a) (b)

(c)

Figure 5.5 (a) Auto-correlation of the near-trace gather before free-surface multiple
attenuation and deghosting shown in Figure 5.4(a). (b) Auto-correlation of the near-trace
gather after free-surface multiple attenuation and deghosting shown in Figure 5.4(b). (c)
Amplitude spectra of the near-trace gather before (red line) and after (blue line)
free-surface multiple attenuation and deghosting.
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(a)

(b)

Figure 5.6 (a) NMO-corrected CDP gather before free-surface multiple attenuation and
deghosting after muting the stretch zone. (b) NMO-corrected CDP gather after
free-surface multiple attenuation and deghosting after muting the stretch zone.

109



Next, we use Common Depth Point (CDP) gathers to evaluate the effectiveness of our

CNN-based free-surface multiple attenuation. We first apply a Normal-Moveout Correction

(NMO) to the CDP gathers using a 1-D velocity profile (Keys & Foster, 1998). Because

multiples have a slower velocity than the actual medium velocity, they appear on the

NMO-corrected gathers as not flattened completely (or under-corrected), and the

NMO-corrected CDP gathers help us distinguish between the primary and multiple

reflections (Yilmaz, 2001). Figure 5.6(a) shows NMO-corrected 700th CDP before

free-surface multiple attenuation and deghosting, and Figure 5.6(b) shows NMO-corrected

700th CDP after free-surface multiple attenuation and deghosting using the CNN. The

arrows in Figure 5.6(a) indicate some of the under-corrected multiples, and Figure 5.6(b)

shows that those multiples have been attenuated. We also mute the NMO-corrected

gathers in Figure 5.6 for the stretch zones at large offsets.

We sum the traces in the NMO-corrected CDP gathers, which is referred to as CDP

stacking, to obtain a stack trace at the particular CDP location. The CDP stacking

attenuates multiples to some extent as a result of residual moveout after applying NMO

correction (Yilmaz, 2001). The CDP stack sections of the entire seismic data set after

applying Automatic Gain Control (AGC) with 500 ms time gate (Yilmaz, 2001) for display

purposes before and after the attenuation of surface multiples and deghosting with the

CNN are shown in Figure 5.7(a) and Figure 5.7(b), respectively. The arrow in

Figure 5.7(a) indicates free-surface multiples after CDP stacking using the data before

free-surface multiple attenuation, and as shown in Figure 5.7(b), these multiples are

attenuated by the application of the CNN. The events in Figure 5.7(a) are more continuous

than the reflectors in Figure 5.7(b). Comparing the areas pointed out by the ellipses in

Figure 5.7, the free-surface multiples that mask the primary reflection have been removed

and the continuity of the primary has been recovered after attenuating the free-surface

multiples and removing the ghost reflections using the CNN.
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(a)

(b)

Figure 5.7 (a) CDP stack before free-surface multiple attenuation and deghosting after
applying AGC. (b) CDP stack after free-surface multiple attenuation and deghosting after
applying AGC.
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(a)

(b)

Figure 5.8 (a) Auto-correlation of the near-trace gather before free-surface multiple
attenuation and deghosting shown in Figure 5.7(a). (b) Auto-correlation of the near-trace
gather after free-surface multiple attenuation and deghosting shown in Figure 5.7(b).
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Lastly, Figure 5.8 shows the auto-correlation of the CDP stack section before and after

free-surface multiple attenuation by the CNN in Figure 5.8(a) and Figure 5.8(b),

respectively. The arrows in Figure 5.8(a) point out the remaining free-surface multiples

after CDP stacking, and as shown in Figure 5.8(b), these remaining multiples have been

attenuated by the application of our CNN-based algorithm.

5.4 Conclusions

We apply a CNN-based free-surface multiple attenuation and seismic deghosting to the

Mobil AVO Viking Graben data set. Our CNN-based solution applies a trace-by-trace

attenuation of free-surface multiples and ghost removal, and does not rely on a dense

spatial distribution of sources and receivers. Therefore, our CNN-based method is suitable

for acquisition geometries with irregular and sparse sources and receivers, and the accuracy

of the prediction does not rely upon the availability of the near-offset and neighboring

traces (which is one of the important requirements for the conventional SRME and

deghosting algorithms). We show that while our CNN-based method removes free-surface

effects (i.e., free-surface multiples and ghost reflections), it also preserves and increases the

continuity of the primary reflections in the seismic data. We show that the 1st- and

2nd-order free-surface multiples have been successfully attenuated and the low-frequency

content of the seismic data has been successfully recovered.

5.5 Acknowledgments

This work is supported by the Consortium Project on Seismic Inverse Methods for

Complex Structures at the Colorado School of Mines. The finite-difference forward

modeling examples in this paper were generated using the Madagascar software package

(Fomel et al., 2013). Machine learning implementations were completed using the

TensorFlow source library (https://www.tensorflow.org/).

113



5.6 Data and Materials Availability

Data associated with this research are publicly available and can be obtained by
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CHAPTER 6

FREE-SURFACE MULTIPLE ATTENUATION AND SEISMIC DEGHOSTING FOR

BLENDED DATA USING CONVOLUTIONAL NEURAL NETWORKS

A paper to be submitted to Geophysics

Mert Sinan Recep Kiraz 1,2,3, Roel Snieder3 & Jon Sheiman

Simultaneous source acquisition has become common over the last decade for marine

seismic surveys because of the increased efficiency of seismic acquisition by limiting the

time, reducing the cost, and having less environmental impact than conventional

single-source (or unblended) acquisition surveys. For simultaneous source acquisition,

seismic sources at different locations are fired with time delays, and the recorded data are

referred to as blended data. There are two different ways to process the blended data: (1)

applying conventional processing algorithms after separating the blended data into

individual data sets (also known as deblending), or (2) developing new algorithms for the

blended data. The air-water interface (or free-surface) creates strong multiples and ghost

reflections for blended seismic data. The multiples and/or ghost reflections caused by a

source in blended data overlap with the primary reflections of another source, thus,

creating a strong interference between the primary and multiple events of different sources.

