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ABSTRACT

We present an imaging method that creates a map of re-
flection coefficients in correct one-way time with no con-
tamination from internal multiples using purely a filtering
approach. The filter is computed from the measured reflec-
tion response and does not require a background model. We
demonstrate that the filter is a focusing wavefield that fo-
cuses inside a layered medium and removes all internal mul-
tiples between the surface and the focus depth. The
reflection response and the focusing wavefield can then
be used for retrieving virtual vertical seismic profile data,
thereby redatuming the source to the focus depth. Decon-
volving the upgoing by the downgoing vertical seismic pro-
file data redatums the receiver to the focus depth and gives
the desired image. We then show that, for oblique angles of
incidence in horizontally layered media, the image of the
same quality as for 1D waves can be constructed. This step
can be followed by a linear operation to determine velocity
and density as a function of depth. Numerical simulations
show the method can handle finite frequency bandwidth data
and the effect of tunneling through thin layers.

INTRODUCTION

From the late 1960s to the early 1980s, much work has been done
on 1D exact inversion methods for scalar wave problems for appli-
cations in geophysics (Ware and Aki, 1969; Burridge, 1980; Coen,
1981). Most derivations use stretching and scaling of the wave
equation to write it in a form resembling the Schrödinger equation
for which the exact inversion method originally was developed
(Agranovich and Marchenko, 1963; Lamb, 1980). The interest
was briefly revived when Rose (2002) showed how 1D focusing

can be achieved with the Marchenko equation, and he used an iter-
ative solution method to demonstrate it. Recently, Broggini et al.
(2012) used the idea to retrieve a virtual vertical seismic profile
(VSP) with the virtual source inside the layered medium at any
depth location and the receivers at the surface. The virtual VSP
was retrieved from surface reflection data and the method was
extended to 3D data-driven redatuming (Wapenaar et al., 2012).
Wapenaar et al. (2013a) derived a new Newton-Marchenko scheme
in 3D to image reflectors without creating ghosts images from in-
ternal multiples. In that sense, such schemes are distinctly different
from known methods that aim to remove internal multiples using
the inverse scattering series (Zhang and Weglein, 2009; Weglein
et al., 2012) or to predict and subtract internal multiples (Jakubo-
wicz, 1998; ten Kroode, 2002) from the reflection data at the sur-
face. Imaging schemes that use Marchenko-type equations focus the
wavefield inside a heterogeneous medium, use the internal multi-
ples to construct correct image amplitudes, and do not create ghost
reflectors because the internal multiples are handled correctly.
Direct inversion using reflection data measured at one side of the

target in 1D is possible for infinite bandwidth data, which is not
available in measured seismic data. Imaging can be achieved with
a limited frequency bandwidth as available from seismic data with a
penalty on the achievable resolution. Similar to the work of Wape-
naar et al. (2013a), our aim is to form an image using only reflection
data measured at one side of the target. By investigating how down-
going and upgoing waves in a layered medium can be focused at a
chosen depth level, we derive an exact imaging scheme. To create
an image of only primary reflection events from measured data at
the surface, it is necessary to redatum the sources and receivers to
the image location. This should be done in a data-driven way. Di-
rection is important, and we keep upgoing and downgoing waves
separated.
In this paper, we follow a different route than Wapenaar et al.

(2013a) by first finding out what is the incident field that creates
a focus just below the bottom interface of a layered medium; we
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call this the focusing wavefield. We then find two relations between
the focusing wavefield, the surface impulse reflection response, and
VSP responses for a source at the focus depth inside a layered
medium. From these relations, we derive an imaging scheme and
show how the image can be used to determine the medium proper-
ties and layer thickness in case waves at several oblique angles of
incidence are used. With a numerical example, we investigate the
effects of finite bandwidth and of tunneling waves on the perfor-
mance of the imaging scheme. In Appendix A, we give a math-
ematical derivation of the results with the aid of the acoustic
reciprocity theorems of the time-convolution and time-correlation
types.

FOCUSING A WAVEFIELD JUST BELOW
A LAYERED MEDIUM

This section is dedicated to finding expressions for the focusing
wavefield. Later, we will investigate how we can retrieve the focus-
ing wavefield from the measured impulse reflection response. For a
normal incidence plane wave, we assume to have measured the
acoustic pressure pðz0; tÞ below the source, but just above the first
reflector, which we denote as the surface. We can describe the
acoustic pressure as the sum of downgoing pþðz; tÞ and upgoing
p−ðz; tÞ waves as pðz; tÞ ¼ pþðz; tÞ þ p−ðz; tÞ, where z is depth
and t is time. We start with a medium containing three layers
and the two interfaces separating them are located at depth levels
z0 and z1 > z0. The densities and velocities in the three layers are
denoted ρi, ci, with i ¼ 0; 1; 2, respectively. The thickness of the
second layer is given by d1 ¼ z1 − z0 and the corresponding
one-way traveltime is denoted t1 ¼ d1∕c1. For a downgoing pres-
sure wave incident on an interface at depth level zi, the local reflec-
tion and transmission coefficients are given by ri, τ

þ
i , and for an

upgoing incident wave by −ri, τ−i . The two-way transmission co-
efficient is given by τ2i ¼ τþi τ

−
i . First, we send a normal incidence

plane downgoing acoustic pressure wave from above and the up-
going field just above z0 consists of an infinite number of events.
The first two are primary reflections followed by a series of multiple

reflections as indicated in Figure 1a. We call the total upgoing field
the impulse reflection response Rðz0; tÞ. The position z0 in the argu-
ment indicates that source and receiver are at the same depth level,
hence p−ðz0; tÞ ¼ Rðz0; tÞ. In the third layer, the downgoing wave-
field consists of a direct arrival followed by multiples. We call this
the transmission response Tþðz1; z0; tÞ, measured at z1 and gener-
ated by the source at z0, hence pþðz1; tÞ ¼ Tþðz1; z0; tÞ. We can
write these upgoing and downgoing pressure fields in the frequency
domain, with radial frequency ω, as

p̂þðz0;ωÞ ¼ 1; p̂−ðz0;ωÞ ¼
r0 þ r1 expð−2iωt1Þ
1þ r0r1 expð−2iωt1Þ

;

(1)

p̂þðz1;ωÞ ¼
τþ0 τ

þ
1 expð−iωt1Þ

1þ r0r1 expð−2iωt1Þ
; p̂−ðz1;ωÞ ¼ 0;

(2)

where the diacritical hat denotes a quantity in frequency domain and
p̂ðz0;ωÞ, p̂ðz1;ωÞ denote the acoustic pressure just above z0 and
just below z1. This notion is used throughout the paper. By expand-
ing the denominator, the infinite number of events are obtained that
belong to the reflection and transmission responses.
From Figure 1a, it is clear that if we are able to eliminate the

second downgoing event just below the reflector at z0, only one
event reaches depth level z1. This would constitute a focused wave-
field at z1. It is achieved by sending in a new downgoing wave with
amplitude r0r1 that reaches depth level z0 at t ¼ t1 as indicated in
Figure 1b. In the figure, all incident waves are time advanced by the
one-way traveltime t1 of the second layer such that the focus occurs
at t ¼ 0. Notice that, by focusing the wavefield at depth level z1, all
internal multiples have been eliminated. Another interesting feature
is that the reflection response in Figure 1b has only two events and
both have the correct local reflection amplitudes of the two reflec-
tors. To create a unit amplitude focus, the inverse of the transmis-
sion response has to be sent in. We denote this downgoing focusing
wavefield fþ1 ðz0; z1; tÞ. The upgoing part is the corresponding re-
flection response, and we denote it f−1 ðz0; z1; tÞ. The argument z1 is
inserted to indicate the depth level just below which the pressure
wavefield is focused. These two wavefields together form the focus-
ing wavefield. By looking at equations 1 and 2, we can see that at z0
the focusing wavefield can be written as

f̂þ1 ðz0; z1;ωÞ ¼
1

T̂þðz1; z0;ωÞ
¼ eiωt1 þ r0r1e−iωt1

τþ0 τ
þ
1

; (3)

f̂−1 ðz0; z1;ωÞ ¼
R̂ðz0;ωÞ

T̂þðz1; z0;ωÞ
¼ r0eiωt1 þ r1e−iωt1

τþ0 τ
þ
1

: (4)

