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Breakdown of Wave Diffusion in 2D due to Loops
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The validity of the diffusion approximation for the intensity of multiply scattered waves is tested
with numerical simulations in a strongly scattering 2D medium of finite extent. We show that the
diffusion equation underestimates the intensity and attribute this to both the neglect of recurrent
scattering paths and interference within diffusion theory. We present a theory to quantify this
discrepancy based on counting all possible scattering paths between point scatterers. Interference
phenomena, due to loop paths, are incorporated in a way similar to coherent backscattering.
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Interference phenomena are essential in the multiple
scattering of classical waves. Their consideration led to
the discovery of coherent backscattering [1] and brought
about new measurement techniques, such as diffusive
wave spectroscopy [2] and coda wave interferometry
[3]. Recently, attention has been paid to more complicated
interactions of waves and scatterers [4,5], especially re-
current scattering [6,7].

Recurrent scattering takes place when wave energy
bounces off a particular scatterer, proceeds to bounce
off at least one other scatterer, and subsequently returns
to the original scatterer. This process forms a loop in the
wave path. The connection has been made by van Tiggelen
and Lagendijk between the simplest type of recur-
rent scattering and induced dipole-dipole coupling in
atomic physics [8]. Recurrent scattering has also been
shown to decrease the magnitude of coherent backscatter-
ing [9], and it may be crucial in the Anderson localization
of light [10].

In view of these far-reaching implications, it is remark-
able that standard energy transport theory, or radiative
transfer, ignores the contribution of recurrent scatter-
ing events by accounting for self-avoiding scattering
paths only [11]. This omission follows from the two
approximations needed to render the complete multiple
scattering problem tractable— the independent scatter-
ing approximation for the coherent beam, and the
Boltzmann approximation for the diffuse intensity.
These approximations are so ubiquitous in the literature
that they are frequently invoked without justification.
The redeeming aspect of these simplifications lies in
their ability to conserve energy [5].

For a finite number of scatterers, the self-avoiding
assumption must break down for late times. After a
time equal to the number of scatterers multiplied by the
average time between successive scattering events, 7, a
wave must have revisited a scattering site on average at
least once. Therefore, the predictions of radiative transfer,
and the diffusion approximation [12], should, over time,
progressively underestimate the amount of energy emerg-
ing from a scattering medium of finite extent.
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In this Letter, we represent multiple scattering as a
summation over all possible paths, including recurrent
paths, and quantify the underestimation of the intensity
by the diffusion approximation in 2D. We do this by
counting the self-avoiding and recurrent paths and com-
paring the relative numbers of each at different orders of
scattering. We test this theory with an exact numerical
solution of multiple scattering for 300 isotropic point
scatterers based on a numerical implementation of
Foldy’s method [13—15]. Because of recurrent scattering,
the numerically computed intensity is larger than pre-
dicted by the diffusion approximation at late times. After
independently measuring the scattering mean free path €,
and the group velocity v,, we show that this observed
enhancement agrees well with our theory.

The geometry of the numerical experiment is depicted
in Fig. 1, and the employed parameters are listed in
Table I. A ring of receivers, shown as triangles, encircles
the scattering region. At the center of the scattering
region, a point source (S) at » = 0 emits a band limited
pulse centered about ¢ = 0. Within the diffusion approxi-
mation, the Green’s function for the average total inten-
sity, I(r, t), is the solution of the diffusion equation

ol(r, 1)
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with D = %vEﬂr the diffusion constant, vg the energy
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FIG. 1. The geometry for the numerical experiment: receivers
are shown as triangles, scatterers as black spheres, and the
source as S. The scattering region contains 300 scatterers.
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TABLE 1. Values of parameters for the numerical experiment
and experimentally measured quantities.

Quantity Value
Number of scatterers 300
Radius of scattering region, R 5 mm
Radius to the arc of receivers 6 mm
Dominant wavelength, A 2.5 mm
Scattering mean free path, €, 1.25 = 0.1 mm
Background velocity, ¢ 1500 m/s

Group velocity, v 792 * 36 mm/ms

velocity, and €, the transport mean free path. The bound-
ary conditions require that the solution is finite at the
center of the scattering region and that it vanishes at a
distance ¢, /4 outside the edge of the scattering region:

1<r = Ly z>= 0, 2)

where R stands for the radius of the scattering region [12].
Supplemented with these boundary conditions, the solu-
tion of Eq. (1) is given by

> 7)) Do G
R+7T€ /4
Z Jl (Zm)z

where the Bessel functions of order zero and one are
shown as J, and J;, respectively. The terms z,, denote
the mth zero of the Bessel function of order zero.

