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ABSTRACT

One of the most challenging tasks of exploration geophysics is to build a quantitatively ac-

curate image of the structures inside the Earth from reflection data measured at the Earth’s

surface. When the subsurface is structurally complicated, accurate images are needed to lo-

cate energy sources, such as hydrocarbon reservoirs. Conventional migration algorithms rely

on the single-scattering assumption. This restrictive assumption requires that the recorded

data do not include waves that have bounced multiple times between layers before reach-

ing the receivers. Standard imaging algorithms incorrectly image the multiple reflections as

ghost reflectors and these artifacts can mislead the interpreters in locating potential energy

sources. The objective of this thesis is to investigate a new method in reflection seismology

for building ghost-free images of the subsurface. The goal is to take advantage of multiply-

scattered waves in order to produce more correct images in complicated geological subsurface

environments. The method I propose, defined as wave field autofocusing, is based on inverse

methods originally used in quantum scattering. The first part of this thesis presents the con-

nection between such inverse methods and Green’s function retrieval for a one-dimensional

medium. I emphasize that the importance of these inversion methods is linked to the re-

trieval of the wave field propagating in an unknown medium and not to the retrieval of the

impedance profile of the same medium. Based on this connection, I extend the method to

two-dimensional media and apply it to multidimensional deconvolution to obtain a ghost-free

image, hence presenting ad advantage over standard imaging techniques. Then, using the

unitarity of the scattering matrix, I show the consistency between the new approach (requir-

ing data on only one side of the medium) and existing methods that require measurement

on a closed boundary, such as seismic interferometry. In the last part of this thesis, I test

the robustness of the proposed method with respect to errors in the background model used

to estimate the first-arriving waves (a required input for the autofocusing process).
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CHAPTER 1

GENERAL INTRODUCTION

One of the main goals of exploration geophysics is to retrieve the location and amplitude

of the discontinuities between media with different properties inside the subsurface from

reflection data measured at the Earth’s surface. This is a challenging task because a quanti-

tatively accurate image of the structures inside the Earth is needed to locate energy sources,

such as hydrocarbon reservoirs.

Seismic imaging is the branch of geophysics that encompasses all the techniques ded-

icated to creating representations of the structures inside the Earth. Standard imaging

techniques, such as one-way downward continuation (Claerbout, 1985) and reverse-time mi-

gration (RTM) (Baysal et al., 1983), rely on the single scattering assumption. This restric-

tive assumption requires that the recorded data do not include multiply-scattered waves, i.e.

waves bouncing multiple times between layers before reaching the receivers at the acquisition

surface. The accuracy of seismic imaging greatly depends on the accuracy of the techniques

that remove the multiply-scattered waves from the recorded data (Berkhout and Verschuur,

1997; Jakubowicz, 1998; ten Kroode, 2002; Weglein et al., 1997). Especially in structurally

complicated media, the current removal techniques do not perform optimally and standard

imaging algorithms incorrectly image the multiple reflections as ghost reflectors. These arti-

facts can mislead the interpreters in locating potential hydrocarbon reservoirs. Additionally,

standard imaging techniques depend on the availability of an accurate background velocity

model (Etgen et al., 2009). If such a model includes errors in the velocities, the multiple

reflections cause stronger artifacts in the final image.

To overcome the influence of the multiply-scattered waves and background velocity model,

I propose an alternative approach to create a more accurate image of the subsurface. This

new approach is based on the retrieval of the Green’s function from data acquired at the
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surface. The Green’s function G(x,xI, t), defined as the response recorded at the acqui-

sition surface due to an impulsive source located in the interior of the subsurface (Figure

1.1a), can be used to downward continue the wave field from the recording surface to the

interior by virtue of the representation theorem (Aki and Richards, 2002). The Green’s func-

tion G(x,xI, t) is composed of downgoing G+(x,xI, t) and upgoing G−(x,xI, t) components

which are coupled by the inhomogeneities of the medium (Wapenaar, 1996); see Figure 1.1b

where source-receiver reciprocity has been applied. At a constant depth level, these one-way

(downgoing and upgoing) Green’s functions are related by

G−(xI,xs, t) =

∫ ∞

−∞

[
R(xI,x, t) ∗G

+(x,xs, t)
]

z=zi
dx, (1.1)

where R(xI,x, t) is the reflection response to downgoing waves at z = zi (an arbitrary

depth level) of a truncated medium below z = zi; xs is at z = 0; and xr is at z = zi.

The truncated medium is equal to the true medium (the subsurface) below the depth level

z = zi and is homogeneous above z = zi. The reflectivity R(xI,x, t) can be resolved from

equation 1.1 by multidimensional deconvolution (MDD) (Wapenaar et al., 2011b) which is

a technique that provides a numerical solution for integral equations in the form of equation

1.1. An image is built by evaluating R(xI,xI, t = 0) at every image point in the subsurface.

Multidimensional deconvolution acknowledges the multidimensional nature of the seismic

wave field; hence the internal multiples contribute to the restoration of the amplitudes of the

reflectors and do not cause artifacts in the image. I emphasize that the internal multiples are

used to construct images with more correct amplitudes, while other methods aim to remove

the internal multiples before the imaging step (Berkhout and Verschuur, 1997; Jakubowicz,

1998; ten Kroode, 2002; Weglein et al., 1997). The challenge is now to retrieve the Green’s

function originating from an image point and then decompose it in its downgoing and upgoing

components. If receivers were present at every image point, seismic interferometry (Curtis

et al., 2006; Schuster, 2009; Wapenaar et al., 2005; Weaver and Lobkis, 2001) would provide

the solution to reconstruct the Green’s wave field propagating between two receivers with one
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Figure 1.1: a) Total wave field from the imaging point located at xI (indicated by the red
dot) and recorded at the acquisition surface. b) Decomposed wave fields. The solid blue
rays correspond to the downgoing component G+(xI,x, t). The solid red rays correspond to
the upgoing component G−(xI,x, t).

of the receivers acting as if it were a source (the image point). Unfortunately, the placement

of receivers at every image point is not practically feasible. In this thesis, I introduce a new

method that uses 1) reflection data measured at the acquisition surface (including multiply-

scattered waves) and 2) a background velocity model (as in standard imaging techniques)

to retrieve the total Green’s function propagating from an image point to the receivers

at the surface and to decompose it in its downgoing and upgoing components. The new

approach is based on exact inversion methods for applications in quantum scattering, e.g.

Agranovich and Marchenko (1963) and Lamb (1980). In the 1980’s, these inversion methods

were initially applied to exploration geophysics with the goal of retrieving the impedance

profile of the subsurface (Berryman and Greene, 1980; Newton, 1981), but their application

was restricted to layered media. I take advantage of the same inverse scattering methods,

but with a different goal: Green’s function retrieval. This is one of the main insights that

contributed to the development of my thesis.
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1.1 Thesis overview

The objective of this thesis is to provide solutions for developing a method to create an

image of the subsurface which is not affected by artifacts due to the presence of multiply-

scattered waves in the data, and to an erroneous background velocity model.

In Chapter 2, I investigate the connection between different scattering principles in

a one-dimensional medium, namely, inverse scattering (Chadan and Sabatier, 1989; Colton

and Kress, 1998; Gladwell, 1993), Green’s function reconstruction (Larose et al., 2006; Wape-

naar et al., 2005), focusing (Rose, 2001, 2002b), imaging (Claerbout, 1985; Sava and Hill,

2009), and the optical theorem (Heisenberg, 1943; Newton, 1976; Rodberg and Thaler, 1967).

These subjects, usually studied as independent problems, are defined as scattering principles

because they are all related, in different ways, to a scattering process. After recognizing

that the equations which rule these principles present common features, I show that the

different scattering principles have a common starting point in a representation theorem for

the homogeneous Green’s function.

The insights obtained from these connections lead to the work presented in Chapter 3,

where I show that we can make use of inverse methods of quantum scattering (Agranovich

and Marchenko, 1963; Lamb, 1980) to retrieve the Green’s function originating from a virtual

source location inside an unknown one-dimensional acoustic medium. This approach allows

one to obtain the same virtual source response as with seismic interferometry (Curtis et al.,

2006; Schuster, 2009; Wapenaar et al., 2005; Weaver and Lobkis, 2001), but without the

need to have a receiver at the virtual source location. Hence, the new approach goes beyond

seismic interferometry.

Chapter 4 is devoted to the generalization to two dimensions of the method discussed in

Chapter 3, and to its application to imaging. Following joint work with Prof. Kees Wapenaar

from Delft University of Technology (Wapenaar et al., 2012a), I analyze the new method

for a layered configuration characterized by variable-density and constant-velocity. In its

two-dimensional extension, the proposed method is not fully model-independent because, in
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addition to the reflection data measured at the surface, it requires an estimate of the first

arriving wave traveling from the virtual source location to receivers located at the acquisition

surface (Wapenaar et al., 2013a). Using the method of stationary-phase, I show that the

Green’s wave field originating from a virtual source location inside an unknown medium

is correctly retrieved. Additionally, I decompose the reconstructed Green’s function into

its downgoing and upgoing components, and use these decomposed wave fields to create a

ghost-free image of the subsurface.

Two-sided Green’s function representations, such as seismic interferometry, allow the

retrieval of the Green’s function originating from any location inside the medium. Because

these equations require measurements on a closed boundary, they are denoted as two-sided

integral equations. As previously mentioned, practical constraints prevent the placement of

receivers at depth inside the Earth, and hence the acquisition of measurements on a closed

boundary. The recently-developed integral equations discussed in Chapters 3 and 4 overcome

this problem because they require data on only one side of the medium. I refer to this new

approach as one-sided Green’s function representation. In Chapter 5, I show the connection

between the one-sided and two-sided Green’s function representations, where the unitarity

of the scattering matrix plays an important role (Rodberg and Thaler, 1967).

In Chapter 6, I apply the new method for data-driven Green’s function retrieval to a

modified version of the Amoco dataset (Etgen and Regone, 1998). The retrieved downgoing

and upgoing components of the Green’s functions are used to create different images of the

reflectors present in the model. The images created with crosscorrelation and multidimen-

sional deconvolution show an improvement over standard imaging (Claerbout, 1985), and

they are free of artifacts due to multiply-scattered waves. Multidimensional deconvolution

(MDD) (Wapenaar et al., 2011b) correctly handles the internal multiples and retrieves more

accurate amplitudes of the reflectors. Finally, I show that the combination of autofocusing

and multidimensional deconvolution produces an artifact-free image when an erroneous ve-

locity model is used to estimate the first-arriving waves (a required input for the autofocusing
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process). To conclude, I summarize the thesis and suggest some future work in Chapter 7.

Chapters 2-6 of the thesis have been published in, submitted to, or soon will be submitted

to peer-reviewed journals:

• F. Broggini and R. Snieder, Connection of scattering principles: a visual and math-

ematical tour, European Journal of Physics (2012): 33, 593-613;

• F. Broggini, R. Snieder, and Kees Wapenaar, Focusing the wavefield inside an un-

known 1D medium - Beyond seismic interferometry, Geophysics (2012): 77 (5), A25-

A28;

• F. Broggini, Kees Wapenaar, Joost van der Neut, and Roel Snieder, Data-driven

Green’s function Reconstruction and Application to Imaging with Multidimensional

Deconvolution, submitted to Inverse Problems ;

• F. Broggini, Kees Wapenaar, Roel Snieder, and Evert Slob, Relationship between one-

sided and two-sided Green’s function representations, in preparation for Geophysical

Journal International ;

• F. Broggini, Roel Snieder, and Kees Wapenaar, Wave field autofocusing and imag-

ing with multidimensional deconvolution: numerical examples for reflection data with

internal multiples, in preparation for Geophysics.

In addition to the publications included in this thesis, I have also contributed to the

following publications:

• Wapenaar K., F. Broggini, and R. Snieder, Creating a virtual source inside a medium

from reflection data: heuristic derivation and stationary-phase analysis, Geophysical

Journal International (2012) vol. 190 (2) pp. 1020-1024;

• Wapenaar K., F. Broggini, E. Slob, and R. Snieder, Three-Dimensional Single-Sided

Marchenko Inverse Scattering, Data-Driven Focusing, Green’s Function Retrieval, and

their Mutual Relations, Phys. Rev. Lett. (2013) vol. 110 (8) pp. 084301;
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• Slob E., K. Wapenaar, F. Broggini, and R. Snieder, Seismic reflector imaging while

eliminating internal multiples using Marchenko-type equations, submitted to Geo-

physics.
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CHAPTER 2

CONNECTION OF SCATTERING PRINCIPLES: A VISUAL AND MATHEMATICAL

TOUR

Filippo Broggini1,2 and Roel Snieder1

Published in European Journal of Physics (2012): 33, 593-613

2.1 Abstract

Inverse scattering, Green’s function reconstruction, focusing, imaging, and the optical

theorem are subjects usually studied as separate problems in different research areas. We

show a physical connection between the principles because the equations that rule these

scattering principles have a similar functional form. We first lead the reader through a visual

explanation of the relationship between these principles and then present the mathematics

that illustrates the link between the governing equations of these principles. Throughout

this work, we describe the importance of the interaction between the causal and anti-causal

Green’s functions.

2.2 Introduction

Inverse scattering, Green’s function reconstruction, focusing, imaging, and the optical

theorem are subjects usually studied in different research areas such as seismology (Aki and

Richards, 2002), quantum mechanics (Rodberg and Thaler, 1967), optics (Born and Wolf,

1999), non-destructive evaluation of material (Shull, 2002), and medical diagnostics (Epstein,

2003).

Inverse scattering (Chadan and Sabatier, 1989; Colton and Kress, 1998; Gladwell, 1993)

is the problem of determining the perturbation of a medium (e.g., of a constant velocity

1Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, USA
2Principal researcher and author
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medium) from the field scattered by this perturbation. In other words, one aims to recon-

struct the properties of the perturbation (represented by the scatterer in Figure 2.1) from a

set of measured data. Inverse scattering takes into account the nonlinearity of the inverse

problem, but it also presents some drawbacks: it is improperly posed from the point of view

of numerical computations (Dorren et al., 1994), and it requires data recorded at locations

usually not accessible due to practical limitations.

Figure 2.1: Inverse scattering is the problem of determining the perturbation of a medium
from its scattered field.

Green’s function reconstruction (Larose et al., 2006; Wapenaar et al., 2005) is a technique

that allows one to reconstruct the response between two receivers (represented by the two

triangles at locations RA and RB in Figure 2.2) from the cross-correlation of the wavefield

measured at these two receivers which are excited by uncorrelated sources surrounding the

studied system. In the seismic community, this technique is also known as either the virtual

source method (Bakulin and Calvert, 2006) or seismic interferometry (Curtis et al., 2006;

Schuster, 2009). The first term refers to the fact that the new response is reconstructed as if

one receiver had recorded the response due to a virtual source located at the other receiver

position; the second indicates that the recording between the two receivers is reconstructed

through the “interference” of all the wavefields recorded at the two receivers excited by the

surrounding sources.
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Figure 2.2: Green’s function reconstruction allows one to reconstruct the response between
two receivers (represented by the two triangles at locations RA and RB).

In this paper, the term focusing (Rose, 2001, 2002b) refers to the technique of finding an

incident wave that collapses to a spatial delta function δ(x− x0) at the location x0 and at a

prescribed time t0 (i.e., the wavefield is focused at x0 at t0) as illustrated in Figure 2.3. In

a one-dimensional medium, we deal with a one-sided problem when observations from only

one side of the perturbation are available (e.g., due to the practical consideration that we

can only record reflected waves); otherwise, we call it a two-sided problem when we have

access to both sides of the medium and account for both reflected and transmitted waves.

Figure 2.3: Focusing refers to the technique of finding an incident wavefield (represented by
the dashed lines) that collapses to a spatial delta function δ(x− x0) at the location x0 and
at a prescribed time t0.

In seismology, the term imaging (Claerbout, 1985; Sava and Hill, 2009) refers to tech-

niques that aim to reconstruct an image of the subsurface (Figure 2.4). Geologists and
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geophysicists use these images to study the structure of the interior of the Earth and to

locate energy resources such as oil and gas. Migration methods (Biondi, 2006; Bleistein

et al., 2001) are the most widely used imaging techniques and their accuracy depends on

the knowledge of the velocity in the subsurface. Migration methods involve a single scat-

tering assumption (i.e., the Born approximation) because these methods do not take into

account the multiple reflections that the waves experience during their propagation inside

the Earth; hence the data needs to be preprocessed in a specific way before such methods

can be applied.

Sources

Scatterer

Receivers

Propagation Back-propagation

Figure 2.4: Imaging refers to techniques that aim to reconstruct an image of the subsurface.

The ordinary form of the optical theorem (Newton, 1976; Rodberg and Thaler, 1967)

relates the power extinguished from a plane wave incident on a scatterer to the scattering

amplitude in the forward direction of the incident field (Figure 2.5). The scatterer casts a

“shadow” in the forward direction where the intensity of the beam is reduced and the for-

ward amplitude is then reduced by the amount of energy carried by the scattered wave. The

generalized optical theorem, as originally formulated by Heisenberg (1943), is an extension of

the previous theorem and it deals with the scattering amplitude in all the directions; hence

it contains the ordinary form as a special case. This theorem relates the difference of two

scattering amplitudes to an inner product of two other scattering amplitudes. The gener-

alized optical theorem provides constraints on the scattering amplitudes in many scattering

problems (Carney et al., 2004; Marston, 2001). Since these theorems are an expression of en-

ergy conservation, they are valid for any scattering system that does not involve attenuation

(i.e., no dissipation of energy).
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Figure 2.5: The optical theorem relates the power extinguished from a plane wave incident
on a scatterer to the scattering amplitude in the forward direction of the incident field.

In this tutorial, we refer to the five subjects discussed above as scattering principles

because they are all related, in different ways, to a scattering process. These principles

are usually studied as independent problems but they are related in various ways; hence,

understanding their connections offers insight into each of the principles and eventually may

lead to new applications. This work is motivated by a simple idea: because the equations

that rule these scattering principles have a similar functional form (see Table 2.1), there

should be a physical connection that could lead to better comprehension of these principles

and to possible applications.

Table 2.1: Principles and their governing equations in a simplified form. G is the Green’s
function, f is the scattering amplitude, and ∗ indicates complex conjugation.

Principle Equation

1 Inverse Scattering u− u∗ =
∫
u∗f

2 Green’s function reconstruction G−G∗ =
∫
GG∗

3 Optical theorem f − f ∗ =
∫
ff ∗

4 Imaging I =
∫
GG∗

To investigate these potential connections, we follow two different paths to provide maxi-

mum clarity and physical insights. We first show the relationship between different scattering
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principles using figures which lead the reader toward a visual understanding of the connec-

tions between the principles; then we illustrate and derive the mathematics that shows the

link between the governing equations of some of these principles.

2.3 Visual tour

In this section, we lead the reader through a visual understanding of the connections

between different scattering principles.

2.3.1 Introduction of time-space diagrams

Before presenting the main results included in this section, we introduce and explain

the time-space diagrams that appear in this tutorial. This particular visual representation is

borrowed from the seismological community, where these time-space diagrams (called seismic

sections) show the motion of the ground recorded by suitable receivers. Wavefields are

represented as wiggle traces displaying travel time versus distance. We consider propagation

and scattering of waves in a one-dimensional acoustic medium. The field equation governing

the wave motion is Lu(x, t) = 0, where the acoustic wave equation differential operator is

L ≡ ρ(x) ∂
∂x
(ρ(x)−1 ∂

∂x
) − c(x)−2 ∂2

∂t2
(Fokkema and van den Berg, 1993), when the velocity

and density of the medium are described by c(x) and ρ(x), respectively. To record the

wavefield propagating inside the one-dimensional medium, we imagine to have receivers in

the medium itself. As illustrated in Figure 2.6a, the white triangles correspond to receivers

placed along the one-dimensional medium. We use a time-space finite difference code with

absorbing boundary condition to simulate the propagation of the one-dimensional waves and

to produce the numerical examples shown in this section.

