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Time-reversed imaging as a diagnostic of wave and particle chaos
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In the presence of multiple scattering, waves and particles behave fundamentally differently. As a model for
the stability of the temporal evolution of particle and wave propagation, a scattering system is presented in
which particle propagation is strongly unstable while wave propagation is significantly more stable. Both
analytical and numerical evidence for the different stability properties of wave and particle propagation is
presented; the exponential divergence of particle trajectories leads to a critical length scale for the stability of
particle propagation that depends exponentially on fie(— ut)], whereas the critical length scale for the
stability of wave propagation decreases with time only ag.1This fundamental difference is due to wave
suppression of classical chaos that is intimately related to the concept of ray splitting.
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PACS numbsg(s): 05.45+b, 03.40.Kf, 03.20+i

I. TIME-REVERSED IMAGING AS A DIAGNOSTIC “Quantum mechanics mitigates the destructive influence
of classical chaos on simple physical processes. Indeed,

The relation of classical chaotic motion and the corre-  quantum mechanics is sorely needed to save us from the
sponding behavior of waves that propagate in the same sys- bizarre aspects of classical mechanics; but most para-
tem has been an active field of research. The words “quan- doxically this process of softening the many rough spots
tum chaos” suggest that quantum systems can exhibit is entirely in our grasp as soon as the nature of the
chaotic behavior. Classical chaotic systems display a fractal roughness is understood.”
structure in phase space. Such a fractal structure in phase
space is precluded in quantum mechanics by Heisenberg's
uncertainty princip'e_ In addition, closed quantum systemét is the goal of thiSlwork to obtain a better Understanding of
have discrete states that correspond to periodic motiorfhe imprint of classical chaos on wave systems. .
whereas classical chaos is characterized in the frequency do- 1N€ Stability of wave and particle propagation is studied
main by a continuous spectruft]. It is thus not clear what Nere using time-reversed |mag|(1‘gR’|). The concept of TRI
the imprint of chaos on quantum-mechanical systems is. For[eIIeS on th_e invariance of NeWtO” s law or the wave equa-
this reason Berry2] introduced the phrase “quantum chaol- tion under time rever_sal._ Consider a wave or partlcle system
ogy.” The relation between classical chaos and quanturﬁh"’lt eyolves forward in t|m¢ from a source at titve0 1o a

. S : later timet. When the motion of the particles or the wave

chaos is not trivia[3]. For classical systems the Kolmogor-

: : . vector of the waves are reversed at this time, the particles
Armold-Moser (KAM) tori form |mpenetrable barriers, but and waves will retrace their original trajectories and return to
waves can tunnel through these barriers. Conversely,

. C‘_"mtotrﬁe source where they originally started. However, when the
(broken up KAM tor) can be penetrated by classical trajec- gy qtem is perturbed before the reverse propagation the par-
tories but the finite extent of a wave in phase space practijcies or waves do not necessarily return to their original
cally blocks the waves from crossing a cantorus. In additionggyrce, The inability to return to the original source position
classical trajectories that nearly touch each other are fundgg related to the stability of the wave or particle propagation
mentally different from a classical point of view, but for the to perturbations. Ballentine and Zibj6] used reverse time
corresponding quantum system these touching trajectorigsropagation to study the stability of wave and particle propa-
lead to new phenomerjd]. gation for the driven quartic oscillator and the periodically
Although many aspects of the relation between classicakicked rotator when the systems were perturbed by a uniform
chaos and quantum chaos are not completely understood it isanslation.
clear that wave effects suppress the chaotic character of sys- This study has been motivated by recent laboratory ex-
tems; one can speak of a quantum suppression of classicaériments of TRI of acoustic and elastic waugg—9]). In
chaos[3]. This notion has been formulated in the following these experiments TRI is achieved by driving one or more
way by Gutzwiller[5]: piezoelectric transducers with a time-reversed version of the
recorded wave field. The process has proven to be surpris-
ingly stable, even for an experiment involving a medium
* Author to whom correspondence should be addressed. Addressith 2000 strong scatteref3]. In [9] the ergodicity of sta-
correspondence to Department of Geophysics, Utrecht Universitydium boundaries has been exploited to achieve TRI of elastic
P.O. Box 80 021, 3508 TA Utrecht, The Netherlands. waves experimentally with only singlereceiver.
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80 ‘ ‘ ‘ TABLE I. Numerical values of parameters in numerical experi-
ment.
= 4 Symbol P val
£ Receivers ymbo roperty alue
£
TS’ o | o Scattering cross section 1.592 mm
= D I Mean free path 15.56 mm
% A Dominant wavelength 2.5 mm
N _40
L
When comparing the stability of wave or particle propa-
-80 5 0 20 80 120 160 200 gation, one can specify either the medileng., a quantum
x distance (mm) mechanical potentialor the scattering properties of the
waves and particles. When the medium is fixed, the relation
FIG. 1. Geometry of the numerical experiment. between the wave system and the classical system can be

