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The Anatomy of Inverse Problems

John A. Scales* and Roel Snieder*

A major task of geophysics is to make quantitative state-
ments about the interior of the earth. For this reason, inverse
problems are an important area of geophysical research and
industrial application. Figure 1 shows how many texts present
inverse problems. The earth model is an element of a mathe-
matical space that contains all allowable parameterizations of
the earth’s properties (or at least those properties relevant to a
given experiment); this space is referred to as model space. The
physics of the problem determines which data d correspond to a
given model m. The problem of computing the model response
(synthetic “data”) given a model is called the forward problem.
The corresponding data reside in a mathematical space that is
called data space. In many applications, one records the data,
and the goal is to find the corresponding model. The task is
called the inverse problem, as shown in Figure 1.

Unfortunately, Figure 1 is wrong. There is a simple reason
for this. In general the model that one seeks is a continuous
function of the space variables with infinitely many degrees of
freedom. For example, the 3-D velocity structure in the earth
has infinitely many degrees of freedom. On the other hand, the
data space is always of finite dimension because any real exper-
iment can only result in a finite number of measurements. A
simple count of variables shows that the mapping from the data
to a model cannot be unique; or equivalently, there must be el-
ements of the model space that have no influence on the data.
This lack of uniqueness is apparent even for problems involv-
ing idealized, noise-free measurements. The problem only be-
comes worse when the uncertainties of real measurements are
taken into account. Although the uniqueness question is a hotly
debated issue in the mathematical literature on inverse prob-
lems, it is largely irrelevant for practical inverse problems be-
cause they invariably have a nonunique solution (if by solution
we mean an earth model). It is this nonuniqueness that makes
Figure 1 deceptive, because the arrow pointing from data space
to model space suggests that a unique model corresponds to
every data set.

A more realistic scheme of inverse problems is shown in Fig-
ure 2. Given a model m, the physics of the problem determines
the predicted data d; this is called the forward problem. For
a given data set, one determines an estimated model h. We

refer to this as the model estimation problem. (Later, we will
consider the generalization to the problem of estimating prop-
erties of models, rather than the models themselves.) Note that
there may be many reasonable model estimates for a given data
set and that the estimation procedure may be nonlinear even
when the forward problem is linear. Thus, the mean of a set
of numbers is a linear function of the numbers, whereas the
median is a nonlinear function. Yet both the median and the
mean may be reasonable estimators of the “center” of the set
of numbers. Part of the art of solving inverse problems comes
from the need to define what it means for an estimate to be
reasonable.

Since the mapping from data space to model space is
nonunique, the estimated model may also depend on the details
of the algorithm that one has used for the estimation problem
as well as on the regularization and model parameterization
that has been used. In general, the estimated model m differs
from the true model m. For example, in seismic inversion the
estimated model may be a blurred version of the true model. In
addition, the data are always contaminated with errors; these
errors represent an additional source of discrepancy between
the estimated model and the true model.

One is not finished when the estimated model is constructed;
it is essential to somehow quantify the error between the esti-
mated model and the true model. This is called the appraisal
problem. In this problem, one determines the uncertainty in the
estimated model. This uncertainty has a statistical component
related to the propagation of errors in the data, and a deter-
ministic component that accounts for the finite resolution that
is attained in the model estimation, as well as systematic errors
in the problem.

For linear inverse problems, resolution kernels and confi-
dence set analysis are powerful tools for formulating the ap-
praisal problems, and the theory of linear error propagation is
sufficiently well developed to account for the errors in the esti-
mated model due to the errorsin the data. For nonlinear inverse
problems, the only tool available for the appraisal problem
may be Bayesian inversion where one estimates the statistical
properties of the model when the data and other knowledge
are combined in a statistical sense by repeated sampling of the
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model space (e.g., Mosegaard and Tarantola, 1995; Gouveia
and Scales, 1998). These techniques are only applicable to prac-
tical problems where the number of parameters is relatively
small. This is partly due to computational cost of such methods,
but is also related in a very subtle way to the behavior of prob-
abilities in high dimensional spaces (see Scales and Tenorio,
2001). For large-scale inverse problems such as the determi-
nation of 3-D earth structure, Monte Carlo sampling methods
are not feasible. This means that there is presently no opera-
tional theory to account for the appraisal problem of nonlinear
inverse problems with large number of parameters (Snieder,
1998). Developing such a theory is a theoretical and practi-
cal challenge that is much more important than establishing
uniqueness proofs of idealized mathematical problems.