We first consider a homogeneous medium with constant velocity c(x) and density ρ(x)

shown in Figures 2.6c and 2.6d, respectively. We assume that a source injects energy at

x = 2 km with the source function described in Figure 2.6b and measure the wavefield at

every receiver. In this case,the wavefield is for t > 0 given by u(x, t) = f(t − |x − xs|/c) +

f(t + |x − xs|/c), where f(t) is the source function shown in Figure 2.6b and xs is the
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source position. The wavefield u(x, t) is shown in the time-space diagrams of Figures 2.6e

and 2.6f. We show two different visualizations of u(x, t) to facilitate the understanding of

our wiggle representation. Figure 2.6g illustrates a close-up of a superposition of the two

representations. Each vertical line (called trace) of Figure 2.6f shows the wavefield measured

by the receivers illustrated in Figure 2.6a. When the wavefield u(x, t) assumes positive values,

the area below u(x, t) is filled to indicate such positive values in contrast to negative ones

(as shown with the source function in Figure 2.6b). The advantage of the wiggle traces over

the contour plots is that one can better discern details of the waveforms. Causality ensures

that the wavefield is non zero only in the region ct > |x − xsource| delimited by the first

arrival (i.e., the direct waves). If we inject the source function of Figure 2.7a, we obtain the

wavefield shown in Figure 2.7b. A similar diagram, for the same velocity and density profile,

can be obtained for t > 0 if we simultaneously inject the same source at the locations x = 0

and x = 4 km, as shown in Figure 2.7c. Note that the two incident wavefields, emanating

from x = 0 and x = 4 km, create a focus at x = 2 km at t = 0 s. The time-space diagram of

Figure 2.7c is similar to the light cones described in special relativity (Ohanian and Ruffini,

1994).

This particular time-space diagram is easily created because the medium is homoge-

neous, but in a more complicated medium this is not trivial. We now consider another

one-dimensional medium with velocity cs(x) and density ρs(x) described in Figures 2.7d and

2.7e, respectively. In this case, the medium is not homogeneous; in fact, velocity and den-

sity are discontinuous. The incident wavefield emanates from x = 2 km, propagates toward

the discontinuity in the model, interacts with it, and generates transmitted and reflected

scattered waves. The computed wavefield u(x, t) is presented in the time-space diagram of

Figure 2.7f and the generation of the transmitted and reflected scattered waves is clearly

visible at x = 3 km, corresponding to the step in the velocity and density profiles (Figures

2.7d and 2.7e). The heterogeneity has two effects. First, there are now reflected waves within

the “light cone”, as indicated by the arrow in Figure 2.7f. Second, the arrival time of the
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waves is crooked because of the changes in velocity.

2.3.2 Main results

After this brief introduction regarding our visual notation, we can proceed to the core

of this section. Figure 2.8 illustrates a scattering experiment in a more complicated one-

dimensional acoustic medium where an impulsive source is placed at the position x = 1.44

km in the model shown in Figure 2.9. The incident wavefield, a spatial delta function, prop-

agates toward the discontinuities in the model, interacts with them, and generates outgoing

scattered waves. The computed wavefield is shown in the time-space diagram of Figure 2.8

and it represents the causal Green’s function of the system G+.

Due to practical limitations, we usually are not able to place a source inside the medium

we want to probe, which raises the following question: Is it possible to create the wavefield

illustrated in Figure 2.8 without having a real source at the position x = 1.44 km? An initial

answer to such a question is given by the Green’s function reconstruction. This technique

allows one to reconstruct the wavefield that propagates between a virtual source and other

receivers located inside the medium (Wapenaar et al., 2005). We remind the reader that this

technique yields a combination of the causal wavefield and its time-reversed version (i.e.,

anti-causal), because the reconstructed wavefield is propagating between a receiver and a

virtual source. Without a real (physical) source, one must have non-zero incident waves to

create waves that emanate from a receiver. In the next section we introduce a mathematical

argument to explain the interplay of the causal and anti-causal Green’s functions. The

fundamental steps to reconstruct the Green’s function are (Curtis et al., 2006)
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Figure 2.6: (a) The white triangles correspond to receivers in the one-dimensional medium
with a spacing of 100 m. (b) Time dependence of the source function. (c) Velocity profile
c(x). (d) Density profile ρ(x). (e) and (f) Time-space diagrams for a source at x = 2 km. The
traces are recorded by the receivers shown in panel (a). (g) Close-up of of the superposition
of the time-space diagrams of panels (e) and (f).
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Figure 2.7: (a) Time dependence of the source signal. (b) Time-space diagram for a source
at x = 2 km. The traces are recorded by the receivers shown in Figure 2.6a. (c) Time-space
diagram when two sources are simultaneously present at x = 0 and x = 4 km. (d) Velocity
profile cs(x). (e) Density profile ρs(x). (f) Time-space diagram when a source is present at
x = 2 km in a medium described by cs(x) and ρs(x). The traces are recorded by the receivers
shown in Figure 2.6a. The arrow indicates the reflected waves.
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Figure 2.8: Scattering experiment with a source located at x = 1.44 km in the model shown
in Figure 2.9. The traces are recorded by receivers located in the model with a spacing of
40 m.
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Figure 2.9: Velocity and density profiles of the one-dimensional model. The perturbation in
the velocity is located between x = 0.3− 2.5 km and c0 = 1 km/s. The perturbation in the
density is located between x = 1.0− 2.5 km and ρ0 = 1 g/cm3.
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1. measure the wavefields G+(x, xsl, t) and G+(x, xsr, t) at a receiver located at x

(x varies from −1 km to 3 km) excited by impulsive sources located at both sides

of the perturbation xsl and xsr (a total of two sources in 1D) as shown in Figure

2.10;

2. cross-correlate G+(x, xsl, t) with G+(xvs, xsl, t), where xvs = 1.44 km and vs

stands for virtual source;

3. cross-correlate G+(x, xsr, t) with G+(xvs, xsr, t);

4. sum the results computed at the two previous points to obtain G+(x, xvs, t);

5. repeat this for a receiver located at a different x.
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x
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Figure 2.10: Diagram showing the locations of the real and virtual sources for seismic inter-
ferometry. xsl and xsr indicate the two real sources. xvs shows the virtual source location.

The causal part of wavefield estimated by the Green’s function reconstruction technique

is shown in Figure 2.11 and it is consistent with the result of the scattering experiment

produced with a real source located at x = 1.44 km, shown in Figure 2.8.

We thus have two different ways to reconstruct the same wavefield, but often we are not

able to access a certain portion of the medium we want to study and hence we can’t place

any sources or receivers inside it. We next assume that we only have access to scattering

data R(t) measured on the left side of the perturbation, i.e. the reflected impulse response

measured at x = 0 km due to an impulsive source placed at x = 0 km. This further limitation

raises another question: Can we reconstruct the same wavefield shown in Figure 2.8 having

knowledge only of the scattering data R(t)? Since there are neither real sources nor receivers
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Figure 2.11: Causal part of the wavefield estimated by the Green’s function reconstruction
technique when the receiver located at x = 1.44 km acts as a virtual source.

inside the perturbation, we speculate that the reconstructed wavefield consists of a causal

and an anti-causal part, as shown in Figure 2.14.

For this one-dimensional problem, the answer to this question is given by Rose (2001,

2002a). He shows that we need a particular incident wave in order to collapse the wavefield

to a spatial delta function at the desired location after it interacts with the medium, and

that this incident wave consists of a spatial delta function followed by the solution of the

Marchenko equation, as illustrated in Figure 2.12.

Delta
function Marchenko equation

Solution of the

t

Figure 2.12: Incident wave that focuses at location x = 1.44 km and time t = 0 s, built using
the iterative process discussed by Rose (2001).
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The Marchenko integral equation (Chadan and Sabatier, 1989; Lamb, 1980) is a funda-

mental relation of one-dimensional inverse scattering theory. It is an integral equation that

relates the reflected scattering amplitude R(t) to the incident wavefield u(t, tf ) which will

create a focus in the interior of the medium and ultimately gives the perturbation of the

medium. The one-dimensional form of this equation is

0 = R(t+ tf ) + u(t, tf ) +

∫ tf

−∞

R(t+ t′)u(t′, tf )dt
′, (2.1)

where tf is a parameter that controls the focusing location. We solve the Marchenko equation,

using the iterative process described in detail in Rose (2002a), and construct the particular

incident wave that focuses at location x = 1.44 km, as shown in Figure 2.8. After seven steps

of the iterative process, we inject the incident wave in the model from the left at x = −1 km

and compute the time-space diagram shown in the top panel of Figure 2.13: it shows the

evolution in time of the wavefield when the incident wave is the particular wave computed

with the iterative method. The bottom panel of Figure 2.13 shows a cross-section of the

wavefield at the focusing time t = 0 s: the wavefield vanishes everywhere except at location

x = 1.44 km; hence the wavefield focuses at this location. Note that the time derivative of

the wavefield (i.e., the velocity) is not focused at x = 1.44 km, hence also the energy is not

focused at this location. We can thus create a focus at a location inside the perturbation

without having a source or a receiver at such a location and without any knowledge of

the medium properties; we only have access to the reflected impulse response measured on

the left side of the perturbation. With an appropriate choice of sources and receivers, this

experiment can be done in practice (e.g., in a laboratory).

Figure 2.13 however does not resemble the wavefield shown in Figures 2.8 and 2.11. But

if we denote the wavefield in Figure 2.13 as w(x, t) and its time-reversed version as w(x,−t),

we obtain the wavefield shown in Figure 2.14 by adding w(x, t) and w(x,−t). With this

process, we effectively go from one-sided to two-sided illumination because in Figure 2.14

waves are incident on the scatterer from both sides for t < 0 s. Burridge (1980) shows
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Figure 2.13: Top: After seven steps of the iterative process described in Rose (2002a), we
inject at x = −1 km the particular incident wave in the model and compute the time-space
diagram. Bottom: cross-section of the wavefield at t = 0 s.
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similar diagrams and explains how to combine such diagrams using causality and symmetry

properties. The upper cone in Figure 2.14 corresponds to the causal Green’s function and

the lower cone represents the anti-causal Green’s function; the relationship between the two

Green’s functions is a key element in the next section, where we introduce the homogeneous

Green’s function Gh. Note that the wavefield in Figure 2.14, with a focus in the interior of

the medium, is based on reflected data recorded at the left side of the heterogeneity only.

We did not use a source or receiver in the medium, and did not know the medium. All

necessary information is encoded in the reflected waves. Note that a small amount of energy

is present outside the two cones. This is due to numerical inaccuracies in our solution of the

Marchenko equation.

The extension of the iterative process in two dimensions still needs to be investigated;

but we conclude this section with a conjecture illustrated in Figure 2.15. An incident plane

wave created by an array of sources is injected in the subsurface where it is distorted due to

the variations of the velocity inside the overburden (i.e., the portion of the subsurface that

lies above the scatterer). Since we do not know the characteristics of the wavefield when

it interacts with the region of the subsurface that includes the scatterer, it is difficult to

reconstruct the properties of the scatterer without knowing the medium. Hence, following the

insights gained with the one-dimensional problem, we would like to create a special incident

wave that, after interacting with the overburden, collapses to a point in the subsurface

creating a buried source, as illustrated in Figure 2.16. In this case, assuming that the

medium around the scatterer is homogeneous, we would know the shape of the wavefield

that probes the scatterer and partially remove the effect of the overburden, which would

facilitate accurate imaging of the scatterer.

2.4 Review of scattering theory

We review the theory for the scattering of acoustic waves in a one dimensional medium

(also called line) with a constant density (in contrast with the previous section where we

also considered variable density), where the scatterer is represented by a perturbation of
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Figure 2.14: Wavefield that focuses at x = 1.44 km at t = 0 s without a source or a receiver
at this location. This wavefield consists of a causal (t > 0) and an anti-causal (t < 0) part.
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Figure 2.15: An incident plane wave created by an array of sources is injected in the subsur-
face. This plane wave is distorted due to the variations in the velocity inside the overburden
(i.e., the portion of the subsurface that lies above the scatterer). When the wavefield arrives
in the region that includes the scatterer, we do not know its shape.

Figure 2.16: Focusing of the wavefield “at depth”. A special incident wave, after interacting
with the overburden, collapses to a point in the subsurface creating a buried source.
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a constant velocity profile. Here, we introduce the wave equation and Green’s functions

that are used in the next section of the paper. Figure 2.17 shows the geometry of the

scattering problem. The perturbation cs(x) is superposed on a constant velocity profile

c0. The following theory is developed in the frequency domain because it simplifies the

derivations (e.g., convolution becomes a multiplication and derivatives become multiplica-

tions by −iω). We also show the time domain version of some of the following equations

because they are more intuitive and allow us to understand the important role played by

time-reversal. The Fourier transform convention is defined by f̂(t) =
∫
f(ω) exp(−iωt)dω

and f(ω) = (2π)−1
∫
f̂(t) exp(iωt)dt. Throughout this work, when we deal with a one-

dimensional problem, the direction of propagation n assumes only two values, 1 and −1,

which correspond to waves propagating to the right and to the left (Figure 2.17), respec-

tively.

xrxA xB x

cs
−1 +1

xl

c0

Figure 2.17: Geometry of the problem for the scattering of acoustic waves in a one dimen-
sional medium with constant density. xA, xB, xl and xr are the coordinates of the receivers
(represented by the triangles) and the left and right bounds of our domain, respectively. The
perturbation cs is superposed on a constant velocity profile c0.

The equation that governs the motion of the waves in an unperturbed medium with

constant velocity c0 is the constant-density acoustic homogeneous wave equation

L0(x, ω)u0(n, x, ω) = 0, (2.2)

where u0 is the displacement wavefield propagating in the n direction and the differential

operator is

L0(x, ω) ≡

[
d2

dx2
+

ω2

c20

]

. (2.3)
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The solution of equation 2.2 is u0(n, x, ω) = exp(inxω/c0) and its time-domain version is

û0(n, x, t) = δ(t − nx/c0), which is a delta function that propagates with velocity c0 in the

direction n representing a physical solution to the wave equation. The unperturbed Green’s

function satisfies the equation

L0(x, ω)G
±
0 (x, x

′, ω) = −δ(x− x′), (2.4)

and, in the acoustic one-dimensional case, its frequency-domain expression is (Snieder, 2004):

G±
0 (x, x

′, ω) ≡ ±
i

2k
e±ik|x−x′|, (2.5)

where k ≡ ω/c0. The + and − superscripts of the Green’s function represent the causal

and anti-causal Green’s function with outgoing or ingoing boundary conditions (Oristaglio,

1989), respectively. In the time domain, causality implies that

Ĝ±
0 (x, x

′, t) = 0 ± t < |x− x′|/c0. (2.6)

Physically, the time-domain Green’s function Ĝ+
0 (x, x

′, t) represents the displacement at a

point x at time t due to a point source of unit amplitude applied at x′ at time t = 0; while

Ĝ−
0 (x, x

′, t) gives the displacement at x that is annihilated by a point source at x′ at t = 0.

Next, we consider the interaction of the wavefield u0 with the perturbation cs(x) (see

Figure 2.17). This interaction produces a scattered wavefield u±
sc; hence, the total wavefield

can be represented as u± = u0+u±
sc. The

+ and − superscripts in the total wavefield indicate

an initial and a final condition of the wavefield in the time domain, respectively:

û±(n, x, t) → û0(n, x, t) t → ∓∞. (2.7)

Physically, condition 2.7 with plus sign means that the wavefield u+, at early times, cor-

responds to the initial wavefield u0 propagating forward in time in the n direction. The

causal and anti-causal wavefields u+ and u− are related by time-reversal; in fact, each is the

time-reversed version of the other u−(t) = u+(−t). In the frequency domain, time-reversal

corresponds to complex conjugation: u−(ω) = u+∗(ω). Their time-reversal relationship is

better understood by comparing Figures 2.18a and 2.18b, which are valid for the velocity
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model of Figure 2.9. Figure 2.18b is obtained by reversing the time axis of Figure 2.18a. We

produced both figures using the same velocity model we used in the Visual Tour section of

this paper (Figure 2.9). In Figure 2.18a, the initial wavefield is a narrow Gaussian impulse

injected at −1.5 km; while, in Figure 2.18b, the initial wavefield corresponds to the wavefield

at t = 6 s in Figure 2.18a and it coalesces to an outgoing Gaussian pulse.
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Figure 2.18: Panel a shows the causal wavefield u+ originated by a narrow Gaussian impulse
injected at −1.5 km in velocity model of Figure 2.9. Panel b shows the anticausal wavefield
u−. Note that each panel is the time-reversed version of the other.

The total wavefield u± satisfies the wave equation

L(x, ω)u±(n, x, ω) = 0, (2.8)
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where the differential operator is

L(x, ω) ≡

[
d2

dx2
+

ω2

c(x)2

]

. (2.9)

The velocity varies with position, c(x) = c0 + cs(x), as illustrated in Figure 2.17. Using

the operator L, we define the perturbed Green’s function as the function that satisfies the

equation

L(x, ω)G±(x, x′, ω) = −δ(x− x′), (2.10)

with the same boundary conditions as equation 2.5. The Green’s function G± takes into ac-

count all the interactions with the perturbation and hence it corresponds to the full wavefield

propagating between the points x′ and x, due to an impulsive source at x′.

2.5 Mathematical tour

In this part of the paper, we lead the reader through a mathematical tour and show

that the different scattering principles have a common starting point, i.e., the following

fundamental equation that reveals the connections between them:

G+(xA, xB)−G−(xA, xB)

=
∑

x′=xl,xr

m

[

G−(x′, xA)
d

dx
G+(x, xB)|x=x′ −G+(x′, xB)

d

dx
G−(x, xA)|x=x′

]

(2.11)

with

m =

{

−1 if x′ = xl,

+1 if x′ = xr,
(2.12)

where xA, xB, xl and xr (see Figure 2.17) are the coordinates of the receivers located at xA

and xB and the left and right bounds of our domain, respectively. Equation 2.11 (derived

in Appendix A) shows a relation between the causal and anti-causal Green’s function and

we refer to this expression, throughout the paper, as the representation theorem for the

homogeneous Green’s function Gh ≡ G+ − G− (Oristaglio, 1989), which satisfies the wave

equation 2.10 when its source term is set equal to zero. G+ andG− both satisfy the same wave
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equation 2.10 because the differential operator L is invariant to time-reversal (LG+ = −δ

and LG− = −δ); hence, their difference is source free: L(G+ − G−) = 0. The fact that

G+ − G− satisfies a homogeneous equation suggests that a combination of the causal and

anti-causal Green’s functions is needed to focus the wavefield at a location where there is no

real source. This fact has been illustrated in the previous section when we reconstructed the

same wavefield using the Green’s function reconstruction technique and the inverse scattering

theory (see Figures 2.11 and 2.14); in both cases we obtained a combination of the two Green’s

functions.

