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SUMMARY

Small-scale heterogeneity alters the arrival times of waves in a way that cannot by
explained by ray theory. This is because ray theory is a high-frequency approximation
that does not take the finite frequency of wavefields into account. We present a theory
based on the first-order Rytov approximation that predicts well the arrival times of
waves propagating in media with small-scale inhomogeneity with a length scale smaller
than the width of Fresnel zones. In the regime for which scattering theory is relevant we
find that caustics are easily generated in wavefields, but this does not influence the good
prediction of finite frequency arrival times of waves by scattering theory. The regime of
scattering theory is relevant when the characteristic length of heterogeneity is smaller
than the width of Fresnel zones. The regime of triplications is independent of frequency
but it is more significant the greater the magnitude of slowness fluctuations.
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1 I N T R O D U C T I O N

Ray theory is valid only if the wavelengths of the waves and the

associated widths of Fresnel zones are much smaller than the

characteristic length of heterogeneity. For example, in geophysics

when working with surface wave tomography it is common

to use ray theoretical schemes, which offer a computationally

effective solution to the forward problem. This approximation,

however, poses a problem from a theoretical point of view

because the length scale of inhomogeneity in high-resolution

models is comparable to the widths of Fresnel zones (Passier &

Snieder 1995). Other domains where scattering is considered

to be important are ocean acoustics (Kuperman et al. 1998),

medical imaging (Baba et al. 1989; King & Shao 1990) and

non-destructive testing experiments (Haque et al. 1999).

Several different approaches to scattering theory are reported

in the literature. Marquering et al. (1998) described how to

calculate sensitivity kernels based on the first-order Born

approximation and surface wave mode coupling. Marquering

et al. (1999) developed a sensitivity kernel formulation of the

perturbed time starting with the cross-correlation function.

Jensen & Jacobsen (1997) explained how a linearized inversion

of time–distance helioseismic data is established by introducing

an approximate Gaussian sensitivity kernel. Yomogida (1992)

utilized the Born approximation and then the Rytov approxi-

mation to derive the sensitivity kernel. Woodward (1992)

introduced the finite frequency effect on wave paths, and the

concept of Rytov and Born wave paths for transient, reflected

and refracted wavefields were explained. Snieder & Lomax (1996)

computed a frequency-averaging function from the first-order

Rytov approximation. Fehler et al. (2000) applied the Rytov

approximation to simulate multiple forward wave scattering in

Gaussian random media, and the results are compared with

those from finite difference solutions of the wave equation.

We follow the idea of Snieder & Lomax (1996) that the

phase shift of the scattered wavefield due to a perturbation of

the medium can be expressed as the integration of a sensitivity

kernel multiplied by the slowness perturbations over the com-

plete model space. In addition to this, we transform the phase

shift expression obtained into a time-shift expression so that

scattering theory is directly applicable to the interpretation of

arrival time data.

Scattering theory includes non-ray-geometrical phenomena.

In brief, time residuals due to scattering theory are altered by

slowness perturbations surrounding the geometrical ray, and

the maximum sensitivity to slowness perturbations is largest

just beside the geometrical ray. In contrast, ray-theoretical time

delays are only sensitive to the slowness field on the ray path.

The regime of scattering theory is determined from a 2-D

numerical experiment wherein the frequency of the waves,

the magnitude of slowness perturbations, the offset of the

receivers and the length scale of the slowness perturbation field

are controlled. We compare the residual times for ray theory

and scattering theory with time delays computed with a finite

difference solution of the acoustic wave equation. Because we

have control over the parameters in the numerical experiment,

the regimes of ray theory, scattering theory and triplications are

investigated. Furthermore, we show with another 2-D numerical

experiment that the regimes of scattering theory and triplications

remain valid in a more complex medium (namely Gaussian

random media).
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In addition, we show that triplications are easily generated in

wavefields if the slowness perturbations are sufficiently large.

Although the scattering approach is based on a linearization

of the phase (i.e. the first-order Rytov approximation), the

‘observed’ time delays estimated from wavefields with caustics

are well predicted by scattering theory.

In Section 2, we explain how to derive the widths of Fresnel

zones, the focal length of converging 2-D wavefields and the

time-shifts due to ray theory and scattering theory. In Section 3,

we describe the numerical experiment that is used to determine

the regime for scattering theory and present the experiment for

models of Gaussian random media. In Section 4, we summarize

the results of the numerical experiments and define the different

regimes of ray theory, scattering theory and triplications. In

Section 5, we give examples, taken from global seismology,

ocean acoustic and medical imaging, where scattering theory is

important.

2 T H E O R Y

In this section, we present the theory applied to the investi-

gation of the influence of small-scale heterogeneity on travel-

times. The theory is derived for two distinct source geometries:

the plane wave (plw) source, and the point source (ps). First, we

derive the widths of the Fresnel zones. We then discuss the

focal length of converging wavefields in 2-D slowness pertur-

bation fields. Finally, we deduce the first- and second-order

linearized ray theories and the first-order linearized scattering

theory for 2-D experiments.

2.1 The widths of Fresnel zones

Fresnel zones are defined in terms of the difference in

propagation path lengths for rays with nearby paths. All

points of a ray taking a detour compared with the ballistic

ray are inside the Fresnel zone if the difference in length of

propagation paths for the ballistic ray and the detour ray

is less than or equal to a certain fraction of the wavelength l
(e.g. Kravtsov 1988). This is the first Fresnel zone, which

physically signifies constructive interference of the scattered

wavefield produced by single-point scatterers inside the Fresnel

zone. We prefer to keep the formulae as general as possible, so

the Fresnel zone is defined as the set of points that give single

scattered waves with a detour smaller than the wavelength

divided by a number n.

