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Time-reversed imaging as a diagnostic of wave and particle chaos
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In the presence of multiple scattering, waves and particles behave fundamentally differently. As a model for
the stability of the temporal evolution of particle and wave propagation, a scattering system is presented in
which particle propagation is strongly unstable while wave propagation is significantly more stable. Both
analytical and numerical evidence for the different stability properties of wave and particle propagation is
presented; the exponential divergence of particle trajectories leads to a critical length scale for the stability of
particle propagation that depends exponentially on time@exp(2mt)#, whereas the critical length scale for the
stability of wave propagation decreases with time only as 1/At. This fundamental difference is due to wave
suppression of classical chaos that is intimately related to the concept of ray splitting.
@S1063-651X~98!04611-X#
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I. TIME-REVERSED IMAGING AS A DIAGNOSTIC

The relation of classical chaotic motion and the cor
sponding behavior of waves that propagate in the same
tem has been an active field of research. The words ‘‘qu
tum chaos’’ suggest that quantum systems can exh
chaotic behavior. Classical chaotic systems display a fra
structure in phase space. Such a fractal structure in p
space is precluded in quantum mechanics by Heisenbe
uncertainty principle. In addition, closed quantum syste
have discrete states that correspond to periodic mot
whereas classical chaos is characterized in the frequency
main by a continuous spectrum@1#. It is thus not clear what
the imprint of chaos on quantum-mechanical systems is.
this reason Berry@2# introduced the phrase ‘‘quantum chao
ogy.’’ The relation between classical chaos and quant
chaos is not trivial@3#. For classical systems the Kolmogo
Arnold-Moser ~KAM ! tori form impenetrable barriers, bu
waves can tunnel through these barriers. Conversely, ca
~broken up KAM tori! can be penetrated by classical traje
tories but the finite extent of a wave in phase space pra
cally blocks the waves from crossing a cantorus. In additi
classical trajectories that nearly touch each other are fun
mentally different from a classical point of view, but for th
corresponding quantum system these touching trajecto
lead to new phenomena@4#.

Although many aspects of the relation between class
chaos and quantum chaos are not completely understood
clear that wave effects suppress the chaotic character of
tems; one can speak of a quantum suppression of clas
chaos@3#. This notion has been formulated in the followin
way by Gutzwiller@5#:

*Author to whom correspondence should be addressed. Add
correspondence to Department of Geophysics, Utrecht Univer
P.O. Box 80 021, 3508 TA Utrecht, The Netherlands.
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‘‘Quantum mechanics mitigates the destructive influen
of classical chaos on simple physical processes. Ind
quantum mechanics is sorely needed to save us from
bizarre aspects of classical mechanics; but most p
doxically this process of softening the many rough sp
is entirely in our grasp as soon as the nature of
roughness is understood.’’

It is the goal of this work to obtain a better understanding
the imprint of classical chaos on wave systems.

The stability of wave and particle propagation is studi
here using time-reversed imaging~TRI!. The concept of TRI
relies on the invariance of Newton’s law or the wave equ
tion under time reversal. Consider a wave or particle sys
that evolves forward in time from a source at timet50 to a
later time t. When the motion of the particles or the wav
vector of the waves are reversed at this time, the partic
and waves will retrace their original trajectories and return
the source where they originally started. However, when
system is perturbed before the reverse propagation the
ticles or waves do not necessarily return to their origin
source. The inability to return to the original source positi
is related to the stability of the wave or particle propagat
to perturbations. Ballentine and Zibin@6# used reverse time
propagation to study the stability of wave and particle pro
gation for the driven quartic oscillator and the periodica
kicked rotator when the systems were perturbed by a unifo
translation.