Because time-reversed solutions satisfy the same wave equation,
we investigate the result of sending in the time-reversed reflection
response f−1 ðz0; z1;−tÞ. This is depicted in Figure 2, where the
incident wavefield is the time-reversed reflection response of
Figure 1b given by r1δðtþ t1Þ þ r0δðt − t1Þ. The corresponding re-
flection response is also shown in Figure 2. The first event in
the reflection response, r0r1δðtþ t1Þ, is the time-reverse of the sec-
ond incident wave of the focusing wavefield. The first term in the

a)

b)

Figure 1. Reflection and transmission responses (a) and the focus-
ing wavefields (b).
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second reflection event, δðt − t1Þ is the time-reverse of the first
incident wave of the focusing wavefield. The second term,
−τ20τ21δðt − t1Þ, can be interpreted as minus the direct arrival from
an upgoing source wavefield generated just below z1 and received at
z0. The source strength is equal to the product of the local trans-
mission coefficients. The third term in the reflection event,
τ20τ

2
1r0r1δðt − 3t1Þ, can be interpreted as the first multiple of the

transmission response of the same source at z1 and receiver at
z0. Because all later terms will just be multiples inside the second
layer, we can conclude that sending in the time-reversed reflection
response of the focusing wavefield, f−1 ðz0; z1;−tÞ, results in a new
reflection response that is equal to the time-reverse of the incident
focusing wavefield, fþ1 ðz0; z1;−tÞ, minus the pressure field Green’s
function Gp;−ðz0; z1; tÞ that belongs to an upgoing source at z1 and
pressure field receiver at z0. In the frequency domain, we can ex-
press this as

½f̂þ1 ðz0; z1;ωÞ�� − Ĝp;−ðz0; z1;ωÞ
¼ Rðz0;ωÞ½f̂−1 ðz0; z1;ωÞ��; (5)

and equation 5 can be interpreted as a VSP-type Green’s function
expression in terms of the focusing wavefield and the impulse re-
flection response. The fact that this is only for the upgoing part of
the source wavefield is indicated by the minus-sign in the super-
script with the Green’s function. The superscript p indicates that
it is the pressure field. Notice that, in the time domain, the focusing
wavefield and the Green’s function in the left-hand side of equation
5 are nonzero in mutually exclusive time windows except for the
overlapping time instant t ¼ t1 of the first arrival of the Green’s
function and the last arrival of the time-reversed downgoing focus-
ing wavefield (see Figure 2).
The above focusing result can be used for any number of inter-

faces in the 1D model. In the frequency domain, the reflection and
transmission responses for any layered medium can be written in the
fractional form used above and their denominators are always the
same (Goupillaud, 1961). This means that the focusing wavefield
for a medium with interfaces from z0 to zi can be written as

f̂þ1 ðz0; zi;ωÞ ¼ ½T̂þðzi; z0;ωÞ�−1; (6)

f̂−1 ðz0; zi;ωÞ ¼ R̂ðz0;ωÞ∕T̂þðzi; z0;ωÞ; (7)

f̂þ1 ðzi; zi;ωÞ ¼ 1; (8)

f̂−1 ðzi; zi;ωÞ ¼ 0: (9)

As an example, we extend the model with a third interface at z2,
with z2 > z1. Figure 3 shows seismic pressure reflection responses
to a layered medium with the values for the velocities and densities
of the first four layers in Table 1. In this model, density contrasts are
stronger than velocity contrasts. In the figure, z0 ¼ 75 mmeans that
the source and receiver are 75 m above the first interface,
z1 ¼ 192 m, and z2 ¼ 291 m. The interfaces are indicated in the
plots by horizontal black lines. For all plots, t ¼ 0 is chosen such
that it coincides with first arrival at z2, which is the depth level
where we want to focus the wavefield. Figure 3a shows the acoustic
pressure in this layered medium for a single incident pressure wave.
Figure 3b shows the response for an impulse followed by a second
incident wave. In this case, the upward traveling reflection from z1
arrives at z0 at the same moment the new incident waves arrives at
z0 and together they create only an upgoing wave. At this moment,
the wavefield is focused at depth level z1 as in the first example, but
because the focused wave continues to travel downward it creates
new reflections from the interface at z2 and those waves interact
with all the interfaces. Figure 3c shows the same as 3b, but now
with a third incident wave that is taken such that it arrives at z1
at the same moment that the upcoming reflection from z2 arrives
at z1 and again such that no downgoing wave is created at z1. This
third incident wave creates an extra reflection at z0, which has very
small amplitude and is barely visible in the plot. Figure 3d shows
the final result where the wavefield is focused at z2 and a fourth
incident wave is taken such that it arrives at z0 at the moment that
the upgoing reflected wave from z2 arrives at z0. The incident wave
is again such that no downgoing wave at z0 is created. Now the
wavefield is focused at z2 and no other events occur at that depth
level. The mathematical details of the waves shown in Figure 3d are
given in Appendix A.
It can be seen from Figure 3 that, to focus the wavefield at the

bottom reflector, a finite number of waves have to be sent in from
the first layer. Comparing this result with the result from the pre-
vious example with two interfaces shows that, to focus the wave-
field at the bottom reflector, the number of waves we need to send
into a layered medium is doubled for every reflector that is added.
The corresponding reflection response has the same number of
waves. If we replace z1 by zi in equation 5, the equation is still valid.
We conclude that this is a valid equation for an arbitrarily layered
model and a general derivation is given in Appendix A.
Now we know what the focusing wavefield looks like. The

downgoing focusing wavefield incident on a layered medium
with interfaces from z0 to the focus depth zi has 2i waves and
the reflection response has the same number of waves. At the level
z0, the focusing wavefield exists in the time domain between
−tdðzi; z0Þ ≤ t ≤ tdðzi; z0Þ, tdðzi; z0Þ ¼

P
i
n¼1 dn∕cn being the

one-way traveltime across the layered medium. We also know that,
at the focus time, the upgoing part at the receiver level contains the
local reflection coefficient ri scaled by the product of local trans-
mission coefficients. This will be useful for imaging if we are able
to make three more steps. First, we should be able to use this focus-
ing wavefield to focus inside a layered medium. Second, we
must find the way to determine this focusing field from the mea-
sured reflection data, and as third step we must formulate an imag-
ing scheme. Each step is carried out in the three subsequent
sections.