Let xs[0; L] denote the ballistic propagation distance

between the source and the receiver, with the source–receiver

separation indicated by L. For a plane wave in a homogeneous

medium, the detour d is

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL � xÞ2 þ q2ðxÞ

q
þ x � L , (1)

where q(x) is the perpendicular distance to the geometrical ray

at position x along the ray. The Fresnel zone condition is that

djl/n. To estimate the boundaries of Fresnel zones, we use the

sign of equality in the Fresnel zone condition. To leading order

in q(x)/(Lxx), the perpendicular distance from the ballistic ray

is then isolated from eq. (1) as

qðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jðL � xÞ

n

r
: (2)

The width, Wplw, of the Fresnel zone is twice the perpendicular

distance from the ballistic ray. Hence,

WplwðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8jðL � xÞ

n

r
: (3)

The maximum width LF
plw=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8jL=n

p
is obtained at the initial

wavefront (x=0), while the widths of Fresnel zones for plane

waves to first-order approximation go to zero at the receiver

position (x=L).

The widths of Fresnel zones for point sources in homo-

geneous media are calculated in the same way as in the plane

wave case. The detour is

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL � xÞ2 þ q2ðxÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ q2ðxÞ

q
� L

&
1

2
q2ðxÞ L

ðL � xÞx : (4)

The Fresnel zone condition is again used to compute the widths

of Fresnel zones. Hence,

WpsðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8jxðL � xÞ

nL

r
, (5)

which is maximum at x=L /2. The maximum width LF
ps=ffiffiffiffiffiffiffiffiffiffiffiffiffi

2jL=n
p

. Notice that LF
ps=LF

plw/2.

For eqs (3) and (5), the reference medium is homogeneous,

which means that ray bending is not taken into account.

However, it is possible to compute the boundaries of Fresnel

zones in heterogeneous media as well (Pulliam & Snieder 1998).

2.2 Estimation of caustics in 2-D slowness perturbation
fields

We discuss in this section at which point caustics, also called

triplications, start to develop in the special case of a slab with a

perturbed slowness field depending only on depth and in the

general case of Gaussian random media. The general theory for

the formation of caustics is explained thoroughly in Spetzler &

Snieder (2001).

First, we consider the case that caustics develop when an

initially plane wave propagates in the x-direction through a

slab with a depth-dependent slowness field u1(z). The set-up

of this experiment is shown in Fig. 1. The vertical slab is at

an offset xl from the source, and the slab width is denoted W.

The slowness field to the left and right of the slab is set to the

constant reference slowness field u0.

First it is assumed that caustics develop before the ballistic

wavefield leaves the slab. We use eq. (6) in Spetzler & Snieder

z

xr RL

x

W

l

Figure 1. Explanation of the variables used in the experiment with a

vertical slab of heterogeneity. A plane wave is incident from the left.
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(2001), where the integration along the reference ray is carried

out from xl to xcaus (for xcausxxljW), to determine when

caustics form inside the slab. Hence,

xcausðzÞ ¼ xl þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2

L2

Lz2

u1

u0

� �
ðzÞ

vuuut ðinside slabÞ : (6)

If triplications develop after the waves pass the slab (i.e.

xcaus>xl+W), then the propagation length of plane wavefields

at which caustics start to occur is

xcausðzÞ ¼ xl þ
1

2
W � 1

W
L2

Lz2

u1

u0

� �
ðzÞ

ðafter slabÞ : (7)

Let the distance between the source and receiver be denoted L.

If xcaus(z)<L, triplications will be present in the recorded

wavefield.

Next, we discuss the formation of triplications in Gaussian

random media. The autocorrelation function of a Gaussian

random medium is given by

Su1ðr1Þu1ðr2ÞT ¼ ðeu0Þ2 e�ðr=aÞ2 , (8)

where e is the rms value of slowness perturbation fluctuations,

a denotes the autocorrelation length (or roughly the length

scale of slowness perturbations) and r=|r1xr2|.
Spetzler & Snieder (2001) showed for an incoming plane

wave in Gaussian random media that the formation of caustics

is significant when

L

a
§0:52e�2=3 , (9)

with the source–receiver distance denoted L. For wavefields

emitted by point sources in Gaussian random media, the non-

dimensional number L/a for the condition that triplications

develop in the recorded wavefield is given by

L

a
§1:12e�2=3 , (10)

(see Spetzler & Snieder 2001). The conditions for the

formation of caustics in eqs (9) and (10) are independent of

the wavelength but they depend on the rms value of slowness

fluctuations.

2.3 Time-shift derivations

We apply two approaches to derive the residual times in a 2-D

isotropic perturbed slowness medium. First, we explain how

the time delay due to first- and second-order ray perturbation

theory is estimated. Second, we show how the time-shift based

on first-order linearized scattering theory can be written as a

linear function of the 2-D slowness perturbation field. Third,

we discuss the properties of the scattering theory.

2.4 The ray-geometrical time-shift

According to second-order ray perturbation theory (e.g.

Snieder & Sambridge 1992), the traveltime is the sum of

three components, namely

T ¼ T0 þ T1 þ T2 : (11)

T0 is the contribution from the reference ray in the reference

medium, T1 is the time-shift due to the slowness perturbation

field along the reference ray (based on Fermat’s principle) and

the term T2 is a more complicated expression that accounts

for the deflection of the ray by the slowness perturbation. A

complete explanation of how to calculate T2 is given in Snieder

& Sambridge (1992).