We develop a Convolutional Neural Network (CNN) method to attenuate free-surface

multiples and remove ghost reflections simultaneously from the blended seismic data. The

CNN-based solution we propose operates on single traces and is not sensitive to the

missing near-offset traces, missing traces, and irregular/sparse acquisition parameters (e.g.,

for ocean-bottom node acquisition and time-lapse monitoring studies). We illustrate the

efficacy of our free-surface multiple attenuation and seismic deghosting method by

1Primary researcher and author.
2Author for correspondence. Direct correspondence to mertkiraz@gmail.com.
3Center for Wave Phenomena, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA.
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presenting synthetic and field data applications. The numerical experiments demonstrate

that our CNN-based approach for simultaneously attenuating free-surface multiples and

removing ghost reflections can be applied to the blended data without the deblending step.

Although the interference of primaries and multiples from different shots in the blended

data makes free-surface multiple attenuation harder than the unblended data, we

demonstrate that our CNN-based method effectively attenuates free-surface multiples in

the blended synthetic and field data even when the delay time for the blending is different

in the training data than in the data to which the CNN is applied.

6.1 Introduction

Conventional single-source seismic acquisitions require shots to be recorded separately,

and the time interval between shots is generally set to be large enough to avoid possible

interference between two consecutive shots. Simultaneous source acquisition (also known as

blended acquisition), on the other hand, allows two or more shots to be fired and recorded

with a dithering delay allowing overlap between the reflected waves for different shots

(Beasley et al., 1998, 2012; Berkhout, 2008; Hampson et al., 2008). Simultaneous source

acquisition reduces the environmental impact of seismic data acquisition, the required time,

and the cost of seismic surveys and creates better subsurface illumination with denser

source distribution over the entire survey compared to conventional single-source seismic

acquisitions. The recorded data using the simultaneous source acquisition are referred to as

blended data. To handle the blended data, one can either separate blended data into

individual data sets (also known as deblending) or process the blended data (Berkhout,

2008).

Blended data have been studied for various applications such as migration of blended

data (Verschuur & Berkhout, 2011) and primary estimation using blended data

(Groenestijn & Verschuur, 2011). Additionally, Ma et al. (2016) propose a surface-related

multiple elimination based method and an inverse data processing based method for

free-surface multiple attenution for blended data.
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Regardless of the seismic acquisition type, the presence of the air-water interface (or

free-surface) in marine seismic data causes free-surface multiples and ghost reflections, both

of which need to be removed from seismic data to obtain an accurate image of the

subsurface. Ghost reflections create notches in the frequency spectrum of seismic data

which deteriorates the quality of the low-frequency component of seismic data (Amundsen

& Zhou, 2013). There are different ghost reflections in seismic data namely source-side

ghost, receiver-side ghost, and source and receiver-side ghosts. The source-side ghost

propagates from a source as an up-going wave, the receiver-side ghost propagates to a

receiver as a down-going wave, and the source and receiver-side ghosts is a combination of

a source-side and receiver-side ghosts (Almuteri & Sava, 2023). Free-surface multiples have

at least one downward reflection at the free surface and are one of the most challenging

types of multiples to remove from seismic data. Surface-Related Multiple Elimination

(SRME) (Dragoset et al., 2010; Verschuur et al., 1992) is a method that deals with

free-surface multiples with at least one downward reflection at the free surface. The SRME

method predicts the amplitude and arrival time of free-surface multiples, and has been the

industry standard for attenuating free-surface multiples (Ma et al., 2019). However, SRME

depends on an adaptive subtraction step in which the amplitude discrepancy between the

predicted and actual multiples is minimized. Adaptive subtraction may cause the removal

of the primary reflections from the seismic data in addition to the multiples because of the

overlapping primary and multiple reflections. Moreover, a significant requirement of SRME

is that it requires a dense and regular spatial distribution of sources and receivers, and

knowledge of the acquisition wavelet (Dragoset et al., 2010). Reconstructing the missing

near-offset traces and extending the offsets to the zero-offset is a computationally

demanding and expensive requirement of the SRME method (Dragoset et al., 2010).

In earlier work (Kiraz et al., 2023a,b), we demonstrate successful implementations of

the CNN-based free surface multiple attenuation and deghosting for unblended data.

However, the interference of primary and multiple reflections of one shot with the primary
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and multiple reflections from another shot, and overlapping multiples with different

periodicities blended over the same receiver location make the free-surface multiple

attenuation and ghost reflection removal harder for the blended data. In this paper, we

propose a CNN-based solution for attenuating the free-surface multiples and removing the

source and receiver-side ghost reflections, simultaneously, for blended seismic data. Our

CNN-based solution operates on individual traces and is not sensitive to the missing

near-offset traces, missing traces, and irregular/sparse acquisition parameters (e.g., for

ocean-bottom node acquisition and time-lapse monitoring studies). In Section 6.2, we give

details about the CNN network. We train a network of one-dimensional (1-D) convolutional

layers using two-dimensional (2-D) sub-models of Marmousi velocity model (Versteeg,

1994) and Pluto velocity model (Stoughton et al., 2001). In Section 6.3, we present

predictions using the Sigsbee velocity model (Paffenholz et al., 2002) and the Mobil AVO

Viking Graben data set (Keys & Foster, 1998). We show that our CNN-based algorithm

attenuates the free-surface multiples and removes ghost reflections from previously unseen

blended data and demonstrate that the solution generalizes well for field data application.

6.2 CNN Architecture and Training

Machine learning consists of a set of methods that can reveal patterns in data, and

make predictions for new data by using previously learned patterns (Bishop, 2006; Murphy,

2012). Convolutional Neural Networks (CNNs) are important building blocks in deep

learning methods and they have been widely incorporated in image recognition studies

(Géron, 2019). CNNs can extract complex information and reveal complex patterns in the

data (Bishop, 2006; Ekman, 2021; Géron, 2019).

CNNs have been used to address various problems in exploration seismology such as

obtaining an elastic subsurface model using recorded normal-incidence seismic data (Das

et al., 2019), 3-D seismic fault segmentation (Wu et al., 2019), seismic interpretation (Di

et al., 2020), seismic deghosting (Almuteri & Sava, 2023), 1-D wavefield focusing (Kiraz &

Snieder, 2022), deblending simultaneous source seismic data (Cheng et al., 2022), and
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attenuating free-surface multiples and removing ghost reflections from seismic data (Kiraz

et al., 2023a,b).