Figure 2. The time-reverse of the reflection response generated by
the focusing wavefield of Figure 1b incident on the same medium.
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FOCUSING THE WAVEFIELD INSIDE
A LAYERED MEDUM

We extend the layered model further by introducing an arbitrary
number of reflectors below zi, but use zi as focus depth. Figure 4
shows the situation with four downgoing arrows at z0 indicating
waves that are sent into the medium and four solid upgoing arrows

indicating the reflection response. The wavefield focuses at zi at
t ¼ 0, but because the focusing wavefield continues to travel down,
it will generate new up- and downgoing waves indicated by the
dashed arrows in Figure 4. These waves arrive at z0 after the last
arrival of the focusing wavefield. They all start as a unit amplitude
downgoing wave just below zi as if there was a downgoing source
just below zi, and hence all waves that are generated and recorded at

Time (s)

D
ep

th
 b

el
ow

 s
ou

rc
e-

re
ce

iv
er

 le
ve

l (
m

)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

0

50

100

150

200

250

300

a)

Time (s)
D

ep
th

 b
el

ow
 s

ou
rc

e-
re

ce
iv

er
 le

ve
l (

m
)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

0

50

100

150

200

250

300

b)

c) d)

Time (s)

D
ep

th
 b

el
ow

 s
ou

rc
e-

re
ce

iv
er

 le
ve

l (
m

)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

0

50

100

150

200

250

300

Time (s)

D
ep

th
 b

el
ow

 s
ou

rc
e-

re
ce

iv
er

 le
ve

l (
m

)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

0

50

100

150

200

250

300

Figure 3. (a) The impulse reflection response of a four-layered medium where the layer boundaries inside the plot are indicated by three black
horizontal lines labeled on the right side by z0, z1, z2, (b) the reflection response of (a) but now with an extra incident wave that cancels the
downgoing field at the first interface; (c) the reflection response of (b) but now with an extra incident wave that cancels the downgoing wave at
the second interface; (d) the reflection response of (c) but now with an extra incident wave that cancels the downgoing wave at the first interface
generated by the reflected wave from the bottom interface.
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z0 correspond to part of a VSP measurement that is complementary
to what we saw in the previous section. In the frequency domain,
this pressure Green’s function can be written as Ĝp;þðz0; zi;ωÞ and
it corresponds to the events indicated by the dashed lines in Figure 4,
whereas the focusing wavefield corresponds to the solid lines. The
impulse reflection response, R̂ðz0;ωÞ, generated by a downgoing
unit amplitude pressure wavefield and measured at z0 in the
whole layered medium is related to the focusing wavefield and
the downgoing Green’s function by (see Appendix A for general
derivation)

f̂−1 ðz0; zi;ωÞ þ Ĝp;þðz0; zi;ωÞ ¼ R̂ðz0;ωÞf̂þ1 ðz0; zi;ωÞ:
(10)

Equation 10 is the wavefield retrieval equation for the wavefield
generated by a downgoing source at zi and received at z0. It is ob-
tained from the measured impulse reflection response and the func-
tions f̂�1 . This equation can be interpreted as follows. If the
wavefield fþ1 ðz0; zi; tÞ is sent into the layered medium, the reflec-
tion response at z0 is given by Rðz0; tÞ � fþ1 ðz0; zi; tÞ where the �
denotes temporal convolution. Equation 10 says that this response is
equal to f−1 ðz0; zi; tÞ plus the Green’s function Gp;þðz0; zi; tÞ cor-
responding to a downgoing source at the focusing level and a pres-
sure receiver at the original receiver level. This is illustrated in
Figure 5 where the model consists of seven layers and the values
for velocity, density, and layer thickness are taken from Table 1. The
source and receiver are at 75 m above z0. The depth levels of the
interfaces are indicated by black lines in the figure. The focusing
time is again t ¼ 0 at the moment where the first arrival reaches the
focus depth z2 ¼ 291 m. From the figure, it can be seen that
f�1 ðz0; zi; tÞ and Gp;þðz0; zi; tÞ are well-separated in time as indi-
cated above the figure. Equation 5 is also valid when the focusing
depth level is inside a layered medium,

½f̂þ1 ðz0; zi;ωÞ�� − Ĝp;−ðz0; zi;ωÞ ¼ R̂ðz0;ωÞ½f̂−1 ðz0; zi;ωÞ��:
(11)

In equation 5, the Green’s function is the transmission response of a
layered medium with a source below and a receiver above a layered
medium. Equation 11 retrieves the wavefield Ĝp;−ðz0; zi;ωÞ at
receiver level z0 that is generated by an upgoing plane wave at
the source level zi inside the layered medium, from the measured
impulse reflection response R̂ðz0;ωÞ and the functions f̂�1 . This
equation says that the convolution of the time-reversed upgoing fo-
cusing wavefield and the impulse reflection response is equal to the
time-reversed downgoing focusing wavefield minus the Green’s
function for an upgoing source just below zi and the pressure
receiver just above z0. It is illustrated in Figure 6 for the same con-
figuration and focus depth as used for Figure 5. In this figure, events
that belong to the focusing wavefield are indicated above the figure
as f−1 ðz0; zi;−tÞ þ fþ1 ðz0; zi;−tÞ. In this wavefield, there are no up-
down reflections. The only up-down reflections occurring in the
time window of the focusing wavefield come from the upgoing
wavefield after reflection at the boundary at z2 as indicated by
the arrows. This is part of the Green’s function as indicated above
the figure with Gp;−. Because the upgoing part of the Green’s func-
tion is emitted at t ¼ 0, which is the focusing time-instant for the
focusing wavefield, they overlap along the direct travel path from
the focus depth to the surface as indicated above the figure. For the
rest, the focusing wavefield and the Green’s functions are separated
in time. In the next section, we show that the focusing wavefield can
be computed from the measured reflection data and equations 10
and 11. From these, virtual VSP data and a subsurface image
can be constructed as is shown in the next two sections. Knowing
the up- and downgoing Green’s function is important because they
are related to the impulse reflection response at the focus level
through

Ĝ−;qðzi; z0;ωÞ ¼ R̂ðzi;ωÞĜþ;qðzi; z0;ωÞ; (12)

where R̂ðzi;ωÞ denotes the impulse reflection response for the
medium that is layered below zi and homogeneous above that depth
level. The Green’s functions are the reciprocal version of the ones in

Table 1. Values for velocity, density, and layer thickness in
the layered model.

Layer number Velocity (m∕s) Density (kg∕m3) Thickness (m)

1 1700 1430 ∞
2 1900 2250 117

3 2100 1750 99

4 1700 1430 85

5 2100 1750 111

6 3250 1930 15

7 2100 1500 123

8 2100 2110 151

9 2500 2110 163

10 2750 2250 221

11 2900 2300 ∞

Figure 4. The focusing wavefield incident on a medium withmþ 2
layers that focuses at zi yields a reflection response that is equal to
the focusing field reflection response, as indicated by the solid ar-
rows, followed by the Green’s function for a downgoing source at zi
indicated by dashed arrows.
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equations 10 and 11. Here, the sign in the superscripts refers to the
direction of the wavefield at the receiver level zi and the superscript
q refers to a monopole point source at the source level z0. The local
reflection coefficient ri can be extracted in the time domain from
Rðzi; tÞ around t ¼ 0.

COUPLED MARCHENKO-TYPE EQUATIONS
AND GREEN’S FUNCTION RETRIEVAL

The time-domain functions f�1 are not causal, whereas G� and R
are. This can be exploited to find f�1 from the time-domain equiv-
alents of equations 10 and 11. Two coupled Marchenko-type equa-
tions are obtained in whichG� do not occur and from which f�1 can
be found given the measured impulse reflection response Rðz0; tÞ.
Once f�1 are found, time-domain versions of equations 10 and 11
can be used to compute the up- and downgoing wavefields gener-
ated by a downhole source and measured at the surface. Hence, for
any depth zi, we can create a virtual VSP data set from the measured
impulse reflection response (Newton, 1981; Broggini and Snieder,
2012; Wapenaar et al., 2012).
Transforming equations 10 and 11 to the time domain results in

Gp;þðz0; zi; tÞ ¼ −f−1 ðz0; zi; tÞ

þ
Z

t

t 0¼−tdðzi;z0Þ
fþ1 ðz0; zi; t 0ÞRðz0; t − t 0Þdt 0;

(13)

Gp;−ðz0; zi; tÞ ¼ fþ1 ðz0; zi;−tÞ

−
Z

t

t 0¼−tdðzi;z0Þ
f−1 ðz0; zi;−t 0ÞRðz0; t − t 0Þdt 0:

(14)