In the numerical experiment presented here, we compute

the ray-theoretical time delay dt due to a perturbed slow-

ness medium to first order. This implies that the time-shift is

expressed as a linear function of the slowness anomaly u1(r)

along the reference ray. Hence,

dt ¼ T1

¼
ð
Ref ray

u1ðrÞds : (12)

In our experiment the reference slowness is constant, so the

reference ray is a straight line between the source and receiver.

In the numerical examples shown here, the second-order

traveltime perturbation T2 is much smaller than the first-

order traveltime perturbation T1. For this reason the first-order

traveltime perturbation is used for the ray-geometrical traveltime.

Ray theory is valid when the characteristic length a of

heterogeneity is much larger than both the wavelength l and

the widths of the Fresnel zones LF. Hence, in non-dimensional

numbers, the condition for ray theory is written as

j
a
%1 and

LF

a
%1 (13)

(see Menke & Abbot 1990).

2.5 Single-scattering theory

We show that the time perturbation ndtm (L) for the receiver at

the offset L is written as an integration over the slowness

perturbation field u1(x, z) multiplied by a sensitivity kernel

K(x, z):

SdtTðLÞ ¼
ð?
�?

ðL

0

u1ðx, zÞKðx, zÞdxdz : (14)

The first-order perturbation of the phase of the wavefield follows

from the Rytov approximation. The unperturbed wavefield is

denoted by p0. The Born approximation gives the first-order

perturbation p1 of the wavefield. According to Beydoun &

Tarantola (1988) and Snieder & Lomax (1996), the phase shift

dQ is given by

dr ¼ Im
p1

p0

� �
: (15)

The condition for the validity of the Rytov approximation is

that k0L(u1/u0)2%1, where k0 is the wavenumber. Comparing

this condition with the condition for the Born approximation

k0Lu1/u0%1 (Snieder & Lomax 1996), we see that the Rytov

approximation has validity for a larger slowness perturbation

parameter than does the Born approximation.

Snieder & Lomax (1996) demonstrated that the Born approxi-

mation to the solution of the acoustic wave equation with

constant density is

p1ðrR,uÞ ¼ u3=2

ffiffiffiffiffiffi
u0

2n

r
ei n

4

ð
V

u1ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrR � rj

p p0 eik0jrR�rjd2r (16)

788 J. Spetzler and R. Snieder

# 2001 RAS, GJI 145, 786–796



for an incident plane wave that is given by p0=exp(ik0x). The

receiver is at the position (L, zj). We assume that (zxzj)/

(Lxx)%1 and set jrR � rj and 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrR � rj

p
to the first- and

zeroth-order Taylor approximations, respectively (Snieder &

Lomax 1996); see Fig. 2 for a definition of the geometric

variables:

jrR � rj&ðL � xÞ þ ðz � zjÞ2

2ðL � xÞ and
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jrR � rj
p &

1ffiffiffiffiffiffiffiffiffiffiffiffi
L � x

p :

(17)

We insert these two small-angle approximations into eq. (16)

and define the full-space integration as a double integration

going from 0 to L for the offset x and from x? to ? for the

perpendicular distance z from the geometrical ray:

p1ðr, uÞ ¼u3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0=ð2nÞ

p
ein=4 eik0L

|

ðL

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
L � x

p
ð?
�?

u1ðx, zÞ eik0
ðz�zj Þ2

2ðL�xÞdzdx : (18)

Using eq. (15) the phase shift at the receiver position (L, zj) is

then given by

drðL, uÞ ¼u3=2

ffiffiffiffiffiffi
u0

2n

r ð?
�?

ðL

0

u1ðx, zÞ

|

sin k0
ðz � zjÞ2

2ðL � xÞ þ
n
4

 !
ffiffiffiffiffiffiffiffiffiffiffiffi
L � x

p dxdz : (19)

So far all the calculations in this section have been per-

formed in the frequency domain. In spite of this, we can express

the linearized phase perturbation as a linearized time delay,

supporting this statement by mathematically representing waves

as A(v) exp(iQ(v)), where the amplitude A(v) and the phase

Q(v)=vt depend on the angular frequency v. The phase shift is

then expressed as

dr ¼ udt , (20)

where dt is the time perturbation, which is a function of

frequency. Hence, the theoretical time-shift due to single

scattering is

dtðL, uÞ ¼
ffiffiffiffiffiffiffiffi
u0u
2n

r ð?
�?

ðL

0

u1ðx, zÞ
sin k0

ðz � zjÞ2

2ðL � xÞ þ
n
4

 !
ffiffiffiffiffiffiffiffiffiffiffiffi
L � x

p dxdz :

(21)

Wavefields are never monochromatic so we need to frequency-

average the time-shift. For example, the time perturbation can

be calculated for a frequency band in the range n0xDn to

n0+Dn, where n0 is the central frequency and Dn is the half-

width of the frequency band. Moreover, to account for the

variation of the frequency spectrum in the range of frequency

integration, we introduce the normalized amplitude spectrum

A(n) of the recorded wavefield. The normalization condition

for the amplitude spectrum is that b n0xDn
n0+Dn A(n)dn=1. The

frequency band averaged time-shift is calculated as

SdtTðLÞ ¼
ðl0þ*l

l0�*l
AðlÞdtðL, lÞdl

¼
ð?
�?