We use the CNN architecture proposed by Kiraz et al. (2023a) for attenuating

free-surface multiples and removing source and receiver-side ghosts reflections from blended

data. For the training model selection, we extract 15 sub-models from the Marmousi model

which are shown in Figure 6.1(a). We also extract 37 sub-models from the Pluto model as

shown in Figure 6.1(b). We add a water layer 500 m thick to the top of each model with

1500 m/s velocity and 1 g/cm3 density. Each one of the 52 models used for training has 2.4

km horizontal extent and 2.4 km depth which includes the water column, 600 receivers,

and two source locations for modeling the blended data. For each velocity model, we use a

density model below the water bottom that is a scaled version of the velocity model by a

factor two (and the units are converted from km/s to g/cm3). The reflection coefficient at

the water bottom thus obtained is comparable to the seafloor reflection coefficient given by

Kim et al. (2004).

In simultaneous source acquisition, multiple sources are fired at different locations.

Berkhout (2008) represents the blended seismic data as a linear combination of single

sources using a blending operator that acts on one of the recorded waveforms. Following

Berkhout (2008), for the synthetic data, we numerically create blended data using two

unblended shot records fired at different locations and recorded at the same receiver

locations with a blending operator. Figure 6.2 shows an illustration of the acquisition

geometry for modeling the unblended shots used for the synthetic examples in this paper.

In Figure 6.2, the red and blue explosion marks denote different source locations, and the

white triangles denote the receiver locations. Each row in Figure 6.2 represents a blended

shot record, the red mark being the source location 1 and the blue mark being the source

location 2 (to which the blending operator is applied). The source and receiver depths stay

the same at each row in Figure 6.2, and the receivers that record each of the unblended

shot records are located at the same locations.
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(a)

(b)

Figure 6.1 (a) Marmousi velocity model. (b) Pluto velocity model.
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Figure 6.2 Illustration of the acquisition geometry for modeling the unblended shots for the
synthetic data. Red and blue explosion marks denote different shot locations, and the
white triangles denote the receiver locations. Each row represents a blended shot record for
two source locations (red and blue explosion marks).

As an example of the blending process for the synthetic data, Figure 6.3(a) shows the

shot record modeled at 0.2 km horizontal position at 7 m depth after removing the direct

arrival. We remove the direct arrival from the recorded data during the training and

prediction steps for both the synthetic and the field data. Figure 6.3(b) shows the shot

record modeled for a source at 1.25 km horizontal position at 7 m depth after removing the

direct arrival. Figure 6.3(c) shows the shot record in Figure 6.3(b) after adding a time-shift

operator of 0.35 s which is constant for the training data. Figure 6.3(d) shows the blended

shot record by combining two unblended shot records shown in Figure 6.3(a) and

Figure 6.3(c). For the synthetic examples, the 600 receivers are placed along 2.4 km

horizontal extent with the receiver sampling of 4 m at a depth of 8 m. The arrows in

Figure 6.3 point to some of the free-surface multiples and indicate the presence of

overlapping primaries and multiples in the blended data in Figure 6.3(d).
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(a) (b)

(c) (d)

Figure 6.3 (a) Unblended shot record modeled for a source at 0.2 km. (b) Unblended shot
record modeled for a source at 1.25 km. (c) Shot record in (b) after adding 0.35 s
time-shift. (d) Blended shot record. Black arrows point to the 1st- and 2nd-order multiples.
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After creating the blended shot records using sub-models of the Marmousi and Pluto

velocity models, Figure 6.4(a) shows 5 of 52 blended shot records of the data modeled with

free-surface which are used as the training input after removing the direct arrival, and

Figure 6.4(b) shows 5 of 52 blended shot records of the data modeled without free-surface

which are used as the training output after removing the direct arrival.

(a)

(b)

Figure 6.4 (a) 5 of 52 blended shot records of the input training data (with free-surface
multiples and ghost reflections). (b) 5 of 52 blended shot records of the output training
data (without free-surface multiples and ghost reflections).

123



(a)

(b)

Figure 6.5 (a) A sub-model of Sigsbee velocity model used for the prediction. (b)
Corresponding density model of Sigsbee velocity model used for the prediction in (a).
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(a) (b)

(c) (d)

Figure 6.6 (a) Numerically modeled shot record with the free-surface multiples (input data)
obtained using the velocity model given in Figure 6.5. (b) Numerically modeled shot record
without the free-surface multiples (output data/ground truth) obtained using the velocity
model given in Figure 6.5. (c) Predicted shot record without the free-surface multiples
using CNNs. (d) Difference between the ground truth data (Figure 6.6(b)) and the CNN
prediction (Figure 6.6(c)). Black arrows point to the 1st- and 2nd-order multiples.
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6.3 Numerical Examples

In this section, we demonstrate our CNN-based free-surface multiple attenuation and

ghost removal for blended data with numerical examples. First, we illustrate the efficacy of

our CNN-based algorithm using a synthetic example. For the synthetic example, we use

two different shot records recorded at the same receiver locations to model the blended

data. We then apply our CNN-based algorithm to a field data set. For the field data

example, we use two different shot records recorded at different receiver locations to model

the blended data. For the details of the CNN architecture used in this paper, we refer the

reader to Kiraz et al. (2023a).

6.3.1 Synthetic Data Example

We first test our CNN algorithm using a sub-model of the Sigsbee velocity model,

which was not used for the training, and Figure 6.5(a) shows the velocity model, and

Figure 6.5(b) shows the corresponding density model used for modeling the prediction

data. The white lines in Figure 6.5 denote the receiver locations at a depth of 8 m with a

receiver sampling of 4 m, and the black asterisks denote the two different source locations

used to create the blended shots with a time-shift of 0.35 s with free-surface multiples and

ghost reflections at offsets 0.2 km and 1.25 km at a depth of 7 m. The water column is 500

m deep with a velocity of 1500 m/s and a density of 1 g/cm3.

After the creation of synthetic data for prediction, we use our CNN-based algorithm to

attenuate free surface multiples and source and receiver-side ghosts reflections.

Figure 6.6(a) shows the blended shot record modeled with free-surface multiples and ghost

reflections using the velocity and density models shown in Figure 6.5, which is the input to

the CNN network. Figure 6.6(b) shows the desired output, the numerically modeled

blended shot record without free-surface multiples and ghost reflections using the velocity

and density models shown in Figure 6.5. The black arrows in Figure 6.6 point to some of

the free-surface multiples in the blended data. Figure 6.6(c) shows the blended data after
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CNN-based free-surface multiple attenuation and ghost removal. Figure 6.6(d) shows the

difference between the ground truth (Figure 6.6(b)) and the CNN prediction

(Figure 6.6(c)). The black arrows in Figure 6.6(c) and Figure 6.6(d) point to the areas

where the free-surface multiples have been suppressed in the CNN prediction. The

difference plot in Figure 6.6(d) shows that the multiples caused by free-surface have been

attenuated. However, Figure 6.6(d) also shows an amplitude mismatch between the desired

and predicted waveforms, especially for times later than 2.35 s.