This study has been motivated by recent laboratory
periments of TRI of acoustic and elastic waves~@7–9#!. In
these experiments TRI is achieved by driving one or m
piezoelectric transducers with a time-reversed version of
recorded wave field. The process has proven to be surp
ingly stable, even for an experiment involving a mediu
with 2000 strong scatterers@7#. In @9# the ergodicity of sta-
dium boundaries has been exploited to achieve TRI of ela
waves experimentally with only asingle receiver.
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The degree of focusing of waves under TRI depends
the aperture of the receiver array, the initial errors in
reversed wave field, and on the stability properties of wa
propagation. For closed systems of particles with perfe
reflecting walls~i.e., billiards!, certain boundary geometrie
are known to be ergodic~e.g., @10#!. This ergodicity, com-
bined with a sensitive dependence on initial conditions, is
definition of chaos@1#. For open systems of particles and f
waves the situation is less clear. TRI provides a diagnosti
the stability of propagation that can be used for both partic
and waves in open or closed systems. The idea is that f
system that is time-reversal invariant, both particles a
waves should return to their source when at a certain time
waves and particles are reversed. A complete focusing on
source will only take place when the velocity and positi
are known exactly and when the scattering medium is
actly the same before and after the time reversal. The de
to which errors in these quantities destroy the imaging on
source is a diagnostic of the stability of the wave or parti
propagation, and hence of chaotic behavior of particles
waves.

In @11# we show that the delicate interference required
achieve TRI of waves can be destroyed by relatively sm
perturbations in the position of the scatterers. Here we
dress systematically the stability of TRI under various kin
of perturbations for open systems of both particles and wa
in the presence of multiple scattering. The system used
is similar to the one used in@7# and is shown in Fig. 1.
Particles or waves are emitted from a source and propa
through a system of 200 strong isotropic point scatterers.
the waves, 96 receivers are located on the line indicate
Fig. 1. A particle is recorded for the time reversed imag
when it traverses the receiver line.

FIG. 2. Definition of the impact parameterb.

FIG. 1. Geometry of the numerical experiment.
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When comparing the stability of wave or particle prop
gation, one can specify either the medium~e.g., a quantum
mechanical potential! or the scattering properties of th
waves and particles. When the medium is fixed, the rela
between the wave system and the classical system ca
obtained by letting the wavelength approach zero (l→0), or
equivalently in the case of quantum mechanics lett
Planck’s constant go to zero (\→0). This limit can be stud-
ied using semiclassical mechanics@5,12#; this can even be
achieved for wave systems that exhibit ray splitting@13,14#.
In this work the scattering properties of the waves and
particles are taken to be identical by using isotropic po
scatterers with the same scattering cross section for b
waves and particles. This choice ensures that the only dif
ence between the waves and particles lies in the dynamic
propagation, rather than in a different interaction with t
scatterers.

II. SCATTERING OF PARTICLES

Isotropic scattering of particles that is invariant und
time reversal is ensured by requiring that both the velocitv
~51500 m/s! and the impact parameterb of the particles are
conserved during scattering and that~in two dimensions! the
scattering angleQ is linear in the impact parameter:

Q5pS s22b

s D for ubu<s/2, ~1!

wheres is the scattering cross section. For larger values
the impact parameter the particle is not scattered~i.e., Q
50!. The impact parameter is defined geometrically in F
2. See Table I for the values of parameters in the numer
experiment. Figure 3 shows the mean number of encoun
n with scatterers for the particles that cross the receiver
as a function of timet. To a very good approximation th
number of scatterers encountered increases linearly
time:

n5vt/ l , ~2!

where t is the time relative to the arrival time of the dire
transmitted wave. A least-squares fit of the line in Fig.
gives the value of the mean free path:l 515.56 mm. This
quantity is much less than the size of the scattering reg
~80 mm!, which implies that the particles are strongly sca
tered. For the TRI of the particles, the velocity of the pa
ticles is reversed when they cross the receiver line andt is
replaced by2t; in ideal circumstances the particle shou
then return to the source att50.

TABLE I. Numerical values of parameters in numerical expe
ment.

Symbol Property Value

s Scattering cross section 1.592 mm
l Mean free path 15.56 mm
l Dominant wavelength 2.5 mm
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III. SCATTERING OF WAVES

Consider a model of isotropic point scatterers at locat
r j . The complex scattering coefficient of scattererj is de-
noted byAj . This coefficient contains the full nonlinear in
teraction of the wave that is incident on the scatterer and
scattered wave. Let the total wave field that is incident
scattererj be denoted byuj . The wave that is scattered b
this scatterer is then given byG(r ,r j )Ajuj , whereG(r ,r 8) is
the Green’s function of the medium in which the scatter
are embedded. Since the scattering is assumed to be is
pic, there is no dependence on the scattering angle. The
wave field can be written as the superposition of the unp
turbed waveu(0)(r ) and the waves emanating from all th
scatterers:

u~r !5u~0!~r !1(
j

G~r ,r j !Ajuj . ~3!