ðL

0

u1ðx, zÞ ffiffiffiffiffi
u0

p ðl0þ*l

l0�*l
AðlÞ

ffiffiffi
l

p

|

sin nlu0
ðz � zjÞ2

ðL � xÞ þ n
4

 !
ffiffiffiffiffiffiffiffiffiffiffiffi
L � x

p dldxdz : (22)

Comparing eq. (22) with eq. (14), we identify the sensitivity

kernel for an incoming plane wave as

Kplwðx, zÞ ¼ ffiffiffiffiffi
u0

p ðl0þ*l

l0�*l
AðlÞ

ffiffiffi
l

p
sin nu0l

ðz � zjÞ2

ðL � xÞ þ n
4

 !
ffiffiffiffiffiffiffiffiffiffiffiffi
L � x

p dl :

(23)

For point sources, the sensitivity kernel in eq. (23) is

modified by taking the point-source geometry into account.

The solution to the zeroth-order wavefield in the far field is

p0=x(1/
ffiffiffiffiffiffiffiffiffiffi
8nkr

p
Þ exp iðkr þ n=4Þ, where k is the wavenumber

and r is the propagation length. This solution for the source

geometry contains the geometrical spreading factor 1=
ffiffi
r

p
,

yielding the sensitivity kernel for a point source,

Kpsðx, zÞ ¼
ffiffiffiffiffiffiffiffi
u0L

p ðl0þ*l

l0�*l
AðlÞ

ffiffiffi
l

p
sin nu0lL

ðz � zjÞ2

xðL � xÞ þ
n
4

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðL � xÞ

p dl :

(24)

2.6 The properties of the sensitivity kernel

The sensitivity kernels for plane waves in eq. (23) and for point

sources in eq. (24), assuming a constant frequency spectrum

over the range of integration, are shown in Fig. 3. The per-

pendicular distance to the geometrical ray is plotted on the

horizontal axis and the sensitivity to slowness perturbations is

plotted on the vertical axis. The figure shows that the maximum

sensitivity to the slowness perturbation field is off the path

of the geometrical ray. This phenomenon has been observed

by several authors (see Marquering et al. 1998, 1999; Snieder &

Lomax 1996; Yomogida 1992). Thus, scattering theory deviates

from ray theory, which predicts that the traveltime is sensitive

only to the slowness field on the ray. We see furthermore that

the sensitivity kernel has sidelobes with a decreasing amplitude

away from the ray path. This means that finite frequency time

L

z

x

r

r R
zj

r
r
R -

x

Figure 2. Definition of the geometric variables for an incoming plane

wave in a 2-D medium with a constant reference slowness.
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perturbations are sensitive to slowness perturbations surround-

ing the ray path. In three dimensions, the sensitivity kernel is

even zero on the ray, which is well illustrated in Marquering

et al. (1999).

The width of the positive, central lobe of the sensitivity

kernel for plane waves is computed by setting the sine function

in eq. (23) equal to zero. Hence,

sin nu0l
ðz � zjÞ2

ðL � xÞ þ n
4

 !
¼ 0 : (25)

We isolate zxzj and multiply by 2 in order to calculate the

width Wsens
plw (x) of the positive, central lobe:

Wplw
sensðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3jðL � xÞ

p
: (26)

In the same manner, we derive from eq. (24) the width W ps
sens(x)

of the positive central lobe of the sensitivity kernel for point

sources:

Wps
sensðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3jxðL � xÞ

L

r
: (27)

Next we compare the widths W plw
sens(x) and W ps

sens(x) with the

widths of Fresnel zones in eqs (3) and (5), respectively. Except

for different factors 3 and 8/n, the two kinds of expressions

have the same dependence on l, x and L. Equating these factors

enables us to obtain an estimate of the number n in eqs (3)

and (5) for the width of Fresnel zones. We find that

n ¼ 8

3
(28)

in two dimensions. In three-dimensions, n=2, which can be

derived by comparing the width of the positive, central lobe of

3-D sensitivity kernels with the widths of Fresnel zones. The

value of n is important because Fresnel zones are physically

interpreted as the positive interference of waves with a detour

less that l /n. In two dimensions, this difference in propagation

length must not exceed 3l/8 for the first Fresnel zone. We

interpret the width of the positive, central lobe of sensitivity

kernels as the width of the Fresnel zone.

Finally, we show with the stationary phase approximation

(Bleistein 1984) that the integration of the product of the

slowness perturbation field and the sensitivity kernel for plane

waves over space is equivalent to eq. (12), which is valid

for first-order ray perturbation theory. Although we use the

sensitivity kernel for plane waves in eq. (23) in the derivation,

the result is also valid for the sensitivity kernel for point sources

in two dimensions as well as for a point source or a plane

incoming wave in three dimensions. We assume that the slow-

ness perturbation field depends only on the propagation distance

from the source. Thus, by making use of the 2-D sensitivity

kernel for plane waves, it follows that, for zj=0,ðL

0

ð?
�?

u1ðxÞKplwðx, zÞdzdx

¼ ffiffiffiffiffi
u0

p ðl0þ*l

l0�*l
AðlÞ

ffiffiffi
l

p ðL

0

u1ðxÞffiffiffiffiffiffiffiffiffiffiffiffi
L � x

p

|

ð?
�?

sin lnu0
z2

ðL � xÞ þ
n
4

� �
dzdxdl

¼
ffiffiffiffiffi
u0

p

2i

ðl0þ*l

l0�*l
AðlÞ

ffiffiffi
l

p ðL

0

u1ðxÞffiffiffiffiffiffiffiffiffiffiffiffi
L � x

p

|

ð?
�?

