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PACS. 42.25.Bs – Wave propagation, transmission and absorption.

PACS. 42.25.Fx – Diffraction and scattering.

PACS. 43.20.+g – General linear acoustics.

Abstract. – The constructive interference of backscattered waves that propagate along the
same path in opposite directions doubles the intensity of these waves. When the scatterers move
during wave propagation, the enhancement factor is reduced from 2 to a lower value. I derive the
enhancement factor for coherent backscattering under the assumption that the scatterers move
independently with a constant velocity. The resulting enhancement value depends exponentially
on 〈v2〉1/2t/λ, which is the ratio of the root-mean-square displacement of the scatterers during
the wave propagation to the wavelength, and on the number of scatterers encountered.

Introduction. – The constructive interference of backscattered waves that propagate in
opposite directions along the same scattering paths leads to an enhancement of the backscat-
tered waves by a factor 2 (e.g., [1–3]). This phenomenon is called the coherent backscattering
effect. This constructive interference is similar to that of waves that travel in opposite direc-
tions along loops [4]. The coherent backscattering effect has been observed for light [5–8], for
acoustic waves [9], and for elastic waves [10]. It has been used to account for the brightness
of the moon [11], and to characterize the heterogeneity in human bone [12].

The enhancement factor of 2 occurs only when the scatterers do not move as the waves
propagate through the scattering medium. Movement of the scatterers leads to a phase change
of the backscattered waves that propagate in opposite directions along a scattering path. This
decreases the enhancement factor for coherent backscattering from 2 to a lower value. Here
I compute the enhancement factor for coherent backscattering when the scatterers move in-
dependently for the special case where the scatterers are illuminated with an impulsive wave
with a duration that is short compared to the time scale associated with the movement of the
scatterers.

The physical problem analyzed here differs from diffusing acoustic wave spectroscopy [13–
16] and coda wave interferometry [17] because in those applications one compares the wave
propagation before and after the medium has changed. Here I consider changes in the medium
during the wave propagation.

(∗) E-mail: rsnieder@mines.edu
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Fig. 1 – Scattering paths for forward (solid line) and reverse (dashed line) propagation. The motion
of the scatterers in the time interval between the visit of the waves along the forward path and reverse
path is indicated by arrows.

Phase perturbation due to moving scatterers. – Consider the case that the scatterers
move as the wave is being scattered, as shown in fig. 1. The solid and dashed lines indi-
cate the scattering paths in the forward and reverse directions, respectively. The scatterers
are at different locations along these paths as the wave is being scattered at each scatterer.
This perturbs the relative phase accumulated along the forward and reverse scattering paths,
which weakens the coherent backscattering effect. In the following treatment I assume that
the velocity of the scatterers is much smaller than the wave velocity, so that the Doppler effect
can be ignored, and I do not account for resonant scattering. When the scatterers move, the
scattering amplitude and geometrical spreading change. For a mean free path larger than
a wavelength, the change in the phase due to the change in the path length dominates the
changes in scattering amplitude and geometrical spreading [18, 19]. For this reason I analyze
the change in the length of the scattering paths due to the motion of the scatterers.

In practical situations the scatterers may change their velocity due to Brownian motion,
or collisions with other scatterers. I analyze the situation where the propagation time t of
the wave is less than the time tC in which the velocities of the scatterers change. In this
case the velocity of the scatterers can be assumed to be constant with time. In the following
x

(j)
i denotes the i-coordinate of scatterer j along a given scattering trajectory, and ∆x

(j)
i the

associated perturbation in this quantity due to the movement of the scatterer. (The scatterers
are numbered consecutively along the forward scattering path with the index j.) I assume
that the velocities of the scatterers are uncorrelated; hence

〈∆x
(j)
i ∆x(m)

n 〉 = δinδjm〈(∆x
(j)
i )2〉 , (1)

where the brackets 〈· · ·〉 denote the average over the motion of the scatterers. During a time
∆tj , scatterer j moves over a distance v

(j)
i ∆tj in the i-direction, where v

(j)
i is the i-component

of the velocity of scatterer j. Assuming that the root-mean-square velocity of the scatterers
is identical, 〈(∆x

(j)
i )2〉 = 〈v2

i 〉(∆tj)2. When the velocity of the scatterers has an isotropic
distribution

〈v2
x〉 = 〈v2

y〉 = 〈v2
z〉 =

1
3
〈v2〉 ; (2)
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Fig. 2 – Definition of the length Lj , the unit vector t̂(j), and the scattering angle ψj .

hence, for each of the components of the displacement of scatterer j,

〈(∆x
(j)
i )2〉 = 1

3
〈v2〉 (∆tj)

2
. (3)