The wave field that is incident on scattereri follows from
this expression by settingr5r i , and by omitting the term
j 5 i from the sum in Eq.~3! because the wave incident o
scattereri only has contributions from the unperturbed wa
and from the waves coming from the other scatterers:

ui5ui
~0!1(

j Þ i
G~r i ,r j !Ajuj , ~4!

where ui
(0) is the unperturbed wave at each scatterer:ui

(0)

5u(0)(r i). Equation~4! constitutes a linear system of equ
tions for the complex coefficientsuj . This system can be
solved numerically. Once theuj are determined one ca
compute the wave field at any locationr by inserting theuj
in expression~3!. Equations~3! and ~4! give the exact re-
sponse of a system of isotropic point scatterers and allow
to use the same scattering cross section for the waves an
particles. Examples of the wave field computed with t
method are given in@15#.

For convenience Eq.~4! can also be written in vecto
form

~ I2S!u5u~0!, ~5!

FIG. 3. Mean number of scatterers encountered by particles
function of arrival time at the receiver line.
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whereu is the vector withuj as thej th component andu(0)

hasu(0)(r j ) as thej th component.I is the identity matrix and
the components of the matrixS are given by

Si j 5H 0 for i 5 j

G~r i ,r j !Aj for iÞ j .
~6!

For elastic scatterers, the optical theorem@16,17# imposes
a constraint on the imaginary component of the forward sc
tering amplitude and the scattered power averaged ove
directions. For isotropic point scatterers the optical theor
imposes the following constraint on the scattering coeffici
in different dimensions:

Im~A!55
2

1

2k
uAu2 in 1D

2
1

4
uAu2 in 2D

2
k

4p
uAu2 in 3D.

~7!

Note that the scattering formalism can be applied to a
number of dimensions and that the numerical implemen
tion is very similar in a different number of dimensions.

The scattering equations~3! and~4! can be rewritten in a
different form that is useful for a number of application
The linear system of equations~5! can be solved by matrix
inversion: u5(I2S)21u(0). Using an expansion of the in
verse (I2S)21 this can also be written as

u5u~0!1Su~0!1S2u~0!1S3u~0!1¯ . ~8!

Inserting this expression in Eq.~3! and using the definition
~6! for S, the total wave field is given by

u~r !5u~0!~r !1(
i

G~r ,r i !Aiu
~0!~r i !

1(
iÞ j

(
j

G~r ,r i !AiG~r i ,r j !Aju
~0!~r j !1¯ . ~9!

This result can be seen as the Neumann series solutio
the scattering problem. The series does have a clear phy
meaning because it is a sum over all possible paths join
scatterers with the provision that the same scatterer is
included on consecutive scattering events:

u~r !5(
P

eikLP~PC!u0. ~10!

In this expressionLP is the path length of the path ending
location r and u0 is the source signal emitted from th
sources andPC gives the product of geometrical spreadin
and scattering coefficients for the paths between scatte
In case multiple sources are present a summation over t
sources is implied. The significance of this expression is t
the total wave field is written as a sum over all possible pa
joining the scatterers, in this way it constitutes a discr
version of the Feynman path integral.
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TRI of the waves is carried out by recording the wa
field at 96 equidistant receivers on the receiver line, and
using the complex conjugate of the wave field in the f
quency domain as source signals that are emitted from
receivers. The wave field recorded at the middle receive
shown in Fig. 4. Note that the wave field is characterized
a slowly decaying wave train of scattered waves. This
flects the fact that for the employed parameter setting str
multiple scattering occurs.

IV. STABILITY ANALYSIS FOR SCATTERED PARTICLES

Consider a particle that is scattered once with impact
rameterb and with a perturbed impact parameterb1D. Us-
ing Eq. ~1! the divergence of the trajectories is given
urb1D(t)2rb(t)u'vt@Q(b1D)2Q(b)#52pvtD/s. This
implies that the errorDout at time t since the scattering is
related to the initial errorD in by Dout52p(vt/s)D in . On
average,vt is the mean-free pathl, hence

Dout52p~ l /s!D in . ~11!

When a particle is scatteredn times, the errorDn follows by
recursion:

Dn5~2p l /s!nD0 . ~12!