The integration intervals of equations 13 and 14 are finite because
the two functions in the integrands are nonzero only in a subin-
terval. The impulse reflection response Rðz0; t − t 0Þ is causal and
therefore zero-valued for t 0 > t, putting the upper limits at
t 0 ¼ t. In the previous section, we have seen that f�1 ðz0; zi; tÞ ¼
0 for jtj > tdðzi; z0Þ because all internal multiples are eliminated
between the depth levels z0 and zi and this defines the lower inte-
gration limit of equations 13 and 14. We can write the downgoing
wavefield as

fþ1 ðz0; zi; tÞ ¼ T −1
i δðtþ tdðzi; z0ÞÞ þMþðz0; zi; tÞ; (15)

where in our 1D model the first arrival of the transmission response
has amplitude T i ¼

Qi
j¼0 τ

þ
j andMþðz0; zi; tÞ denotes the coda fol-

lowing the first arrival; Mþðz0; zi; tÞ ¼ 0 for t ≤ −tdðzi; z0Þ. Be-
cause Mþðz0; zi; tÞ ¼ 0 and f−1 ðz0; zi; tÞ ¼ 0 for jtj ≥ tdðzi; z0Þ
and G� ¼ 0 for t < tdðzi; z0Þ, we can write in the interval
−tdðzi; z0Þ < t < tdðzi; z0Þ equations 13 and 14 as two coupled
equations as

f−1 ðz0; zi; tÞ ¼ T −1
i Rðz0; tþ tdðzi; z0ÞÞ

þ
Z

t

t 0¼−tdðzi;z0Þ
Mþðz0; zi; t 0ÞRðz0; t − t 0Þdt 0;

(16)

Mþðz0; zi;−tÞ ¼
Z

t

t 0¼−tdðzi;z0Þ
f−1 ðz0; zi;−t 0ÞRðz0; t − t 0Þdt 0;

(17)
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Figure 6. The time-reverse of the reflected focusing wavefield in-
cident on a medium with six interfaces, indicated with black lines;
the first arrival of the upgoing Green’s function coincides with the
last upgoing wave of the time-reversed downgoing focusing wave-
field because both are generated simultaneously at the third inter-
face. In the overlapping time window with the focusing wavefield,
the upgoing Green’s function wavefield causes up-down reflections
as indicated by the arrows.
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Figure 5. The wavefield incident on a medium with six interfaces,
indicated with black lines, that focuses at the third interface and its
reflection response; the downgoing wavefield below the third inter-
face propagates down and causes reflections from the medium be-
low it that interact with the whole medium.
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which are coupled Marchenko-type equations (Lamb, 1980) valid
on the interval −tdðzi; z0Þ < t < tdðzi; z0Þ. These can be solved for
the functions Mþðz0; zi; tÞ and f−1 ðz0; zi; tÞ from the measured im-
pulse reflection response Rðz0; tÞ when the amplitude of the first
arrival of the transmission response, T i, is known. A straightfor-
ward way to solve equations 16 and 17 is to discretize them and
solve the resulting matrix inversion problem. We can also solve
the coupled system with an iterative procedure and start by taking

f−1;0ðz0; zi; tÞ ¼ T −1
i Rðz0; tþ tdðzi; z0ÞÞ; (18)

and for n ≥ 0 evaluate the nth iteration as

Mþ
n ðz0; zi;−tÞ ¼

Z
t

t 0¼−tdðzi;z0Þ
f−1;nðz0; zi;−t 0ÞRðz0; t− t 0Þdt 0;

(19)

f−1;nþ1ðz0; zi; tÞ ¼ f−1;0ðz0; zi; tÞ

þ
Z

t

t 0¼−tdðzi;z0Þ
Mþ

n ðz0; zi; t 0ÞRðz0; t− t 0Þdt 0;

(20)

for −tdðzi; z0Þ < t < tdðzi; z0Þ. This scheme always converges be-
cause the underlying Neumann series expansion of the Green’s
function integral equation converges unconditionally (Lamb,
1980). Solving equations 16 and 17 using an iterative scheme is
not necessary, but will often prove computationally advantageous.
Once the functions f�1 ðz0; zi; tÞ are found in their time window,
equations 13 and 14 can be used to compute the Green’s functions
and thereby the virtual VSP is retrieved. The image can be con-
structed from the VSP Green’s functions using equation 12. In
the next section, we first find a more direct route to the image.

IMAGING

To use equations 16 and 17 for imaging, we observe that our ini-
tial estimate of the scaled delta function is always correct in arrival
time because in a 1D model it is half the two-way traveltime. But,
the amplitude T i is not known, nor the actual depth level zi. The 1D
image can therefore be constructed as a time image when there is no
additional information on the layered medium. We can scale the
downgoing coda and the upgoing wavefield by the same factor T −1

i ,

Mþðz0; zi; tÞ ¼ T −1
i hþðz0; zi; tÞ; (21)

f−1 ðz0; zi; tÞ ¼ T −1
i h−ðz0; zi; tÞ: (22)

Using these definitions in equations 16 and 17 we find a scheme in
which the unknown factor T i is absent. Figure 1b shows the sol-
ution to equations 16 and 17 with substitution of equations 21 and
22 for our example model with three layers. The example showed
that sending a unit amplitude impulse in time at −tdðz1; z0Þ and the
coda of the scaled downgoing focusing wavefield leads to a re-
flected signal at tdðz1; z0Þ, with the desired local reflection coeffi-
cient r1 of the interface at depth level z1. These scaled downgoing
and upgoing wavefields can be recognized from equations 20
and 22 as hþðz0; z1; tÞ and h−ðz0; 6z1; tÞ. By evaluating the

time-domain equivalent of equation 10 we find that h−ðz0; zi; tÞ ¼
riδðt − tdðzi; z0ÞÞ for tdðzi; z0Þ − ϵ < t < tdðzi; z0Þ þ ϵ, where ϵ is
an arbitrarily small time instant. Hence, for an arbitrary depth level
zi inside a layered medium, the upgoing field that arrives at
t ¼ tdðzi; z0Þ has an amplitude that is equal to the local reflection
coefficient of depth level zi, and tdðzi; z0Þ is the known one-way
traveltime to depth level zi. We can therefore take the amplitude
of the upgoing field at the focus time as the imaging condition
to obtain an image I containing the local reflection coefficient
at the one-way traveltime

Iðtdðzi; z0ÞÞ ¼ ri ¼
Z

tdðzi;z0Þþϵ

t 0¼tdðzi;z0Þ−ϵ
h−ðz0; zi; t 0Þdt 0: (23)

Equations 16 and 17 with substitution of equations 21 and 22 to-
gether form the imaging scheme and equation 23 is the imaging
condition. This is the most direct route to imaging local primary
reflection coefficients and simultaneously eliminating effects from
internal multiples. We have not used any knowledge of the layered
medium, but we have constructed an image containing the local re-
flection coefficient as a function of one-way traveltime. In case the
acoustic impedance is known in the first layer, the impedance could
be found as a function of one-way traveltime. With one-dimensional
waves at normal incidence, there are no independent ways to de-
termine a velocity model. This can be done by using several angles
of incidence for plane waves, which is discussed in the next section.