obtained by letting the wavelength approach zere+0), or

The degree of focusing of waves under TRI depends orequivalently in the case of quantum mechanics letting
the aperture of the receiver array, the initial errors in thePlanck’s constant go to zerd {0). This limit can be stud-
reversed wave field, and on the stability properties of waveed using semiclassical mechanids12); this can even be
propagation. For closed systems of particles with perfectlyachieved for wave systems that exhibit ray splittjd8,14].
reflecting walls(i.e., billiard9, certain boundary geometries In this work the scattering properties of the waves and the
are known to be ergodite.g.,[10]). This ergodicity, com- particles are taken to be identical by using isotropic point
bined with a sensitive dependence on initial conditions, is thescatterers with the same scattering cross section for both
definition of chaog1]. For open systems of particles and for waves and particles. This choice ensures that the only differ-
waves the situation is less clear. TRI provides a diagnostic oénce between the waves and particles lies in the dynamics of
the stability of propagation that can be used for both particlepropagation, rather than in a different interaction with the
and waves in open or closed systems. The idea is that for scatterers.
system that is time-reversal invariant, both particles and
waves should return to their source when at a certain time the
waves and particles are reversed. A complete focusing on the

source will only take place when the velocity and position  |sotropic scattering of particles that is invariant under
are known exactly and when the scattering medium is extime reversal is ensured by requiring that both the velagity
actly the same before and after the time reversal. The degrge-1500 m/$ and the impact parametbrof the particles are
to which errors in these quantities destroy the imaging on theonserved during scattering and tiiattwo dimensionsthe

source is a diagnostic of the Stability of the wave or partiC'escattering ang|@ is linear in the impact parameter:
propagation, and hence of chaotic behavior of particles and

waves. o—2b

In [11] we show that the delicate interference required to 0= T,( ) for |b|<o/2, (1)
achieve TRI of waves can be destroyed by relatively small o
perturbations in the position of the scatterers. Here we ad-
dress systematically the stability of TRI under various kindswhere o is the scattering cross section. For larger values of
of perturbations for open systems of both particles and waveghe impact parameter the particle is not scattefiezl, @
in the presence of multiple scattering. The system used here 0). The impact parameter is defined geometrically in Fig.
is similar to the one used ifi’] and is shown in Fig. 1. 2. See Table | for the values of parameters in the numerical
Particles or waves are emitted from a source and propagat&periment. Figure 3 shows the mean number of encounters
through a system of 200 strong isotropic point scatterers. Faf with scatterers for the particles that cross the receiver line
the waves, 96 receivers are located on the line indicated ias a function of time. To a very good approximation the

Fig. 1. A particle is recorded for the time reversed imagingnumber of scatterers encountered increases linearly with
when it traverses the receiver line. time:

II. SCATTERING OF PARTICLES

n=uvt/l, 2

wheret is the time relative to the arrival time of the direct
transmitted wave. A least-squares fit of the line in Fig. 3
gives the value of the mean free path: 15.56 mm. This
quantity is much less than the size of the scattering region
(80 mm), which implies that the particles are strongly scat-
tered. For the TRI of the particles, the velocity of the par-
ticles is reversed when they cross the receiver line taisd
replaced by—t; in ideal circumstances the particle should
FIG. 2. Definition of the impact parametbr then return to the source &t 0.
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40 ‘ ‘ whereu is the vector withu; as thejth component and(®
hasu(®)(r;) as thejth componentl is the identity matrix and
the components of the matr& are given by