The number of scatterer encounters is on average give
n5vt/ l , hence the Lyapunov exponentm associated with the
exponential divergence of trajectories is given by

m5 ln~2p l /s!v/ l . ~13!

Equation~12! gives the error in the trajectory aftern scat-
tering encounters. The errord in the TRI is given byd
5D(DQ)5D(dQ/db)Dn , hence

d5
2pD

s S 2p l

s D n

D0 , ~14!

where D is the distance from the scattering region to t
source position, see Fig. 1. When the error in the trajector

FIG. 4. Wave field recorded at a receiver in the middle of
receiver line shown in Fig. 1.
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of the order ofs/2, the trajectory will be completely differen
because the particle then encounters different scatterers.
associated critical perturbationdc follows from Eq.~12!:

dc5S s

2p l D
n s

2
. ~15!

Using expression~13! for the Lyapunov exponent and usin
Eq. ~2! to eliminaten one finds that this critical length scal
decreases exponentially with time:

dc5
s

2
e2mt. ~16!

For the numerical experiments the critical length scale
shown in Table II as a function of the number of encounte
scatterers. Also indicated is the precision with which the n
merical simulations have been carried out.~All calculations
were done in 64 bit arithmetic on an SGI Power Challeng!
Since the mean free pathl is much larger than the scatterin
cross sections ~Table I! the critical length scale decrease
dramatically with the number of scattering encounters.

The previous analysis applies for a perturbation of
starting point of a particle. When the scatterer locations
perturbed over a distanced, a termd should be added to the
right-hand side of Eq.~11!. The error aftern scattering en-
counters is then given by

Dn5S ~2p l /s!n1121

~2p l /s!21 DD0 . ~17!

However, given the high numerical value of 2p l /s('61) in
the numerical experiments this result is similar to Eq.~12!
for the perturbation of initial conditions. The associated cr
cal length scale is shown in Table III.

It follows that for the particles the critical length sca
depends on the scattering cross section and the mean
path, and that this quantity decreases exponentially with
number of scattering encounters~and thus decreases exp
nentially with time!. Due to this dependence the critic
length scaledc is dramatically smaller than the scatterin
cross sections.

TABLE II. Critical error defined in Eq.~15! for different num-
ber of scattering encounters. Also indicated is the employed
chine precision.

n dc ~mm!

1 0.0129
2 2.1131024

3 3.4331026

4 5.6031028

5 9.11310210

6 1.48310211

7 2.41310213

8 3.93310215

Machine precision 0.22310215

9 6.41310217
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V. STABILITY ANALYSIS FOR SCATTERED WAVES

A fundamental difference between time reversed imag
of waves and particles is that TRI of particles occurs beca
a trajectory returns to the source att50 whereas for waves
TRI is achieved because the waves interfere att50 con-
structively only near the source. When either the source
the scatterers are perturbed for the waves, the dominan
fect on the wave field is the perturbation of the path leng
LP in Eq. ~10!. When the variancesL of the path length is of
the order of a quarter wavelength~denoted byl! the result-
ing interference pattern is destroyed. Hence TRI of wa
will break down whensL'l/4. This implies that the deco
herence of the interfering multiple scattered waves lead
the irreversibility of the wave field@18#.

The effect of the perturbation in thei th component of the
position vector of scattererj on the path lengthLP follows
from the derivative

]LP

]xi
~ j ! 5

xi
~ j !2xi

~ j 21!

ur ~ j !2r ~ j 21!u
2

xi
~ j 11!2xi

~ j !

ur ~ j 11!2r ~ j !u
, ~18!

which implies that

(
i

S ]LP

]xi
~ j !D 2

5222
~r ~ j !2r ~ j 21!!•~r ~ j 11!2r ~ j !!

ur ~ j !2r ~ j 21!uur ~ j 11!2r ~ j !u

52~12cosQ j !, ~19!

whereQ j is the scattering angle at scattererj. This angle is
related to the anglew j in Fig. 9 by the relationQ j5w j
2w j 21 . When the perturbations of the locations of differe
scatterers are independent, the total variance in the
length is thus given by

sL
25(

j
2~12cosQ j !d

2. ~20!

For the coda~the later part of the wave field consisting
multiply scattered waves! the cosine of the scattering ang
has zero mean because all scattering angles are eq
likely: ^cosQj&50. Using this, it follows from Eq.~20! that
the variance in the path length joiningn scatterers is given by

sL
coda5A2nd. ~21!