PLANE WAVES AT OBLIQUE INCIDENCE

The above results for normal incidence plane waves rely on the
fact that the local refection coefficients are independent of fre-
quency. To include oblique angles, a spatial Fourier transformation
can be performed on measured data yielding the impulse reflection
response in the wave number frequency domain. Newton (1981)
used the wave number domain where the wave numbers are just
parameters, but then the reflection coefficients become fre-
quency-dependent. He therefore continued with the assumption that
the wave numbers are small and can be neglected. Coen (1981)
showed that, in the intercept-time slowness domain, slowness is just
a parameter representative of the angle of incidence. He had to ex-
clude waves that are evanescent between the depth levels z0 and zi.
In our case, this assumption is not necessary. We assume that the
waves propagate through the two boundaries at z0 and at zi, but they
can be evanescent at other depth levels. Only radial slowness pmat-
ters, and the local reflection coefficient becomes a function of slow-
ness, denoted riðpÞ. The depth level zi is still unknown, but the
intercept-time is the apparent two-way vertical traveltime as a func-
tion of angle and we need the one-way intercept time as the image
time. For depth level zi, we denote the one-way intercept time as
tdðzi; z0; pÞ. If we define the vertical slowness in layer n as
qn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∕c2n − p2

p
, the intercept time is given by tdðzi; z0; pÞ ¼P

i
n¼1 qnðzn − zn−1Þ: We can write equations 16 and 17 with sub-

stitution of equations 21 and 22 as

h−ðz0;zi;t;pÞ¼Rðz0;tþtdðzi;z0;pÞ;pÞ

þ
Z

t

t0¼−tdðzi;z0;pÞ
hþðz0;zi;t0;pÞRðz0;t−t0;pÞdt0;

(24)
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hþðz0;zi;−t;pÞ¼
Z

t

t 0¼−tdðzi;z0;pÞ
h−ðz0;zi;−t0;pÞRðz0;t− t0;pÞdt0;

(25)

valid for −tdðzi; z0; pÞ < t < tdðzi; z0; pÞ. This leads to the angle-
dependent imaging condition similar to equation 23,

Iðtdðzi; z0; pÞ; pÞ ¼ riðpÞ

¼
Z

tdðzi;z0;pÞþϵ

t 0¼tdðzi;z0;pÞ−ϵ
h−ðz0; zi; t 0; pÞdt 0.

(26)

The image I is an image in the intercept-time slowness, or τ‐p,
domain. For every slowness value, the image contains the local re-
flection coefficients at the corresponding one-way intercept times
that we can call image times. Therefore, the image is an image
gather that can be understood as a “prestack” time image, where
prestack should be understood in the slowness-domain and each
time is the correct one-way traveltime corresponding to a particular
slowness value. Having slowness as a free parameter implies that
the local reflection coefficients in the image can be converted to
velocity and density values in each layer. This would constitute
an inversion step and after the velocities are found, the image times
can be converted to depth. Much work has been carried out on AVA
inversion (e.g., Raz, 1981), but here we have two advantages. The
first is that no multiples are part of the image and we can construct
local reflection coefficients as a function of angle without needing
any subsurface information. The second is that we have a nonrecur-
sive scheme and therefore no error accumulation with increasing
imaging depth. Imaging followed by inversion assumes that the
medium is horizontally layered and that the reflection response
can be obtained from the data, which requires knowledge of the
source signature, density, and velocity in the source layer, and re-
moval of free-surface related multiples (Verschuur et al., 1992; van
Dedem and Verschuur, 2005).

Finite frequency bandwidth

The above algorithm is formulated with impulse response func-
tions, which we don’t have in seismic data. For measured signals,
we need to deal with the finite frequency bandwidth of the data. Let
the finite bandwidth be represented by a zero-phase filter function,
or waveletWðtÞ, in the time domain, the functions f̄�1 and the mea-
sured reflection response R̄ can be written as the time convolution of
the functions f�1 and R as

f̄�1 ðz0; zi; t; pÞ ¼
Z

tdðzi;z0;pÞ

t 0¼−tdðzi;z0;pÞ
f�1 ðz0; zi; t 0; pÞWðt − t 0Þdt 0;

(27)

R̄ðz0; t; pÞ ¼
Z

tþtw

t 0¼0

Rðz0; t 0; pÞWðt − t 0Þdt 0; (28)

where f̄�1 ðz0; zi; t; pÞ ¼ 0 for jtj > tþd , t
þ
d ¼ tdðzi; z0; pÞ þ tw, and

tw denotes the half time window of the wavelet, while R̄ ≠ 0 for
t > −tw. Now, a time window has to be chosen instead of a single
time instant for the arrival time of the first arrival. We have to take
into account the finite bandwidth versions of equations 13 and 14
and we must use a smaller time window in which the band-limited

Green’s functions are zero, Ḡþðzi; z0; t; pÞ ¼ 0 for t < t−d with t−d ¼
tdðzi; z0Þ − tw and Ḡðzi; z0; t; pÞ ¼ 0 for t ≤ t−d . Then equations 16
and 17 can be written as

f̄−1 ðz0; zi; t; pÞ ¼ f̄−1;0ðz0; z0; t; pÞ

þ
Z

t

t 0¼−t−d
M̄þðz0; zi; t 0;pÞRðz0; t− t 0;pÞdt 0;

(29)

M̄þðz0; zi;−t; pÞ

¼
Z

t

t 0¼−t−d
f̄−1 ðz0; zi;−t 0; pÞRðz0; t − t 0; pÞdt 0; (30)

for t < t−d because the Green’s functions have to be zero, but
f� exist up to t ¼ �ðtdðzi; z0; pÞ þ twÞ. In the time window
−tþd < t < −t−d , the functions Mþðzi; z0;−t; pÞ and f−1 ðzi; z0; t; pÞ
cannot be updated because they overlap with the Green’s functions
that should remain zero for equations 29 and 30 to be valid. Waves
that have propagated or tunneled through thin layers and whose
multiples arrive within the time window of the wavelet around td
should be incorporated in f̄−1;0ðzi; z0; t; pÞ. Equation 18 should then
be modified to include a more general function T −1

d ,

f̄−1;0ðz0; zi; t;pÞ ¼
Z

−t−d

t 0¼−tþd
T −1

d ðzi; z0; t 0;pÞRðz0; t− t 0;pÞdt 0;

(31)

in which T −1
d denotes the band-limited version of the first arrival in

the inverse transmission response of the medium that is layered be-
tween z0 and zi. Notice that information from below zi can leak into
T −1

d when there is a reflector close to but below zi. In that case, it
will lead to errors in imaging thin layers and it is part of the res-
olution problem associated with finite bandwidth data. Finally, from
the fact that R̄ is known from the data while R occurs in equations 29
and 30 we observe that the waveletW should be known. In case the
free-surface multiples are removed by a surface-related multiple re-
moval method, the source signature is often obtained as well, which
can then be made zero phase and used as the wavelet. In case the
reflection response is obtained through up-down decomposition and
deconvolution (van der Neut et al., 2011), the band-limited impulse
response is obtained and a desired shaping filter can be used. The
bandwidth and associated effects of thin layers are investigated in
the section with numerical examples.
When thin layer effects are absent, the band-limited versions of

equations 24 and 25 will produce an accurate image from equa-
tion 26. In case thin layer effects are severe, we have an alternative
for creating the image. We can compute the upgoing and down-
going Green’s functions. We can use the fact that the Green’s func-
tions are related through the reflection response R̄ðzi; t 0; pÞ of the
medium that is layered below zi and homogeneous above zi. We can
therefore write them in a similar form as equation 12, given by

Ḡ−;qðzi; z0; t; pÞ ¼
Z

t

t 0¼0

Rðzi; t − t 0; pÞḠþ;qðzi; z0; t 0; pÞdt 0:
(32)

From this equation, Rðzi; t; pÞ is found by deconvolution and the
image can be constructed. Another option is to pick a time above a
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reflection event, compute the reflection response, and image the
first reflector using inverse wavefield extrapolation. As a direct con-
sequence of our development here, we can state that a reflector at
depth level zi can be imaged using this scheme when the waves
propagate through this depth level, while they are allowed to be
evanescent between z0 and zi. It can be understood that signal-
to-noise ratios will determine the accuracy of such images, but
in principle our schemes can image interfaces below thin high-
velocity layers through which the waves have tunneled. We show
a numerical example later, but we can already understand from the
above scheme that when T d contains information on tunneling
waves, it can be important to have an accurate time-function esti-
mate of T −1

d because it is not updated. This can lead to small errors
in Mþ and f−1 that are not eliminated by the deconvolution pro-
cedure for imaging.