For the remainder of this paper, to be consistent with Budreck and Rose (1990, 1991,

1992), we use the superscripts + and − to indicate the causal and anti-causal behavior of

wavefields and Green’s functions; and, for brevity, we omit the dependence on the angular

frequency ω.

2.5.1 Newton-Marchenko equation and generalized optical theorem

In this section, we show that equation 2.11 is the starting point to derive a Newton-

Marchenko equation and a generalized optical theorem. In other words, we demonstrate

how lines 1 and 3 of Table 2.1 are linked to Gh. The Newton-Marchenko equation differs

from the Marchenko equation because it requires both reflected and transmitted waves as

data (Newton, 1980). In contrast to the Marchenko equation 3.2, the Newton-Marchenko

equation can be extended to two and three dimensions. The Marchenko and the Newton-

Marchenko equations deal with the one-sided and two-sided problem, respectively. Following

the work of Budreck and Rose (1990, 1991, 1992), we manipulate equation 2.11 and show how

to derive the equations that rule these two principles. Before starting with our derivation,

we introduce some useful equations:

u±(n, x) = u0(n, x) + u±
sc(n, x)

= u0(n, x) +

∫

dx′G±
0 (x, x

′)L
′

(x′)u±(n, x′), (2.13)
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u±(n, x) = u0(n, x) +

∫

dx′G±(x, x′)L
′

(x′)u0(n, x
′), (2.14)

G±(n, x, x′) = G±
0 (n, x, x

′) +

∫

dx′′G±(x, x′′)L
′

(x′′)G±
0 (n, x

′′, x′), (2.15)

f(n, n′) = −

∫

dx′e−nikx′

L
′

(x′)u+(n′, x′), (2.16)

where L′(x) ≡ L(x)−L0(x) describes the influence of the scatterer (perturbation). Equations

2.13, 2.14, and 2.15 are three different Lippmann-Schwinger equations (Rodberg and Thaler,

1967); they are a reformulation of the scattering problem using linear integral equations

with a Green’s function kernel. In particular, equation 2.13 shows that the total field is

the summation of the incident wave u0(n, x) and the scattered wave u±
sc(n, x). The integral

approach is also well suited for the study of inverse problems (Colton and Kress, 1998).

Equation 2.16 represents the scattering amplitude (Rodberg and Thaler, 1967) for an incident

wave traveling in the n direction and that is scattered in the n′ direction. We insert equation

2.15 into 2.11, simplify considering the fact that xr > xA, x
′′, xB and xl < xA, x

′′, xB, and

use expression 2.14:

G+(xA, xB)−G−(xB, xA) (2.17)

=

(
i

2k

)(

−
i

2k

)

[ iku−(+1, xA)u
+(−1, xB) + iku+(−1, xB)u

−(+1, xA)

+iku−(−1, xA)u
+(+1, xB) + iku+(+1, xB)u

−(−1, xA) ] .

In a more compact form this can be written as

G+(xA, xB)−G−(xB, xA) =

(
i

2k

)
∑

n=−1,1

u−(n, xA)u
+(−n, xB). (2.18)

Equation 2.18 is the starting point to derive a Newton-Marchenko equation; we show the

full derivation in Appendix B and write the final result:

u+(+1, xA)− u−(+1, xA) = −
i

2k

∑

n=−1,1

u−(n, xA)f(n, xB), xB > xA, x
′′, (2.19)
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and

u+(−1, xA)− u−(−1, xA) = −
i

2k

∑

n=−1,1

u−(n, xA)f(n,−xB), xB < xA, x
′′. (2.20)

The system of coupled equations 2.19 and 2.20 is our representation of the one-dimensional

Newton-Marchenko equation (Newton, 1980). Recognizing that u− = u∗, equations 2.19 and

2.20 correspond to line 1 of Table 2.1.

Next, following a similar derivation that led to equations 2.19 and 2.20, we insert expres-

sion

u±(n, x) = u0(n, x) +

∫

dx′G±
0 (x, x

′)L
′

(x′)u±(n, x′) (2.21)

into equation 2.19, we use the relation u−(n, x) = u+∗(−n, x) and equation 2.16, and we

finally obtain a generalized optical theorem:

f(−n, n) + f ∗(−n, n) = −
∑

n′=−1,1

f(−n, n′)f ∗(n, n′), (2.22)

where f(n, n′) represents the scattering amplitude (Rodberg and Thaler, 1967) and n′ as-

sumes the value −1 or +1 (see line 3 of Table 2.1). The obtained results are exact because

in this one-dimensional framework we do not use any far-field approximations.

2.5.2 Green’s function reconstruction and the optical theorem

Starting from the three-dimensional version of equation 2.11, Snieder et al. (2008) showed

the connection between the generalized optical theorem and the Green’s function reconstruc-

tion. Following their three-dimensional formulation, we illustrate the same result for the

one-dimensional problem and show the connection between lines 2 and 3 of Table 2.1. In

this part of the paper we show the results and leave the mathematical derivation to Appendix

C. The expression for the one-dimensional Green’s function reconstruction is

i

2k
[ G+(xA, xB)−G−(xA, xB) ] =

∑

x′=xl,xr

G+(xA, x
′)G−(xB, x

′); (2.23)

32



where the Green’s function excited by a point source at xB recorded at xA can be separated

in an incident and a scattered part and is given by

G±(xA, xB) = ∓
i

2k
e±ik|xB−xA|

︸ ︷︷ ︸

direct

∓
i

2k
e±ik|xB |f(n, n′)eik|xA|

︸ ︷︷ ︸

scattered

. (2.24)

Unlike the three-dimensional case, we obtain two different results depending on the con-

figuration of the system. In the first case (Figure 2.19a), the ordinary optical theorem is

derived:

f(n, n) + f ∗(n, n) = −
∑

n′=−1,1

|f(n, n′)|2; (2.25)

in the second case (Figure 2.19b), we obtain a generalized optical theorem

f(−n, n) + f ∗(−n, n) = −
∑

n′=−1,1

f(−n, n′)f ∗(n, n′), (2.26)

where n assumes the value −1 or +1.

xrxA xB xxl 0

0

cs

cs

a

b

c0

c0

xA xB

c0tA c0tB

Figure 2.19: Configurations of the system used to show the connection between the Green’s
function reconstruction and the optical theorem. In both cases, the receivers xA and xB are
located outside the scatterer cs, which is located at x = 0.

The above expressions of the optical theorem in one dimension agree with the work of

Hovakimian (2005) and differ from their three-dimensional counterpart because they contain

the real part of the scattering amplitude instead of the imaginary part: 2ℜf(n, n) ≡ f(n, n)+
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f ∗(n, n), where ℜ indicates the real part. We note that the ordinary form of the optical

theorem 2.25 also follows from its generalized form 2.26 (the former is a special case of the

latter). Furthermore, equation 2.26 is equivalent to the expression for the optical theorem

derived in the previous section, equation 2.22. This is not surprising because both equations

2.26 and 2.22 have been derived from the same fundamental equation 2.11.

2.6 Conclusions

In the Visual Tour section, we described the connection between different scattering

principles, showing that there are three distinct ways to reconstruct the same wavefield.

A physical source, the Green’s function reconstruction technique, and inverse scattering

theory allow one to create the same wavestate (see Figure 2.8) originated by an impulsive

source placed at a certain location xs (x = 1.44 km in our examples). Green’s function

reconstruction tells us how to build an estimate of the wavefield without knowing the medium

properties, if we have a receiver at the same location xs of the real source and sources

surrounding the scattering region. Inverse scattering goes beyond and allows us to focus the

wavefield inside the medium (at location xs) without knowing its properties, using only data

recorded at one side of the medium. We showed that the interaction between causal and

anti-causal wavefields is a key element to focus the wavefield where there is no real source; in

fact Gh = G+ −G−, which satisfies the homogeneous wave equation 2.10, is a superposition

of the causal and anti-causal Green’s functions.

We speculate that many of the insights gained in our one-dimensional framework are still

valid in higher dimensions. An extension of this work in two or three dimensions would give

us the theoretical tools for many useful practical applications. For example, if we knew how

to create the three-dimensional version of the incident wavefield shown in Figure 2.12, we

could focus the wavefield to a point in the subsurface to simulate a source at depth and to

record data at the surface (Figure 2.16); these kind of data are of extreme importance for full

waveform inversion techniques (Brenders and Pratt, 2007) and imaging of complex structures,

e.g. under salt bodies in seismic exploration (Sava and Biondi, 2004). Furthermore, we could
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possibly concentrate the energy of the wavefield inside a hydrocarbon reservoir to fracture

the rocks and improve the production of oil and gas (Beresnev and Johnson, 1994).

In the second part of this tutorial, the Mathematical Tour, we demonstrated that the

representation theorem for the homogeneous Green’s function Gh , equation 2.11, constitutes

a theoretical framework for various scattering principles. We showed that all the principles

and their equations (see Table 2.1) rely on Gh as a starting point for their derivation. As

mentioned above, the fundamental role played by the combination of the causal and anti-

causal Green’s functions has been evident throughout all the Mathematical Tour: it is this

combination that allows one to focus the wavefield to a location where neither a real source

nor a receiver can be placed.
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CHAPTER 3

FOCUSING THE WAVEFIELD INSIDE AN UNKNOWN 1D MEDIUM - BEYOND

SEISMIC INTERFEROMETRY

Filippo Broggini1,2, Roel Snieder1, and Kees Wapenaar3

Published in Geophysics (2012): 77 (5), A25-A28

3.1 Abstract

With seismic interferometry one can retrieve the response to a virtual source inside an

unknown medium, if there is a receiver at the position of the virtual source. In this letter,

using inverse scattering theory, we demonstrate that for a 1D medium the requirement of

having an actual receiver inside the medium can be circumvented, going beyond seismic

interferometry. In this case, the wavefield can be focused inside an unknown medium with

independent variations in velocity and density using reflection data only.

3.2 Introduction

There are different ways to reconstruct the wavefield excited by a hypothetical source in

the interior of an unknown medium. First, with seismic interferometry (Curtis et al., 2006;

Schuster, 2009; Wapenaar et al., 2005; Weaver and Lobkis, 2001) it is possible to retrieve

the response to a virtual source inside the medium, with a receiver at the position where

the virtual source is to be created, assuming the medium is surrounded by uncorrelated

sources. The medium parameters need not be known. Second, in this paper we show that,

with one-dimensional inverse scattering theory (Chadan and Sabatier, 1989; Colton and

Kress, 1998; Gladwell, 1993), the response to a virtual source inside the medium can be

obtained from reflected waves recorded at one side of the medium. We demonstrate that,

1Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, USA
2Principal researcher and author
3Delft University of Technology, Department of Geoscience and Engineering, Delft, The Netherlands
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in one-dimensional media, this is possible without knowing the medium parameters. This is

fascinating because it allows one to obtain the same virtual source response as with seismic

interferometry (including all multiples), but without the need to have a receiver at the virtual

source location. An essential element of this approach is to build an incident wave that is

designed to collapse onto a point inside the medium at a specified time. The reconstructed

wavefield can be used to illuminate the medium under a complicated overburden, and the

extracted Green’s function can be used for imaging.

In this paper, the term focusing (Rose, 2001, 2002b) refers to the technique of finding an

incident wave that collapses to a spatial delta function δ(z − z0) at the location z0 and at a

prescribed time t0 (i.e., the wavefield is focused at z0 at t0). In a one-dimensional medium, we

deal with a one-sided problem when observations from only one side of the perturbation are

available (e.g., due to the practical consideration that we can only record reflected waves);

otherwise, we call it a two-sided problem when we have access to both sides of the medium

and account for both reflected and transmitted waves.

3.3 Wavefield focusing

Figure 3.1 shows the velocity and density profiles of a one-dimensional acoustic medium.

Note that velocity and density vary independently in depth. We simulate a numerical scat-

tering experiment where an impulsive source is placed at the position z = 2.44 km. The

acoustic wave equation is LG(z, zV S, t) = −δ(z − zV S)
∂
∂t
δ(t), with the differential opera-

tor L ≡ ρ(z) ∂
∂z
(ρ(z)−1 ∂

∂z
) − c(z)−2 ∂2

∂t2
. Here zV S = 2.44 km and the initial condition is

G(z, zV S, t < 0) = 0. The incident wavefield propagates toward the discontinuities in the

model, interacts with them, and generates scattered waves. We use a time-space finite-

difference code with absorbing boundary conditions to simulate the propagation of the one-

dimensional waves and to produce the numerical examples shown in this section. For com-

putational purposes, the source function −δ(z− zV S)
d
dt
δ(t) is convolved with a band-limited

wavelet s(t). The computed wavefield shown in Figure 3.2 represents the causal Green’s

function of the system, G, convolved with s(t). Causality ensures that the wavefield is non-
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Figure 3.1: Top: Velocity profile of the one-dimensional model (solid line). The perturbation
in the velocity is located between z = 1.3−3.5 km and c0 = 1 km/s. Middle: Density profile
of the one-dimensional model (dashed line). The perturbation in the density is located
between z = 2.0 − 3.5 km and ρ0 = 1 g/cm3. Bottom: Locations of the real and virtual
sources for seismic interferometry. zS1 and zS2 indicate the two real sources. zV S shows the
virtual source location.

zero only in the region delimited by the first arrivals (i.e., the direct waves) and we refer to

it as the causal region.

Due to practical limitations in field experiments, we usually are not able to place a

source inside the medium we want to probe. However, when there are receivers inside the

medium, seismic interferometry allows us to determine the wavefield, as if there was a source

at the position of any of the receivers, e.g. at z = 2.44 km. This technique allows one

to reconstruct the wavefield that propagates between a virtual source and other receivers

located inside the medium (Wapenaar et al., 2005). This technique yields a combination of

the causal wavefield G and its time-reversed version Ga (i.e., anti-causal). This is due to
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Figure 3.2: Response to a source located at z = 2.44 km. The traces are recorded by receivers
located at each location in the model (shown in Figure 3.1) with a spacing of 40 m. Waves
are emanating from the line t = 0 s only at z = 2.44 km.

the fact that the reconstructed wavefield propagates between a receiver and a virtual source.

Conceptually speaking, without a real (physical) source, one must have non-zero incident

waves on a receiver to create waves that emanate from that receiver. The fundamental

equation to reconstruct the Green’s function is (Wapenaar and Fokkema, 2006)

G(z, zV S, t) +G(z, zV S,−t)

∝
∑

z′=zS1,zS1

G(z, z′, t) ∗G(zV S, z
′,−t), (3.1)

where zV S = 2.44 km, and zS1 and zS2 are the coordinates of impulsive sources located at

both sides of the perturbation (a total of two sources in 1D) as shown at the bottom of

Figure 3.1. Between zS1 and zS2, the causal part of the wavefield estimated by this Green’s

function reconstruction technique is consistent with the wavefield shown in Figure 3.2.

We thus have two different ways to obtain the same wavefield, but often we cannot place

any sources or receivers inside the medium. We next assume that we only have access to

reflected waves R(t) measured above the perturbation, i.e. the reflected impulse response
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measured at z = 0 km due to an impulsive source placed at z = 0 km. This limitation

raises another question: Can we reconstruct the same wavefield shown in Figure 3.2 having

knowledge only of the reflected waves R(t)? For this one-dimensional problem, the answer to

this question is given by the Marchenko equation (Chadan and Sabatier, 1989; Lamb, 1980).

Its solution provides a particular incident wave that collapses the wavefield to a spatial delta

function at the desired location after it interacts with the medium, and this incident wave

consists of a delta function added to the solution of the Marchenko equation (Rose, 2001,

2002a).

The Marchenko integral equation is a fundamental relation of one-dimensional inverse

scattering theory. It is an integral equation that relates the reflected waves R(t) to the

incident wavefield u(t, tf ) which creates a focus in the interior of the medium and ultimately

gives the perturbation of the medium. The one-dimensional form of this equation is

0 = R(t+ tf ) + u(t, tf ) +

∫ tf

−∞

R(t+ t′)u(t′, tf )dt
′ for t ≥ −tf , (3.2)

where tf is the one-way travel time from z = 0 to the focusing location. We numerically

solve the Marchenko equation and construct the particular incident wave that focuses at

t = 0 s at a location specified by tf = 3 s. Any appropriate numerical method to solve

integral equations can be used to compute the unknown wavefield u(t, tf ) (e.g., an iterative

method). Note that solving Equation 3.2 does not require any knowledge of the medium: all

that is needed is the reflection response R(t) and the one-way travel time tf , which specifies

the location of the focus. Next, we inject the particular incident wave δ(t + tf ) + u(−t, tf )

at z = 0 km and compute the time-space diagram shown in the top panel of Figure 3.3:

this shows the wavefield when the incident wave is injected at z = 0 into the model. We

define this wavefield as K(z, t). The time-space diagram shown in Figure 3.3 is computed

using the true model, but this is done only to illustrate the physics of the focusing process.

The bottom panel of Figure 3.3 shows a cross-section of the wavefield at time t = 0 s: the

wavefield vanishes except at location z = 2.44 km. For this particular model, tf = 3 s
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corresponds to spatial focusing at the same location where we placed the virtual source in

Figure 3.1. We emphasize that this method is data driven, hence the true model is not

needed to build the particular incident wavefield.

Figure 3.3 does not yet resemble the wavefield shown in Figure 3.2. In fact, in Figure

3.3 waves cross the solid line at t = 0 s for locations z ≤ 2.44 km, while in Figure 3.2 waves

cross the same solid line only at the virtual source location z = 2.44 km. However, denoting

as K(z,−t) the time-reversed version of K(z, t), we obtain the wavefield shown in Figure 3.4

by adding K(z, t) and K(z,−t). With this summation, we create the response to a virtual

source located at zV S = 2.44 km, namely G(z, zV S, t) +G(z, zV S,−t) (convolved with s(t)).

This step is the main result of this paper. Note that the trace at z = 0, K(0, t)+K(0,−t), has

been obtained without any information about the model. As in Figure 3.3, the remainder

of Figure 3.4 is based on the true model and is only shown to explain the physics of the

focusing process. In Figure 3.4, the wavefield outside the causal region is zero because the

portion of K(z, t) outside the causal region is antisymmetric in time and hence cancels in

the sum K(z, t)+K(z,−t). With this process, we effectively go from one-sided to two-sided

illumination because in Figure 3.4 waves are incident onto the focusing location from both

sides for t < 0 s. The incident waves are non zero for −6s < t < −3s, but to facilitate

a comparison with Figure 3.2 this time interval is not completely included in the figure.

According to Figure 3.4, we create a focus at a location inside the inhomogeneous medium

without having a source or a receiver at such a location and without any knowledge of the

medium properties; we only have access to the reflected impulse response measured above

the perturbation. With an appropriate choice of sources and receivers, this experiment can

be done in practice, e.g., in an acoustics laboratory (Rose, 2002a). Burridge (1980) shows

diagrams similar to Figures 3.3 and 3.4 and explains how to combine such diagrams using

causality and symmetry properties. The wavefield for positive times t > 0 (causal region)

in Figure 3.4 corresponds to the causal Green’s function G and the wavefield for negative

times t < 0 represents the anti-causal Green’s function Ga (defining the anti-causal region).
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Figure 3.3: Top: At z = 0 km, we inject the particular incident wave in the model and
compute the time-space diagram by forward modeling. We denote this wavefield as K(z, t).
Waves cross the solid line at t = 0 s for locations z ≤ 2.44 km. Note that the waves continue
to propagate after 3 s. Bottom: cross-section of the wavefield at t = 0 s.
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A small amount of energy is outside of the causal and anti-causal regions due to numerical

inaccuracies in our solution of the Marchenko equation (this is also visible in the bottom

panel of Figures 3.3 and 3.4). The causal part of the trace at z = 0 km is the virtual source

response G(0, zV S, t) that we obtained without using the model.