TRI of the coda breaks down when this quantity equalsl/4.
The critical length scale for perturbations of the scatte
locations is thus given by

TABLE III. Critical length scalesdc for different perturbations.

Scatterer location Source location

Particles
1
2S ~2pl/s!21

~2pl/s!n1121Ds 1
2S s

2plD
n

s

Ballistic wave AlL

A12~n11!

l/4

Coda wave 1/A2n l/4 l/4
g
se

or
ef-
s

s

to

t
th

lly

r

dc
coda5l/~4A2n!, ~22!

see Table III. Note that in contrast to the situation for p
ticles this critical length scale does not depend exponenti
on n. Using the fact that the number of encountered scat
ers increases linearly with time Eq.~2! one finds that the
critical length scale for the coda waves varies with time
dc

coda;1/At. This time dependence of the critical length sca
for the coda waves is in stark contrast with the exponen
decrease of the critical length scale for the particles with ti
given in Eq.~16!. The 1/At time dependence of the critica
length scale was also obtained by Ballentine and Zibin@6#
who show that for a periodically kicked quantum rotator w

FIG. 5. Location of particles at timet50 after TRI for ~i! 6 or
fewer scattering encounters~top panel!, ~ii ! between 7 and 9 scat
tering encounters~middle panel! and ~iii ! more than 10 scattering
encounters~bottom panel! as a function of the position of thex and
z coordinates. Particles are indicated by thin dots, scatterers by l
dots.
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a kick strength that leads to classical solutions that are c
otic, the critical rotation angledu1/2 varies with time as 1/At
for large time.

For the ballistic wave~the wave that propagates along t
line of sight from source to receiver! only forward scattering
is of relevance. For forward scattering the term (12cosQj)
'Qj

2/2 is small because the scattering angle is small. T
leads to a reduction of the variance with a factorl/L. The
detailed analysis in the Appendix shows that

sL
ball'A3~n11!/4Al/Ld. ~23!

WhensL
ball is about a quarter wavelength the interference

upset, hence the critical length scale is given by

dc
ball'AlL/A12~n11! ~24!

~see Table III!. Note that this length scale is proportional
the widthAlL of the first Fresnel zone; when a scatterer
moved over the width of the Fresnel zone it contributes i
fundamentally different way to the ballistic wave.

When the source locations are perturbed over a distand
but the scatterers remain fixed, only the length of the tra
tory to the first scatterer is perturbed. This means that for
perturbation for both the coda and the ballistic wavesL
5d. Thus, the critical length scale for perturbation of t
source locations for both the coda and the ballistic wave
given bydc

source5l/4; see Table III.

VI. NUMERICAL SIMULATIONS

In the TRI of particles 20 000 particles are propaga
from the source to the receiver line and after time reve
backpropagated to the source. For the case when the re
ers and the scatterers are not perturbed, the only rele
error is the finite precision arithmetic in the numerical calc
lations. It follows from Table II that particles with more tha
8 scattering encounters will not be focused on the sou
during TRI. The numerical experiments confirm this conc
sion. Figure 5 shows the location of the particles after TR

FIG. 6. Imaging quality defined as exp@2error/D# as a function
of the perturbation in the initial position of the time reversal
particles. Estimates of the critical perturbation defined in Eq.~15!
are indicated by vertical arrows.
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t50 as a function of position. In the ideal case, all partic
are imaged on the source atx5z50. For the particles with 6
or fewer scattering encounters~top panel! this is indeed the
case, whereas the particles with 10 or more encounters~bot-
tom panel! are imaged quasirandomly over the whole regio
The particles with 7–9 encounters~middle panel! are at t
50 localized near the source region, but the imaging is
graded.

The quality of the time reversed-image is quantified
exp(2error/D), where error denotes the mean distance
the particles to the source att50. This imaging quality is
shown in Fig. 6 as a function of the error in the sour
position for various values of the scattering encountern. The
critical length scale shown in Table II is indicated with th
vertical arrows. The horizontal scale ends at the left with
machine precision. When the TRI degrades, the imag
quality decays from unity to zero and it follows from Fig.
that the analytical estimates of Sec. IV agree well with t
numerical results. When the scatterer locations are pertu
rather than the source locations, the results are virtually
same. This is due to the fact that for large values of 2p l /s
the expressions~12! and ~17! are almost identical.