NUMERICAL EXAMPLES

For the examples, we take a medium with 11 layers separated by
10 interfaces. The velocities, densities, and thicknesses of the layers
are given in Table 1. The reflection data is computed in the fre-
quency-slowness domain for 36 slowness values corresponding
to for 36 angles of incidence from normal incidence to α ¼ 35°.
The data are computed using a reflectivity code and are then trans-
formed to the intercept-time slowness domain with source and
receivers at the same height of 75 m above the top interface. This
is equivalent to modeling a single shot gather in space-time and then
transforming the data to the τ‐p domain. The source signature is a
40-Hz Ricker wavelet. The sixth layer is a high-velocity thin layer.
The seventh and eight layers have no velocity contrast and the re-
flection coefficient of that interface is independent of incidence an-
gle. The eighth and ninth layers have no density contrast. The
incidence angle of 31.6° in the first layer becomes critical in the
high-velocity thin layer, which amounts to a critical angle of
40.25° at the top of the thin layer. At normal incidence, the fast thin
layer is just over one fifth of the wavelength at 40 Hz. We solve
equations 29 and 30 for each of the 36 angles of incidence using
the iterative scheme similar to the one described in equations 19 and
20 in which we use p ¼ sinðαÞ∕c0, c0 being the velocity in the first
layer. We use two different schemes solving equations 29 and 30.
First, we use the direct imaging method using the initial estimate of
equations 18, 21, and 22, all three extended as functions of p, in
combination with imaging condition of equation 26. Second, we use
the imaging by multidimensional deconvolution method, which re-
quires an initial estimate given by equation 31. Once the f�1 func-
tions are determined, the Green’s functions are computed using
equations 13 and 14, both extended as functions of p, from which
the reflection response is computed using equation 32 and the image
is constructed by standard wavefield extrapolation and imaging.
Angles reported in results and figures below refer to the incidence
angle in the first layer.

Imaging directly using equation 26

We solve equations 29 and 30, but the first term in the right-
hand side of equation 29 is replaced by R̄ðz0; tþ tdðzi; z0; pÞÞ and
we use equations 21 and 22, extended as functions of p, in com-
bination with the imaging condition of equation 26. The iterations
stop when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

ðf̄1;nðz0; zi; mΔt; pÞ − f̄1;n−1ðz0; zi; mΔt; pÞÞ2
r

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

ðf̄1;nðz0; zi; mΔt; pÞÞ2
r

∕1000; (33)

in which n is the iteration number and the discrete time steps are
given by t ¼ mΔt, Δt being the time step. For angles up to 25°, the
average number of iterations slowly rises from eight at normal in-
cidence to 11 at 25°, between 26° and 31° the number of iterations
rises from 12 to 17, and the scheme needs 21, 24, 28, and 31 iter-
ations for the last four angles where the first is just below and the
last three are beyond the critical angle for the high-velocity thin
layer. The data and the resulting image are shown in the intercept
time-slowness domain where slowness has been converted to in-
cidence angle in Figures 7 and 8. Figure 7 shows that it is hard to
discriminate multiples from primary reflections from 0.5 s onward.
In Figure 8, the expected model reflection coefficients are shown
in black solid lines and the image amplitudes are shown in red
dashed lines. From the figure, it can be seen that all multiple en-
ergy has been eliminated while all primary reflections are imaged
to their image times. The amplitudes and wave shapes of the first
four reflectors are constructed almost exactly. For later reflectors,
two types of errors occur. For all these arrivals, the phase changes
due to thin layer effects because multiples arrive within the time
window of the Ricker wavelet. Tunneling effects of waves trans-
mitted through the fast thin layer are visible in the last three traces.
To see the effect of the thin layer and of tunneling, we zoom in

and take a look at the image results of the first and last traces from
these data. Figure 9 shows the normal incidence image as a function
of image time. To create this image, only the solutions to equa-
tions 29 and 30 are computed, which requires no information other
than the earth reflection response and the wavelet. We observe that
the image inside the fast thin layer is quite accurate although the
amplitude has a very small error, which can only be seen when
the image is enlarged. The images of the last four interfaces show
some phase changes in the wavelet and the maximum amplitude is
not entirely correct. This is caused by the fact that in this scheme the
initial estimate is a scaled and band limited delta-function, which
ignores thin layer multiples overlapping with the first arrival. This is
an effect of the finite bandwidth and is a resolution issue. Still, the
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Figure 7. Reflection response data in the τ‐p domain as a function
of two-way intercept time and incidence angle in the first layer.
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amplitudes of the last four reflectors are quite accurate and we
would need to zoom in much further to make the errors visible.
The obtained reflection coefficient of the eighth interface, e.g.,
has an amplitude error of just over 1% and zero timing error.
Figure 10 shows the image from the data with a plane wave at 35°

incidence. For this angle of incidence, the waves tunnel through the

fast thin layer and all waves below this thin layer propagate again.
As it can be seen from the amplitude mismatch at 0.2 s, inside the
thin layer the imaging scheme does not give the correct amplitude
because waves that are evanescent at the imaging level are not prop-
erly treated by equation 25. For depth levels below the thin layer,
the remaining four interfaces can still be imaged. Because tunneling
waves show a phase shift due to the fact that the reflection coeffi-
cients of the top and bottom interfaces of the tunneling layer are
complex, the image times and amplitudes are incorrect. If we look
again at interface eight, the obtained reflection coefficient has an
amplitude error of 3% and a timing error of 2.5 ms. This result
can be improved by using a more accurate initial estimate and solve
equations 29 and 30. We then compute the up- and downgoing
Green’s functions and create the image by deconvolution using
equation 32. We show results of this approach below.

Imaging by MDD using equation 32

To correctly image inside and below thin layers, it can be neces-
sary to include some multiples in the initial estimate of T d because
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Figure 8. The image obtained as a function of one-way intercept
time and angle from the data shown in Figure 7.
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Figure 9. Normal incidence image.
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Figure 10. Image for 35° incidence angle.
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Figure 11. Depth image of the eighth interface as a function of in-
cidence angle.
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Figure 12. Reflection coefficient amplitude from the direct imaging
method and the MDDmethod of the eighth interface as a function of
incidence angle.
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this signal is not updated by the Marchenko-type scheme. Incorpo-
rating a good estimate of T d in the scheme also allows for imaging
interfaces below layers through which the waves have tunneled. To
show the improvement of incorporating multiples in thin layers and
the effect of tunneling, we take a close look at the eighth interface,
which is located 776 m below the source. We select incidence angle
dependent focus times at half the intercept times in the middle of the
eighth layer. For this particular focus time, we compute the first
arrival of the transmission event within the time window of the
Ricker wavelet around the focus time. When the model is unknown,
a smooth background model can be constructed in the same way as
it is normally done for migration. This background model can then
be used to generate the initial estimate. With this initial estimate, we
solve equations 29 and 30, and compute the directional Green’s
functions of the angle-dependent equivalents of equations 13 and
14. From those, we construct the reflection response of the medium
below the focus time with the aid of equation 32 and compute the
time image by inverse wavefield extrapolation. We converted focus
time to depth for display purposes. The result is given in Figure 11,
which shows the angle-dependent local reflection coefficient image
as a function of angle versus depth for the two imaging schemes.
The red dashed lines are the image events obtained by starting with
the correct first arrival followed by MDD and imaging. The blue
dash-dotted lines are taken from the direct image of Figure 8 con-
verted to depth. The black lines are obtained from modeling the
expected primary event with the amplitude of the local reflection
coefficient. Notice that the timing errors (displayed as depth errors)
in the direct image result start to be visible around 25° where the
wavelength at 40 Hz is almost nine times the thickness of the thin
layer. For all angles of incidence, the thin layer effect has disap-
peared when the correct first arrival is used in combination with
MDD. The reflection coefficient amplitude as a function of angle
is shown in Figure 12 for the maximum amplitudes obtained from
the time images that are displayed as depth images in Figure 11. The
black dashed and dash-dotted lines give the normalized errors of the
two numerical results shown in the dashed red and dash-dotted blue
lines, respectively. The direct image, obtained with a scaled delta-
function, is also very accurate for small angle of incidence. The er-
ror increases for angles larger than 20° due to neglecting the effect
of the thin layer on the finite resolution result in solving the Mar-
chenko-type equations. Still, the image amplitude errors remain
well below 5%, whereas the deconvolution image shows errors
around 1%. For comparison, the additional green solid line shows
the amplitude obtained by standard one-way migration using the
correct background velocity model. The large difference with the
true values is caused by transmission and internal multiple effects.