The anti-causal Green’s function Ga follows from G by time-reversal, hence it satisfies

LGa = −δ(z − zV S)
∂

∂(−t)
δ(−t) = δ(z − zV S)

∂
∂t
δ(t), where we used that L is invariant to

time-reversal. Adding the differential equations for G and Ga shows that G + Ga satisfies

the homogeneous equation: L(G + Ga) = −δ(z − zV S)
∂
∂t
δ(t) + δ(z − zV S)

∂
∂t
δ(t) = 0. The

term homogeneous suggests that the sum of G and Ga is source free. Hence, to focus the

wavefield at the virtual source location, there must be a particular incident wavefield coming

from another location. In fact, the knowledge that G+Ga satisfies a homogeneous equation

suggests that a combination of the causal and anti-causal Green’s functions is needed to focus

the wavefield at a location where there is no real source (i.e., source free), as shown in Figure

3.4. Oristaglio (1989) shows a similar result, although he derives the difference (instead of

the sum) of the causal and anti-causal Green’s functions due to a different definition of the

Green’s functions.

3.4 Discussion

In the previous section, we use the one-way travel time tf to determine the depth zV S

of the virtual source. In other words, the wavefield focuses at the virtual source location

zV S after it has propagated inside the medium for a length of time equal to tf . In order to

directly choose a prescribed focusing location zV S (and not a prescribed one-way travel time

tf ), we need to know the average velocity of the medium between the surface and the depth

of the focusing location. However, no information about either the density or the details of

the velocity profile is required.

This method also works when density and velocity vary independently. This fact is a

new contribution because the previous inverse scattering theory of Rose (2001, 2002b) and

others (Aktosun and Rose, 2002) does not deal with simultaneous changes in density and
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Figure 3.4: Top: Wavefield that focuses at z = 2.44 km at t = 0 s without a source or a
receiver at this location. This wavefield corresponds to K(z, t) +K(z,−t) and consists of a
causal (t > 0) and an anti-causal (t < 0) region. Bottom: cross-section of the wavefield at
t = 0 s.
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velocity, because one cannot retrieve two independent quantities from one time series of

reflected waves. We also add another step beyond the work of Rose by forming the sum

K(z, t) + K(z,−t), which ensures that the wavefield vanishes outside the causal and anti-

causal regions and creates the response of the virtual source. We show that the interaction

between causal and anti-causal wavefields is a key element to focus the wavefield where there

is no real source.

We are currently investigating the application of the central ideas of this work to wave

propagation in two and three dimensions (Wapenaar et al., 2011a). This extension allows

us to focus the wavefield to a point in the subsurface to simulate a source at depth and to

record data at the surface. This kind of application will be helpful for full waveform inver-

sion (Brenders and Pratt, 2007) and subsalt imaging (Sava and Biondi, 2004), where waves

that have traversed a strongly inhomogeneous overburden are of extreme importance. We

speculate that focusing the wavefield at a prescribed location in two- and three-dimensional

media requires an estimate of the primary traveltimes from the virtual source location to

the receivers (e.g., using a macro model). Wapenaar et al. (2012a) give a first mathematical

proof for a two-dimensional medium with density variations only.

3.5 Conclusions

There are three distinct ways to reconstruct the same physical wave state. A physical

source, seismic interferometry, and inverse scattering theory allow one to create the same

wave state that focuses at a certain location zV S. Seismic interferometry tells us how to build

an estimate of the wavefield without knowing the medium properties, if we have a receiver

at the same location zV S of the real source in the scattering experiment of Figure 3.2 and

sources surrounding the medium. Inverse scattering goes beyond this as it allows us to focus

the wavefield inside the medium without knowing its properties, using only reflected waves

R(t) recorded at one side of the medium.
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CHAPTER 4

DATA-DRIVEN GREEN’S FUNCTION RECONSTRUCTION AND APPLICATION TO

IMAGING WITH MULTIDIMENSIONAL DECONVOLUTION

Filippo Broggini1,2, Kees Wapenaar3, Joost van der Neut3, and Roel Snieder1

Submitted to Inverse Problems

4.1 Abstract

We discuss an iterative method that allows one to reconstruct the Green’s function origi-

nating from a virtual source located inside a medium using reflection data measured only at

the acquisition surface. In addition to the reflection response, we require an estimate of the

traveltimes corresponding to the direct arrivals. However, no detailed information about the

heterogeneities in the medium is needed. The iterative scheme generalizes the Marchenko

equation for inverse scattering to the seismic reflection problem. We analyse the method for

a simple layered medium using physical arguments based on the stationary-phase method

and show that the retrieved Green’s wave field correctly contains the multiples due to the in-

homogeneities present in the medium. Additionally, a variant of the iterative scheme allows

us to decompose the reconstructed wave field into its downgoing and upgoing components.

These wave fields are then used to create a ghost-free image of the medium with either

crosscorrelation or multidimensional deconvolution, presenting an advantage over standard

prestack migration.

4.2 Introduction

One of the main goals of seismic imaging is to retrieve the location and amplitude of

reflectors in the subsurface from reflection data acquired on the surface of the earth. This

1Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, USA
2Principal researcher and author
3Delft University of Technology, Department of Geoscience and Engineering, Delft, The Netherlands
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is an important and challenging task because an accurate image of the structures inside the

earth is needed to locate hydrocarbon reservoirs.

We discuss a new approach to reconstruct the full Green’s function originating from a

virtual source located inside a medium using only reflection data measured at the acquisi-

tion surface. Existing methods, such as seismic interferometry (Bakulin and Calvert, 2006;

Schuster, 2009), allow one to retrieve this Green’s wave field without any knowledge of the

medium itself. Despite their advantages, these methods present two major drawbacks: 1)

they require a receiver at the location of the virtual source in the subsurface and 2) they

assume the medium is surrounded by sources. Our approach removes these constraints and

is based on an extension of the one-dimensional theory proposed by Broggini et al. (2011;

2012b) and Broggini and Snieder (2012) which was based on earlier work by Rose (2002a).

They show that, given the reflection response of a one-dimensional layered medium, it is

possible to reconstruct the response to a virtual source inside the medium, without having

a receiver at the virtual source location and without knowing the medium. Wapenaar et al.

(2013a) generalized this to three-dimensional media. This new method consists of an iterative

algorithm that transforms the reflection response (at the acquisition surface) of an arbitrary

medium into the wave field generated by a virtual source inside the unknown medium. This

can be interpreted as a redatuming process. Apart from requiring the reflection data mea-

sured at the surface, the proposed method also requires an estimate of the traveltimes of

the first arriving wave travelling from the virtual source location to receivers located at the

acquisition surface. These traveltimes are a key element of the method because they specify

the location of the virtual source in the subsurface. Consequently, the proposed method

is not fully model-independent. However, we do not require any more knowledge of the

medium parameters than standard primary imaging schemes. As in seismic interferometry

(Curtis et al., 2006; Schuster, 2009), our goal is to retrieve the response to a virtual source

inside an unknown medium, removing the imprint of a complex subsurface. This is helpful

in situations where waves have traversed a strongly inhomogeneous overburden, e.g., subsalt
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(Sava and Biondi, 2004) and near-surface imaging (Keho and Kelamis, 2012).

Following the approach of Wapenaar et al. (2012a), we analyse the iterative method

for a layered configuration with three parallel dipping reflectors characterized by variable-

density and constant-velocity. We use physical arguments based on the stationary-phase

method to show that the method converges and allows for the reconstruction of the wave

field originating from the virtual source location. Then, we show that a variant of the iterative

scheme allows us to decompose the reconstructed Green’s function into its downgoing and

upgoing components. Finally, these decomposed wave fields are used to create a ghost-free

image of the subsurface. This image is constructed using either simple crosscorrelations or

multi-dimensional deconvolution and is compared to standard prestack migration (Claerbout,

1985).

4.3 Stationary-phase analysis

We discuss the proposed iterative scheme for a simple two-dimensional configuration.

We use a geometrical approach to the method of stationary phase to solve the Rayleigh-

like integrals which yield the reflected response to an arbitrary incident field. We explain

each step of the iterative procedure and emphasize the physical arguments that support our

expectations for the method to converge to the virtual-source response.

4.3.1 Configuration

We consider a model characterized by three parallel dipping reflectors in a lossless,

constant-velocity, variable-density medium as shown in Figure 4.1. The proposed itera-

tive scheme is, however, not restricted to a medium where the velocity does not vary in

space (Wapenaar et al., 2013a). We choose this particular configuration because well-known

analytical equations describe the wave fields propagating in constant velocity media. The

velocity of the medium is equal to c = 2000 m/s. We denote spatial coordinates as x = (x, z).

The acquisition surface is located at z = 0 m and does not correspond to an actual reflector,

hence it does not cause reflections. The reflector at the top is described by the equation
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z = z1 − ax with z1 = 800 m and a = 1/7. The black dot denotes the position of the

virtual source, with coordinates xVS = (xVS, zVS) = (0, 1500) m. The middle and bottom

reflector are characterized by the same dipping angle. For this reason, all mirror images of

the virtual source are located on a line orthogonal to the reflectors. All the points on this

line satisfy the relation z = zVS + x/a. The first, second, and third reflectors cross this

line at x1 = (−98, 814) m, x2 = (−42, 1206) m, and x3 = (35, 1745) m, respectively. The

densities in the four layers are ρ1 = ρ3 = 1000 kg/m3, ρ2 = 5000 kg/m3, and ρ4 = 3000

kg/m3, respectively. When a downgoing wave reaches one of the boundaries separating lay-

ers with different density, it gives rise to reflected and transmitted waves. The reflection

and transmission coefficients are defined by rn = (ρn+1 − ρn)/(ρn+1 + ρn) and τ+n = 1 + rn,

respectively, where n = 1, 2, 3 denotes the layer. Similarly, the reflection and transmission

coefficients for upgoing waves are −rn and τ−n = 1 − rn. Since the velocity is constant in

this particular configuration, the reflection and transmission coefficients hold not only for

normal incidence but for all the angles of incidence. Note that the large contrast between

the density of the layers causes strong multiple reflections.

4.3.2 Primary arrivals

We define the Green’s function G(x,xS, t) as a wave field that satisfies the wave equation

LG = −ρδ(x − xS)
∂δ(t)
∂t

, with L = ρ∇ · (ρ−1∇) − c−2 ∂2

∂t2
. According to de Hoop (1995),

the Green’s function corresponds to the response to an impulsive point source of volume

injection rate located at xS. Figure 4.2 shows the total field originated by a real source

located at xVS, i.e., G(x,xVS, t) ∗ s(t), where s(t) is a Ricker wavelet with a central fre-

quency of 15 Hz and ∗ denotes temporal convolution. It is essential that s(t) is zero phase.

This is the reference wave field that we want to reconstruct. Using the Fourier convention

F̂ (ω) =
∫ +∞

−∞
f(t) exp(−jωt)dt, the frequency domain Green’s function Ĝ(x,xS, ω) obeys the

equation L̂Ĝ = −jωρδ(x− xS), with L̂ = ρ∇ · (ρ−1∇) +ω2/c2. Here j is the imaginary unit

and ω denotes the angular frequency. We decompose the Green’s function in its direct and

scattered components, Ĝ = Ĝd + Ĝs.
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Figure 4.1: Configuration with three dipping reflectors. The black dot indicates the location
of the virtual source xVS. The black star shaped symbols indicate the locations of the mirror
images of the virtual source. x

(2,1)
VS is the mirror image of x

(2)
VS with respect to the first

reflector. The white triangles denotes the receivers at z = 0. The virtual source and its
mirror images lie on the line z = zVS + x/a, with zVS = 1500 m and a = 1/7.
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Figure 4.2: Total field originated by a real source located at xVS, i.e., G(x,xVS, t)∗s(t). This
is the reference wave field.

As mentioned in the introduction, we need an estimate of the direct arrivals. For the

simple configuration of Figure 4.1, where there are only variations in density, the high-

frequency approximation of the Fourier transform of the direct Green’s function Gd(x,xVS, t)

is given by Ĝd(x,xVS, ω) = τ−1 τ
−
2 ρ3Ĝ

d
0(x,xVS, ω), with

Ĝd
0(x,xVS, ω) = jω

exp {−j(ω|x− xVS|/c+ µπ/4)}
√

8π|ω||x− xVS|/c
, (4.1)

where µ = sign(ω) (Snieder, 2004). We define Ĝd
0(x,xVS, ω) as the scaled direct Green’s

function and its temporal counterpart Gd
0(x,xVS, t), convolved with s(t), is shown in Figure

4.3. We see that Ĝd
0(x,xVS, ω) does not necessitate information about the position of the

interfaces or about the density, but it only depends on the traveltime |x−xVS|/c. In Figure

4.3, we also define two traveltime curves indicated by the solid black lines. The lower curve

describes the onset time of the direct arrivals and the upper curve is defined as the time-

reversal of the lower curve. These two curves allow us to define a window function

w(x, t) = 1 between the solid black lines of Figure 4.3,
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w(x, t) = 0 elsewhere.

This window function is a key component of the iterative scheme.
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Figure 4.3: Scaled direct arrivals of the response to the virtual source xVS measured at
the acquisition surface. The bottom solid black line indicates the onset time of the direct
arrivals. The top solid black lines is the time-reversed version of the bottom black line.

4.3.3 Reflection response

To retrieve the virtual-source response G(x,xVS, t), we need the reflection response at

the surface R(xR,xS, t) ∗ s(t) in addition to an estimate of the direct arrivals. We assume

that the reflection data do not include any multiples related to the acquisition surface. If

surface-related multiples are present in the reflection data, then they must be removed with

an appropriate technique (Amundsen, 2001; van Groenestijn and Verschuur, 2009; Verschuur
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et al., 1992). Following Wapenaar and Berkhout (1993) (equation 15a), the reflection re-

sponse can be derived from a Rayleigh-type integral:

p̂−(xR, ω) =

∫ ∞

−∞

2

jωρ1

[

∂Ĝs(xR,x, ω)

∂z
p̂+(x, ω)

]

z=0

dx, (4.2)

where p̂+ and p̂− are the Fourier transform of the downgoing and upgoing wave fields,

respectively. Hence, in the frequency domain, we define the reflection response in terms of

the scattered Green’s function Ĝs via

R̂(xR,xS, ω)ŝ(ω) =
2

jωρ1

∂Ĝs(xR,xS, ω)

∂zS
ŝ(ω), (4.3)

for zR = zS = 0 and after multiplying both sides by the spectrum of the source wavelet s(t).

According to Berkhout (1987), R̂(xR,xS, ω)ŝ(ω) is equivalent to the pressure recorded at xR

due to a force source located at xS (multiplied by −2).

4.3.4 Initiating the iterative process

We define the initial incident downgoing wave field at z = 0 as the time-reversed version

of the scaled direct arrivals at the recording surface excited by the virtual source in Figure

4.3. Hence, the initial wave field is p+0 (x, t) = Gd
0(x,xVS,−t) ∗ s(t) and is shown in Figure

4.4 with the label A. The subscript 0 of p+0 (x, t) indicates the initial wave field (or the 0th

iteration).

The reflected upgoing wave field p−0 (x, t) is obtained by convolving the downgoing incident

wave field p+0 (x, t) with the deconvolved reflection response and integrating over the source

locations:

p−0 (xR, t) =

∫ ∞

−∞

[
R(xR,x, t) ∗ p

+
0 (x, t)

]

z=0
dx, (4.4)

for zR = 0. Equation 4.4 is the time-domain version of the Rayleigh integral described by

equation 4.2. We discuss and solve this integral with geometrical arguments based on the

method of stationary phase and we give a detailed mathematical derivation in the Appendix

D. Figure 4.5 shows various rays for different receiver locations. Note that the rays of the
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Figure 4.4: Initial incident wave field (t < 0) and its reflection response (t > 0), both
measured at z = 0. Initial incident wave field is the time-reversal of Figure 4.3. We show the
reflection response only until 2 s. The solid black lines denote the onset time of the direct
arrivals and its time-reversed counterpart. These black lines are repeated in the subsequent
figures.

55



incident field (converging in xVS) and of the reflection response (for the first reflector) have

the same direction (Wapenaar et al., 2010, in the appendix). For this reason, these specific

rays are said to be stationary. With simple geometrical arguments, it follows that these rays

cross each other at the mirror image of the virtual source with respect to the first reflector,

i.e., at x
(1)
VS. Hence, the response of the first dipping reflector to the initial downgoing field

appears to originate from a virtual source located at x
(1)
VS. This wave field corresponds to

r1G
d
0(xR,x

(1)
VS, t) ∗ s(t), the first term on the right-hand side of equation D.21, and is shown

as the event with label B in Figure 4.4. Following similar stationary-phase arguments, the

response of the second reflector to the initial downgoing field apparently originates from a

mirror image of the virtual source with respect to the second reflector, i.e., at x
(2)
VS. This

response is equal to τ−1 r2τ
+
1 G

d
0(xR,x

(2)
VS, t) ∗ s(t) and corresponds to the second term on the

right-hand side of equation D.21 (see the event with label C in Figure 4.4). However, the

multiply reflected responses to the initial incident field also apparently originate from mirror

images of the virtual source, all located along the line z = zVS + x/a (see Figure 4.1). We

derived these responses with the method of stationary phase, hence they are free of artefacts.

We emphasize that the stationary phase analysis is not essential for the method, but it is

used here because wave fields obey simple analytical expressions.

4.3.5 Iterative process

We now discuss an iterative scheme, which uses the (k-1)th iteration of the reflection

response p−k−1(x, t) to create the kth iteration of the incident field p+k (x, t). The objective is

to iteratively update the incident field in such a way that, within the upper and lower solid

black lines shown in Figure 4.4, the field becomes anti-symmetric in time. The meaning

of this criterion will be evident in the next section, where we show how to reconstruct

G(x,xVS, t). The method requires a combination of time reversal and windowing and the

kth iteration of the incident field is defined by

p+k (x, t) = p+0 (x, t)− w(x, t)p−k−1(x,−t), forx at z = 0, (4.5)
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Figure 4.5: Analysis of the response of the first and second reflectors to the initial incident
wave field p+0 (x, t). a) Stationary rays for different receivers. The response of the first reflector

seems to originate from x
(1)
VS. b) Stationary rays for different receivers. The response of the

second reflector seems to originate from x
(2)
VS.

where the time window w(x, t) is defined by equation 4.2. The reflection response is then

obtained using equation 4.4, which we rewrite here as

p−k (xR, t) =

∫ ∞

−∞

[
R(xR,x, t) ∗ p

+
k (x, t)

]

z=0
dx, (4.6)

for x and xR at z = 0. The first and second iteration of the incident and reflected fields are

shown in Figures 4.6 and 4.7, respectively. The events of p+1 (x, t) labelled B,C in Figure 4.6

correspond to the events of p−0 (x, t) labelled C,B in Figure 4.4 (time-reversed and multiplied

by −1, see equation 4.5). Similarly, the events of p+2 (x, t) labelled B,C,D in Figure 4.7

correspond to the events of p−1 (x, t) labelled F,E,D in Figure 4.6 (time-reversed and multiplied

by −1).