30 |

0 for i=j
i = . 6
Si G(ri,rj)A; for i#j. ©
S22}

For elastic scatterers, the optical theorlri,17] imposes
a constraint on the imaginary component of the forward scat-
10} ] tering amplitude and the scattered power averaged over all
directions. For isotropic point scatterers the optical theorem
imposes the following constraint on the scattering coefficient
in different dimensions:

O0.0 0.1 02 0.3 0.4
t(ms) (
~ 2K |A]? in 1D
FIG. 3. Mean number of scatterers encountered by particles as a 2
function of arrival time at the receiver line. 1
Im(A)=4 — 2 |A|2 in 2D 7
Ill. SCATTERING OF WAVES

k

Consider a model of isotropic point scatterers at location \ i |A]? in 3D.

ri. The complex scattering coefficient of scatteyas de-

noted byA, . This coefficient contains the full nonlinear in- Note that the scattering formalism can be applied to any

fiumber of dimensions and that the numerical implementa-
MNion is very similar in a different number of dimensions.
The scattering equation8) and(4) can be rewritten in a

scattered wave. Let the total wave field that is incident o
scatterefj be denoted by;. The wave that is scattered by
this scattefer is then given Iy(r,rj) A;u;, whereG(r,r') is  gigrarent form that is useful for a number of applications.
the Green’s function of the medium in which the scatterer he linear system of equatior§) can be solved by matrix
are embedded. Since the scattering is assumed to be isotri Version:u=(1—S)~*u®. Using an expansion of the in-
pic, there is no dependence on the scattering angle. The to@ rse (—.S)‘l this can al.so be written as

wave field can be written as the superposition of the unper-

turbed waveu(®)(r) and the waves emanating from all the U=u® 4 SYO + YO+ SO 4 ... %)
scatterers:
Inserting this expression in E¢3) and using the definition
u(n)=u@r)+> G(r FDAU; . 3) (6) for S, the total wave field is given by
]
—y® 0)
The wave field that is incident on scattetefollows from u(r)=u' (r)+2i G(r,r)Au(r))

this expression by setting=r;, and by omitting the term

j=i from the sum in Eq(3) because the wave incident on SS 0)

scattereii only has contributions from the unperturbed wave +i¢j j G(rr)AG(ri r)AuUT(rj) +--- . (9)
and from the waves coming from the other scatterers:

This result can be seen as the Neumann series solution of

u=u+> G(r,rAu 4) the sc_attering prob!er_’n. The series does ha\(e a clear physjcal
& v meaning because it is a sum over all possible paths joining
scatterers with the provision that the same scatterer is not

whereu(? is the unperturbed wave at each scattetg?)  included on consecutive scattering events:

=u®(r,). Equation(4) constitutes a linear system of equa-

tions for the gomplex coefficients; . This system can be u(n = ektr(rme)ul. (10)
solved numerically. Once tha; are determined one can P

compute the wave field at any locatiorby inserting theu;

in expression(3). Equations(3) and (4) give the exact re- In this expressioibp is the path length of the path ending at
sponse of a system of isotropic point scatterers and allow ucation r and u® is the source signal emitted from the
to use the same scattering cross section for the waves and teeurces andIC gives the product of geometrical spreading
particles. Examples of the wave field computed with thisand scattering coefficients for the paths between scatterers.

method are given ifil5]. In case multiple sources are present a summation over these
For convenience Eq(4) can also be written in vector sources is implied. The significance of this expression is that
form the total wave field is written as a sum over all possible paths

joining the scatterers, in this way it constitutes a discrete
(I1=Su=u?, (5)  version of the Feynman path integral.
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TABLE Il. Critical error defined in Eq(15) for different num-
ber of scattering encounters. Also indicated is the employed ma-
chine precision.

8¢ (mm)
0.0129
2.11x10°4
3.43x10°6
5.60x10 8
9.11x 10710
1.48<10° ¢
2.41x 10713
3.93x10° %
Machine precision 0.2210° 15

9 6.41x 1077

Amplitude

0O ~NO Ol WN P DS

005 0.10 0.15 020 025 030 035 040 045
t (ms)

of the order ofo/2, the trajectory will be completely different
because the particle then encounters different scatterers. The
associated critical perturbatiaf, follows from Eq.(12):

FIG. 4. Wave field recorded at a receiver in the middle of the
receiver line shown in Fig. 1.