To investigate the efficacy of our CNN-based algorithm at various offsets for different

subsurface models, we extract a velocity model from the Sigsbee velocity model which is

shown in Figure 6.7. Following the steps described in Section 6.2 (also in Figure 6.3) for

blended data creation, we use the velocity model shown in Figure 6.7 and model the

blended shots starting from 0.2 km and 1.25 km positions with 80 m source intervals. We

model 68 blended waveforms which are used as an input to the network, and Figure 6.8(a)

shows the leftmost trace of each blended input shot record. Figure 6.8(b) shows the

near-trace gathers from each blended shot record of the desired output (e.g., the leftmost

trace from Figure 6.6(b)). Figure 6.8(c) shows the near-trace gathers from each blended

shot record of the CNN prediction (e.g., the leftmost trace from Figure 6.6(c)). The arrows

in Figure 6.8(a) point to the areas where the multiples caused by the free-surface such as

1st- and 2nd-order surface-related multiples and top-salt peg-leg multiples in the near-trace

gather, and in Figure 6.8(c) these multiples have been attenuated by the application of the

CNN. Figure 6.8 shows that the free-surface multiples at times around 1.35 s and 1.9 s, and

the peg-leg multiples at times around 2.4 s have been suppressed at the near-offsets. The

hyperbolic arrivals in Figure 6.8 correspond to diffractions from the salt model in

Figure 6.7.

Figure 6.9(a) shows the traces extracted from the middle of each blended input shot

record (e.g., the middle trace from Figure 6.6(a)) (which will be referred to as the

mid-trace gather). Figure 6.9(b) shows the mid-trace gathers of the desired output (e.g.,

127



the middle trace from Figure 6.6(b)). Figure 6.9(c) shows the mid-trace gathers of the

CNN prediction (e.g., the middle trace from Figure 6.6(c)). Figure 6.9(c) shows that the

1st- and 2nd-order surface-related multiples and top-salt peg-leg multiples indicated by the

arrows in Figure 6.9(a) have been attenuated. Figure 6.9 shows that the free-surface

multiples at times around 1.5 s and 1.65 s, and the peg-leg multiples at times around 2 s

and 2.3 s have been suppressed at the mid-offsets.

Figure 6.10(a) shows the traces extracted from the rightmost of each blended input shot

record (e.g., the rightmost trace from Figure 6.6(a)) (which will be referred to as the

near-trace gather). Figure 6.10(b) shows the far-trace gathers of the desired output (e.g.,

the rightmost trace from Figure 6.6(b)). Figure 6.10(c) shows the far-trace gathers of the

CNN prediction (e.g., the rightmost trace from Figure 6.6(c)) and the multiples indicated

by the black arrows in Figure 6.10(a) have been attenuated in the far-offsets. Figure 6.10

shows that the free-surface multiples at times around 1.9 s and 2 s, and the peg-leg

multiples at times around 2.5 s have been suppressed at the far-offsets. The black arrows in

Figure 6.8, Figure 6.9, and Figure 6.10 point to the areas where the free-surface multiples

have been attenuated in the CNN prediction at various offsets.

Figure 6.7 Extracted velocity model from the Sigsbee velocity model.
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(a) (b)

(c)

Figure 6.8 (a) Near-trace gather of the input blended data before free-surface multiple
attenuation and deghosting. (b) Near-trace gather of the desired blended output. (c)
Near-trace gather of the CNN prediction. Black arrows point to the 1st- and 2nd-order,
and peg-leg multiples recorded at the near-offset section.
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(a) (b)

(c)

Figure 6.9 (a) Mid-trace gather of the input blended data before free-surface multiple
attenuation and deghosting. (b) Mid-trace gather of the desired blended output. (c)
Mid-trace gather of the CNN prediction. Black arrows point to the 1st- and 2nd-order, and
peg-leg multiples recorded at the mid-offset section.
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(a) (b)

(c)

Figure 6.10 (a) Far-trace gather of the input blended data before free-surface multiple
attenuation and deghosting. (b) Far-trace gather of the desired blended output. (c)
Far-trace gather of the CNN prediction. Black arrows point to the 1st- and 2nd-order, and
peg-leg multiples recorded at the far-offset section.
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We use auto-correlation to investigate the periodicity associated with multiples

(Yilmaz, 2001). Figure 6.11(a) shows the auto-correlation of the near-trace input data with

free-surface multiples and ghost reflections shown in Figure 6.8(a), Figure 6.11(b) shows

the auto-correlation of the near-trace desired data without free-surface multiples and ghost

reflections shown in Figure 6.8(b), and Figure 6.11(c) shows the auto-correlation of the

near-trace after application of the CNN-based algorithm shown in Figure 6.8(c). The

periodicity of the water-bottom multiples is around 0.6 s, and the black arrows in

Figure 6.11 point to the maxima that correspond to periodicities in the waveforms caused

by the free-surface multiples that have been attenuated and their periodicity is not evident

in the auto-correlation plot of the CNN prediction data.

We evaluate the CNN predictions for seismic deghosting by comparing the average

amplitude spectra of the near-trace gathers shown in Figure 6.8. Figure 6.12 shows the

average amplitude spectra on the log-log scale for the input near-trace gather shown in

Figure 6.8(a) (red line) before free-surface multiple attenuation and ghost removal, the

desired near-trace gather shown in Figure 6.8(b) (blue line) after free-surface multiple

attenuation and ghost removal, and CNN prediction near-trace gather shown in

Figure 6.8(c) (black line) after free-surface multiple attenuation and ghost removal. The

average amplitude spectra in Figure 6.12 show that the CNN accurately recovers the

low-frequency component of the spectrum, and the spectra of the numerically modeled and

predicted match closely.