In order to compute the relative phase shift along the solid and dashed trajectories of fig. 1,
we need to compute the change in the path length L caused by the motion of the scatterers.
As shown in fig. 2, the path length Lj measures the distance from scatterer j to the next
scatterer along the forward trajectory. I first consider the motion of just scatterer j along a
path, which causes only the path lengths Lj−1 and Lj to change, so that [20]

∂L

∂x
(j)
i

=
∂(Lj + Lj−1)

∂x
(j)
i

= t̂
(j−1)
i − t̂

(j)
i , (4)

where t̂(j) is the unit vector that points along the scattering path from scatterer j to scatterer
j + 1. These unit vectors define the scattering angle at scatterer j by (t̂(j) · t̂(j−1)) = cosψj .
Using this relationship, assuming that the scatterers move independently, and summing over
the n scatterers along a path gives, with expression (3), the variance in the perturbation in
the path length

〈(∆L)2〉 =
n∑

j=1

3∑
i=1

(
∂L

∂x
(j)
i

)2

〈(∆x
(j)
i )2〉 =

n∑
j=1

2
3
(1− cosψj) 〈v2〉(∆tj)2 , (5)

In the sum (5), cosψj can be replaced by its value cosψ averaged over all scattering paths;
hence,

〈(∆L)2〉 = 2
3

(
1− cosψ

) 〈v2〉
n∑

j=1

(∆tj)2 . (6)

On average, the waves encounter a scatterer after propagation over the mean free path l.
With the wave velocity c, this gives a mean free time τ = l/c. For the sake of argument, I
present the case of an odd number of scatterers along a scattering path, but the final result
holds for scattering paths with an even number of scatterers as well. The waves on the forward
and reverse trajectories visit each scatterer at a different moment in time; for scatterer j this
time difference is equal to

∆tj = (n − 2j + 1)τ . (7)
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For the scatterer in the middle of the trajectory (j = (n + 1)/2), this time difference is equal
to zero because this scatterer is visited at the same moment in time for both the forward and
reverse paths, see fig. 1.

Summation of the series in expression (6) gives [21]

n∑
j=1

(∆tj)2 =
1
3
n

(
n2 − 1

)
τ2 ≈ 1

3
n3τ2 , (8)

where I assumed in the above approximation many scatterers along each scattering path
(n � 1). Inserting this in eq. (6) and using that the number of scatterers along the path is
related to the time of flight t by n = ct/l, gives, with τ = l/c,

〈(∆L)2〉 = 2
9
〈v2〉ct3

l∗
, (9)

where the transport mean free path is defined by l∗ = l/(1− cosψ) [22]. The phase difference
ϕ associated with the difference in the propagation distance along the forward and reverse
trajectories thus satisfies

〈ϕ2〉 = k2〈(∆L)2〉 = 2
9

k2〈v2〉ct3
l∗

, (10)

with k the dominant wave number.
Let us compare this expression with the corresponding result in diffusing wave spec-

troscopy, where one studies the change in the medium between two measurements of the
multiply scattered waves. Equation (16.22) of Weitz and Pine [13] is in the notation of
this work given by 〈ϕ2〉DWS = 2k2〈(∆r)2〉ct/3l∗. If the time interval tint between the two
measurements of the wave propagation is smaller than tC , then 〈(∆r)2〉 = 〈v2〉t2int, and
〈ϕ2〉DWS,tC

= 2k2〈v2〉t2intct/3l∗. When tint is larger than the time tB required for the mo-
tion of the scatterers to be diffusive with diffusion constant D, then 〈(∆r)2〉 = Dtint/3, and
〈ϕ2〉DWS,tB

= 2k2Dtintct/9l∗. In both cases, 〈ϕ2〉DWS varies linearly with the propagation
time t. This contrasts the t3-dependence on time in expression (10). That expression is
applicable to changes in the positions of the scatterers during the wave propagation.

The coherent backscattering effect. – The intensity, normalized by the average intensity,
for an incoming wave with wave number kin and outgoing wave with wave number kout is,
after averaging over multiple realizations, equal to [3]

E =
∑
P

〈1 + cos(kin + kout) · (rP,in − rP,out) + ϕP 〉/
∑
P

(1) , (11)

where P labels the scattering trajectories, rP,in and rP,out are the positions of the first and
last scatterers along the forward trajectory P , and ϕP is the phase difference for the associated
forward and reverse trajectories. In this sum, forward and backward propagation along the
same trajectory is counted once [3]. For backscattering, kin +kout = 0, and the enhancement
factor for coherent backscattering is equal to

E =
∑
P

〈1 + cosϕP 〉/
∑
P

(1) = 1 + 〈cosϕ〉 . (12)

The phase perturbation ϕ has zero mean, and is the sum of the independent motion of many
scatterers along a path. Because of the central limit theorem, ϕ has a Gaussian distribution.
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Fig. 3 – The enhancement factor from eq. (13) as a function of t/t∗.