TRI of the waves is carried out by recording the wave
field at 96 equidistant receivers on the receiver line, and by _(i)n o (15)
using the complex conjugate of the wave field in the fre- ¢ \2#ml) 2°
guency domain as source signals that are emitted from the

receivers. The wave field recorded at the middle receiver i?Jsing expressioiil3) for the Lyapunov exponent and using

shown in Fig. 4. Note that the wave field is characterized bMEq. (2) to eliminaten one finds that this critical length scale
a slowly decaying wave train of scattered waves. This regecreases exponentially with time:

flects the fact that for the employed parameter setting strong
multiple scattering occurs. o

5C=§ e M, (16)
IV. STABILITY ANALYSIS FOR SCATTERED PARTICLES

Consider a particle that is scattered once with impact pa- For the numerical experiments the critical length scale is
rameterb and with a perturbed impact parameker A. Us-  shown in Table Il as a function of the number of encountered
ing Eq. (1) the divergence of the trajectories is given by scatterers. Also indicated is the precision with which the nu-
Mo+ a() —rp()[~vt[O@(b+A) - O(b)]=2mvtA/o. This  merical simulations have been carried o@tll calculations
implies that the errol\,, at time t since the scattering is \yere done in 64 bit arithmetic on an SGI Power Challenge.
related to the initial errol\, by Agy=2m(vt/0)Ajn. ON  Since the mean free pattis much larger than the scattering
averagept is the mean-free path hence cross sectionr (Table |) the critical length scale decreases

dramatically with the number of scattering encounters.
Aou=2m(l/0)Ajy. (11) The previous analysis applies for a perturbation of the
starting point of a particle. When the scatterer locations are

When a particle is scatterattimes, the errol, follows by perturbed over a distanc® a termé should be added to the

recursion: right-hand side of Eq(11). The error aftem scattering en-
An=(27llo)"Ay. (120  counters is then given by
The number of scatterer encounters is on average given by (2mllo)"1-1
n=uvt/l, hence the Lyapunov exponemtassociated with the n= (W) 0 17
exponential divergence of trajectories is given by
p=In2x=l/a)v/l. (13 However, given the high numerical value ofr o(~61) in

the numerical experiments this result is similar to EtR)

Equation(12) gives the error in the trajectory aftarscat-  for the perturbation of initial conditions. The associated criti-
tering encounters. The erraf in the TRI is given bys  cal length scale is shown in Table IlI.
=D(AO)=D(dO®/db)A,, hence It follows that for the particles the critical length scale
depends on the scattering cross section and the mean free
path, and that this quantity decreases exponentially with the
number of scattering encountefand thus decreases expo-
nentially with time. Due to this dependence the critical
where D is the distance from the scattering region to thelength scaled, is dramatically smaller than the scattering
source position, see Fig. 1. When the error in the trajectory isross sectior.

27D [ 2al\"
o= ( ) 0 (14)

(o o
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TABLE lll. Critical length scaless, for different perturbations. 80
. . n=0-6
Scatterer location Source location
- . 40}
Particles 1 (2mllo)—1 )a a n E
2 @mllo)Mi-1 2\ 27 -
Ballistic wave AL N4 g 0
J12n+1) 5
Coda wave 1\2n N4 Nz N0 |
V. STABILITY ANALYSIS FOR SCATTERED WAVES -80
A fundamental difference between time reversed imaging 80

of waves and particles is that TRI of particles occurs because
a trajectory returns to the sourcetatO whereas for waves
TRI is achieved because the waves interferé=ad con- 40

structively only near the source. When either the sources or E
the scatterers are perturbed for the waves, the dominant ef- o
. . . o 0
fect on the wave field is the perturbation of the path lengths §
Lp in Eq. (10). When the variance of the path length is of 2
the order of a quarter wavelengttienoted by\) the result- N 10
ing interference pattern is destroyed. Hence TRI of waves
will break down wheno | ~\/4. This implies that the deco-
herence of the interfering multiple scattered waves leads to -80
the irreversibility of the wave fieldl18].
The effect of the perturbation in théh component of the 80
position vector of scattergron the path length.p follows
from the derivative g
_ _ _ _ . 40}
L xD—x(I=D G+ Dy . E
ox D~ rO =) [0 DD g &
s
which implies that 3
N
. . . . -40
aLlp\2 (r— =Dy (r(G+D )
Z (axfj)) —eT [r @ — G| T+ D) o0 L R 2 I
-40 0 40 80 120 160 200