For the waves, TRI has been carried out for several ti
windows, see Table IV. The imaged section along the l
x50 of Fig. 1 is shown in Fig. 7 by the thick solid line. I
this example, a short time window of the coda from 0.25 s
0.30 ms has been used. The waves in this time window

TABLE IV. Time windows used in the different numerical ex
periments with waves and number of scattering encounters.

Wave Time window~ms!
Number

of encounters

Ballistic 0.11–0.13 2
Coda 1 0.20–0.25 13
Coda 2 0.30–0.35 22
Coda 3 0.40–0.45 32

FIG. 7. Time-reversed wave field at timet50 along the linex
5const through the source. The source location is at locatioz
50. The thick solid line is are for the unperturbed receiver po
tions. The thin solid lines are for the TRI wave field with perturb
receiver positions. The numbers denote the rms value of the pe
bation as a fraction of the dominant wavelength.
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located in the later part of the decaying wave train of m
tiple scattered waves; see Fig. 4. The energy is focused
the source location atz50, the nonvanishing energy at oth
locations is due to the finite aperture of the receiver ar
used in the TRI. This section compares favorably with
experimental results in@7#. The thin lines in Fig. 7 give the
imaged section for various values of the perturbation
source position; the number indicates the variance in the
turbation of the source location measured in wavelength
can be seen that TRI indeed breaks down when the so
locations are perturbed over about a quarter wavelength.
quality of the TRI can be quantified by computing the ra
of the amplitudes of the imaging peak of TRI with perturb
tion to the imaging peaks without perturbation.

The resulting relative peak heights are shown in Fig. 8
a function of the error in source or scatterer locations for T
experiments with the time windows shown in Table IV. T
critical length scales shown in Table III are for each ca
indicated by vertical arrows. The curves for the perturbat
of the source position are the four solid lines in the midd
These curves are identical for the four employed time w
dows and show a decay when the perturbation is of the o
l/4 ~which has the numerical value 0.625 mm!. For the per-
turbation of scatterers for TRI of the ballistic waves, t
critical length scale is significantly larger, and agrees w
with the critical length scale shown in Table III. For TRI o
the three coda intervals the critical length scale is appre
bly less than a wavelength. The reason is that the numbe
scattering encounters is large for these waves~see Table IV!.
The agreement between numerical simulations and the
mates shown in Table III is very good. This confirms t
assumption that the dominant effect of the perturbation of
time reversed imaging of waves is the perturbation of
path length.

FIG. 8. Quality of TRI of waves measured as ratio of the pe
height of the imaged section for the experiment with perturbed c
ditions compared to the TRI experiment without perturbations a
function of the perturbation in source or scatterer position. T
dashed line represents the ballistic waves with perturbed scatte
The dotted lines on the left are for the coda intervals shown
Table IV for perturbed scatterers with the latest coda interval in
left. The solid lines are for a perturbed source position for
ballistic wave and the three coda intervals. The critical length sc
from Table III are shown by vertical arrows.
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VII. DISCUSSION

It follows from the TRI of particles and waves that th
stability of particle and wave motion for the perturbation
initial conditions or scatterer locations is fundamentally d
ferent. In the numerical experiments particles that have
countered 8 or more scatterers do not return to the so
after TRI, whereas waves that have encountered up to at
30 scatterers~Table IV! focus well on the source after TRI
~With the employed numerical precision waves that have
countered significantly more scatterers can refocus on
source after TRI.! The physical reason for this difference
that particles follow a single trajectory. When the initial co
ditions or a scatterer along the trajectory are perturbed,
whole particle trajectory is perturbed, often in a drama
fashion. Because of the chaotic nature of trajectories,
critical length scale is significantly less than the scatter
cross section by a factor that depends exponentially on
number of encountered scatterers and hence exponential
time. This pertains both to the perturbation of the sou
position as well as to the perturbation of the scatterer p
tion.