In the numerical simulations, the total intensity was
computed by averaging the squared wave field at 12 re-
ceiver locations over 20 different configurations of the
scattering medium. For a single realization, the receivers
were sufficiently far apart to yield uncorrelated signals.
We verified that, in obtaining the estimator of the aver-
age, or coherent, wave field, the incoherent energy dimin-
ished with additional realizations by the factor 1/./Np,
with Ny the total number of realizations. To characterize
the transport of energy, €, and v, were measured inde-
pendently from the numerical data. Since the individual
scatterers radiated isotropically with a scattering cross
section o = 4/k, the transport mean free path, €,
equaled ¢,. Rayleigh scattering (o ~ k%) was not neces-
sary for the purpose of this study. The physical constraint
imposed on the scatterers was that energy be conserved
via the optical theorem [15]. To estimate €, we looked at
the average wave field emerging from four scattering
regions of radii 2, 2.5, 3, and 5 mm while keeping the
density of scatterers constant [16]. By squaring the aver-
age wave field at the receivers and picking its maximum,
we obtained the estimate of €, = €, = 1.25 = 0.1 mm.
When compared to the size of the scattering region (R ~
4¢.), this confirms that we are in the strong scattering re-
gime where wave propagation should be diffusive [17].
The group velocity was estimated by monitoring the ar-
rival time of the maximum of the coherent intensity with
distance. Because of the absence of resonant point scatter-
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ers in our simulations, the energy velocity, v, could be
taken as equivalent to v,. We find v, = vy =792 *
36 mm/ms, almost half of the background velocity.

By inserting the estimated values for €, and vj into
Eq. (3), the accuracy of the self-avoiding assumption can
be evaluated. As seen in Fig. 2, the solution of the dif-
fusion equation approximates the early arriving energy as
well as can be expected. However, the growing number of
recurrent paths with time eventually causes the diffusion
approximation to underpredict the transmitted energy.
Dividing the measured total intensity by the diffusion
solution yields the measured enhancement of energy due
to recurrent scattering, shown in Fig. 3. The recurrent
paths cause the enhancement to grow in time. Given the
poor fit of the diffusion approximation to the measured
total intensity in Fig. 2 for late times, a quantitative
explanation of the enhancement, taking into account the
self-avoiding assumption, is necessary.

The enhancement can be explained with an argument
based on counting the number of different paths through
the scattering region. Ishimaru utilized path counting to
illustrate the self-avoiding approximations made by
Twersky [18]. A combinatoric factor was employed in
determining the decrease of the coherent backscatter-
ing cone due to two-particle recurrent scattering in 3D
[9]. In our theory, all orders of many-particle recurrent
scattering are counted. The inclusion of all orders of
recurrent paths is consistent with the theory of random
walks in 2D [7].

As seen from their “most-crossed” diagram, two dis-
tinct scattering paths traverse a loop in different direc-
tions. Since the two paths have equal length, they
constructively interfere with each other [19]. Taking
this into account, it is evident that all single loop paths
have their intensity doubled by interference, in a way
similar to coherent backscattering. Paths with two loops
have their intensity quadrupled. The complete solution
of the multiple scattering problem includes all the scat-
tering paths and the interference between them. Only
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FIG. 2. The measured total intensity and the diffusion ap-
proximation. Also shown is the measured coherent intensity
and a vertical line marking its termination.
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self-avoiding scattering paths are accounted for within the diffusion approximation. The enhancement of multiple wave
scattering over the diffusion approximation for scattering of order » in a system of N scatterers is thus given by

E(N,n) =

#self-avoiding + 2(#1loop) + 4(#2loops) + 8(#3loops) - - - + #allotherpaths

“

#self-avoiding

where #allotherpaths refers to all paths that have at least
one folded event [9]. The number of scatterers encoun-
tered after a time ¢ is on average equal to 1/ 7. Therefore,
the enhancement in Eq. (4) can be calculated at times t =
nt,. Since we have measured 7, independently, all that
remains is the counting of the different types of paths.
After performing the combinatorics needed to count
the number of different types of paths, the predicted
enhancement of Eq. (4) can be expressed as a finite series

N(N — 1) {(N — n)!

E(N,n) = N
Wom — 1 (n—m— 1IN — n)!
+ ,
= 2" ml(n—3m— DN —n+m)!
%)
Fn) = n—1—[(n— 1)m0d3]' ©)

3
In the appendix, we briefly describe how the enumeration
leads to these equations. The enhancement factor of
Eq. (5) suggests that the time decay of transmitted in-
tensity is nonexponential, in contrast to diffusion, Eq. (3).
Recently, Chabanov et al. reported nonexponential decay
in an experiment with microwaves in which the deviation
from exponential decay was seen as an enhanced trans-
mission [20]. The leading-order correction term to diffu-
sion derived by Mirlin [21] from supersymmetry
calculations predicts a similar enhancement.