=2(1-cos0)), (19 x distance (mm)

where®; is the scattering angle at scattejeiThis angle is FIG. 5. Location of particles at time=0 after TRI for(i) 6 or
related to the anglep; in Fig. 9 by the relation®;= ¢; fewer scattering encounte(®p pane), (i) between 7 and 9 scat-
—¢j—1. When the perturbations of the locations of differenttering encounter¢middle panel and (i) more than 10 scattering
scatterers are independent, the total variance in the pa#ncountergbottom panelas a function of the position of theand

length is thus given by zcoordinates. Particles are indicated by thin dots, scatterers by large
dots.
2_ _ N s2
0',_—; 2(1—cos0)) &2, (20) 5590 /(4/2R), 22

For the coddthe later part of the wave field consisting of See Table lll. Note that in contrast to the situation for par-
multiply scattered waveshe cosine of the scattering angle ticles this critical length scale does not depend exponentially
has zero mean because all scattering angles are equafy . Using the fact that the number of encountered scatter-
likely: (cos®;)=0. Using this, it follows from Eq(20) that ~ ers increases linearly with time E@) one finds that the
the variance in the path |ength joinim‘g;catterers is given by critical length scale for the coda waves varies with time as

5% 1/\t. This time dependence of the critical length scale
ot \2ns. (21  for the coda waves is in stark contrast with the exponential
decrease of the critical length scale for the particles with time
TRI of the coda breaks down when this quantity equa#s  given in Eq.(16). The 1A/t time dependence of the critical
The critical length scale for perturbations of the scatteretength scale was also obtained by Ballentine and ZjBih
locations is thus given by who show that for a periodically kicked quantum rotator with
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1.0 TABLE IV. Time windows used in the different numerical ex-
periments with waves and number of scattering encounters.
08 | Number
Wave Time window(ms) of encounters
9,6 0.6 | Ballistic 0.11-0.13 2
s Coda 1 0.20-0.25 13
L 04 Coda 2 0.30-0.35 22
g Coda 3 0.40-0.45 32
0.2 | . e . .
t=0 as a function of position. In the ideal case, all particles
are imaged on the sourcexat z=0. For the particles with 6
00 o 0T 107 107 107 107 107 107107 or fewer scattering encountef®p panel this is indeed the

Error in source position (mm) case, whereas the particles with 10 or more encoufbers
tom panel are imaged quasirandomly over the whole region.
FIG. 6. Imaging quality defined as gxperror/D] as a function  The particles with 7-9 encountefmiddle panel are att
of the perturbation in the initial position of the time reversal of — g |gcalized near the source region, but the imaging is de-
particles. Estimates of the critical perturbation defined in @§) graded.
are indicated by vertical arrows. The quality of the time reversed-image is quantified by
exp(—error/D), where error denotes the mean distance of

a kick strength that leads to classical solutions that are chqhe particles to the source &t 0. This imaging quality is

otic, the critical rotation anglé6,, varies with time as A/t shown in Fig. 6 as a function of the error in the source

for large time. position for various values of the scattering encountéfhe

_ For the ballistic wavéthe wave that propagates along the cijtical length scale shown in Table Il is indicated with the
line of sight from source to receiveonly forward scattering ertical arrows. The horizontal scale ends at the left with the
IS 01; relevance. For forward scattering the term~d0s®;)  pachine precision. When the TRI degrades, the imaging
~0j/2 is small because the scattering angle is small. Thigajity decays from unity to zero and it follows from Fig. 6
leads to a reduction of the variance with a fackdt. The  that the analytical estimates of Sec. IV agree well with the

detailed analysis in the Appendix shows that numerical results. When the scatterer locations are perturbed
rather than the source locations, the results are virtually the
ball [ [ !
o7~ V3(n+1)/AyN/LS. (23 same. This is due to the fact that for large values ot /2r

ball - ] _the expression§l2) and(17) are almost identical.
Wheno ™" is about a quarter wavelength the interference is oy the waves, TRI has been carried out for several time

upset, hence the critical length scale is given by windows, see Table IV. The imaged section along the line
x=0 of Fig. 1 is shown in Fig. 7 by the thick solid line. In
I
8~ \\L/12(n+1) (24 this example, a short time window of the coda from 0.25 s to

) ) _ 0.30 ms has been used. The waves in this time window are
(see Table lll. Note that this length scale is proportional to

the width yAL of the first Fresnel zone; when a scattereris 4,

moved over the width of the Fresnel zone it contributes in a ﬂ
fundamentally different way to the ballistic wave.