In practice, one solves inverse problems with a certain goal.
For example, one may use an estimated model obtained from
an inversion of seismic data as a basis for deciding where to
drill or how to optimally exploit a reservoir. In practice, one is
never interested in the seismic velocity at a certain spot in the
subsurface, but for a seismic interpreter it is crucial to know
whether at a certain place a syncline or an anticline is present.
This means that for practical inverse problems one is interested
in patterns that can be used in a meaningful way for making
decisions. In practice, these decisions are usually not based ex-
clusively on the estimated model rh, but involve the integration
of other data as well as human expertise. In addition, the uncer-
tainty in the estimated model is an important factor in making
decisions. Thus, Figure 3 gives a more realistic view on inverse
problems, because it shows explicitly that decisions rather than
model estimation is the endpoint of practical inverse problems.

Itisinteresting to consider the relation between the appraisal
problem and the process of decision making. An important as-
pect of the appraisal problem is the statistical treatment of
error propagation. This means that the appraisal problem has
probability as an important component. Decisions are usually
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FiG. 2. Animproved view of inverse problems.

based on risk rather than probability. This may be economic
risk (where to drill), environmental risk (what happens when
pollutants spread), or even academic risk (am I sure enough
to publish my results). Risk is always concerned with proba-
bility plus another component such as profit or environmental
impact. This means that in this stage those who produce the
models and their uncertainty must interface with others for
making decisions effectively.

Figure 3 offers an overview of the landscape of geophysical
inversion. Those working on wave propagation problems focus
on the forward problem. Those focused on the development of
migration algorithms work on the estimation problem. Statisti-
cians and a limited number of scientists in the inverse problem
community are concerned with the appraisal problem. Seismic
interpretation is usually based on an estimated model, and so
can be thought of as a decision-making problem. It is illuminat-
ing to see how different researchers work on different parts of
this problem. One may wonder whether these research efforts
could be more effective when their activities are seen in the con-
text of the anatomy of the inverse problem as shown in Figure 3.

In Figure 3, the estimated model rm forms an essential part
of the inversion process. But is it necessary or desirable to pro-
duce an estimated model in the process of inversion of data?
We, of course, are conditioned to produce models from our
data. However, given the fact that this estimated model dif-
fers from the true model, one can be led astray by features in
the estimated model that are artifacts of the inversion process.
Another view on inverse problems is given in Figure 4 where
the goal is to determine the range of models that are consistent
with the data (as well as other information). This range of mod-
els can simply be a box within which all the models are believed
to fit the data (there being no comparative relation among the
models in the box), or it could be a probability distribution on
the space of models P(m) (in which case one can speak of the
best or most probable model). Both the box and the probabil-
ity are determined by the data, the uncertainties and whatever
other data-independent information is available. As we have
discussed previously (Scales and Snieder, 1997), people taking
the former approach are called frequentists (this includes most
statisticians), whereas people taking the latter approach are
called Bayesians (this includes most geophysicists). In either
case, the estimation and appraisal problem is replaced by the
inference problem. Inference means characterizing somehow
the set of models that explain the data (and satisfy whatever
other information is available). One can then use this box, or
the probability distribution P(m), as a basis for making deci-
sions. The tutorial by Scales and Tenorio (2001) shows a nice
example of a “toy” inverse problems tackled from a Bayesian
and a frequentist point of view.

The reader may be put off by the idea of solving inverse prob-
lems without constructing a model. Our minds are conditioned
to making models from data. However, we have seen that these
estimated models can only be the endpoint of research when
one ignores the fact that models are being produced with the
goal of making decisions. When seen in this larger context (Fig-
ures 3 or 4), it is worth considering whether one is not better
served by knowing the probability distribution of the set of
models than by knowing a single estimated model and a mea-
sure of its uncertainty.

It is interesting to consider how we would use a probabil-
ity density function in a high-dimensional model space. The
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FIG. 4. The inverse problem as an inference problem.

simplest approach is to compute the mean and variance of each
model parameter, and one can visualize this information rel-
atively easily. However, as we have seen, the patterns in the
model are much more interesting than the estimates of one
model parameter. Assessing the robustness of certain patterns
in the model is much more difficult, especially since this entails
the use of the correlation between different model parameters.
In a high-dimensional model space it is extremely difficult to
characterize and interpret the correlations of the model param-
eters. In order to interrogate the resulting probability density
function of the model in a meaningful way, research is needed
into cluster and feature analysis of (possibly multimodal) prob-
ability density functions of many degrees of freedom, as well
as the development of an interface between the exploration
of these high-dimensional functions and the decision-making
process.

It will be clear from this that in order to treat inverse prob-
lems in ways that are different from current practice requires
significant theoretical and numerical advances. However, clear
strategies for the optimal use of inverse problems in the pro-
cess of decision making should also be an important item on
the agenda for researchers in inverse problems.
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