For this particular configuration, the kth iteration of the incident field (for k > 2) is

similar to p+2 (x, t) and is composed of four events, as shown in Figure 4.7 for t < 0. The

events labelled A and D remain unchanged in the iterative process. The other two events

(labelled B and C) correspond to −A
(2)
k Gd

0(xR,x
(2)
VS,−t) ∗ s(t) and −A

(2,1)
k Gd

0(xR,x
(2,1)
VS ,−t) ∗

s(t), respectively. x
(2,1)
VS is the mirror image of x

(2)
VS with respect to the first reflector. The

coefficient A
(2)
k varies at each iteration and is equal to the partial sum of the geometric series
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Figure 4.6: First iteration of the incident wave field (t < 0) and its reflection response
(t > 0), both measured at z = 0. The labels A−F identify the first six events in the total
field. We show the reflection response only until 2 s.
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Figure 4.7: Second iteration of the incident wave field (t < 0) and its reflection response
(t > 0), both measured at z = 0. The labels A−G identify the first seven events in the total
field. We show the reflection response only until 2 s.
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b + by + by2 + by3 + by4 + · · · + byk where b = τ+1 r2τ
−
1 and y = r21. The sum of the series

converges because y < 1 and yields

∞∑

k=0

byk =
b

1− y
= r2, (4.7)

where we used that 1 − r21 = τ−1 τ
+
1 . The coefficient A

(2,1)
k of the third event (labelled C

in Figure 4.7) is equal to −r1A
(2)
k and, hence, it converges to −r1r2. Figure 4.8 shows

the thirtieth iteration and, within the solid black lines, the wave field is antisymmetric in

time. This is the result we predicted when we described the iterative method; in fact, the

antisymmetry was the design criterion for the iterative scheme. Wapenaar et al. (2012a)

show that, for their simple configuration with one dipping layer, convergence is reached after

one iteration.

4.3.6 Green’s function reconstruction from the virtual source

After showing that the method converges to the desired result, we define pk(x, t) as

the superposition of the kth version of the incident and reflected wave fields: pk(x, t) =

p+k (x, t)+ p−k (x, t). Figures 4.4, 4.6, 4.7 and 4.8 show pk(x, t) at z = 0 for k = 0, 1, 2, and 30,

respectively. For brevity, we define p(x, t) = p30(x, t). We remind the reader that, within the

solid black lines, the total field at z = 0 is antisymmetric in time and this particular feature

was the design criterion for the iterative scheme. Consequently, if we sum the total field

and its time-reversed version, i.e., p(x, t)+p(x,−t), all events inside the time window cancel

each other, as shown in Figure 4.9. Note that p(x, t)+p(x,−t) also obeys the wave equation

because we consider a lossless medium. The causal part of this superposition corresponds

to p−(x, t) + p+(x,−t) and the anti-causal part is equal to p+(x, t) + p−(x,−t), as shown in

Figure 4.9 for t > 0 and t < 0, respectively. From a physical point of view, time-reversal

changes the propagation direction. Hence, it follows that the causal part propagates upward

at z = 0 and the anti-causal part propagates downward at z = 0. According to our theory

(Wapenaar et al., 2013a), the causal and anti-causal parts of Figure 4.9 are proportional

to G(x,xVS, t) and G(x,xVS,−t) for z = 0, respectively. This can be understood with the
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Figure 4.8: Thirtieth iteration of the incident wave field (t < 0) and its reflection response
(t > 0), both measured at z = 0. Within the solid black lines, the total field is antisymmetric
in time and this particular feature was the design criterion for the iterative scheme. The
method has converged to the final result.
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Figure 4.9: Thirtieth iteration. Superposition of the total field and its time-reversed version
after the method has converged.
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following heuristic derivation. The first event of the causal part of Figure 4.9 has the same

arrival time as the direct arrival of the response to the virtual source at xVS (Figure 4.3). If

we combine this last observation with the fact that the causal part is upward propagating

at z = 0, and that the total field obeys the wave equation in the inhomogeneous medium

and is symmetric, it can be understood that the total field in Figure 4.9 is proportional to

G(x,xVS, t) +G(x,xVS,−t).

This reasoning does not depend on any particular feature of the configuration used in this

analysis and, according to our theory, it indeed holds for more general situations (Wapenaar

et al., 2013a). We confirm its validity for the response in Figure 4.9. Following the steps

that led to the field shown in Figure 4.9, we find for the causal part that

p−(x, t) + p+(x,−t) (4.8)

= τ+1 τ
+
2 τ

−
1 τ

−
2

{
Gd

0(x,xVS, t)

+ r3G
d
0(x,x

(4)
VS, t)− r1r2G

d
0(x,x

(5)
VS, t)

− r2r3G
d
0(x,x

(6)
VS, t)− r1r2r3G

d
0(x,x

(7)
VS, t)

− r2(r
2
1r2 − r23)G

d
0(x,x

(8)
VS, t) . . .

}

∗ s(t),

with the virtual source position and its mirror images shown in Figure 4.1. For the con-

figuration of Figure 4.1, expression 4.8 is proportional to the wave field G(x,xVS, t) ∗ s(t)

originated from the virtual source and recorded at the surface (with τ+1 τ
+
2 /ρ3 as the coeffi-

cient of proportionality). The directly modelled response to the virtual source is shown in

Figure 4.2 and matches the causal part of the field shown in Figure 4.9. These two wave fields

are superposed in Figure 4.10. This is also illustrated in Figure 4.11, where we superposed

the traces (τ+1 τ
+
2 /ρ3)G(xR0,xVS, t) ∗ s(t) and p−(xR0, t) + p+(xR0,−t), where xR0 = (0, 0).

For the total wave field, we obtain

p(x, t) + p(x,−t) =
τ+1 τ

+
2

ρ3
Gh(x,xVS, t) ∗ s(t), (4.9)

where Gh(x,xVS, t) = G(x,xVS, t) +G(x,xVS,−t).
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Figure 4.10: Superposition of the total field originated by a real source located at xVS,
multiplied by τ+1 τ

+
2 /ρ3, (black line) and the wave field reconstructed by the iterative scheme

(white line). The two wave fields match perfectly.
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Figure 4.11: Superposition of (τ+1 τ
+
2 /ρ3)G(xR0,xVS, t) ∗ s(t) (solid line) and p−(xR0, t) +

p+(xR0,−t) (black circles) for xR0 = (0, 0). The two traces match perfectly.
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Note thatG(x,xVS,−t) satisfies the same wave equation asG(x,xVS, t), i.e., LG(x,xVS,−t) =

−ρ3δ(x − xVS)
∂δ(−t)
∂(−t)

= ρ3δ(x − xVS)
∂δ(t)
∂t

. Hence, Gh satisfies the homogeneous equation

LGh = −ρ3δ(x− xVS)
∂δ(t)
∂t

+ ρ3δ(x− xVS)
∂δ(t)
∂t

= 0.

To show the convergence of the proposed method, we compute the energy of pk(x, t) +

pk(x,−t) within the solid black lines as a function of the number of iterations:

Energy(k) =
∑

t

∑

x

w(x, t) [pk(x, t) + pk(x,−t)]2 . (4.10)

This quantity is shown in Figure 4.12 and the energy inside the time window clearly converges

to zero, as confirmed by Figure 4.9. Note that this procedure is expected to converge because

in each iteration the reflected energy is smaller than the incident energy. We consider the

proposed method as a correction scheme that minimizes the energy within the region where

the time window w(x, t) equals 1.
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Figure 4.12: Energy of pk(x, t) + pk(x,−t) within the region where the time window w(x, t)
equals 1 versus number of iterations k. A logarithmic scale (base 10) is used for the Y-axis.

4.4 Wave field decomposition

We first apply a simple source-receiver reciprocity argument, G(xVS,x, t)∗s(t) = G(x,xVS, t)∗

s(t), and define G(xVS,x, t) ∗ s(t) as the wave field originating from sources at the surface

and observed by a virtual receiver located at xVS. Following this reasoning, the wave field
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in Figure 4.2 can be interpreted as the response recorded at the location xVS, indicated by

the black dot in Figure 4.1, due to sources indicated by the white triangles.

To build an image of the reflectors, it is necessary to decompose the total Green’s func-

tion at the virtual receiver located at xVS into its downgoing and upgoing component,

G+(xVS,x, t) ∗ s(t) and G−(xVS,x, t) ∗ s(t), respectively. These wave fields are illustrated in

Figure 4.13. To perform this decomposition, we consider a variant of the iterative scheme,

in which the subtraction in equation 4.5 is replaced by an addition (Wapenaar et al., 2011a):

q+k (x, t) = q+0 (x, t) + w(x, t)q−k−1(x,−t), forx at z = 0, (4.11)

where the time window w(x, t) is defined by equation 4.2. Note that the 0th iteration of

the downgoing field q+0 (x, t) is equal to p+0 (x, t). As in the previous section, the reflection

response is then obtained using equation 4.6, which we rewrite here as

q−k (xR, t) =

∫ ∞

−∞

[
R(xR,x, t) ∗ q

+
k (x, t)

]

z=0
dx, for zR = 0. (4.12)

After convergence, we define two additional wave fields: psym(x, t) = p(x, t) + p(x,−t) and

pasym(x, t) = q(x, t)− q(x,−t) (Wapenaar et al., 2012b).

Finally, by combining the wave fields psym(x, t) and pasym(x, t) in two different ways, the

Green’s function at xVS is decomposed into downgoing and upgoing fields, according to

G+(xVS,x, t) ∗ s(t) =
1

2
{psym(x, t)− pasym(x, t)} , for t ≥ 0, (4.13)

and

G−(xVS,x, t) ∗ s(t) =
1

2
{psym(x, t) + pasym(x, t)} , for t ≥ 0. (4.14)

The decomposition of the wave field observed at the virtual receiver located at xVS (Figure

4.10) is shown in Figure 4.14. The top panel corresponds to the downward propagating

Green’s function G+(xVS,x, t) ∗ s(t) and the bottom panel shows the upward propagating

Green’s function G−(xVS,x, t) ∗ s(t).
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Figure 4.13: Total wave field at the virtual receiver located at xVS. The solid black rays
correspond to G+(xVS,x, t) ∗ s(t). The dashed black rays correspond to G−(xVS,x, t) ∗ s(t).
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Figure 4.14: Upgoing and downgoing wave field decomposition. Top panel: G+(xVS,x, t) ∗
s(t). Bottom panel: G−(xVS,x, t) ∗ s(t).
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4.5 Imaging

In this section, we use the decomposed wave fields to create a ghost-free image of the sub-

surface. This image is constructed using either simple crosscorrelations or multi-dimensional

deconvolution and is compared to standard prestack migration.

4.5.1 Standard prestack imaging

We start by creating a reference image using a standard imaging technique (Claerbout,

1985). Standard prestack imaging and many other seismic imaging algorithms rely on the

single scattering assumption. This implies that the recorded wave fields do not include

internal multiples (waves bouncing multiple times between reflectors before reaching the

receivers). When multiple reflections are present in the data, the imaging algorithm incor-

rectly interprets them as ghost reflectors. This initial image is shown in Figure 4.15a and

the arrows indicate some of the ghost reflectors present in this standard image. Also, note

that the amplitudes do not agree with the correct reflection coefficients.

4.5.2 Imaging with crosscorrelation

If we repeat the decomposition process described in the previous section for virtual re-

ceivers xVS located on many depth levels z = zi (e.g. the horizontal lines composed of black

dots in Figure 4.16), we are able to create a more accurate image of the medium. To perform

this task, we compute the crosscorrelation function C

C(xVS,xVS, t) =

∫ ∞

−∞

[
G−(xVS,x, t) ∗G

+(xVS,x,−t)
]

z=0
dx (4.15)

at every virtual receiver depth and evaluate the result at t = 0. This new image is shown

in Figure 4.15b. As in the standard prestack image, the actual reflectors have been recon-

structed at the correct spatial location, but now the image is free of internal multiple ghosts.

This is an improvement over the previous image, but the retrieved amplitudes still do not

agree with the true reflection coefficients. The amplitude of the first two reflectors should

have the same magnitude and opposite polarity because r2 = −r1 (in this particular configu-
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ration), but the amplitude of the second reflector is smaller than the first one. Furthermore,

the amplitude of the third reflector should be 75% of that of the first reflector (r3 = 0.75r1),

but the image shows that the amplitude of the third reflector is considerably smaller than

its expected value.

4.5.3 Imaging with multidimensional deconvolution

Now, we show that multidimensional deconvolution allows us to create an image with

more accurate amplitudes. As in imaging with crosscorrelation, we consider a constant depth

level z = zi. The Green’s functions at this constant depth level are related by

G−(xr,xs, t) =

∫ ∞

−∞

[
R(xr,x, t) ∗G

+(x,xs, t)
]

z=zi
dx, (4.16)

where R(xr,x, t) is the reflection response to downgoing waves at z = zi of the truncated

medium below z = zi, xs is at z = 0, and xr is at z = zi. The truncated medium is equal to

the true medium below the depth level z = zi and is homogeneous above z = zi. Now, the

reflectivity R(xr,x, t) can be resolved from equation 4.16 by multidimensional deconvolution

(MDD) (Wapenaar et al., 2011b). To achieve this result, we first correlate both sides of

equation 4.16 with the downgoing Green’s function and integrate over source locations over

the acquisition surface:

C(xr,x
′, t) =

∫ ∞

−∞

[R(xr,x, t) ∗ Γ(x,x
′, t)]z=zi

dx, forxr andx
′at z = zi, (4.17)

where C is the crosscorrelation function (as in the previous section, but with not-coinciding

coordinates)

C(xr,x
′, t) =

∫ ∞

−∞

[
G−(xr,xs, t) ∗G

+(x′,xs,−t)
]

zs=0
dxs, (4.18)

and Γ is the point-spread function (van der Neut et al., 2011)

Γ(x,x′, t) =

∫ ∞

−∞

[
G+(x,xs, t) ∗G

+(x′,xs,−t)
]

zs=0
dxs. (4.19)

We resolve R(xr,x, t) for different depth levels z = zi and many virtual source locations, as

shown by the horizontal lines composed of black dots in Figure 4.16, and evaluate the result
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at t = 0 and xr = x. Figure 4.15c shows the final result of the imaging process. As in the

previous image, the reflectors have been imaged at the correct spatial locations, but now

the retrieved amplitudes agree with the true reflection coefficients. The amplitudes of the

first two reflectors have similar magnitude and opposite polarity and the amplitude of the

third reflector is roughly 75% of that of the first reflector. The difference in the amplitudes

between the two images is clearly shown in Figure 4.15d, where we compare the reflectivity

at x = 0 m retrieved by standard prestack migration, crosscorrelation, and multidimensional

deconvolution with the true reflectivity. Multidimensional deconvolution acknowledges the

multi-dimensional nature of the seismic wave field, hence the internal multiples contribute

to the restoration of the amplitudes of the reflectors.

4.6 Conclusions

We discussed a generalization to two dimensions of the model-independent wave field

reconstruction method of Broggini et al. (2011; 2012b). Unlike the one-dimensional method,

which uses the reflection response only, the proposed multi-dimensional extension requires,

in addition to the reflection response, independent information about the first arrivals. This

method can be easily extended to three dimensions.

The proposed data-driven procedure yields the Green’s function (including correct inter-

nal multiples) originating from a virtual source, without needing a receiver at the virtual

source location and without needing detailed knowledge of the medium, as shown in Figure

4.10. The method requires (1) the direct arriving wave front at the surface originated from

a virtual source in the subsurface, and (2) the reflection impulse responses for all source

and receiver positions at the surface. The direct arriving wave front can be obtained by

modelling in a macro model, from microseismic events (Artman et al., 2010), from borehole

check shots, or directly from the data by the CFP method (Berkhout, 1997; Haffinger and

Verschuur, 2012; Thorbecke, 1997) when the virtual source is located at an interface. The

required reflection responses are obtained from conventional seismic reflection data after re-

moval of the multiples due to the free-surface and after deconvolution for the source wavelet
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Figure 4.15: a) Image of the reflectors obtained with standard prestack migration. The
arrows indicate ghost images. b) Image of the reflectors obtained with the crosscorrela-
tion function C. c) Image of the reflectors obtained with multidimensional deconvolution.
d) Comparison of the reflectivity at x = 0 m retrieved by standard prestack migration,
crosscorrelation, and multidimensional deconvolution with the true reflectivity (from top to
bottom).
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Figure 4.16: The black dots correspond to various virtual receiver locations xVS. Virtual
receivers located on a constant depth level z = zi are used to resolve [R(xr,x, t)]z=zi
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(Amundsen, 2001; van Groenestijn and Verschuur, 2009; Verschuur et al., 1992).

For a simple configuration with planar dipping reflectors, the stationary-phase analysis

gives a better understanding of the two-dimensional iterative scheme and confirms that the

method converges to the virtual-source response. This reconstruction is handled by the

actual medium through the reflection data measured at the surface (which includes all the

information about the medium itself).

A variant of the iterative scheme allows the decomposition of the reconstructed Green’s

function into its downgoing and upgoing components. These wave fields are then used to

create different images of the medium with crosscorrelation and multidimensional deconvo-

lution. These two techniques show an improvement over standard imaging and allow us to

construct an image that is not affected by ghost images of the reflectors. Additionally, multi-

dimensional deconvolution yields an image whose amplitudes agree with the correct reflection

responses. This is due to the deconvolution process that correctly handles the internal mul-

tiples and retrieves the correct amplitudes of the primary reflections. We emphasize that, for

the crosscorrelation and multidimensional deconvolution results, the imaging process does

not require any more knowledge of the medium parameters than standard primary imaging

schemes (which use a macro model).

The iterative scheme is equivalent to an integral equation. Inserting equation 4.5 into

equation 4.6 and assuming convergence (setting p−k = p−k−1 and then dropping the subscript

k) gives

p−(xR, t) =

∫ ∞

−∞

[
R(xR,x, t) ∗ p

+
0 (x, t)

]

z=0
dx (4.20)

−

∫ ∞

−∞

[
R(xR,x, t) ∗

{
w(x, t)p−(x,−t)

}]

z=0
dx.

This equation is the two-dimensional extension of the Marchenko equation in inverse scat-

tering (Agranovich and Marchenko, 1963). The iterative scheme we propose thus implicitly

solves the inverse scattering problem. A proof for more general models is given by Wapenaar
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et al. (2013a).
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CHAPTER 5

RELATIONSHIP BETWEEN ONE-SIDED AND TWO-SIDED GREEN’S FUNCTION

REPRESENTATIONS

Filippo Broggini1,2, Kees Wapenaar3, Roel Snieder1, and Evert Slob3

In preparation for Geophysical Journal International

5.1 Abstract

The Green’s function, defined as the response recorded at the acquisition surface for

a source located in the interior of the subsurface, is a combination of the downgoing and

upgoing wave fields needed to reconstruct an image of the discontinuities inside the earth.

Two-sided Green’s function representations require measurement on the full boundary en-

closing the domain of interest and allow us to retrieve the Green’s function originating from

any location inside the medium. Practical constraints usually prevent the placement of

receivers at depth inside the earth; hence standard imaging techniques need to apply ap-

proximations to two-sided Green’s function representations to construct an image of the

subsurface. Recently-developed one-sided representations need data acquired on only one

side of the boundary enclosing the region of interest. These theorems present a practical

advantage because they remove the physical constraints of having receivers at depth; hence

one-sided representations do not require the approximations needed by two-sided techniques.

In this paper, we show the connection between one-sided and two-sided Green’s function rep-

resentations.

1Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, USA
2Principal researcher and author
3Delft University of Technology, Department of Geoscience and Engineering, Delft, The Netherlands

76



5.2 Introduction

Green’s function representations requiring measurement on a closed boundary surround-

ing an inhomogeneous medium allow us to retrieve the Green’s function originating from any

location inside the medium itself (Aki and Richards, 2002). Techniques based on these repre-

sentations can be used to create an image of the structures inside the Earth. Unfortunately,

because of practical constraints, we are unable to place receivers along a closed boundary

inside the Earth. Since measurements are not available on the full closed boundary, standard

imaging techniques need to apply approximations to two-sided Green’s function representa-

tions to construct an image of the subsurface. Because these equations require measurements

on a closed boundary, we refer to these equations as two-sided integral equations.

Pioneering work of Rose has shown the connection between one-dimensional autofocusing

and the Marchenko equation (Aktosun and Rose, 2002; Rose, 2001, 2002a,b). We have

extended this connection to one-dimensional Green’s function retrieval by combining the

time-reversed focusing wave field with its reflection response (Broggini and Snieder, 2012;

Broggini et al., 2012b). Wapenaar et al. (2013a, 2012a, 2013b), and Broggini et al. (2012a)

introduce an integral equation that allows one to reconstruct from reflection data at the

surface the Green’s function propagating from a location inside a medium to receivers located

at the acquisition surface. Because reflection data are needed on only one side of the medium,

we refer to this equation as one-sided integral equation. Following an insight by Lamb (1980),

Wapenaar et al. (2013a) show that a focusing solution of the source-free wave equation is

required to prove the validity of the one-sided integral equation and, additionally, discuss an

iterative scheme to solve this integral equation.

The techniques introduced by one-side integral equations are elegant, but their deriva-

tions, based on the Marchenko equations, restrict their application to a limited number of

problems. Here we show that techniques based on one-side representations can be derived

from well-known integral equations for Green’s function retrieval, known as seismic interfer-

ometry in the geophysical community (Bakulin and Calvert, 2006; Schuster, 2009; Wapenaar
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and Fokkema, 2006). Since these two-sided equations are applicable to a wide range of prob-

lems (Larose et al., 2006; Lobkis and Weaver, 2001), one-sided techniques can, in principle,

be extended to a large class of problems as well. In this paper, we present a derivation valid

for acoustic waves in lossless media.

5.3 Two-sided integral equation for Green’s function retrieval

We introduce the Green’s function G(x,xB, t) as a solution to the wave equation LG =

−ρδ(x − xB)
∂δ(t)
∂t

, with L = ρ∇ · (ρ−1∇) − c−2 ∂2

∂t2
. The mass density and the velocity are

denoted by ρ(x) and c(x), respectively. Following de Hoop (1995), the Green’s function

G(x,xB, t) corresponds to the acoustic pressure measured at x due to an impulsive point

source of volume injection rate at xB. We define the spatial coordinate x as x = (xH , x3),

where xH = (x1, x2) is the horizontal coordinate vector and x3 the vertical coordinate.

The positive direction of the x3-axis points downward. The Green’s function G(x,xB, t)

can be decomposed in its downgoing G+(x,xB, t) and upgoing G−(x,xB, t) components.

In this paper, these two wave fields are pressure-normalized (Ursin et al., 2012). Using

the Fourier convention f(x, ω) =
∫ +∞

−∞
f(x, t) exp(−jωt)dt, the frequency domain Green’s

function G(x,xB, ω) obeys the equation LG = −jωρδ(x−xB), with L = ρ∇·(ρ−1∇)+ω2/c2.

Here, j is the imaginary unit and ω denotes the angular frequency. To keep a simple notation,

we use the same symbol for the time-domain version of a function as for its frequency-domain

counterpart.

Our starting point is the acoustic representation of Green’s functions in the frequency

domain given by equation 18 in Wapenaar and Fokkema (2006):

χD(xA)G(xA,xB, ω) + χD(xB)G
∗(xB,xA, ω) (5.1)

=

∮

∂D

−1

jωρ(x)
{G∗(x,xA, ω)∂iG(x,xB, ω)− ∂iG

∗(x,xA, ω)G(x,xB, ω)}nid
2x,
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Figure 5.1: Definition of the variables used in equation 5.3.

where ∗ indicates complex-conjugation and χD(x) is the characteristic function for the do-

main D, defined as

χD(x) =







1 for x ∈ D

1
2

for x ∈ ∂D

0 for x ∈ R
3 ∈ \ {D ∪ ∂D} .

(5.2)

In equation 5.1, ∂i denotes the partial derivative in the xi-direction (Einstein’s summation

convention applies for repeated subscripts) and it acts on x which corresponds to a receiver

location. The term
−1

jωρ(x)
∂iG(x,xB, ω) in equation 5.1 corresponds to the particle velocity

recorded at x due to a monopole source located at xB. We consider an inhomogeneous lossless

medium D enclosed by the boundary ∂D with outward point normal vector n = (n1, n2, n3).

By infinitely extending the sides of the domain D, we can replace the closed surface

integral over ∂D by an integral over two horizontal boundaries ∂D0 and ∂Dm at depth x3 =

x3,0 and x3 = x3,m, respectively, as shown in Figure 5.1. For this reason, we define equation

5.1 as a two-sided integral equation. In the following, the upper half-space x3 < x3,0 and

the lower half-space x3 > x3,m are homogeneous and their medium parameters do not have
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to be the same. The boundaries ∂D0 and ∂Dm do not correspond with physical interfaces;

hence they do not cause reflection of acoustic waves. With this configuration, the partial

derivative ∂i (acting on x) is along the vertical direction x3. Next, we take xA to be a point

xF in the interior of D and take xB to be the position x′′′
0 of a receiver located just above

the surface ∂D0; see Figure 5.1, where x′′′
0 = (x′′′

H , x3,0 − ǫ), with ǫ → 0. The second term

on the left-hand side of equation 5.1 disappears because χD(x
′′′
0 ) = 0 when x′′′

0 is outside D.

These substitutions reduce expression 5.1 to

G(xF ,x
′′′
0 , ω) (5.3)

=

∫

∂D0∪∂Dm

−1

jωρ(x)
{G∗(x,xF , ω)∂iG(x,x′′′

0 , ω)− ∂iG
∗(x,xF , ω)G(x,x′′′

0 , ω)}nid
2x

≡ I∂D0
+ I∂Dm

.

I∂D0
and I∂Dm

correspond to the integrals over the top ∂D0 and bottom ∂Dm boundaries,

respectively.

We start by transforming the two terms inside the integral in equation 5.3 to a single

term. To achieve this, we have to analyze separately the integral over the top and bottom

boundaries because x′′′
0 and xF are on different sides with respect to ∂D0, while they are on

the same side with respect to ∂Dm. First, we focus on the integral over the top boundary

∂D0,

I∂D0
=

∫

∂D0

1

jωρ(x)
{G∗(x,xF , ω)∂3G(x,x′′′

0 , ω)− ∂3G
∗(x,xF , ω)G(x,x′′′

0 , ω)} d
2x, (5.4)

where we used that ∂ini = −∂3 (n3 points upward at ∂D0, while x3 points downward).

According to Appendix B.3 of Wapenaar and Berkhout (1989), we can rewrite equation 5.4

(for the integral over ∂D0) as

I∂D0
=

∫

∂D0

2

jωρ(x)

{
G+(x,xF , ω)

}∗
∂3G

+(x,x′′′
0 , ω)d

2x (5.5)

+

∫

∂D0

2

jωρ(x)

{
G−(x,xF , ω)

}∗
∂3G

−(x,x′′′
0 , ω)d

2x,
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whereG = G++G−. Note that equation 5.5 is not exact because the evanescent waves are ne-

glected at the boundary ∂D0. Furthermore, because the medium above ∂D0 is homogeneous,

the downgoing component of G(x,xF , ω) is equal to zero; hence G(x,xF , ω) = G−(x,xF , ω).

This yields

I∂D0
=

∫

∂D0

2

jωρ(x)

{
G−(x,xF , ω)

}∗
∂3G

−(x,x′′′
0 , ω)d

2x. (5.6)

The term
−1

jωρ(x)
∂3G

−(x,x′′′
0 , ω) in equation 5.6 corresponds to the vertical component of the

particle velocity of the upgoing field recorded at x due to a monopole source located at x′′′
0

just above the boundary ∂D0, or, via reciprocity, to the acoustic pressure recorded at x′′′
0 due

to a downward radiating dipole source located at x. Since we deal with pressure-normalized

wave fields, we use the last definition and define the reflection response as (Wapenaar et al.,

2012a)

R(x′′′
0 ,x, ω) =

2

jωρ(x)
∂3G

−(x,x′′′
0 , ω), forx ∈ ∂D0. (5.7)

The reflection response is acquired in a seismic experiment where sources and receivers are

both located along the acquisition surface at x3 = x3,0. Using this, we rewrite equation 5.6

as

I∂D0
=

∫

∂D0

R(x′′′
0 ,x, ω)G

∗(x,xF , ω)d
2x, (5.8)

where G(x,xF , ω) = G−(x,xF , ω).

Next, we analyze the integral over the bottom boundary ∂Dm in equation 5.3:

I∂Dm
=

∫

∂Dm

−1

jωρ(x)
{G∗(x,xF , ω)∂3G(x,x′′′

0 , ω)− ∂3G
∗(x,xF , ω)G(x,x′′′

0 , ω)} d
2x, (5.9)

where we used that ∂ini = +∂3 (n3 points downward at ∂Dm, while x3 also points downward).

As previously mentioned, x′′′
0 and xF are on the same side with respect to ∂Dm; hence, we

can use the same arguments given by Wapenaar and Fokkema (2006) to reduce the integral
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over ∂Dm to a single term. This yields

I∂Dm
= −

∫

∂Dm

2

jωρ(x)

{
G+(x,xF , ω)

}∗
∂3G

+(x,x′′′
0 , ω)d

2x. (5.10)

We define the pressure-normalized transmission response as

T (x′′′
0 ,x, ω) = −

2

jωρ(x)
∂3G

+(x,x′′′
0 , ω), forx ∈ ∂Dm. (5.11)

and rewrite equation 5.10 as

I∂Dm
=

∫

∂Dm

T (x′′′
0 ,x, ω)G

∗(x,xF , ω)d
2x, (5.12)

where G(x,xF , ω) = G+(x,xF , ω). We finally combine equations 5.8 and 5.12 to obtain

G(x′′′
0 ,xF , ω) (5.13)

=

∫

∂D0

R(x′′′
0 ,x, ω)G

∗(xF ,x, ω)d
2x+

∫

∂Dm

T (x′′′
0 ,x, ω)G

∗(xF ,x, ω)d
2x,

where we have used the source-receiver reciprocity relation G(x,xF , ω) = G(xF ,x, ω). Note

that, if R and T are known, we could solve this equation to retrieve the unknown wave field

G (but the trivial solution G = 0 would also be a valid solution).

Equation 5.13 is the starting point to derive the relationship with the one-sided integral

equation given by Wapenaar et al. (2013a, 2012a, 2013b). In the time domain, equation 5.13

corresponds to

G(x′′′
0 ,xF , t) (5.14)

=

∫

∂D0

d2x

∫ +∞

−∞

R(x′′′
0 ,x, t− t′)G(xF ,x,−t′)dt′

+

∫

∂Dm

d2x

∫ +∞

−∞

T (x′′′
0 ,x, t− t′)G(xF ,x,−t′)dt′.

5.4 Relationships between Green’s functions and focusing solution

In the domain D enclosed by the boundaries ∂D0 and ∂Dm, we consider two independent

acoustic states: the Green’s function G(x,xm, ω) due to an impulsive point source of volume

injection rate at xm (just below ∂Dm) and the focusing solution f1(x,x
′
i, ω). This particular
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wave field f1(x,x
′
i, ω) is defined anywhere as the wave field that focuses at the location x′

i in

the interior of D. The domain D is source-free for all states, and the medium parameters are

identical between the boundary ∂D0 and the depth level ∂Di, where ∂Di is an arbitrary depth

level between ∂D0 and ∂Dm. For this situation, the reciprocity theorems of the convolution-

type and correlation-type are (Fokkema and van den Berg, 1993), respectively,

∫

∂D0

1

jωρ(x0)
{(∂3f1)G− f1(∂3G)} d2x0 (5.15)

=

∫

∂Di

1

jωρ(xi)
{(∂3f1)G− f1(∂3G)} d2xi,

∫

∂D0

1

jωρ(x0)
{(∂3f1)

∗G− f ∗
1 (∂3G)} d2x0 (5.16)

=

∫

∂Di

1

jωρ(xi)
{(∂3f1)

∗G− f ∗
1 (∂3G)} d2xi.

Substituting f1 = f+
1 + f−

1 and G = G++G− into equations 5.15 and 5.16 and following the

derivation in Appendix B.3 of Wapenaar and Berkhout (1989), we obtain

−

∫

∂D0

2

jωρ(x0)

{
f+
1 (∂3G

−) + f−
1 (∂3G

+)
}
d2x0 (5.17)

=

∫

∂Di

2

jωρ(xi)

{
(∂3f

+
1 )G

− + (∂3f
−
1 )G

+
}
d2xi,

−

∫

∂D0

2

jωρ(x0)

{
(f+

1 )
∗(∂3G

+) + (f−
1 )

∗(∂3G
−)
}
d2x0 (5.18)

=

∫

∂Di

2

jωρ(xi)

{
(∂3f

+
1 )

∗G+ + (∂3f
−
1 )

∗G−
}
d2xi,

where in equation 5.18 the evanescent wave field is neglected.

Figure 5.2 shows the two different states to which we apply equations 5.17 and 5.18. State

A1 is defined in the actual medium between the boundaries ∂D0 and ∂Dm, and a source is

located at xm, just below ∂Dm. The downgoing and upgoing Green’s function at x0 ∈ ∂D0
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are

2

jωρ(x0)
∂3G

+(x,xm, ω)|x3=x3,0
= 0, (5.19)

2

jωρ(x0)
∂3G

−(x,xm, ω)|x3=x3,0
= T (xm,x0, ω). (5.20)

State B1 is defined in a reference medium where the medium parameters are identical to the

actual medium between the boundary ∂D0 and the depth level ∂Di. Below ∂Di, state B1 is

composed of a reflection-free half-space. The focusing solution f1 is defined in this reference

medium and its dowgoing and upgoing components at x′
i ∈ ∂Di are

2

jωρ(xi)
∂3f

+
1 (x,x

′
i, ω)|x3=x3,i

= −δ(xH − x′
H), (5.21)

2

jωρ(xi)
∂3f

−
1 (x,x

′
i, ω)|x3=x3,i

= 0. (5.22)

Substituting equations 5.19-5.22 into equations 5.17-5.18 gives

G−(x′
i,xm, ω) =

∫

∂D0

T (xm,x0, ω)f
+
1 (x0,x

′
i, ω)d

2x0, (5.23)

and

G+(x′
i,xm, ω) = −

∫

∂D0

T (xm,x0, ω)
{
f−
1 (x0,x

′
i, ω)

}∗
d2x0. (5.24)

Adding these last two expressions yields

G(x′
i,xm, ω) =

∫

∂D0

T (xm,x0, ω)f2(x
′
i,x0, ω)d

2x0, (5.25)

where we defined a second focusing solution f2(x
′
i,x

′′′
0 , ω) = f+

1 (x
′′′
0 ,x

′
i, ω)−

{
f−
1 (x

′′′
0 ,x

′
i, ω)

}∗
.

The focusing solution f2 has a focal point at x′′′
0 (Wapenaar et al., 2013a), as shown in Figure

5.3.

Finally, we introduce two different definitions of the inverse of the transmission response:

δ(xH − x′
H) =

∫

∂Dm

T (xm,x0, ω)T
inv(xm,x

′
0, ω)d

2xm, (5.26)

δ(xH − x′
H) =

∫

∂D0

T (x0,xm, ω)T
inv(x0,x

′
m, ω)d

2x0, (5.27)
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where x0 and x′
0 are located on the top boundary ∂D0, and xm and x′

m are located on the

bottom boundary ∂Dm.

5.5 Comparison between the integral equations

In this section, we show the consistency between two-sided, i.e. equation 5.13, and one-

sided Green’s function representations. Substituting equation 5.13 into itself gives

G(x′′′
0 ,xF , ω) (5.28)

=

∫

∂D0

d2x0R(x′′′
0 ,x0, ω)

∫

∂D0

{R(x0,x
′′
0, ω)}

∗
G(x′′

0,xF , ω)d
2x′′

0

+

∫

∂D0

d2x0R(x′′′
0 ,x0, ω)

∫

∂Dm

{T (x0,xm, ω)}
∗ G(xm,xF , ω)d

2xm

+

∫

∂Dm

T (x′′′
0 ,xm, ω) {G(xF ,xm, ω)}

∗ d2xm.

Bringing the first term of the right-hand side to the left-hand side yields

∫

∂D0

d2x′′
0G(x′′

0,xF , ω)

[

δ(x′′
H − x′′′

H)−

∫

∂D0

R(x′′′
0 ,x0, ω) {R(x0,x

′′
0, ω)}

∗
d2x0

]

︸ ︷︷ ︸

T1

(5.29)

=

∫

∂D0

d2x0R(x′′′
0 ,x0, ω)

∫

∂Dm

{T (x0,xm, ω)}
∗ G(xF ,xm, ω)d

2xm

+

∫

∂Dm

T (x′′′
0 ,xm, ω) {G(xF ,xm, ω)}

∗ d2xm.

Wapenaar et al. (2004) derive a relationship between flux-normalized reflection and trans-

mission responses for a domain D enclosed by boundaries ∂D0 and ∂Dm. In Appendix E, we

derive a similar relationship for pressure-normalized reflection and transmission responses,

equation E.14; its expression is

∫

∂Dm

{T (xm,x
′′
0, ω)}

∗
T (x′′′

0 ,xm, ω)d
2xm (5.30)

= δ(x′′
H − x′′′

H)−

∫

∂D0

R(x′′′
0 ,x0, ω) {R(x0,x

′′
0, ω)}

∗
d2x0.
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Note that equation 5.30 shows the unitarity of the scattering matrix (Rodberg and Thaler,

1967). Now, we use equation 5.30 to rewrite term T1 of equation 5.29:

∫

∂D0

d2x′′
0G(x′′

0,xF , ω)

∫

∂Dm

{T (xm,x
′′
0, ω)}

∗
T (x′′′

0 ,xm, ω)d
2xm (5.31)

=

∫

∂D0

d2x0R(x′′′
0 ,x0, ω)

∫

∂Dm

{T (x0,xm, ω)}
∗ G(xF ,xm, ω)d

2xm

+

∫

∂Dm

T (x′′′
0 ,xm, ω) {G(xF ,xm, ω)}

∗ d2xm.

Then, we insert equation 5.25 into equation 5.31 and, after rearranging the terms, obtain

∫

∂D0

d2x′′
0G(x′′

0,xF , ω)

∫

∂Dm

{T (xm,x
′′
0, ω)}

∗
T (x′′′

0 ,xm, ω)d
2xm (5.32)

=

∫

∂D0

d2x0R(x′′′
0 ,x0, ω)

∫

∂D0

d2x′
0f2(xF ,x

′
0, ω)

∫

∂Dm

T (xm,x
′
0, ω) {T (x0,xm, ω)}

∗ d2xm

+

∫

∂D0

d2x′′
0 {f2(xF ,x

′′
0, ω)}

∗

∫

∂Dm

{T (xm,x
′′
0, ω)}

∗
T (x′′′

0 ,xm, ω)d
2xm.