�
eiðlnu0

z2

ðL�xÞ þ
n
4Þ � e�iðlnu0

z2

ðL�xÞ þ
n
4Þ
�

dzdxdl

&
ffiffiffiffiffi
u0

p

2i

ðl0þ*l

l0�*l
AðlÞ

ffiffiffi
l

p ðL

0

u1ðxÞffiffiffiffiffiffiffiffiffiffiffiffi
L � x

p 2i

ffiffiffiffiffiffiffiffiffiffiffiffi
L � x

lu0

r� �
dxdl

¼
ðl0þ*l

l0�*l
AðlÞdl

ðL

0

u1ðxÞdx

¼
ðL

0

u1ðxÞdx , (29)

which is directly comparable to the result for ray theory in

eq. (12).

3 S E T - U P O F T H E N U M E R I C A L
E X P E R I M E N T

In order to scrutinize the discrepancy between ray theory

and scattering theory, we have constructed a 2-D numerical

experiment with a slab of slowness perturbations that varies

increasingly rapidly as a function of depth. The wavefield is

initialized by a plane wave source. The name of this experiment

is the ‘sweep experiment’ because the function of the slowness

perturbation field resembles the sweep source function used in

exploration seismology. The heterogeneous slab has a width W

with its left-hand side at offset xl from the source, as shown in

Fig. 1. The slowness field is defined as

uðzÞ ¼

u0 outside the slab ,

u0 þ
ffiffiffi
2

p
eu0 sin

ðz þ z0Þ4

k

 !
inside the slab ,

8>><
>>: (30)

where u0 is the reference slowness and e is the rms value

of slowness perturbation fluctuations. The two parameters
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Figure 3. The sensitivity kernel for an incident plane wave (solid

line) and for a point source (dashed line). The reference slowness is

2.5r10x4 s mx1, the constant frequency band is between 150 and

250 Hz and the offset is 100 m. The sensitivity kernel for a plane wave

is computed at the initial wavefront, whereas the sensitivity kernel for

a point source is evaluated at the half-distance between the source

and receiver. The maximum width of the positive, central lobe of the

sensitivity kernel for a plane wave is twice the maximum width of

the positive, central lobe of the sensitivity kernel for a point source.
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z0=300 m and k=1.5r1010 m4 are used to adjust the sweep

function to the situation in which scattering theory becomes

significant. In every sweep experiment, u0=2.5r10x4 s mx1,

xl= 20 m and W= 20 m. The size of this experiment is

100 mr600 m, with the horizontal source position at zero

offset, and the vertical receiver array is at L=100 m offset. In

the sweep experiment in Figs 4(a) and (b), e=0.017 and 0.035,

respectively.

In addition to the sweep experiment, with another numerical

experiment we demonstrate the validity of our scattering theory

in a realization of the Gaussian random model. The auto-

correlation function for Gaussian media is given in eq. (8). For

one case, we applied the plane wave source as in the sweep

experiment, and in the other case we used a point source to

verify that the sensitivity kernel due to point sources in eq. (24)

is correct. The Gaussian random media experiments in Figs

4(c) and (d) measure 200 mr230 m and 100 mr130 m for the

plane wave source and the point source, respectively. For

the incident plane wave, the initial wavefront is at x=0, and the

offset of the vertical array receivers is L=200 m. For the point

source, the source at zero offset is located at 65 m depth, and

the vertical receiver array is at L=100 m offset.

Because the mean value of slowness perturbations in finite

sized realizations of Gaussian random media is not necessary

zero, the value of the constant reference slowness u0 differs

in the two Gaussian random media experiments. It can be
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Figure 4. Performance of ray theory versus scattering theory in the numerical experiments. The slowness field is shown with greyscale shades. Time

residuals for first-order ray perturbation theory (yellow line) and for scattering theory (blue line) are compared with the ‘observed’ time-shifts (red line).

(a) The sweep experiment using a plane wave with e=0.017. (b) The sweep experiment using a plane wave with e=0.035. (c) The Gaussian random

media experiment with e=0.025 and a=7 m. The wavefield is initialized by a plane wave source. (d) The Gaussian random media experiment with

e=0.025 and a=3 m, but with a different slowness medium than that in (c). The wavefield is initiated by a point source.

Scattering effects due to small-scale heterogeneity 791

# 2001 RAS, GJI 145, 786–796



proven that

if
ð

NðrÞdV=0 then Su1T=0 , (31)

where N(r) is the autocorrelation of the random medium

(Müller et al. 1992). We have chosen the reference slowness

field to be equal to the mean value of the slowness field in the

two Gaussian random media, e.g. u0=<u>. Due to the more

severe grid condition for using a point source than an incoming

plane wave in the numerical experiment, we used different

realizations of a Gaussian random medium in the two Gaussian

experiments. As a result, the reference slowness is given by

u0=2.470r10x4 s mx1 for the test with an incoming plane

wave, and 2.456r10x4 s mx1 for that with a point source.

However, e=0.025 in both experiments.