6.3.2 Field Data Example

For the field data application, we use the Mobil AVO Viking Graben data set acquired

in the North Sea over the Viking Graben (Keys & Foster, 1998). This data set has been

used to test different AVO methods and/or seismic data processing applications (Keys &

Foster, 1998; Lumley et al., 1998; Madiba & McMechan, 2003).
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(a) (b)

(c)

Figure 6.11 (a) Auto-correlation of the near-trace input blended data with free-surface
multiples and ghost reflections shown in Figure 6.8(a). (b) Auto-correlation of the
near-trace desired blended output without free-surface multiples and ghost reflections
shown in Figure 6.8(b). (c) Auto-correlation of the near-trace CNN prediction shown in
Figure 6.8(c). Black arrows point to the areas where the periodicity of free-surface
multiples has been suppressed.
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Figure 6.12 Average amplitude spectra in a log-log scale for the input near-trace gather
shown in Figure 6.8(a) (red line), the desired near-trace gather shown in Figure 6.8(b)
(blue line), and CNN prediction near-trace gather shown in Figure 6.8(c) (black line).

The Mobil AVO Viking Graben data set has 1001 shot records with 6 s recording length

and a 4 ms sampling rate. There are 120 receivers for each show in a streamer that is

towed along with the sources, and the near-offset receiver is located at 262 m and the

far-offset receiver is located at 3237 m. The receivers are located at 10 m depth, and the

air-gun array is placed at 6 m depth. Both the source and receiver group interval is 25 m,

and the study area has a water depth of approximately 350 m (Keys & Foster, 1998;

Madiba & McMechan, 2003).

For the CNN training for the field data application, we use the source and receiver

geometry and the water depth of the Mobil AVO Viking Graben data set, and create

synthetic data using sub-models of the Marmousi and Pluto velocity models. Different

from the synthetic data examples, we first apply several pre-processing steps and blend the

field data set. We then apply our CNN-based free-surface multiple attenuation and seismic

deghosting algorithm to the blended field data set.

As a first pre-processing step, we remove the direct arrival, and account for the

geometric spreading in both the synthetic and field data sets. For the training data, we
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account for the 2-D effects of geometric spreading of the synthetic training data set by

applying a
√
t gain, and the three-dimensional (3-D) effects of geometric spreading of the

field data set by applying a t gain (Liner, 2016). We only use the first 3.5 s of the seismic

data and apply a band-pass filter with 15 Hz and 50 Hz pass bands to the field data set to

match the frequency content of the training data. Lastly, we normalize the synthetic data

by the maximum amplitude prior to training, and the field data set by the maximum

amplitude prior to prediction (Géron, 2019).

Figure 6.13 Illustration of the acquisition geometry for modeling the unblended shots for
the Mobil data. Red and blue explosion marks denote the source locations and the
triangles denote the receiver locations. Each row represents a blended shot record for two
source locations (red and blue explosion marks). Data recorded by the same-colored
receivers are blended.

The Mobil AVO Viking Graben data set is an unblended data set. After applying the

pre-processing steps described above, we blend the Mobil AVO Viking Graben data set

using two unblended shot records fired at different locations and recorded at different

receiver locations with a blending operator. Figure 6.13 shows an illustration of the

acquisition geometry for the unblended shots of the Mobil AVO Viking Graben data set.

Similar to Figure 6.2, the red and blue explosion marks denote different source locations,

and the triangles denote the receiver locations. The data recorded by the same-colored
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receivers are blended. Each row in Figure 6.13 represents a blended shot record, the red

mark being the source location 1 and the blue mark being the source location 2 (to which

the blending operator is applied). Although the source and receiver depths stay the same

at each row in Figure 6.13, different from Figure 6.2, receivers that record each of the

unblended shot records are located at different locations.

Figure 6.14 shows an example of the blending process for the field data set after

applying the pre-processing steps described above. Figure 6.14(a) shows the shot record

750 of 1001 shot records from the field data. Figure 6.14(b) shows the shot record 252.

Figure 6.14(c) shows the shot record in Figure 6.14(b) after 0.7 s time-shift. Figure 6.14(d)

shows the modeled blended shot record 750 for the field data set.

After blending the field data, we use our CNN-based algorithm to attenuate free-surface

multiples and ghost reflections. Figure 6.15(a) shows the blended shot record 750 (also

shown in Figure 6.14(d)) before free-surface multiple attenuation and deghosting. We then

use this blended data set as an input to the network and Figure 6.15(b) shows the CNN

prediction after simultaneous attenuation of free-surface multiples and deghosting. The

black arrows in Figure 6.15 point to the areas where free-surface multiples have been

attenuated in the blended Mobil AVO Viking Graben data set.

Because the free-surface multiples in Figure 6.15 do not stand out, we present the

near-offset sections where the multiples stand out more. Figure 6.16(a) shows the

near-offset gather of the blended field data set before free-surface multiple attenuation and

seismic deghosting. Figure 6.16(b) shows the near-trace gather of the blended data set

after simultaneous free-surface multiple attenuation and seismic deghosting using CNNs.

The black arrows in Figure 6.16 point to the suppression of multiples by the CNN-based

algorithm. Figure 6.16 shows that the free-surface multiples have been suppressed by our

CNN-based algorithm.
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(a) (b)

(c) (d)

Figure 6.14 (a) Shot record 750 of the field data set. (b) Shot record 252 of the field data
set. (c) Shot record 252 after 0.7 s time-shift. (d) Modeled blended data shot record 750
for the field data set.
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(a)

(b)

Figure 6.15 (a) Shot record 750 of the blended field data set before free-surface multiple
attenuation and deghosting. (b) Shot record 750 of the blended field data set after
free-surface multiple attenuation and deghosting. Black arrows point to the areas where
the free-surface multiples have been suppressed.
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(a) (b)

Figure 6.16 (a) Near-trace gather of the blended field data before free-surface multiple
attenuation and deghosting. (b) Near-trace gather of the blended field data after
free-surface multiple attenuation and deghosting using CNNs. Black arrows point to the
1st- and 2nd-order free-surface multiples.

We start the blending process for the Mobil data set by blending the shot records from

the leftmost (e.g., shot record 1) and rightmost (e.g., shot record 1001) of the Mobil AVO

seismic line which is illustrated on the first row of Figure 6.13. Then we use shot records 2
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and 1000, 3 and 999, and so on to create the blended shot records. The flipped appearance

of the reflectors in Figure 6.16 around 1.2 s and 1.7 s of the reflections around 0.5 s and 1 s,

respectively, is because of the blending process we use.