Now, we focus on the first term on the right-hand side of equation 5.32 which we rewrite

here:

∫

∂D0

d2x0R(x′′′
0 ,x0, ω)

∫

∂D0

d2x′
0f2(xF ,x

′
0, ω)

∫

∂Dm

T (xm,x
′
0, ω) {T (x0,xm, ω)}

∗ d2xm.

(5.33)

We take the complex-conjugate of equation 5.30 and then insert it into equation 5.33

∫

∂D0

R(x′′′
0 ,x0, ω)f2(xF ,x0, ω)d

2x0 (5.34)

−

∫

∂D0

d2x0f2(xF ,x0, ω)

∫

∂D0

d2x′′
0R(x′′

0,x0, ω)

∫

∂D0

R(x′′′
0 ,x

′
0, ω) {R(x′

0,x
′′
0, ω)}

∗
d2x′

0,

where we performed a change of variables in the second term. Following a similar step, we

insert equation 5.30 into equation 5.34:

∫

∂D0

d2x0f2(xF ,x0, ω)

∫

∂D0

d2x′′
0R(x′′

0,x0, ω)

∫

∂Dm

{T (xm,x
′′
0, ω)}

∗
T (x′′′

0 ,xm, ω)d
2xm. (5.35)
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Using equation 5.35, we can rewrite equation 5.32 as

∫

∂D0

d2x′′
0G(x′′

0,xF , ω)

∫

∂Dm

{T (xm,x
′′
0, ω)}

∗
T (x′′′

0 ,xm, ω)d
2xm (5.36)

=

∫

∂D0

d2x0f2(xF ,x0, ω)

∫

∂D0

d2x′′
0R(x′′

0,x0, ω)

∫

∂Dm

{T (xm,x
′′
0, ω)}

∗
T (x′′′

0 ,xm, ω)d
2xm

+

∫

∂D0

d2x′′
0 {f2(xF ,x

′′
0, ω)}

∗

∫

∂Dm

{T (xm,x
′′
0, ω)}

∗
T (x′′′

0 ,xm, ω)d
2xm.

Note that all the terms in equation 5.36 include a surface integral over ∂Dm of the transmis-

sion responses. To remove this integral, first, we multiply both sides of equation 5.36 by the

inverse of the transmission response T (x′′′
0 ,xm, ω) and integrate over ∂D0. Then, following

a similar process, we multiply both sides of equation 5.36 by the inverse of the transmission

response {T (xm,x
′′
0, ω)}

∗ and integrate over ∂Dm. This allows us to eliminate the surface

integral of the transmission responses and yields

G(x′′′
0 ,xF , ω) (5.37)

=

∫

∂D0

R(x′′′
0 ,x0, ω)f2(xF ,x0, ω)d

2x0 + {f2(xF ,x
′′′
0 , ω)}

∗
.

The right-hand side of equation 5.37 contains a surface integral over only the top boundary

∂D0; hence we do not require any measurements on the bottom boundary ∂Dm which are

needed by equation 5.13. Additionally, equation 5.37 now requires knowledge of the focusing

wave field f2 (whit focal points on the top boundary ∂D0) rather then the Green’s function

recorded at xF and due to sources on the top and bottom boundaries. Wapenaar et al.

(2013a) use a causality argument to solve equation 5.37 in the time domain for the focusing

solution f2. Once f2 is known, it can be used to retrieve G(x′′′
0 ,xF , ω). The one-sided Green’s

function representation of equation 5.37 is the key result of our paper. This expression shows

that the two-sided and one-sided integral equations for the Green’s function retrieval lead

to equivalent results.
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5.6 Conclusion

We have shown the connection between one- and two-sided integral equations for Green’s

function retrieval. Representations based on one-sided equations are more recent and present

a practical advantage because they remove the physical constraints of having receivers and

sources at depth; hence, they do not require approximations that are needed because mea-

surements are unavailable at depth. On the other hand, methods requiring data on a closed

boundary (two-sided) present well-known applications. For these reasons, their connection

can introduce mutual benefits to the different representations.
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i at
depth level ∂Di.
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CHAPTER 6

WAVE FIELD AUTOFOCUSING AND IMAGING WITH MULTIDIMENSIONAL

DECONVOLUTION: NUMERICAL EXAMPLES FOR REFLECTION DATA WITH

INTERNAL MULTIPLES

Filippo Broggini1,2, Roel Snieder1, and Kees Wapenaar3

In preparation for Geophysics

6.1 Abstract

Standard imaging techniques rely on the single scattering assumption. This requires

that the recorded data do not include internal multiples, i.e. waves bouncing multiple times

between layers before reaching the receivers at the acquisition surface. When multiple re-

flections are present in the data, standard imaging algorithms incorrectly image them as

ghost reflectors. These artifacts can mislead the interpreters in locating potential hydrocar-

bon reservoirs. Recently, we introduced a new approach for retrieving the Green’s function

recorded at the acquisition surface due to a virtual source located at depth. We refer to

this approach as wave field autofocusing. Additionally, autofocusing allows us to decompose

the Green’s function in its downgoing and upgoing components. These wave fields are then

used to create a ghost-free image of the medium with either crosscorrelation or multidimen-

sional deconvolution, presenting an advantage over standard prestack migration. We test

the robustness of our approach when an erroneous velocity model is used to estimate the

first-arriving waves which are a required input for the autofocusing process. We illustrate

the new method with a numerical example based on a modification of the Amoco model.

1Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401, USA
2Principal researcher and author
3Delft University of Technology, Department of Geoscience and Engineering, Delft, The Netherlands
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Figure 6.1: a) Total wave field from the imaging point located at xI (indicated by the red
dot) and recorded at the acquisition surface. b) Decomposed wave fields. The solid blue
rays correspond to the downgoing component G+(xI,x, t). The solid red rays correspond to
the upgoing component G−(xI,x, t).

6.2 Introduction

One of the main goals of exploration geophysics is to retrieve the location and amplitude

of the discontinuities between layers with different properties inside the subsurface from

reflection data acquired on the surface of the Earth. This is a challenging research task

because an accurate image of the structures inside the Earth is needed to locate energy

sources, such as hydrocarbon reservoirs.

Standard imaging methods, such as one-way prestack migration (Claerbout, 1985), usu-

ally suffer from artifacts (ghost images) due to the presence of multiple reflections in the

recorded data. These multiple reflections are often caused by high impedance layers, such as

salt bodies, and hence they can severely affect the final images. One-way imaging schemes

cannot differentiate between primaries and multiples; hence they erroneously interpret the

multiply reflected waves as primary reflections due to deeper layers.

We have recently introduced a new method that allows us to reconstruct the total wave

field originating from a point in the subsurface to receivers located at the surface (Wapenaar

et al., 2013a, 2012a). Following Rose (2002a), we refer to this approach as wave field auto-

92



focusing. The Green’s function, defined as the response recorded at the acquisition surface

due to a source located in the interior of the subsurface, see Figure 6.1a, is a combination of

the downgoing and upgoing wave fields needed to reconstruct an image of the discontinuities

inside the Earth. These downgoing and upgoing wave fields are illustrated in Figure 6.1b,

where we have applied source-receiver reciprocity. The new method consists of an iterative

algorithm that transforms the reflection response (at the acquisition surface) of an arbitrary

medium into the wave field generated by a virtual source inside the unknown medium. Apart

from requiring the reflection data measured at the surface, autofocusing also requires an es-

timate of the traveltimes of the first-arriving wave traveling from the virtual source location

to receivers located at the acquisition surface. These traveltimes are a key element of the

method because they specify the location of the virtual source in the subsurface. Conse-

quently, the proposed method is not fully model-independent. However, we do not require

any more knowledge of the medium parameters than standard primary imaging schemes.

We emphasize that we use the internal multiples to construct images with more correct

amplitudes, while other methods aim at removing the internal multiples before the imaging

step (Berkhout and Verschuur, 1997; Jakubowicz, 1998; ten Kroode, 2002; Weglein et al.,

1997). Moreover, our method is non-recursive, which means that it does not suffer from

error propagation. Also we do not need to resolve the multiple problem in the overburden

prior to imaging a specific target zone.

We start with a brief review of the theory behind autofocusing, and describe how to

decompose the Green’s function in its downgoing and upgoing components. Then, we apply

autofocusing to a synthetic data set and compare its imaging capabilities with those of one-

way prestack migration. Finally, we show the robustness of our method when an erroneous

velocity model is used to compute an estimate of the first-arriving waves.

6.3 Theory of autofocusing

Following recent work (Broggini et al., 2012a,b; Wapenaar et al., 2013a, 2012a), we briefly

introduce the theory of wave field autofocusing for two-dimensional media and illustrate it
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Figure 6.2: a) Velocity model. b) Density model. In both panels, the white triangles denote
the receivers at z = 0, and the white circle indicates the location of the source of the retrieved
Green’s function.
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with a numerical example in an inhomogeneous medium shown in Figure 6.2. This method

implements an iterative scheme which requires 1) an estimate of the first-arriving wave

between an image point xI in the subsurface and the receivers at the surface, and 2) the

measured reflection response deconvolved for the source wavelet and without surface-related

multiples. We denote these two input as Gd(x0,xI, t) and R(x0,x, t), respectively. The first-

arriving wave for the model of Figure 6.2 is shown in Figure 6.3. The iterative scheme is

based on a system of two integral equations which relates downgoing waves p+k (x0,xI, t) and

upgoing waves p−k (x0,xI, t) at the acquisition surface ∂D0:

p+k (x0,xI, t) = p+0 (x0,xI, t)− w(x0,−t)p−k (x0,xI,−t), (6.1)

p−k (x0,xI, t) =

∫

∂D0

d2x

∫ +∞

−∞

R(x0,x, t− t′)p+k (x,xI, t
′)dt′, (6.2)

where k is the iteration number. The window function w(x0, t) satisfies

w(x0,−t) = Θ(t+ tf (x0,xI)− ǫ), (6.3)

where Θ(t) is the Heaviside function, tf (x0,xI) is the arrival time of the first arriving wave

propagating from the target point xI to the acquisition surface at z = 0, and ǫ is a small

positive constant related to the duration of the source wavelet s(t). The window function

w(x0, t) is equal to 1 for t < tf (x0,xI) and equal to 0 elsewhere. The iterative scheme starts

with the downgoing wave field p+0 (x0,xI, t) which is defined as the time-reversed version of

the first arriving wave, Gd(x0,xI,−t), and is only nonzero when

p+0 (x0,xI, t) 6= 0 only for t < −(tf (x0,xI)− ǫ). (6.4)

The method converges after several iterations and Wapenaar et al. (2013a,b) show that the

Green’s function propagating between a location xI inside the subsurface and the receivers

on the acquisition surface at z = 0 is related to the downgoing and upgoing wave fields p+

and p− by

G(x0,xI, t) = p+(x0,xI,−t) + p−(x0,xI, t). (6.5)
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Figure 6.3: Estimate of the first-arriving wave propagating from the image point xI to the
receivers (indicated by the white triangles) located at z = 0. The arrival times of this wave
is denoted by tf (x0,xI), where x0 corresponds to the location of the receivers.

The retrieved Green’s function is shown in Figure 6.4, where it is superposed to the directly-

modeled reference wave field. The two wave fields match almost perfectly. A small mismatch

is localized at large offset and is denoted by the red arrow in Figure 6.4. This mismatch is

caused by the finite aperture of the employed receiver array and by refracted waves (such

waves violate the up and down decomposition on which the theory is based). All traces

have been multiplied by exp(2t) to emphasize the scattering coda which has been very well

recovered. The number of iterations needed to reach convergence depends on the complexity

of the subsurface. Wapenaar et al. (2012a) show that, for a simple medium, one iteration

only is needed; while in Chapter 4 we show that rate of convergence follows a geometric

series.

Now, we apply a simple source-receiver reciprocity argument G(xI,x, t) = G(x,xI, t),

and define G(xI,x, t) as the wave field originating from sources at the surface and observed

by a virtual receiver located at the imaging point xI. To perform the decomposition of

this Green’s function in its downgoing G+(xI,x, t) and upgoing components G+(xI,x, t), we
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consider a variant of the iterative scheme, in which the subtraction in equation 6.1 is replaced

by an addition (Wapenaar et al., 2011a):

q+k (x0,xI, t) = q+0 (x0,xI, t) + w(x0,−t)q−k (x0,xI,−t), (6.6)

q−k (x0,xI, t) =

∫

∂D0

d2x

∫ +∞

−∞

R(x0,x, t− t′)q+k (x,xI, t
′)dt′, (6.7)

where the 0th iteration of the downgoing field q+0 (x, t) is equal to p+0 (x, t).

After the second iterative scheme reaches convergence, we define two additional wave

fields: psym(x, t) = p(x, t) + p(x,−t), and pasym(x, t) = q(x, t) − q(x,−t) (Wapenaar et al.,

2012b). The Green’s function recorded at xI is finally decomposed into downgoing and

upgoing wave fields by combining psym(x, t) and pasym(x, t) in two different ways, according

to

G+(xI,x, t) =
1

2
{psym(x, t)− pasym(x, t)} , for t ≥ 0, (6.8)

and

G−(xI,x, t) =
1

2
{psym(x, t) + pasym(x, t)} , for t ≥ 0. (6.9)

These downgoing and upgoing (one-way) wave fields are used in the next section to create

images of the subsurface with either prestack migration, crosscorrelation or multidimensional

deconvolution.

6.4 Imaging

We consider a model based on a modified version of the Amoco dataset, originally in-

troduced by Etgen and Regone (1998), as shown in Figure 6.5a. Since our method allows

targeted imaging, we focus on the portion of the model enclosed by the solid rectangle in

Figure 6.5a. The velocity and density profiles for this portion of the model are shown in

Figures 6.6a and 6.6b. The black arrow in Figure 6.5a indicates a layer characterized by

higher impedance with respect to the surrounding layers.
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Figure 6.4: Superposition of the reference wave field originated by a real source located at
xI (black line) and the wave field retrieved by the iterative scheme (white line). The two
wave fields match almost perfectly. The red arrow denotes a mismatch localizes at large
offset. All traces have been multiplied by exp(2t) to emphasize the scattering coda. The
white triangles denote the receivers at z = 0.
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We computed the response to 501 shots with sources located at z = 0 Km. The acquisition

surface is transparent; hence no surface-related multiples are present. In the horizontal

direction, the sources are located every 10 m between −2.5 and 2.5 km. In practice, the

required reflection responses are obtained from conventional seismic reflection data after

removal of the multiples due to the free-surface and after deconvolution for the source wavelet

(Amundsen, 2001; van Groenestijn and Verschuur, 2009; Verschuur et al., 1992).

We compute the direct arriving wave front, required by our method, using an eikonal

solver. As in input for the solver, we use a smooth version of the velocity model; see Figure

6.6c. Note that, using an eikonal solver, we ignore the influence of the density. We introduce

another approximation assigning a constant amplitude to these first-arriving wave fields.

Alternatively, the direct arriving wave front can be obtained by modeling in a macro model,

from microseismic events (Artman et al., 2010), from borehole check shots, or directly from

the data by the CFP method (Berkhout, 1997; Haffinger and Verschuur, 2012; Thorbecke,

1997) when the imaging point is located at an interface.

6.4.1 Standard prestack imaging

For comparison, we start by computing a reference image using standard one-way prestack

migration (Berkhout, 1979; Claerbout, 1985; Gazdag and Sguazzero, 1984). One-way prestack

migration and many other seismic imaging algorithms rely on the single scattering assump-

tion. This implies that the recorded wave fields do not include internal multiples (waves

bouncing multiple times between reflectors before reaching the receivers). When unwanted

multiple reflections are present in the data, the imaging algorithm incorrectly images them

as ghost reflectors. This reference image is shown in Figure 6.7a, where we have used the

same smooth model of Figure 6.6c needed to compute the first arriving waves required by

the iterative scheme. The high-impedance layer, indicated by the black arrow in Figure 6.5a,

creates high-amplitude multiply-scattered waves. The yellow arrows in Figure 6.7a indicate

some of the ghost reflectors present in this standard image. Additionally, the image is noisy

below the high-impedance layer. The ghost reflectors and the noise mask the flat reflector at
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z = 2.3 km, indicated by the blue arrow in Figures 6.7b-c, and affect the lateral continuity

of the deeper reflectors. The comparison between the amplitudes of this reference image and

the true reflectivity is shown in Figure 6.8.

6.4.2 Imaging with crosscorrelation

If we retrieve the Green’s function with our method and decompose it in its downgoing

and upgoing components for imaging points xI located on many depth levels z = zi (e.g. the

horizontal lines composed of black dots in Figure 6.5b), we are able to create a more accurate

image of the medium. To perform this task, we compute the crosscorrelation function C

C(xI,xI, t) =

∫ ∞

−∞

[
G−(xI,x, t) ∗G

+(xI,x,−t)
]

z=0
dx (6.10)

at every imaging point depth and evaluate the result at t = 0. This new image is shown in

Figure 6.7b. As in the standard prestack image, the actual reflectors have been reconstructed

at the correct spatial location, but now the image is free of internal multiple ghosts. The

image is now less noisy and the flat reflector at z = 2.3 km is more visible. This is an

improvement over the previous image as shown in Figure 6.8, but the retrieved amplitudes

of the deeper targets are not consistent with the true reflection coefficients. This is due to

fact that we have a limited source aperture, that we do not take into account the multi-

dimensional nature of the seismic wave field, and that the reflectivity is the ratio of upgoing

and downgoing waves which would require a deconvolution imaging condition rather than

the standard crosscorrelation imaging condition.

6.4.3 Imaging with multidimensional deconvolution

Now, we show that multidimensional deconvolution allows us to create an image with

more accurate amplitudes. As in imaging with crosscorrelation, we consider a constant depth

level z = zi. The Green’s functions at this constant depth level are related by

G−(xr,xs, t) =

∫ ∞

−∞

[
R(xr,x, t) ∗G

+(x,xs, t)
]

z=zi
dx, (6.11)
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Figure 6.6: a) Velocity model. b) Density model. b) Smooth velocity model.
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where R(xr,x, t) is the reflection response to downgoing waves at z = zi of the truncated

medium below z = zi, xs is at z = 0, and xr is at z = zi. The truncated medium is equal

to the true medium below the depth level z = zi and is homogeneous above z = zi. The

reflectivity R(xr,x, t) can be resolved from equation 6.11 by multidimensional deconvolution

(MDD) (Wapenaar et al., 2011b). To achieve this result, we first correlate both sides of

equation 6.11 with the downgoing Green’s function and integrate over source locations over

the acquisition surface:

C(xr,x
′, t) =

∫ ∞

−∞

[R(xr,x, t) ∗ Γ(x,x
′, t)]z=zi

dx, for xr and x′ at z = zi, (6.12)

where C is the crosscorrelation function (as in the previous section, but with not-coinciding

coordinates)

C(xr,x
′, t) =

∫ ∞

−∞

[
G−(xr,xs, t) ∗G

+(x′,xs,−t)
]

zs=0
dxs, (6.13)

and Γ is the point-spread function (van der Neut et al., 2011)

Γ(x,x′, t) =

∫ ∞

−∞

[
G+(x,xs, t) ∗G

+(x′,xs,−t)
]

zs=0
dxs. (6.14)

We solve for R(xr,x, t) at different depth levels z = zi and many imaging points, as shown

by the horizontal lines composed of black dots in Figure 6.5b, and evaluate the result at t = 0

and xr = x. Figure 6.7c shows the final result of the imaging process. As in the previous

image, the reflectors have been imaged at the correct spatial locations, but now the relative

amplitudes between the different reflectors are better retrieved. Additionally, note how the

lateral continuity of the deeper reflectors is well preserved in comparison with the prestack

image in Figure 6.7a. The comparison between the amplitudes of the three images is shown

in Figure 6.8, where we compare the reflectivity at x = 200 m retrieved by standard prestack

migration, crosscorrelation, and multidimensional deconvolution with the true reflectivity.