For the waves when the source or scatterer location
perturbed, the different wave paths are not perturbed fun
mentally; only the length of the wave paths is changed. Ho
ever, this leads to appreciable effects when the perturba
is around a quarter wavelength, because it is the interfere
of the waves along all possible wave paths that determ
the total wave field. For both the coda and the ballistic wa
the critical perturbation of the source location is a quar
wavelength. For the perturbation of the scatterers the crit
wavelength for the coda is proportional to the waveleng
but much smaller with a factor 1/A2n. In contrast, the bal-
listic wave is only sensitive to perturbations of the scatte
position that are of the order of the width of the Fresnel zo
This is due to the fact that the ballistic wave is only sensit
to the average scattering properties over the Fresnel z
@15,19#. The fact that the stability of the ballistic wave de
pends on perturbations with a length scale given by the w
of the Fresnel rather than a wavelength~as in the case for the
coda waves! implies that fundamentally different mecha
nisms are relevant for the coda wave and the ballistic wa

This study implies that waves and particles react in fu
damentally different ways to perturbations of the initial co
ditions or the medium. The reason for this is that partic
‘‘select’’ a certain trajectory whereas waves travel along
possible trajectories visiting all the scatterers in all possi
combinations. It is the ‘‘selection process’’ of a particle tr
jectory that creates the fundamentally larger instability
particle propagation than of wave propagation.

Note that a crucial element in the reasoning is the splitt
of a wave when it meets a scatterer and is scattered in
directions. This suggests that ray splitting@14,20# is a crucial
element for explaining the difference in the stability of th
temporal evolution of waves and particles. This also app
to the quantum behavior of the periodically kicked rotator@6#
because as shown in Fig. 1 of Casati@21# a localized wave
packet in the quantum rotator rapidly breaks up.

The work presented here has implications for the relat
between classical chaos and quantum chaos. The issue o
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stability of wave propagation is also of interest in imagi
problems@11# as well as for wave propagation problems
ocean acoustics@22,23# and seismology@24#.

APPENDIX: THE VARIANCE IN THE PATH LENGTH
FOR THE BALLISTIC WAVE

For small scattering anglesQ j the variance in the path
length given in Eq.~20! reduces to

sL
25(

j 51

n

^Q j
2&d2. ~A1!

As a model for the ballistic wave we assume that then scat-
terers are separated with the same spacingD along the
source-receiver path, this separation is given by

D5
L

~n11!
, ~A2!

see Fig. 9. The fixed positions of the source and receiver
denoted by (x0 ,z0) and (xn11 ,zn11) respectively, hencex0
5xn1150. The positions of the scatterers are prescribed
the distancexj from the source-receiver line, the angle b
tween the path from scattererj to scattererj 11 is denoted
by w j . Since this angle is smallw j5(xj 112xj )/D, so that

Q j5w j2w j 215~xj 1122xj1xj 21!/D. ~A3!

The variance in the path length follows by inserting E
~A3! in ~A1!. The cross terms that appear vanish on aver
because the positions of the scatterers are indepen

FIG. 9. Definition of the geometric variables used for the cal
lation of the variance of the path length of the ballistic wave.
s

cs
re

y
-

.
e
nt:

^xj 11xj&50. When all the scatterers have the same rms
tance^x2& to the source-receiver line~with the exception of
the termsj 50 and j 5n11 for which x05xn1150! it fol-
lows thatsL

25(6n22)^x2&d2/D. Given the crudeness of th
scattering model, the factor22 in this expression is ignored
so that the scattering angle is approximately equal to

sL
25

6d2

D2 n^x2&. ~A4!

The rms distancêx2& is at this point unknown, this quan
tity follows from the requirement that the scatterers are
cated within the first Fresnel zone. The lengthL j of the path
from scatterer j to scatterer j 11 is given by L j

5AD21(xj 112xj )
2'D1(xj 112xj )

2/2D. The detourd of
the scattered wave compared to the direct wave is thus g
by

d5(
j 50

n

L j2L5
1

2D (
j 50

n

~xj 112xj !
2. ~A5!

Using the fact that the scatterer positions are uncorrela
one finds usingx05xn1150 that on average

^d&5
n^x2&

D
. ~A6!

The scatterers contribute to the ballistic wave when the
tour is less than a quarter wavelength. Assuming that
corresponds to a mean detour^d& of l/8 one finds the corre-
sponding variancêx2& from Eq. ~A6!:

n^x2&5
lD

8
. ~A7!

Using this in Eq.~A4! and using~A2! to eliminateD then
gives the variance of the path length of the ballistic wave

sL
ball5A3~n11!/4Al/Ld. ~A8!
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