We evaluate the CNN predictions for seismic deghosting by comparing the average

amplitude spectra before and after CNN-based free-surface multiple attenuation and

seismic deghosting using the near-trace gathers shown in Figure 6.16. Figure 6.17 shows the

average amplitude spectrum before free-surface multiple attenuation and seismic deghosting

(red line) of the near-trace gather shown in Figure 6.16(a), and the average amplitude

spectrum after free-surface multiple attenuation and seismic deghosting (blue line) using

CNNs of the near-trace gather shown in Figure 6.16(b). The average amplitude spectra

before and after deghosting in Figure 6.17 illustrate the recovery in the low-frequency

component of the field blended data set as a result of the CNN-based seismic deghosting.

Figure 6.17 Average amplitude spectra in a log-log scale for the input near-trace gather
shown in Figure 6.16(a) (red line) before free-surface multiple attenuation and deghosting,
and CNN prediction near-trace gather shown in Figure 6.16(b) (blue line) after free-surface
multiple attenuation and deghosting.
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(a) (b)

Figure 6.18 (a) Near-trace gather of the blended field data using a time-shift of 0.8 s before
free-surface multiple attenuation and deghosting. (b) Near-trace gather of the blended field
data using a time-shift of 0.8 s after free-surface multiple attenuation and deghosting using
CNNs Black arrows point to the 1st- and 2nd-order free-surface multiples. Training of the
network was based on 0.7 s and 1 s time-shifts.

To test the robustness of the CNN multiple suppression to variations in the dithering

time, we use the blended data modeled using 0.7 s and 1 s delay times as the blending

operator for training data, and we use the blended field data set using 0.8 s delay time for

the CNN prediction. Figure 6.18(a) shows the near-offset gather of the blended field data
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set using 0.8 s delay time before free-surface multiple attenuation and seismic deghosting.

Figure 6.18(b) shows the near-trace gather of the blended data set using 0.8 s delay time

after simultaneous free-surface multiple attenuation and seismic deghosting using CNNs.

The black arrows in Figure 6.18 point to the suppression of multiples by the CNN-based

algorithm. This example shows that our CNN-based method attenuates the free-surface

multiples and ghost reflections in the blended data created with different a time-shift that

is unknown to the network.

6.4 Conclusions

We propose a CNN-based simultaneous free-surface multiple attenuation and seismic

deghosting for blended data. The numerical examples we present show that our

CNN-based approach removes free-surface multiples and ghost reflections from the blended

data when two shots fired from different locations are used for blending. Our CNN-based

algorithm does not suffer from the strong interference between the primary and multiple

reflections of different shots used for blending. The field data application we present shows

that the CNN-based free-surface multiple attenuation and deghosting can be generalized to

the field data set applications when the CNN is trained with synthetic data. We show both

in the synthetic and field blended data applications that the free-surface multiples have

been attenuated, the low-frequency content of the blended seismic data has been recovered,

and source and receiver-side deghosting has been successfully applied. We show that by

using different delay times for training, the CNN-based algorithm we propose can be

generalized further for delay times for the blended field data applications that have not

been used in the training.
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CHAPTER 7

CONCLUSIONS

In this thesis, I propose algorithms to remove internal and free-surface multiples, and

ghost reflections from seismic data. In Chapter 2, I introduce a two-dimensional (2-D)

Marchenko equation that successfully retrieves the Green’s function for a virtual source

location in the subsurface. I show that the proposed Marchenko method does not require

component separation for the Green’s function retrieval, which forms the basis for

obtaining multiple-free images of the subsurface.

In Chapter 3, I present a background velocity model dependence analysis of the

Marchenko method on the reflected and refracted waves. The synthetic numerical tests

demonstrate that in order to retrieve the Green’s function using the Marchenko equation

with high accuracy, a constant background model for the Marchenko algorithm suffices as

long as the average slowness between the virtual source and receiver locations is known. I

also show that the presence of refracted waves in the retrieved Green’s function depends on

the smoothness of the background velocity model.

In Chapter 4, I develop a Convolutional Neural Network (CNN)-based algorithm that

simultaneously attenuates free-surface multiples and ghost reflections in seismic data. The

developed algorithm operates on a single trace and does not require trace interpolation,

extrapolation, or regularization for data gaps in seismic data, which can be expensive and

time-consuming to fulfill. The proposed algorithm, therefore, can be applied to surveys

with irregular acquisition such as ocean-bottom node seismic data or missing near-offset

recordings for streamer surveys. Using the CNN-based algorithm, the attenuation of

free-surface multiples does not require amplitude matching and/or subtraction steps unlike

the industry-standard techniques (e.g., Surface-Related Multiple Elimination (SRME)).

The synthetic numerical examples demonstrate that the CNN-based algorithm successfully
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removes free-surface multiples and ghost reflections at various offsets in seismic data.

In Chapter 5, I apply the algorithm developed in Chapter 4 to a field data set from the

North Sea. Using only synthetic data to train the CNN, I show that the application of

simultaneous free-surface multiple attenuation and deghosting can be generalized to field

data, and the algorithm significantly attenuates free-surface multiples and applies

deghosting, simultaneously, in the field data set. The results also show that the CNN-based

algorithm preserves the primary reflections and increases their continuity while removing

free-surface effects from the field data set.

In Chapter 6, I extend the CNN-based algorithm presented in Chapter 4 to the

simultaneous source acquisition seismic data (or blended data). The effects of free-surface

multiples in blended data are more significant than for unblended data because in the

blended data there are more overlapping multiple and primary reflections from various

offsets than in single-shot data. I apply the CNN-based algorithm to the field data set from

the North Sea and show that the network trained with synthetic data can be applied to the

blended field data set to remove free-surface effects. The numerical examples in this

chapter demonstrate that the CNN-based algorithm successfully removes free-surface

effects from blended data.

7.1 Future Research

The proposed algorithms in this thesis can be further generalized for different

applications. Below I make recommendations for future research.

7.1.1 Imaging Through The Skull Using The Marchenko Equation

The Marchenko equation I develop in Chapter 2 enables wavefield focusing in an

unknown complicated structure where the object is surrounded by sources/receivers where

the up/down separation of the focusing function does not work. A possible application for

this type source/receiver geometry can be imaging of the human brain. Guasch et al.