DISCUSSION

The direct image is obtained by using a delta-function as initial
estimate for the transmitted first arrival at the focus time. This has
the advantage that the time-image can be formed without any
knowledge of the subsurface. It has the disadvantage that thin layer
effects and the effects of waves that tunnel above the image depth
are not always properly accounted for. This can create small ampli-
tude errors in the images of interfaces below thin layers, but it can
create substantial time-errors when the waves have tunneled
through a thin layer above the image depth. This is not a particular
drawback of the method because no imaging scheme based on one-
way propagation handles evanescent waves properly. In principle,

the constructed time image can be converted to depth by an inver-
sion step that would compute the density and velocity from the ob-
tained reflection coefficients as a function of incidence angle. In
practice, this inversion can be quite difficult because it is a nonlinear
process. Once the velocity of each layer is known, time-to-depth
conversion can be performed to construct the final depth image.
The construction of an accurate estimate of the direct transmis-

sion event at the focus time can be necessary for obtaining an image
that is better than the image obtained with a delta-function as first
arrival. This can be done in the same way that is used in standard
migration schemes by estimating a background model and use that
to compute the first arrival of the transmission response. The im-
portance of retrieving the Green’s functions is twofold. First, the
retrieved Green’s functions are the downward continued wavefields
from the measurement surface to the interior. These are retrieved
from the measured reflection response without any modeling. Sec-
ond, because the theory gives the upgoing and downgoing Green’s
function in the interior, one can immediately use these for imaging.
This can be achieved by multidimensional deconvolution (van der
Neut et al., 2011).
This is just a first step toward a new scheme for acoustic data

imaging and possibly inversion. The present scheme is formulated
in the intercept time-slowness domain, but it could have been for-
mulated in space-time domain. The product of the reflection re-
sponse and the upgoing and downgoing focusing functions as a
function of slowness would become 2D convolutions in space over
the horizontal coordinates of the receiver plane. The time instant of
the direct arrival would become a function of each point on the
receiver plane to the focusing point in the subsurface. We would
lose the advantage of being able to solve for the focusing functions
per slowness value, and for that reason we choose this option here.
Several open questions remain for further study, such as the effect

of inaccuracies in the determined source wavelet, in the initial es-
timate, the effect of noise in the recorded data, and the effect of
intrinsic losses in the earth. It is also important that this method
can be generalized to 3D by combining the 3D method presented
in Wapenaar et al. (2013a) and this scheme. This is not difficult in
theory, but it will also present new challenges that are beyond the
scope of the present study. We did see that the results are not exact
when the image depth is at locations where the waves did not propa-
gate and this will occur in a 3D settting in a more complicated way
than in a 1Dmodel. A second aspect is that a direct arrival time must
be estimated for every receiver point on the surface to the focusing
point, putting more conditions on the background model and com-
plications may occur in strongly lateral heterogeneous models. This
does not necessarily require more work than is done to build a back-
ground model for standard migration. Computing the total focusing
wavefield from a similar Marchenko equation has been shown to
work with computed 2D acoustic data (van der Neut et al.,
2013; Wapenaar et al., 2013b).

CONCLUSIONS

We present an algorithm to compute the up- and downgoing parts
of a focusing wavefield from the measured reflection response. This
is done under the assumption of a plane wavefield and a 1D earth
model. The focusing wavefield is then used together with the mea-
sured reflection response to compute the up- and downgoing VSP
Green’s functions representations. These two relations can be de-
rived from the reciprocity theorems of the time-convolution and
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time-correlation types. The focusing wavefield focuses at the depth
where the VSP Green’s function has its virtual source. The up- and
downgoing focusing wavefields are nonzero in a finite time window
where the Green’s functions are zero. Therefore, the focusing wave-
fields can be obtained from the reflection response by solving the
resulting two coupled Marchenko-type equations.
We have shown that the downgoing focusing wavefield in the

upper half space is the inverse of the transmission response. The
upgoing focusing wavefield is the reflection response to the down-
going wavefield in a model that is the same as the earth from the
surface to the focus depth, but is homogeneous below this focus
depth. Once the two focusing wavefields are found from finite fre-
quency bandwidth reflection data, a virtual VSP Green’s function
can be computed. We have shown that a subsurface image free from
effects of multiple reflections in the data can be found directly in the
upgoing part of the focusing wavefield or from performing multi-
dimensional deconvolution on the VSP Green’s functions.
The direct imaging method produces an image with accurate am-

plitudes, but small timing errors can occur for reflectors below a thin
layer. In our example, this occurred when the layer thickness is less
than one-eighth of the dominant wave length or when waves have
tunneled through the thin layer. In that case, an improved initial
estimate leads to a correct image using the MDD method.

APPENDIX A

WAVEFIELD FOCUSING AND GREEN’S
FUNCTION REPRESENTATIONS

Wavefields in a medium with three interfaces

Let us look at the expressions for the reflection response Rðz0; tÞ
for a source and receiver at z0 and the transmission response
Tþðz2; z0; tÞ for a source at z0 and a receiver at z2. In the frequency
domain, the corresponding reflection R̂ðz0;ωÞ and transmission
T̂þðz2; z0;ωÞ responses generated by the unit amplitude plane wave
are given by (Goupillaud, 1961)

R̂ðz0;ωÞ ¼
r0 þ r1e−2iωt1 þ r2e−2iωðt1þt2Þ þ r0r1r2e−2iωt2

1þ r0r1e−2iωt1 þ r0r2e−2iωðt1þt2Þ þ r1r2e−2iωt2
;

(A-1)

T̂þðz2; z0;ωÞ

¼ τþ0 τ
þ
1 τ

þ
2 e

−iωðt1þt2Þ

1þ r0r1e−2iωt1 þ r0r2e−2iωðt1þt2Þ þ r1r2e−2iωt2
; (A-2)

where we notice that the denominators are the same for the reflec-
tion and transmission responses. Comparing the events in the reflec-
tion response shown in Figure A-1 with the numerator of the
reflection response of equation A-1 we can see that they are the
same. We conclude that sending in the inverse of the transmission
response of equation A-2 is exactly the necessary wavefield that
focuses to a unit amplitude at z2 and in the time domain at
t ¼ 0. In the frequency domain, the focusing wavefield is therefore
given by

f̂þ1 ðz0;z2;ωÞ¼
1

T̂þðz0;z2;ωÞ
¼eiωðt1þt2Þ

×
1þr0r1e−2iωt1 þr1r2e−2iωt2 þr0r2e−2iωðt1þt2Þ

τþ0 τ
þ
1 τ

þ
2

;

(A-3)

f̂−1 ðz0; z2;ωÞ ¼
R̂þðz0;ωÞ

T̂þðz0; z2;ωÞ
¼ eiωðt1þt2Þ

×
r0 þ r1e−2iωt1 þ r0r1r2e−2iωt2 þ r2e−2iωðt1þt2Þ

τþ0 τ
þ
1 τ

þ
2

:

(A-4)

The four incident and four reflected wavefields are indicated in
Figure A-1.