For a Gaussian distribution with zero mean 〈cosϕ〉 = exp
[−〈ϕ2〉/2], so that, using eq. (10)

E = 1 + exp
[
− k2〈v2〉ct3

9l∗

]
. (13)

This enhancement factor is shown in fig. 3 as a function of t/t∗, where

t∗ ≡
(

9l∗
k2〈v2〉c

)1/3

. (14)

The enhancement factor for backscattered waves decreases with time over the characteristic
time t∗. During this time the scatterers have moved so far that the constructive interference
of the waves that propagate along the forward and reverse scattering paths is destroyed.

Discussion. – The enhancement factor in eq. (13) accounts for the movement of scatterers
as the waves propagate through the medium. The treatment is valid for an impulsive illumina-
tion of the scattering medium, and the resulting enhancement factor is time dependent. One
might think that for a monochromatic illumination, one needs to average the enhancement
factor over all scattering paths using the intensity of the waves as a weight factor, e.g., [2,13].
This is, however, not the case because a monochromatic wave has an infinite duration, hence
the condition t < tC cannot be satisfied.

The derivation is valid when the propagation time t of the scattered wave is smaller than
the time tC over which the velocity of the scatterers changes. The latter time has been
monitored experimentally for bubbles that scatter acoustic waves [14–16]. For propagation
times larger than tC the assumption of a constant velocity of the scatterers must be modified.
In ref. [2] a time tB is defined as the time after which the motion of the scatterers is given
by Brownian motion. In general, tB > tC . If the motion of the scatterers over all time
intervals ∆tj would be diffusive, then 〈(∆x(j))2〉 = D∆tj/3, with D the diffusion constant
of the Brownian motion. Using the reasoning of this work this would give an enhancement
factor

Ediffusive = 1 + exp
[
− Dk2ct2

3l∗

]
, (15)

which should be compared with expression (13). This result is, however, incorrect. As shown
in fig. 4, the middle scatterer along every trajectory is visited at the same time by the waves
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Fig. 4 – The paths for the wave propagating along the forward (solid line) and reverse (dashed line)
trajectories for a long path, for the special case t > tB . The motion of the scatterers is indicated
with small arrows. For the scatterers near the endpoints of the path diffusive motion is appropriate,
while for scatterers near the middle of the path the velocity is constant between the visits of the
waves propagating in opposite directions. For intermediate scatterers one needs to account for the
transition from a constant velocity to diffusive motion.

propagating in the forward and reverse directions. For sufficiently long scattering paths, and
for scatterers near the endpoints of the trajectories, the time interval |∆tj | between the visits
to scatterer j of the waves propagating in opposite directions can indeed be sufficiently large
for the corresponding motion of the scatterers to be diffusive (|∆tj | > tB). Near the middle
of the trajectory, the time difference |∆tj | goes to zero. This means that near the middle of
the trajectory |∆tj | < tC , and the velocity of each scatterers must be assumed constant. For
intermediate scatterers tC < |∆tj | < tB, the motion of these scatterers is in transition from
a constant velocity to diffusive motion. This implies that diffusive motion for all scatterers
along the trajectory is not a correct dynamic model, hence expression (15) must be modified
to account for the transition of a constant velocity of the scatterers to diffusive motion.

The theory presented here is valid when t < tC . According to eq. (13) the enhancement
factor depends on 〈v2〉. Measurements of the enhancement factor as a function of time can thus
be used to infer the root-mean-square velocity of the scatterers. Expressed in the dominant
wavelength λ, the enhancement factor is given by

E = 1 + exp
[
− 4π2

9

( 〈v2〉t2
λ2

)
ct

l∗

]
. (16)

The enhancement factor thus depends on the average motion of the scatterers measured in
wavelengths (vt/λ), and on the ratio ct/l∗ that measures the number of scatterers encountered.
This means that measurements of the enhancement factor may resolve the average movements
of the scatterers on a length scale much smaller than the wavelength of the employed waves.

According to expression (16) the coherent backscattering associated with the movement
of scatterers is observable when 4π2〈v2〉ct3/9λ2l∗ = O(1). For a path length L = ct the
coherent backscattering effect thus is observable when L3 ≈ 9λ2l∗c2/4π2〈v2〉. As an example,
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consider a sound wave with a frequency of 10 kHz propagating through water (c = 1500m/s)
that is being scattered by bubbles moving with a velocity 〈v2〉1/2 = 0.01m/s. For a transport
mean free path l∗ = 1m, the coherent backscattering effect due to the motion of the bubbles
is observable for path lengths of about 200m. Such an estimation can be used to design
experiments based on the theory presented here.

∗ ∗ ∗

I thank M. Haney, K. Larner, D. Hale, G. Ingold, and two anonymous reviewers
for their comments.
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