(2020) present challenges related to successfully imaging inside the adult human skull, and
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use FWI for brain imaging. The human skull causes scattering of the acoustic waves and

this limits the successful imaging of the human brain (Guasch et al., 2020). The

Marchenko equation I propose has the potential to create virtual sources within the brain

so that the strong scattering caused by the skull can be eliminated. Propagating acoustic

waves through the skull can then be achieved using the Marchenko equation I develop in

Chapter 2.

7.1.2 Non-Destructive Testing Using The Marchenko Equation

Non-Destructive Testing (NDT) in civil engineering is used for assessing the quality and

damages of structures like buildings, bridges, and dams (Müller et al., 2012). Seismic

imaging techniques like reverse time migration has been successfully implemented as an

imaging technique for NDT (Müller et al., 2012). One may apply the Marchenko equation I

propose in Chapter 2 to retrieve the Green’s function for virtual source locations, and by

developing an imaging condition, imaging can be performed for NDT purposes when the

object under investigation is surrounded by sources and receivers. However, developing an

imaging condition for the Marchenko equation I propose needs further investigation.

7.1.3 Velocity Model Dependence Of Marchenko Imaging

An initial velocity model is an important requirement of the conventional imaging

algorithms (Baysal et al., 1983), full-waveform inversion algorithms (Virieux & Operto,

2009), and Marchenko imaging algorithms (Wapenaar et al., 2014). However, obtaining an

accurate initial velocity model is not a trivial task. In Chapter 3, I show that a constant

velocity model used for the Marchenko algorithm enables the retrieval of the Green’s

function with high accuracy if the average slowness is known between the receiver and the

virtual source location. The proposed algorithm in Chapter 2 and examples in Chapter 3

have the potential to provide useful information about the velocity model dependence of

the Marchenko imaging.
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7.1.4 Focusing Waves In An Unknown 3-D Medium Without Wavefield
Decomposition

In Chapter 2, I propose a Marchenko equation for wavefield focusing in an unknown

medium and show that the Green’s function for a virtual source location can be retrieved.

The equation I propose is valid for 2-D media and holds equally well in three-dimensional

(3-D) media. However, strategies for addressing implementation issues, in particular

sampling and computational aspects, need further investigation.

7.1.5 Wavefield Focusing Using CNNs In Multi-Dimensional Media

Although not presented as a technical chapter in this thesis, I propose a CNN-based

solution for wavefield focusing in one-dimensional (1-D) media (Kiraz & Snieder, 2022). By

training a CNN using the surface-recorded data as the training input data, and the focused

wavefield as the training output data, the proposed algorithm retrieves the Green’s

function for a virtual source location in 1-D media without the need to solve the

Marchenko equation. Figure 7.1(a) shows the traces modeled for sources located at 0.1 km

and receivers located at the surface (input data to the network), Figure 7.1(b) shows the

desired output, the traces modeled for virtual sources located at 0.43 km in the subsurface

and receivers located at the surface. Figure 7.1(c) shows the CNN prediction, all of which

are presented in Kiraz & Snieder (2022). In Figure 7.1(b) and Figure 7.1(c), the black

arrows point to the direct arrivals, the red arrows point to some of the primary reflections,

and the blue arrows point to some of the internal multiples (although not as strong as the

primaries) caused by the virtual source location in the subsurface. I show in Figure 7.1

that I can predict the Green’s function for an arbitrary depth location and our algorithm

only requires the surface-recorded data as the input. A further investigation on extending

this CNN-based method into 2-D and 3-D media can be performed.
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(a) (b)

(c)

Figure 7.1 (a) Input data for the network, traces modeled for sources located at 0.1 km and
receivers located at the surface. (b) Desired output, traces modeled for virtual sources
located at 0.43 km in the subsurface and receivers located at the surface. (c) CNN
prediction.

Additionally, Physics-Informed Neural Networks (PINNs) can also be used for solving

the Marchenko equation. PINNs provide a neural network approach that satisfies any

physical law described by general nonlinear equations (Raissi et al., 2019). PINNs have

successfully addressed problems like solving the wave equation (Moseley et al., 2020; Song

et al., 2021), velocity inversion (Xu et al., 2019), and anisotropic eikonal solution (Waheed

et al., 2020). One can also incorporate PINNs for solving the Marchenko equation and
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retrieving the Green’s function in multi-dimensional media.

7.1.6 Ocean-Bottom Node Seismic Data

The use of Ocean-Bottom Node (OBN) for seismic surveys has become more popular

over the last decade in seismic data acquisition, especially for time-lapse monitoring

studies. The nodes in the OBN acquisition are placed on the sea bottom very sparsely

(e.g., 1000 m apart) and in order to apply the SRME, one has to depend on the availability

of a streamer data set which is not always the case. The CNN-based free-surface multiple

attenuation I propose operates on a single trace and is not sensitive to the irregular and/or

sparse receiver sampling of seismic data. Therefore, there is a potential to apply the

CNN-based method on OBN data for free-surface multiple attenuation. Additionally, the

OBN surveys can have large offsets where interference with refracted waves can be

dominant. For instance, Figure 7.2 shows a test I did for removing free-surface effects from

an OBN data set with 8 km offset. Figure 7.2(a) shows the input data to the CNN which is

the numerically modeled data that have free-surface multiples and ghost reflections with

receivers placed at the sea bottom with an 8 km horizontal extent. Figure 7.2(b) shows the

desired output which is the numerically modeled data without a free surface. Figure 7.2(c)

shows the CNN prediction. The black arrows in Figure 7.2 point to some of the free-surface

multiples and the red arrows point to the areas where the refracted waves are present.

Figure 7.2(c) shows that the free-surface multiples at around offset 4.5 km and 2.25 s and

2.75 s have not been eliminated in the CNN prediction. The refracted waves pointed with

the red arrows have been preserved in Figure 7.2(c) and deghosting has been successfully

applied. Although the CNN prediction in Figure 7.2(c) does not completely match the

ground truth shown in Figure 7.2(b), the results can be further improved with

hyperparameter tuning considering these are just initial test results. One can utilize

CNN-based solutions for attenuating free-surface multiples at large offsets where reflections

interfere with refracted waves.
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(a) (b)

(c)

Figure 7.2 (a) Numerically modeled OBN data with 8 km offset with a free surface (input
to the network). (b) Numerically modeled OBN data with 8 km offset without a free
surface (desired output). (c) CNN prediction without a free surface.
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(a) (b)

(c)

Figure 7.3 (a) Numerically modeled data with 200 m water depth with a free surface (input
to the network). (b) Numerically modeled data with 200 m water depth without a free
surface (desired output). (c) CNN prediction without a free surface.
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7.1.7 Short-Period Multiple Seismic Data

The elimination of free-surface multiples for short-period multiples from very shallow

water depths (approximately 0-200 m) is another limitation of the SRME. The near-offset

reconstruction and extending the offsets to zero offset in shallow-water data is significantly

more important compared to the water depths larger than approximately 200 m (Dragoset

et al., 2010). Additionally, obtaining correct amplitudes in shallow-water data requires

additional iterations of the SRME method (Dragoset et al., 2010).