To ascertain whether ray theory or scattering theory is

dominant, we compare the theoretical residual times for ray

theory and scattering theory with the ‘observed’ data deter-

mined in the following way. First, synthetic data for a reference

model and a perturbed model are computed with a finite

differences solution of the wave equation (FD code). For the

reference model, the slowness field is set to the constant u0, and,

for the perturbed model, the sweep model or the Gaussian

random medium is applied. The ‘observed’ residual times are

then obtained by comparing the waveforms in the filtered

reference wavefields with the waveforms in the filtered per-

turbed wavefields. By filtering we mean that the FD data are

band-pass filtered in the same frequency range over which

the sensitivity kernels are averaged. The first extremum of the

waveform is used as a measuring point to obtain the absolute

traveltime for each set of filtered waveforms. The ‘observed’

delay time is then defined as the difference between the absolute

traveltime for the filtered reference wavefields and for the

filtered perturbed wavefields.

4 R E S U L T S

In Figs 4(a) and (b) we show the traveltime changes for the

sweep experiment due to an incident plane wave. The frequency

band of the recorded wavefield is between 150 and 250 Hz.

The 2-D slowness field is shown with greyscales in both

figures. The time delays due to first-order ray perturbation

theory are plotted with a yellow line, residual times computed

with the Rytov approximation are shown with a blue line, and

the ‘observed’ time-shifts are shown with a red line. In both

examples of the sweep experiment we used the sensitivity kernel

in eq. (23). It is observed in Figs 4(a) and (b) that the FD time

delays have some small but abrupt oscillations that are due to

errors in the picking of the ‘observed’ data.

In Figs 4(a) and (b), we mark with a jagged black line

the transition zone where ray theory breaks down in favour of

scattering theory based on the condition for ray theory in

eq. (13) that the width of Fresnel zones in eq. (26) is less than

the local length scale a of slowness perturbations in the sweep

experiment. For a central wavelength l=20 m and x=70 m

(the central distance of the heterogeneous slab from the receiver),

we have Wsens
plw=65 m. For comparison, in the centre of the

transition zone (z=250 m) the half-wavelength of the sweep

function in eq. (30) is about 61 m. We conclude from these

two experiments that, in general, the non-dimensional number

LF
plw/a for the regime of scattering theory is

L
plw
F

a
> 1 , (32)

where LF
plw is the maximum width of Fresnel zones for plane

waves.

In Figs 4(a) and (b), below the transition zone from ray

theory to scattering theory the time-shifts computed with first-

order ray perturbation theory cannot fit the ‘observed’ residual

times; moreover, these ray-theoretical time delays are even out

of phase with both the ‘observed’ time-shifts and the finite

frequency time delays for depths between 450 and 560 m. The

time delays due to single-scattering theory predict the FD time-

shifts rather well. The scattering theory predicts not only the

order of magnitude of the ‘observed’ time delays, but it also

gives the correct result for depths below 450 m in the sweep

experiment, where the FD time-shifts are anticorrelated with

the ray-theoretical residual times.

In Fig. 5, we plot the focus position xcaus of a plane wave-

field passing through the sweep model with e=0.071, which

is on purpose a larger value than that applied in the sweep

experiments in Figs 4(a) and (b). Given a depth z, the focal

length (solid line) in Fig. 5 is computed with eqs (6) and (7),

while the dashed line marks the source–receiver distance. Where

the focal length of the converging wavefield is smaller than

the distance between the source and receiver, caustics develop

before measuring the wavefield at the receivers. Additionally,

in Fig. 6 we show six snapshots (taken at the absolute travel-

times t=0, 5, 10, 15, 20 and 25 ms) of the wavefield that

propagates through the sweep model for e=0.071. The thin

slab of inhomogeneity is marked in the figure with a black box
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Figure 5. The focal length of a plane wavefield is calculated for the

case of the sweep experiment with e=0.071. If the focal length (solid

line) of the converging wavefield is to the left of the receiver position

(dashed line) then caustics will occur in the recorded data.
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and horizontal black stripes. For the two earliest snapshots, the

wave propagates in a constant-slowness field. For t=10 ms,

the wave has just passed through the slowness perturbation

field, so the wavefront has been deflected by slowness hetero-

geneities. The first two triplications occur between 40 and 60 m

offset. Note the high energy density at the kinks in the wave-

front; these kinks are associated with the caustics. In the two

latest snapshots, for t=20 and 25 ms, the caustics are much

more clear as they give rise to half-bow-tie-shaped wavefronts

(triplications) behind the ballistic wavefield. The distances at

which the caustics in Fig. 6 start to generate correspond well

with the focal lengths that are predicted in Fig. 5.

For the sweep experiment with e=0.017, no caustics are

produced in the wavefield, while for e=0.035, triplications occur

before recording the wavefield at receivers at depths below

480 m. The zone with caustics is indicated in Fig. 4(b). At this

point, we must reconsider the validity of the Rytov approxi-

mation for transient waves where triplications are present in the

recorded wavefield, such as in results of the sweep experiment as

shown in Fig. 4(b). In comparing the Rytov approximation with

the Born approximation, Beydoun & Tarantola (1988), Brown

(1967), DeWolf (1967), Fried (1967), Hufnagel & Stanley (1964),

Keller (1969), Sancer & Varvatsis (1970) and Taylor (1967)

concluded that the Rytov approximation has validity for a larger

range of the slowness perturbation parameter than does the Born

approximation. They, however, do not investigate the validity of

the Born and Rytov approximations when non-linear effects

such as the development of triplications become operative. In this

study, we have tested the validity of the Rytov approximation

in the regime of caustics. We computed the perturbed wave-

fields for the sweep experiment with e=0.017, 0.035, 0.071, 0.11

and 0.14, and estimated the FD time delays by using the first

extremum of the filtered waveforms. For the sweep experiment

with e=0.017, the theory for caustics in 1-D slowness pertur-

bation fields predicts that triplications would not be recorded in

the data, but for larger e triplications would always occur in the

measured wavefield. We have shown the sweep experiment with

the two lowest values of e in Figs 4(a) and (b), but the sweep

experiments with larger e are not shown here. In brief, we find

that the Rytov approximation does a good job even in areas with

a strong development of triplications. We therefore propose that

the validity of the Rytov approximation of ballistic waves extends

into the regime where caustics are present in data.