Derivation of the Green’s function representations

Equation 10 can be derived from the reciprocity theorem of the
time-convolution type and equation 11 can be obtained from the
reciprocity theorem of the time-correlation type. For more informa-
tion about acoustic reciprocity theorems, see de Hoop (1995). In 1D
space and for a source free domain that is bounded by two depth
levels, z0 and zi, they are given in the frequency domain by

p̂Aðz0;ωÞv̂z;Bðz0;ωÞ − p̂Bðz0;ωÞv̂z;Aðz0;ωÞ
¼ p̂Aðzi;ωÞv̂z;Bðzi;ωÞ − p̂Bðzi;ωÞv̂z;Aðzi;ωÞ; (A-5)

p̂�
Aðz0;ωÞv̂z;Bðz0;ωÞ þ p̂Bðz0;ωÞv̂�z;Aðz0;ωÞ
¼ p̂�

Aðzi;ωÞv̂z;Bðzi;ωÞ þ p̂Bðzi;ωÞv̂�z;Aðzi;ωÞ; (A-6)

where the subscripts A and B refer to two independent states
and v̂zðz;ωÞ denotes the particle velocity related to pressure as

Figure A-1. The focusing wavefield incident on a medium with
three interfaces consists of four events and the corresponding reflec-
tion response contains the same number of events at the same times;
the wavefield focuses at the bottom interface.
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v̂zðz;ωÞ ¼ −ðiωρðzÞÞ−1∂zp̂ðz;ωÞ. We have assumed that no
sources are present for z0 ≤ z ≤ zi and that the media between
the two levels are identical in the two states. Equation A-5 is gen-
erally valid under these assumptions, whereas equation A-6 is a cor-
rect equation under the additional assumption that the medium
between the two depth levels is dissipation free. The pressure is
the sum of down- and upgoing wavefields as p̂ðz;ωÞ ¼ p̂þðz;ωÞ þ
p̂−ðz;ωÞ and the particle velocity can be written as v̂zðz;ωÞ ¼
−ðiωρðzÞÞ−1∂z½p̂þðz;ωÞ þ p̂−ðz;ωÞ�: Substituting these decompo-
sitions in equations A-5 and A-6 and following a similar analysis as
in Wapenaar and Berkhout (1989) gives

ρ−10 lim
z↑z0

ðp̂þ
A ðzÞ∂zp̂−

BðzÞ þ p̂−
Aðz0Þ∂zp̂þ

B ðzÞÞ

¼ −ρ−1iþ1 limz↓zi
ðp̂−

BðzÞ∂zp̂þ
A ðzÞ þ p̂−

BðziÞ∂zp̂−
AðzÞÞ; (A-7)

ρ−10 lim
z↑z0

ð½p̂þ
A ðzÞ��∂zp̂þ

B ðzÞ þ ½p̂−
AðzÞ��∂zp̂−

BðzÞÞ

¼ −ρ−1iþ1 limz↓zi
ðp̂þ

B ðzÞ½∂zp̂þ
A ðzÞ�� þ p̂−

BðzÞ½∂zp̂−
AðzÞ��Þ; (A-8)

where we have omitted ω in the arguments for brevity. We use equa-
tions A-5 and A-6 to a configuration in which state A corresponds to
the medium that is homogeneous below zi, whereas state B is the
actual medium. In state A, we use the functions f̂�1 that focus just
below depth level zi. Below the depth level zi, the focusing wave-
field is a unit amplitude downgoing wave that can be written as
fþ1 ðz; zi;ωÞ ¼ exp½−iωðz − ziÞ∕ciþ1�; because there is no upgoing
wave, we have f−1 ðz; zi;ωÞ ¼ 0. We then find

p̂�
A ðz0;ωÞ ¼ f̂�1 ðz0; zi;ωÞ; (A-9)

lim
z↓zi

∂zp̂þ
A ðz;ωÞ ¼ −iω∕ciþ1; lim

z↓zi
∂zp̂−

Aðz;ωÞ ¼ 0:

(A-10)

In state B, we take the actual configuration with a unit amplitude
incident wave above the depth level z0 given by p̂þ

B ðz;ωÞ ¼
exp½−iωðz − z0Þ∕c0� and the reflection response is given by
p̂−
Bðz;ωÞ ¼ R̂ðz0;ωÞ exp½iωðz − z0Þ∕c0�: We find

lim
z↑z0

∂zp̂þ
B ðz;ωÞ ¼ −iω∕c0; (A-11)

lim
z↑z0

∂zp̂−
Bðz;ωÞ ¼ iωR̂ðz0;ωÞ∕c0; (A-12)

p̂�
B ðzi;ωÞ ¼ Ĝ�;qðzi; z0;ωÞ; (A-13)

where just below depth level zi, the wavefield is given by the up-
and downgoing field Green’s functions. Notice that, here, the sign
in the superscript of the Green’s function relates to upgoing and
downgoing waves just below the level zi, which is the receiver level
for this Green’s function. The superscript q indicates the wavefield
is generated by a monopole source just above z0. Substituting these
choices in equation A-7 and A-8 leads to

Z0

Ziþ1

Ĝ−;qðzi; z0;ωÞ

¼ R̂ðz0;ωÞf̂þ1 ðz0; zi;ωÞ − f̂−1 ðz0; zi;ωÞ; (A-14)

Z0

Ziþ1

Ĝþ;qðzi; z0;ωÞ

¼ ½f̂þ1 ðz0; zi;ωÞ�� − R̂ðz0;ωÞ½f̂−1 ðz0; zi;ωÞ��; (A-15)

where the impedance is given by Zi ¼ ρici. Equations A-14 and
A-15 are the wavefield retrieval equations for the scaled up- and
downgoing wavefields, respectively, at the receiver level zi that
is obtained from the measured reflection response and the functions
f̂�1 . Equation A-14 is equal to equation 10 and equation A-15 is
equal to equation 11 because the Green’s functions satisfy the reci-
procity relation

Z0Ĝ
∓;qðzi; z0;ωÞ ¼ Ziþ1Ĝ

p;�ðz0; zi;ωÞ; (A-16)

where Gp;�ðz0; zi;ωÞ are the Green’s functions of equations 10 and
11. The reason for the factors Z0 and Ziþ1 is that the Green’s func-
tions and the focusing functions have been defined according to the
transmission responses and the downgoing and upgoing pressure
transmission responses satisfy Z0T̂

þðzi; z0;ωÞ ¼ Ziþ1T̂
−ðz0; zi;ωÞ.

By adding equations A-14 and A-15 and using reciprocity of
equation A-16, we find an expression for the Green’s function cor-
responding to the virtual VSP as

Ĝðz0; zi;ωÞ − ½f̂2ðzi; z0;ωÞ�� ¼ R̂ðz0;ωÞf̂2ðzi; z0;ωÞ:
(A-17)

Equation A-17 is the 1D equivalent of equation 9 in Wapenaar et al.
(2013a) with f̂2 ¼ f̂−2 þ f̂þ2 ¼ f̂þ1 − ½f̂−1 ��. Without going into the
details of this relation, the equation shows that if we send in the
focusing wavefield f2ðzi; z0; tÞ the response is equal to the differ-
ence of the time-reverse of this function f2ðzi; z0;−tÞ and the VSP
Green’s function.
Plane waves at oblique angles of incidence can be obtained by

transforming the wavefields from space-time domain to the inter-
cept-time slowness domain and the radial slowness p becomes a
parameter. For each slowness value, equation A-7 remains valid
and therefore also equation A-14 remains valid. Equation A-8
and therefore equation A-15 remain valid under the condition that
the waves propagate through the depth levels z0 and zi, whereas
they can be evanescent at depth levels between z0 and zi.
From this result, it would be a small step to deriving space-time

relations for media with 3D variations in velocity and density, but
this is beyond the scope of the current paper. Examples of such
schemes and results on data modeled for 2D heterogeneous subsur-
face models can be found in Wapenaar et al. (personal communi-
cation, 2014) and Broggini et al. (personal communication, 2014).
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