When the source locations are perturbed over a distéance 178 ——
but the scatterers remain fixed, only the length of the trajec-
tory to the first scatterer is perturbed. This means that for this 0.01 1 316 ——

perturbation for both the coda and the ballistic wawg

= 4. Thus, the critical length scale for perturbation of the 4 /\ A
source locations for both the coda and the ballistic wave is
given by 8.%°U"°= \/4; see Table Ill. 0.00 ﬂv?wm WAVAWAWVAA}/ l VAW%VAV‘EAVMWJ\A WA\

VI. NUMERICAL SIMULATIONS

In the TRI of particles 20 000 particles are propagated _g.o1 ‘ ‘ ‘ ‘ ‘ ‘
from the source to the receiver line and after time reversal 60 60 -40 -20 0 20 40 60 &0
backpropagated to the source. For the case when the receiv- 2 distance (mm)
ers and the scatterers are not perturbed, the only relevant gig, 7. Time-reversed wave field at tinte-0 along the linex
error is the finite precision arithmetic in the numerical calcu-=const through the source. The source location is at location
lations. It follows from Table Il that particles with more than =0. The thick solid line is are for the unperturbed receiver posi-
8 scattering encounters will not be focused on the sourc@ons. The thin solid lines are for the TRI wave field with perturbed
during TRI. The numerical experiments confirm this conclu-receiver positions. The numbers denote the rms value of the pertur-
sion. Figure 5 shows the location of the particles after TRI abation as a fraction of the dominant wavelength.
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1.0 : T ——— ———— VII. DISCUSSION
Perturbed source
It follows from the TRI of particles and waves that the
= 0.8 \\\ . Perturbed stability of particle and wave motion for the perturbation of
2 N\ © '\ scatterers initial conditions or scatterer locations is fundamentally dif-
< o6l "\_\‘ \ \‘ba'"s“CW"‘VG ferent. In the numerical experiments particles that have en-
g \\ \ countered 8 or more scatterers do not return to the source
3 \ .\\\J ’ after TRI, whereas waves that have encountered up to at least
= 047 Perturbed) \ ] ] 30 scatterergTable 1V) focus well on the source after TRI.
g scatterers\\\ (With the employed numerical precision waves that have en-
Z o2 coda countered significantly more scatterers can refocus on the
[\\ source after TR). The physical reason for this difference is
N that particles follow a single trajectory. When the initial con-
00,7 BT AT — BETY ditions or a scatterer along the trajectory are perturbed, the
Error in source or scatterer position (mm) whole particle trajectory is perturbed, often in a dramatic

. . fashion. Because of the chaotic nature of trajectories, the
FIG. 8. Quality of TRI of waves measured as ratio of the peakcyjtical length scale is significantly less than the scattering

height of the imaged section for the experiment with perturbed con-

ditions compared to the TRI experiment without perturbations as e(l:ross section by a factor that depends exponentially on the

function of the perturbation in source or scatterer position. Theﬁumber of encountered scafterers and hence exponentially on