As an example, Figure 7.3 shows a test for removing free-surface effects from a data set

with 200 m water depth. Figure 7.3(a) shows the input data to the CNN which is the

numerically modeled data with free-surface multiples and ghost reflections with 200 m

water depth. Figure 7.3(b) shows the desired output which is the numerically modeled

data without a free surface. Figure 7.3(c) shows the CNN prediction. The CNN prediction

shown in Figure 7.3(c) is unable to recover the amplitude of primary reflections for times

later than 2 s. Although for the earlier times the free-surface multiples have been

attenuated, the amplitude recovery in the CNN prediction does not match the ground

truth shown in Figure 7.3(b). However, these are preliminary results and I have not worked

on tuning the hyperparameters.

Unlike the SRME method, the CNN-based free-surface multiple attenuation algorithm I

propose does not require near-offset reconstruction and has the potential to address some

of the aforementioned limitations. However, strategies for attenuating short-period

multiples using CNNs need further investigation.

7.1.8 Deblending Seismic Data

With the recent advancements of machine learning techniques, different successful

machine learning applications of separating blended data into individual data sets (or

deblending) have been performed (Cheng et al., 2022; Sun et al., 2020, 2022; Wang et al.,

2022; Zu et al., 2020). The CNN architecture I propose can be generalized for deblending
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applications through training.

Figure 7.4 Blended field shot gather (input to the CNN) with a 1 s time-shift operator
(upper left), unblended shot gather (desired output) (upper right), CNN prediction (lower
left), and the difference between the desired output and CNN prediction (lower right).
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Figure 7.5 From left to right, traces corresponding to receiver number 120 from every
blended field shot gather created with randomly chosen time-shifts between 1 s and 2.5 s,
from the unblended shot gather (desired output), from the CNN prediction, respectively.

To illustrate, I blend the Mobil AVO Viking Graben data (Keys & Foster, 1998) and

apply the CNN-based deblending. I create the blended data by blending a shot gather with

itself and applying a time-shift operator. For the time-shift operator, I use randomly

chosen time delays between 1 s and 2.5 s with a 0.5 s increment. As an example for the 1 s

time-shift operator, Figure 7.4 shows the blended field shot gather (input to the CNN)

(upper left), unblended shot gather (desired output) (upper right), the CNN prediction

(lower left), and the difference between the desired output and CNN prediction (lower

right). The difference waveform in Figure 7.4 (lower right) shows that although there is a

small amplitude discrepancy at times later than 2.5 s, the effects of the blended shot gather
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have been greatly eliminated.

I extract the traces corresponding to receiver number 120 (also referred to as near-trace

gather) from every blended field shot gather created with randomly chosen time-shifts

between 1 s and 2.5 s, from the unblended shot gather (desired output), from the CNN

prediction, and they are shown in Figure 7.5 from left to right, respectively. The random

time shifts appear as incoherent noise between 1.5 s and 4 s on the left in Figure 7.5. The

CNN prediction near-trace gather in Figure 7.5 (figure on the right) shows that the

incoherent noise has been greatly suppressed and deblending has been applied.

For creating the blended data shown in Figure 7.4 and Figure 7.5, I blend a shot gather

with itself. However, one can use different shot gathers to create the blended data and this

approach can be generalized. Moreover, different time-shift operators can be included in the

training and the CNN-based deblending can be further generalized for different data sets.

7.1.9 Incorporating Variations In Acquisition Into CNN

For obtaining the best prediction results in CNN-based solutions, training data need to

contain parameters close to that of the prediction data. However, generalizing the CNN for

variations in acquisitions such as source directionality, source signature, sea depth,

sea-bottom topography, receiver spacing, frequency content, 2-D vs. 3-D data, and

near-and far-offset receiver spacing would be of great use for seismic exploration problems.

Seismic surveys typically have variations between the consecutive shots and generalizing

the CNN-based algorithms for such variations address serious limitations and eliminate the

need for training the CNN for specific problems.

7.1.10 Unboxing CNNs

The use of CNNs for seismic problems has become popular over the last decade. One of

the advantages of utilizing CNN-based solutions for problems such as attenuating

free-surface multiples is that they do not require an in-depth understanding of the CNNs.

However, once we fully understand the “black box” behind the CNNs and how CNN tackles
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problems like free-surface multiple attenuation, it will help us utilize CNNs for other

problems in exploration seismology as well. For example, the effects of different activation

functions on the predictions can be investigated for free-surface multiple attenuation.

Throughout this thesis, I use 1-D convolutional layers but a comparison of 2-D and 3-D

convolutional layer predictions can be performed. Strategies for understanding how the

CNN works need further investigation. This, however, is not a trivial question, but one

approach might be to consider the state of the data at the intermediate levels in the

network. We do not know, though, if that would actually be informative.

7.1.11 Addressing 3-D Free-Surface Multiples and Internal Multiples

I present a CNN-based approach for removing the free-surface multiples (1st- and

2nd-order, and peg-leg multiples) in 2-D in this thesis. One can also extend this approach

to free-surface multiple removal in 3-D once the training in 3-D is done. Free-surface

multiples in the in-line and cross-line directions need to be included in the network by

creating input and output data pairs for training. Because our CNN-based approach can

be used for irregular surveys, the requirements of the SRME method in 3-D can be

circumvented. Moreover, the CNN-based approach can be generalized to incorporate the

internal multiples. Similar to the removal of free-surface multiples, internal multiple

removal workflows include (1) predicting the multiples, and (2) subtracting the multiples

from the seismic data (Berkhout & Verschuur, 1997). The CNN-based approach I propose

can be further generalized to mitigate the effects of primary removal when the primary and

multiple reflections overlap during the subtraction step during the internal multiple

elimination.
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