Using the independently measured values for €, and v,
to obtain 7, the theoretical prediction of Eq. (4) is com-
pared in Fig. 3 to the measured enhancement of the
intensity from the numerical experiment over the diffu-
sion approximation. At times past the arrival of the
coherent wave (marked by a vertical line), agreement is
seen over 20 orders of scattering. Note that the theory
predicts quite well the rate of increase in enhancement on
the logarithmic plot of Fig. 3. Any change of the normal-
ization used in Fig. 2 would only shift the measured and
theoretical enhancements up or down; their rates of in-
crease with time would still agree. This shows that,
although the diffusion approximation grossly underesti-
mated the measured intensity, the discrepancy can be
understood on the basis of a random walk model.

Past 30 orders of scattering (~ 0.05 ms), the theoretical
enhancement overestimates the measured enhancement.
A number of factors are responsible for this. The devia-
tion of late-time transmission from diffusion has been
studied numerically by Weaver in infinite 2D media [22].
Such a deviation in infinite media suggests that a finite
number of scatterers in a region on the order of the mean
free path contribute in the path enumeration, Eq. (5).
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Additionally, radiative transfer may not be accurately
described by the diffusion approximation, Egs. (1) and
(2), for our finite geometry. Finally, the theory predicts an
enhancement factor of infinity at times past N7y, since the
number of self-avoiding paths, the denominator of Eq. (4),
vanishes at those times. One possibility to improve the
theory is to make 7, a distribution, instead of simply an
average quantity [23,24].

An important step is the extension of this theory to 3D.
The fact that 2D is the lower critical dimension for
localization can be understood by the recurrence of the
random walk in 2D [25]. For a finite scattering volume in
3D, it is not yet clear how the effects of recurrent scatter-
ing will depend on k€, the measure of scattering strength.
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Appendix.—Equation (5) follows from Eq. (4) by
counting the different paths. For N total scatterers and
n scatterings, the number of self-avoiding paths is

NI

T @)

#self-avoiding =
The number of one-loop paths can be expressed with a
similar combinatoric factor describing how many differ-
ent combinations of n — 1 scatterers can be made from N
total scatterers. Additionally, there is a factor F(1, n) that
represents how many different ways one loop can be made
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FIG. 3. The logarithm of the measured enhancement and the
theoretical prediction. The vertical line marks the termination
of coherent energy, after which the diffusion approximation
should apply. The theoretical curve has dots along it that
indicate time intervals 7, or, equivalently, different orders of
scattering.
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from the n — 1 scatterers:

[N — (n.— nl

To illustrate what F(1, n) is counting, consider a one-loop
scattering path that visits the four scatterers labeled a, b,
¢, and d. For this example, n, the number of scatterings,
equals five. Given these scatterers, there are three differ-
ent ways that one loop can be made: (a,b,c, a,d),
(a,b,c,d, a), and (a, b, c,d, b). Therefore, F(1,5) =23
for the one-loop paths.

For the calculation of the function F(1, n), suppose
there is a scattering path with n scatterings. In order to
make a loop, a path must revisit a scatterer after at least
two scatterings off different scatterers. Hence, after one
scattering, there are n — 3 possibilities for a return. After
two scatterings, there are n — 4 possibilities. Extending
this reasoning over n scatterings, it is clear that the total
number of possibilities is equal to the sum of the numbers
1 through n — 3, or

#1loop = F(1, n). (8)

(n —3)(n —2)
5 .
Applying similar logic to paths with two loops, the func-
tion F(2, n) is equal to
(1 = 6)(n = 5)n — H)(n — 3)
g .

This expression is important since it enters into the
equation describing the number of two-loop paths,

F(l,n) = 9)

F(2,n) = (10)

[N—(n—2)]

A general form for F(m,n) can be written that is
consistent with Egs. (9) and (10),

1 mn—m—1)!
2" (n —3m — 1)!m!’

#2loops = F(2, n). (11)

F(m, n) = (12)
where m represents the number of loops. Note that in the
case of no loops (m = 0), the function F(m, n) equals 1. A
general equation for the number of m-loop paths can be
obtained by inserting F(m, n) into Egs. (8) and (11) and
by making the generalization

N!
[N—(n—m)]
Also appearing in Eq. (4) is the number of paths

that are not self-avoiding and do not form loops,
#allotherpaths. By definition

#mloops = F(m, n). (13)

#allotherpaths = #allpaths — #self-avoiding — #1loop
— #2loops — #3loops - - -, (14)

where #allpaths = N(N — 1)""!. Inserting this expres-
sion for #allpaths and Eq. (14) into Eq. (4) gives the
enhancement
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1

E(N,n)=—————
W,n) #self-avoiding

[N(N—1)""!+ 1loop

+ 3(#2loops) + 7(#31oops) - - - ].
(15)
Substituting Eqgs. (7) and (13) into Eq. (15) leads to Eq. (5).
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