In order to demonstrate the validity of the single-scattering

theory in more complex media, we use the Gaussian random

media experiment, where scattering is significant. The relative

rms value of slowness fluctuations e is given by 0.025, and the

length scale of slowness anomalies, a, is 7 m for the incoming

plane wave experiment and 3 m for the point source experi-

ment. We use the same colour convention as in the sweep

experiment for the residual times computed with ray theory,

scattering theory and the FD code. Results for this experiment,
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Figure 6. Snapshots of plane wave propagation in the sweep experiment with e=0.071. The slab of slowness heterogeneities is shown with the black

box and horizontal black stripes. The absolute traveltimes t=0, 5, 15, 20 and 25 ms are marked at the respective wavefronts. The triplications become

clear in the wavefronts for t=15, 20 and 25 ms.
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for an incident plane wave and a point source, respectively, are

shown in Figs 4(c) and (d), where we make use of the sensitivity

kernel formulation in eqs (23) and (24) to compute the

scattering theoretical time-shifts.

For an incident plane wave, the frequency is from 150

to 250 Hz, so according to eq. (32), ray theory breaks down

when the characteristic length of slowness anomalies is smaller

than LF
plw=110 m. In this case, the length scale of slowness

perturbations a=7 m, so the ‘observed’ time delays should

be strongly dominated by scattering. This is indeed what is

observed in Fig. 4(c). The finite frequency residual times fit the

‘observed’ time delays correctly while ray theory does not

account for the traveltime deviations.

Fig. 4(d) shows results of the Gaussian random media

experiment for a point source with frequencies ranging from

200 to 400 Hz. Using the sensitivity kernel in eq. (24) to com-

pute the residual times due to scattering theory, we compute the

maximum width of Fresnel zones as LF
ps=31.9 m for l=13.6 m

and L=100 m. The length scale of slowness anomalies, a=3 m,

is thus about 10 per cent of LF
ps. In Fig. 4(d), scattering theory

predicts the ‘observed’ residual times well but the ray-theoretical

time-shifts do not fit the FD time delays. As in the experiments in

Figs 4(a), (b) and (c) where a plane wave is applied, we conclude

that the regime of scattering theory for wavefields emitted by a

point source is significant when

L
ps
F

a
> 1 : (33)

We have ascertained whether the recorded wavefields for plane

waves and point sources in the Gaussian random media experi-

ments contain triplications. By inserting e=0.025 in the condition

for caustic formation in eqs (9) and (10), we find that

L

a
§

6:1 for plane waves ,

13:1 for point sources :

(
(34)

With the autocorrelation lengths a=7 m for the plane wave

and a=3 m for the point source, this implies that caustics are

present in the recorded wavefields in the Gaussian experiments in

Figs 4(c) (a plane wave with L=200 m) and (d) (a point source

with L=100 m).

The non-dimensional numbers for the regime of ray

theory, scattering theory and triplications are summarized in

Table 1. Notice that four parameters determine when these

three distinct regimes are significant. These four parameters are

the wavelength l, the source–receiver distance L, the relative

rms value of slowness fluctuations e and the length scale a of

inhomogeneity.

5 A P P L I C A T I O N O F T H E R E G I M E O F
S C A T T E R I N G T H E O R Y

We consider the implications for three examples taken from

seismology, ocean acoustic and medical imaging for which

scattering theory is important. The source in all three cases is a

point source, so the condition for scattering theory due to point

sources (eq. 33) is that LF
ps/a>1. The example from seismology

is global surface wave tomography, where the surface waves

propagate in two dimensions on a sphere, while in the case

of ocean acoustic or medical imaging the wave propagation

is in 3-D Cartesian space. Thus the dimension of the wave

propagation in each particular experiment must be considered.

The maximum width of Fresnel zones for point sources

occurs at the half-source–receiver distance. We find that

L
ps
F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3j
2

tan
*
2

� �s
ða sphereÞ and

L
ps
F ¼

ffiffiffiffiffiffi
jL

p
(3-D Cartesian space) : (35)

(See appendix A for a derivation of the width of Fresnel zones

for surface waves.) For the widths of the Fresnel zone on

the sphere, we have used n=8/3 according to eq. (28). On the

sphere both the wavelength and the epicentral distance are

measured in radians. The parameter D denotes the epicentral

distance between the source and receiver. For LF
ps in a 3-D

Cartesian space, we applied eq. (5) for n=2.

In global surface wave tomography (Trampert & Woodhouse

1995, 1996), a characteristic propagation distance is about

145u, and the wavelength is about 700 km for Love waves at

150 s. For a high-resolution, global surface wave experiment,

slowness anomalies have a length scale as small as 1000 km. We

find that LF
ps=4600 km, so scattering theory is important.

Scattering theory will be even more significant for larger

wavelengths and source–receiver distances.

In ocean acoustic, Hodgkiss et al. (1999) and Kuperman et al.