dashed line represents the ballistic waves with perturbed scatterertém":_"_ This pertains both to the pe_rturbatlon of the sourcc_e
The dotted lines on the left are for the coda intervals shown inPOSition as well as to the perturbation of the scatterer posi-
Table IV for perturbed scatterers with the latest coda interval in theON.
left. The solid lines are for a perturbed source position for the For the waves when the source or scatterer location is
ballistic wave and the three coda intervals. The critical length scaleperturbed, the different wave paths are not perturbed funda-
from Table Ill are shown by vertical arrows. mentally; only the length of the wave paths is changed. How-
ever, this leads to appreciable effects when the perturbation
located in the later part of the decaying wave train of mul-iS around a quarter wavelength, because it is the interference
tiple scattered waves; see Fig. 4. The energy is focused doff the waves along all possible wave paths that determines
the source location at=0, the nonvanishing energy at other the tot_a_l wave field. I_:or both the coda and the ballistic wave
locations is due to the finite aperture of the receiver arrayh€ critical perturbation of the source location is a quarter
used in the TRI. This section compares favorably with thewavelength. For the perturbauon of the scatterers the critical
experimental results ifi7]. The thin lines in Fig. 7 give the wavelength for the coda is proportional to the wavelength,
imaged section for various values of the perturbation inout much smaller with a factor §2n. In contrast, the bal-
source position; the number indicates the variance in the pehstic wave is only sensitive to perturbations of the scatterer
turbation of the source location measured in Wave|engths_ |ﬁ)0$iti0n that are of the order of the width of the Fresnel zone.
can be seen that TRI indeed breaks down when the sourcdglis is due to the fact that the ballistic wave is only sensitive
locations are perturbed over about a quarter wavelength. THE the average scattering properties over the Fresnel zone
quality of the TRI can be quantified by computing the ratio[15,19. The fact that the stability of the ballistic wave de-
of the amplitudes of the imaging peak of TRI with perturba-Pends on perturbations with a length scale given by the width
tion to the imaging peaks without perturbation. of the Fresnel rather than a wavelengs in the case for the
The resulting relative peak heights are shown in Fig. 8 asoda waves implies that fundamentally different mecha-
a function of the error in source or scatterer locations for TRInisms are relevant for the coda wave and the ballistic wave.
experiments with the time windows shown in Table IV. The This study implies that waves and particles react in fun-
critical length scales shown in Table Il are for each casedamentally different ways to perturbations of the initial con-
indicated by vertical arrows. The curves for the perturbatiorditions or the medium. The reason for this is that particles
of the source position are the four solid lines in the middle.“select” a certain trajectory whereas waves travel along all
These curves are identical for the four employed time winpossible trajectories visiting all the scatterers in all possible
dows and show a decay when the perturbation is of the ordezombinations. It is the “selection process” of a particle tra-
M4 (which has the numerical value 0.625 mrRor the per-  jectory that creates the fundamentally larger instability of
turbation of scatterers for TRI of the ballistic waves, theparticle propagation than of wave propagation.
critical length scale is significantly larger, and agrees will Note that a crucial element in the reasoning is the splitting
with the critical length scale shown in Table IIl. For TRI of of a wave when it meets a scatterer and is scattered in all
the three coda intervals the critical length scale is appreciadirections. This suggests that ray splittirigt,2Q is a crucial
bly less than a wavelength. The reason is that the number @lement for explaining the difference in the stability of the
scattering encounters is large for these wageg Table Y.  temporal evolution of waves and particles. This also applies
The agreement between numerical simulations and the estie the quantum behavior of the periodically kicked rotd&ir
mates shown in Table lll is very good. This confirms thebecause as shown in Fig. 1 of Cad&ti] a localized wave
assumption that the dominant effect of the perturbation of thg@acket in the quantum rotator rapidly breaks up.
time reversed imaging of waves is the perturbation of the The work presented here has implications for the relation
path length. between classical chaos and quantum chaos. The issue of the
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X il . (Xj+1X;)=0. When all the scatterers have the same rms dis-
. j j=n+1 tance(x?) to the source-receiver lin@vith the exception of
i=0 J the termsj=0 andj=n+1 for whichxy=Xx,,,=0) it fol-
L lows thato?=(6n—2)(x?) 8%/ A. Given the crudeness of the

scattering model, the factor2 in this expression is ignored

FIG. 9. Definition of the geometric variables used for the calcu- : - ’
so that the scattering angle is approximately equal to

lation of the variance of the path length of the ballistic wave.
2

stability of wave propagation is also of interest in imaging Ufzg n(x?). (A4)

problems[11] as well as for wave propagation problems in A

ocean acoustick22,23 and seismology24]. The rms distancéx?) is at this point unknown, this quan-

tity follows from the requirement that the scatterers are lo-
cated within the first Fresnel zone. The lengthof the path
from scattererj to scatterer j+1 is given by L;

For small scattering angle®; the variance in the path = \/A2+(Xj+1—xj)2%A+(Xj+1—xj)2/2A. The detourd of

APPENDIX: THE VARIANCE IN THE PATH LENGTH
FOR THE BALLISTIC WAVE

length given in Eq(20) reduces to the scattered wave compared to the direct wave is thus given
n by
2 __ 2\ o2 n n
o= (0?)8% (A1) 1
=1 J d=2 L]-—L:—E (Xj+1_Xj)2- (A5)
=0 2A =0

As a model for the ballistic wave we assume thatrseat-
terers are separated with the same spadnglong the Using the fact that the scatterer positions are uncorrelated

source-receiver path, this separation is given by one finds usingky=X,.1=0 that on average
L n(x®)
=— dy= . A6
A= g (n2) (@)="5 (A6)

see Fig. 9. The fixed positions of the source and receiver aréhe scatterers contribute to the ballistic wave when the de-
denoted by Xy,20) and (X, 1,25+ 1) respectively, hencg, tour is less than a quarter wavelength. Assuming that this
=X,.1=0. The positions of the scatterers are prescribed bgorresponds to a mean detddy of \/8 one finds the corre-
the distancex; from the source-receiver line, the angle be-sponding variancéx?®) from Eq. (A6):
tween the path from scattergto scatterefj +1 is denoted
by ¢; . Since this angle is smal; = (x;1—X;)/A, so that n(x2) = % (A7)
®j:¢j_QDjfl:(XjJrl_ZXj_'—Xj*l)/A' (AS) . o . o
Using this in Eq.(A4) and using(A2) to eliminateA then
The variance in the path length follows by inserting Eq.gives the variance of the path length of the ballistic wave:

(A3) in (Al). The cross terms that appear vanish on average
because the positions of the scatterers are independent: op?'=3(n+1)/4N/LS6. (A8)

[1] M. Tabor, Chaos and Integrability in Nonlinear Dynamics [14] R. Blumel, T. M. Antonsen, B. Georgeot, E. Ott, and R. E.

(Wiley and Sons, New York, 1989 Prange, Phys. Rev. Leff6, 2476(1996.

[2] M. V. Berry, Proc. R. Soc. London, Ser. 2366, 183(1987. [15] J. Groenenboom and R. Snieder, J. Acoust. Soc. $8n3482

[3] G. Radons, J. Geisel, and J. Rubner, Adv. Chem. Ptg/891 (1995.
(1989. [16] H. C. van de Hulst, PhysicéAmsterdam 15, 740 (1949.

[4]1. L. Aleiner and A. I. Larkin, Chaos Solitons Fractéls1179  [17]|. Ishimaru,Wave Propagation and Scattering in Random Me-
(1997). dia (Oxford University Press, Oxford, 1997

[5] M. C. Gutzwiller,Chaos in Classical and Quantum Mechanics [1g] 3. Moret-Bailly, Quantum Semiclassic. Of0, L35 (1998.
(Springer-Verlag, New York, 1990 [19] R. Snieder and A. Lomax, Geophys. J. 1125 796 (1996.

[6] L. E. Ballentine and J. P. Z|b|n,_Phys. Rev.54, 3813(1996. [20] L. Sirko, P. M. Koch, and R. Blmel, Phys. Rev. Lett78,

[7] M. Derode, P. Roux, and M. Fink, Phys. Rev. Lé&ts, 4206 2940(1997.

(1995.

[8] M. Fink, Phys. Today0 (3), 34 (1997.

[9] C. Draeger and M. Fink, Phys. Rev. %6, 1767(1997). 199
[10] L. Bunimovich, Commun. Math. Phy$5, 295 (1979. ( 6 . . .
[11] J. A. Scales and R. Snieder, Geophy$@s 1045 (1997. [23] M. Wiercigroch, A. H. D. Cheng, and J. Simmen, Chaos Soli-
[12] M. Brack and R. K. BhaduriSemiclassical Physig#@ddison- tons Fractals, 193 (1998.

Wesley, Reading, MA, 1997 [24] H. Keers, F. A. Dahlen, and G. Nolet, Geophys. J. i8],

[13] L. Zhao and F. A. Dahlen, Geophys. J. 165 729 (1993. 361(1997.

[21] G. Casati, Chao§, 391(1996.
[22] F. D. Tappert and X. Tang, J. Acoust. Soc. ABB, 185