(1998) carried out a time-reversed mirror experiment wherein

the source–receiver distance was 6.3 km and the characteristic

wavelength l=3.4 m (sound speed in sea water with 3.5 per

cent salinity at 20 uC is 1522 m sx1, and the characteristic

frequency of acoustic waves in the experiment was 445 Hz).

The width of the Fresnel zone is then 146 m, which is larger

than the surface bottom depth in their experiment. This means

that any heterogeneity within the region of the experiment is

smaller than the width of the Fresnel zone, so scattering theory

is significant.

In medical imaging (Baba et al. 1989; King & Shao 1990),

ultrasound is applied to scan the brain, the chest, the foetus, etc.

The velocity of the employed waves varies between 1440 m sx1

(fat) and 1675 m sx1 (collagen), while the frequency is in the

MHz range, so let the frequency n=30 MHz. The wavelength

then varies between 48 and 56 m m and the average distance L

between the transducer and receiver instrument is about 20 cm.

The width of the Fresnel zone LF
ps#3 mm, which is greater

than the diameter of blood vessels and cell structures in the

body. Scattering theory is thus important.

6 C O N C L U S I O N S

We have shown that first-order ray theory breaks down in favour

of linearized scattering theory in predicting the traveltime shifts

Table 1. The non-dimensional numbers l/a, LF/a and L/a that

describe the regime of ray theory, scattering theory and triplications.

r indicates that this parameter is not of relevance for the physical

effects considered.

Regime l/a LF/a L/a

Ray theory %1 %1 r
Scattering theory r >1 r

Triplications r r >
0:52��2=3 ðplwÞ
1:12��2=3 ðpsÞ

�
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of waves in heterogeneous media when the length scale of

slowness heterogeneity is smaller than the widths of Fresnel

zones. The condition for the regime of scattering theory depends

on the frequency content of the recorded wavefield and the

propagation length of the ballistic wave between the source and

receiver.

The scattering theory presented in this paper is based on the

first-order Rytov approximation, so the scattering theoretical

time delays are well defined for finite frequencies. Physically,

this means that finite frequency time-shifts have the maximum

sensitivity to slowness fluctuations off the path of the ray and,

moreover, are sensitive to the slowness fluctuation field in the

whole space of wave propagation. In contrast, ray-theoretical

residual times are dependent on only the slowness fluctuation

field which is on the geometrical ray.

Scattering theory can predict the residual traveltimes of

waves in inhomogeneous media even if triplications are present

in the recorded wavefield. We have presented a condition for

the regime of caustics in heterogeneous media, both with a 1-D

slowness field and with a Gaussian random medium for initially

plane waves and point sources. This condition is independent

of the frequency of the recorded wavefield. Not surprisingly,

we have found that the greater the magnitude of the slowness

fluctuations, the more easily triplications develop in the wave-

fields. However, the e2/3 dependence for slowness fields described

by Gaussian random media is non-trivial. Notice that in the

numerical experiments the Rytov approximation provides an

accurate estimate of the time-shift, regardless of whether caustics

have developed or not.

The numerical experiments carried out in this paper are kept

as general as possible. The results for the regimes of scattering

theory and triplications are therefore applicable to domains

such as seismology, ocean acoustic, non-destructive testing and

medical imaging where wave phenomena are important.
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A P P E N D I X A : T H E W I D T H S O F
F R E S N E L Z O N E S O N A S P H E R E

According to Fig. A1, the epicentral distance between the

source and receiver is denoted by D, and the epicentral distance

between the source and scatterer point and the scatterer point

and receiver are marked as g and g’, respectively. The half-

width of the Fresnel zone at offset c is denoted q. Using the law

of cosines on a sphere to relate g to q and c, we obtain

cosðgÞ ¼ cosðqÞ cosðcÞ þ sinðqÞ sinðcÞ cos n
2

� �
¼ cosðqÞ cosðcÞ : (A1)

Isolating g from eq. (A1) and assuming that the ray deflection q

is small gives

g ¼ arccos cosðqÞ cosðcÞð Þ

& arccos cosðcÞ � 1

2
q2 cosðcÞ

� �

&c þ q2

2 tanðcÞ : (A2)

Similarly, we have for gk

g0 ¼ ð* � cÞ þ q2

2 tanð* � cÞ : (A3)

The detour g+gkxD is calculated as

g þ g0 � * ¼ q2

2

1

tanðcÞ þ
1

tanð* � cÞ

� �

¼ q2

2

sinð*Þ
sinðcÞ sinð* � cÞ : (A4)

The condition for Fresnel zones on a sphere that the detour is

less than the wavelength divided by a number n is given by

g þ g0 � *ƒ
j
n
, (A5)

where l is the wavelength measured in radians. The detour in

eq. (A4) is inserted into the Fresnel zone condition in eq. (A5),

where the sign of equality is applied for the Fresnel zone

boundary. Thereby the half-width q of the Fresnel zone is

given by

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j sinðcÞ sinð* � cÞ

n sinð*Þ

s
, (A6)

which has the largest value for c=D/2. For that case,

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j
n
tan

*
2

� �s
: (A7)

The maximum width LF
ps of Fresnel zones due to point sources

is the half-width q in eq. (A7) multiplied by 2, thus

L
ps
F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4j
n

tan
*
2

� �s
, (A8)

where LF
ps and l are measured in radians.

q

S R

η'η

γ

∆

∆ - γ

Figure A1. Explanation of the variables used to construct the Fresnel

zone due to a point source on a sphere.
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