Multidimensional deconvolution acknowledges the multi-dimensional nature of the seismic

wave field, hence the internal multiples contribute to the restoration of the amplitudes of

the reflectors.
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6.5 Imaging with erroneous velocity

In this section, we demonstrate the robustness of the combination of autofocusing and

multidimensional deconvolution when an erroneous velocity model is used to estimate the

first-arriving waves (a required input for the autofocusing process). This experiment is

carried out with a velocity error of +10% in the background velocity shown in Figure 6.6c

and we compute a target-oriented image in a smaller portion of the model which is enclosed

by the dashed rectangle in Figure 6.5a. We start by creating a reference image using one-way

prestack migration. This reference image is shown in Figure 6.9a, where we have used the

erroneous background velocity model in the prestack migration algorithm. As expected, the

reflectors are now imaged at the wrong spatial location. In average, they have been shifted

downward by ≈ 300 m. The yellow ellipses in Figure 6.9a indicate some of the pronounced

artifacts, such as ghost reflectors, present in this standard image. The yellow arrow indicates

a strong artifact due to limited source aperture.
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Figure 6.9b shows the result of multidimensional deconvolution applied to the autofocused

downgoing and upgoing wave fields. Similarly to the reference image, the reflectors have been

reconstructed at the wrong spatial location, but now we obtain a superior image with fewer

artifacts. Additionally, the image is less noisy and the flat reflector, indicated by the blue

arrow in Figures 6.9b, is now visible. This flat reflector corresponds to the one indicated

by the blue arrow in Figures 6.7b-c at z = 2.3 km. Note that the artifact indicated by the

yellow arrow in 6.9b, is still present because it is due to limited source aperture and not to

the multiply-scattered waves included in the data. This test shows that the image obtained

by autofocusing (with an erroneous background model) still focuses the multiples along with

the primaries, albeit at the wrong location.

6.6 Conclusions

We showed that our recently introduced method for data-driven Green’s function retrieval

(Wapenaar et al., 2013a, 2012a) allows us to construct an image that is not affected by ghost

images of the reflectors. The retrieved downgoing and upgoing components of the Green’s

functions are the key components needed to obtain this result. These wave fields are then

used to create different images of the medium with crosscorrelation and multidimensional de-

convolution. The images created with crosscorrelation and multidimensional deconvolution

show an improvement over standard imaging. Additionally, multidimensional deconvolution

yields an image whose amplitudes better agree with the correct reflection responses. This is

due to the deconvolution process that correctly handles the internal multiples and retrieves

more correct amplitudes of the primary reflections. We emphasize that, for the crosscorrela-

tion and multidimensional deconvolution results, the imaging process does not require any

more knowledge of the medium parameters than standard primary imaging schemes (which

use a macro model). Our method can be helpful in situations where waves have traversed

a strongly inhomogeneous and scattering overburden, e.g., subsalt (Sava and Biondi, 2004)

and near-surface imaging (Keho and Kelamis, 2012). Finally, the results in the last section of

the paper showed that autofocusing is robust with respect to errors in the background model
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used to estimate the first-arriving waves. The combination of autofocusing and multidimen-

sional deconvolution still removes the artifacts due to the presence of multiply-scattered

waves in the reflection data. This is a promising result towards future applications of the

method on real data where we expect to have only estimates of the background velocity of

the subsurface.
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CHAPTER 7

GENERAL CONCLUSIONS AND FUTURE RESEARCH

This chapter provides a brief and general conclusion to this dissertation and suggests

recommendations for future research paths of the work exposed here. For specific conclusions

related to the different Chapters, I ask the reader to refer to the individual conclusions in

Chapters 2 through 6.

The most significant contribution of my thesis is the development of a new approach

that allows one to retrieve the Green’s wave field originating from a location (image point)

inside the subsurface and recorded at the acquisition surface, and to decompose it in its

downgoing and upgoing (one-way) components. This method requires as input the reflection

response acquired at the surface and an estimate of the first-arriving wave traveling between

the image point and the surface. Throughout this dissertation, I emphasize that, unlike in

other Green’s function retrieval methods, no physical receiver is needed at the position of the

image point. The importance of retrieving the Green’s functions is twofold. First, once the

Green’s functions are known, one can downward continue the wave field from the recording

surface to the interior by virtue of the representation theorem (Aki and Richards, 2002). It

is not necessary to use any modeling for this purpose because the Green’s function is the

two-way downward continuation operator. Second, since the proposed method provides the

downgoing and upgoing Green’s functions in the interior, one can immediately use these for

imaging. This can be achieved either by crosscorrelating the downgoing and upgoing one-way

Green’s functions, or by multidimensional deconvolution (van der Neut et al., 2011). This

dissertation emphasizes that imaging with multiply-scattered waves is a challenging task,

and it proposes a new approach to solve some aspects of this problem.

Chapters 2 and 3 establish the link between inversion methods originally used in quantum

scattering and Green’s function retrieval for a one-dimensional medium. In these Chapters
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I show that the importance of these inversion methods is linked to the retrieval of the wave

field propagating in an unknown medium and not to the retrieval of the impedance profile

of the same medium (Berryman and Greene, 1980; Newton, 1981) This insight proved to be

fundamental in the development of this thesis. Chapter 4 utilizes the theoretical foundation

for one-dimensional media, discussed in Chapters 2 and 3, and extends the novel method to

two-dimensional inhomogeneous media. In Chapter 5, the unitarity of the scattering matrix

plays an important role in exposing the consistency between the new approach (requiring

data on only one side of the medium) and existing methods that require measurement on a

closed boundary, such as seismic interferometry.

In a complicated subsurface, singly scattered waves can illuminate only a limited number

of structures; hence techniques that remove multiple reflections from the data reduce the

amount of information included in the recorded wave fields. The new approach uses the

multiply scattered waves, such as internal multiples, because they provide additional illumi-

nation of the structures in the subsurface and, hence, increase the information available for

interpretation (Malcolm et al., 2011). Chapter 6 demonstrates that the proposed approach

shows an improvement over standard imaging because it provides images with more correct

amplitudes and without ghost reflectors. Additionally, the new approach shows promising

results when an erroneous velocity model is used to estimate the first-arriving waves.

I also note some potential research directions which will be pursued in future work. One

of the most natural extensions is the modification of the iterative scheme to handle data

including free-surface multiples. Preliminary results of synthetic examples prove that this

research question can be potentially solved in the near future. Another important step is

to extend the results exposed in this thesis to a wider class of physical phenomena, such

as elastic or electromagnetic wave propagation. For example, extension to elastic waves has

to deal with time windowing issues because reflected elastic waves contain both P- and S-

waves. A key question that needs to be addressed concerns the analysis of wave propagation

in media with intrinsic attenuation. An ansatz to this problem would be the application of
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ad-hoc corrections to recorded traces between every iteration.
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APPENDIX A - DERIVATION OF EQUATION 2.11

Here, we derive equation 2.11, i.e., the representation theorem for the homogeneous

Green’s function. We start with the equations

d2

dx2
G+(x, xB) +

ω2

c(x)2
G+(x, xB) = −δ(x− xB) (A.1)

and

d2

dx2
G−(x, xA) +

ω2

c(x)2
G−(x, xA) = −δ(x− xA), (A.2)

where xA, xB, and x indicate a position between xl and xr in Figure 2.17. Next, we multiply

equation A.1 by G−(x, xA), and equation A.2 by G+(x, xB); then we subtract the two results

and integrate between xl and xr, yielding

G+(xA, xB)−G−(xB, xA) (A.3)

=

∫ xr

xl

dx

[

G−(x, xA)
d2

dx2
G+(x, xB)−G+(x, xB)

d2

dx2
G−(x, xA)

]

.

The right-hand side of the last equation is an exact derivative:

∫ xr

xl

dx

[

G−(x, xA)
d2

dx2
G+(x, xB)−G+(x, xB)

d2

dx2
G−(x, xA)

]

≡

∫ xr

xl

dx
d

dx

[

G−(x, xA)
d

dx
G+(x, xB)−G+(x, xB)

d

dx
G−(x, xA)

]

; (A.4)

hence we obtain the expression for Gh:

G+(xA, xB)−G−(xA, xB) (A.5)

=
∑

x′=xl,xr

m

[

G−(x′, xA)
d

dx
G+(x, xB)|x=x′ −G+(x′, xB)

d

dx
G−(x, xA)|x=x′

]

with

m =

{

−1 if x′ = xl,

+1 if x′ = xr,
(A.6)
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where we have used the source-receiver reciprocity relation G±(xA, xB) = G±(xB, xA) for the

acoustic Green’s function (Wapenaar and Fokkema, 2006).
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APPENDIX B - DERIVATION OF THE NEWTON-MARCHENKO EQUATION

Inserting expression 2.15 into the left-hand side of equation 2.18, using the relation u+ =

u0 + u+
sc in the right-hand side of 2.18, and then inserting 2.13 into the right-hand side, we

get

e+ik|xA−xB | +

∫

dx′′G+(xA, x
′′)L

′

(x′′)e+ik|x′′−xB | (B.1)

+e−ik|xA−xB | +

∫

dx′′G−(xA, x
′′)L

′

(x′′)e−ik|x′′−xB |

= u−(+n, xA)e
−ikxB + u+(+n, xA)e

+ikxB

+
i

2k
u−(+n, xA)

∫

dx′′e+ik|xB−x′′|L
′

(x′′)u+(−n, x′′)

+
i

2k
u−(−n, xA)

∫

dx′′e+ik|xB−x′′|L
′

(x′′)u+(+n, x′′).

In this one-dimensional problem, we need to consider two different cases: 1) xB > xA, x
′′

and 2) xB < xA, x
′′. Without loss of generality, we choose xB > xA, x

′′, and hence obtain

e+ikxB

[

e−ikxA +

∫

dx′′G+(xA, x
′′)L

′

(x′′)e−ikx′′

]

+e−ikxB

[

eikxA +

∫

dx′′G−(xA, x
′′)L

′

(x′′)e+ikx′′

]

= u−(+1, xA)e
−ikxB + u−(−1, xA)e

+ikxB

−
i

2k
u−(+1, xA)e

+ikxB

∫

−dx′′e−ikx′′

L
′

(x′′)u+(−1, x′′)

−
i

2k
u−(−1, xA)e

+ikxB

∫

−dx′′e−ikx′′

L
′

(x′′)u+(+1, x′′). (B.2)

The terms inside the brackets in the left-hand side correspond to u+(−1, xA) and u−(+1, xA),

respectively; while the integrals in the right-hand side correspond to f(+1,−1) and f(+1,+1),

respectively. We rewrite equation B.2 using 2.13, 2.14, and the relation f(+n,+n′) =

f(−n′,−n), to give

u+(+1, xA)− u−(+1, xA) = −
i

2k

∑

n=−1,1

u−(n, xA)f(n, xB). (B.3)
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For the second case xB < xA, x
′′, the solution is

u+(−1, xA)− u−(−1, xA) = −
i

2k

∑

n=−1,1

u−(n, xA)f(n,−xB). (B.4)
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APPENDIX C - GREEN’S FUNCTION RECONSTRUCTION AND THE OPTICAL

THEOREM

In this appendix we derive the mathematics that shows the connection between the

Green’s function reconstruction equation and the optical theorem in one dimension. The

expression for the Green’s function reconstruction is

i

2k

[
G+(xA, xB)−G−(xA, xB)

]
=

∑

x′=xl,xr

G+(xA, x
′)G−(xB, x

′), (C.1)

and the Green’s function excited by a point source at xs recorded at xr is given by

G+(xr, xs) = −
i

2k
eik|xs−xr|

︸ ︷︷ ︸

Td

−
i

2k
eik|xs|f(n, n′)eik|xr|

︸ ︷︷ ︸

Ts

, (C.2)

where f(n, n′) represents the scattering amplitude (Rodberg and Thaler, 1967), and n′ and

n represent the directions of the incident wave and the scattered wave, respectively. In the

expression above, Td represents the wave traveling directly from the source to the receiver,

and term Ts corresponds to the scattered wave that reaches the receivers after interacting

with the scatterer. Considering the first configuration (Figure 2.19a), inserting equation C.2

into the right-hand side of equation C.1 we get

∑

x′=xl,xr

G+(xA, x
′)G−(xB, x

′) = (C.3)

−
i

2k

[

−
i

2k
eik(xB−xA) −

i

2k
e−ik(xB+xA)f(−1, 1)

]

︸ ︷︷ ︸

T1

−
i

2k

[

−
i

2k
e−ik(xB−xA) −

i

2k
eik(xB+xA)f ∗(−1, 1)

]

︸ ︷︷ ︸

T2

−

(
i

2k

)(
i

2k

)

eik(xB−xA) [ f(−1,−1) + f ∗(−1,−1) + |f(−1,−1)|2 + |f(−1, 1)|2 ]

︸ ︷︷ ︸

T3

.
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The terms T1 and T2 correspond to G+(xA, xB) and −G−(xA, xB), respectively, while the

term T3 represents the unphysical wave previously discussed in the Mathematical tour;

hence, equation C.4 simplifies to

∑

x′=xl,xr

G+(xA, x
′)G−(xB, x

′) (C.4)

=
i

2k

[
G(xA, xB)−G−(xA, xB)

]

−

(
i

2k

)2

eik(xB−xA) [ f(−1,−1) + f ∗(−1,−1) + |f(−1,−1)|2 + |f(−1, 1)|2 ] .

For the right-end side of equation C.5 to be equal to the left-hand side of equation C.1, the

expression between the square brackets in term T3 should vanish:

f(−1,−1) + f ∗(−1,−1) = −|f(−1,−1)|2 + |f(−1, 1)|2. (C.5)

Equation C.5 is the expression for the one-dimensional optical theorem (Hovakimian, 2005).

The second configuration (Figure 2.19b) gives

∑

x′=xl,xr

G+(xA, x
′)G−(xB, x

′) (C.6)

=
i

2k

[
G+(xA, xB)−G−(xA, xB)

]

−

(
i

2k

)2

eik(xB+xA) [ f(−1, 1) + f ∗(1,−1) + f(−1,−1)f ∗(1,−1) + f(−1, 1)f ∗(1, 1) ]
︸ ︷︷ ︸

T4

.

In this case, term T4 corresponds to the generalized optical theorem in one dimension (Ho-

vakimian, 2005).

The connection between the Green’s function reconstruction and the generalized opti-

cal theorem has not only a mathematical proof, but also a physical meaning. The cross-

correlation of scattered waves in equation C.4 produces a spurious arrival (Snieder et al.,

2008), i.e. an unphysical wave that is not predicted by the theory. In the first configuration

shown in Figure 2.19a, such spurious arrival has the same arrival time as the direct wave,

tB + tA, but its amplitude is not correct (see term T3 in equation C.4). In the second case
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(Figure 2.19b), tA and tB correspond to the time that a wave takes to travel from the origin

x = 0 to xA and xB, respectively. Here, the spurious arrival corresponds to a wave that

arrives at time tB−tA when no physical wave arrives; in fact it would arrive before the direct

arrival at time tB + tA. But, since the ordinary and generalized optical theorem hold, the

spurious arrival cancels in both cases.
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APPENDIX D - STATIONARY-PHASE ANALYSIS

We use the method of stationary phase (Bleistein and Handelsman, 1975; Erdélyi, 1956)

to evaluate equation 4.4, which is repeated here for convenience

p−0 (xR, t) =

∫ ∞

−∞

[
R(xR,x, t) ∗ p

+
0 (x, t)

]

z=0
dx, (D.1)

with zR = 0. In the frequency domain this equation reads

p̂−0 (xR, ω) =

∫ ∞

−∞

[

R̂(xR,x, ω)p̂
+
0 (x, ω)

]

z=0
dx, (D.2)

where the incident downgoing field p̂+0 (x, ω) is defined as p̂+0 (x, ω) = {Ĝd
0(x,xVS, ω)ŝ(ω)}

∗,

with the superscript asterisk denoting complex conjugation. Using equation 4.1 and using

the fact that s(t) is symmetric, we have in the high-frequency regime

p̂+0 (x, ω) = −jω
exp{j(ω|x− xVS|/c+ µπ/4)}

√

8π|ω||x− xVS|/c
ŝ(ω), (D.3)

with µ = sign(ω). For the reflection impulse response of the medium in Figure 4.1, we write

R̂(xR,x, ω) =
∞∑

n=1

R̂(n)(xR,x, ω), (D.4)

where R̂(n) represents the nth event of the reflection response. Using equation 4.3 we obtain

the following high-frequency approximation

R̂(n)(xR,x, ω) =
A(n)z

(n)
R

|x− x
(n)
R |

jω

c

exp{−j(ω|x− x
(n)
R |/c+ µπ/4)}

√

2π|ω||x− x
(n)
R |/c

. (D.5)

For R̂(1), i.e. the primary response of the first reflector, A(1) = r1 and x
(1)
R is the mirror

image of xR with respect to the first reflector. For R̂(2), the primary response of the second

reflector, A(2) = τ−1 r2τ
+
1 and x

(2)
R is the mirror image of xR in the second reflector. For R̂(3),

the first multiple, A(3) = −τ−1 r
2
2r1τ

+
1 and x

(3)
R is the mirror image of xR in the mirror image

of the first reflector with respect to the second reflector, etc. For R̂(4), the primary response

of the third reflector, A(4) = τ−1 τ
−
2 r3τ

+
2 τ

+
1 and x

(4)
R is the mirror image of xR in the third
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reflector.

First we consider the response of the first reflector. Figure D.1a shows a number of rays

of R(1)(xR,x, t), leaving different sources at the surface, reflecting at the first reflector, and

arriving at one and the same receiver at xR. According to equation D.1, these reflection

impulse responses are convolved with the initial incident field, of which the rays are also

shown in Figure D.1a (these are the rays that converge at xVS). This convolution product

is stationary for the source at x
(1)
0 , where the rays of the incident field and of the reflection

impulse response have the same direction. Figure D.1b shows a number of such stationary

rays for different receiver positions. With simple geometrical arguments it follows that these

rays cross each other at the mirror image of the virtual source with respect to the first

reflector, i.e., at x
(1)
VS = (−196, 128). The traveltimes of the convolution product are given

by the lengths of the rays from x
(1)
VS to the surface, divided by the velocity. Hence, it is as

if the response of the first reflector to the initial incident field originates from a source at

x
(1)
VS (this is confirmed below). Similarly, the response of the second reflector to the initial

incident field apparently originates from a mirror image of the virtual source in the second

reflector, i.e., at x
(2)
VS = (−84, 912). The multiple reflected responses to the initial incident

field also apparently originate from mirror images of the virtual source, all located along the

line z = zVS +x/a, see Figure 4.1. For example, the first multiple apparently originates from

x
(3)
VS = (28, 1696) (being the mirror image of xVS in the mirror image of the first reflector

with respect to the second reflector).

Equation D.2, with p̂+0 (x, ω) and R̂(xR,x, ω) defined in equations D.3 − D.5, can be

written as

p̂−0 (xR, ω) =
∞∑

n=1

I(n), (D.6)

with

I(n) =

∫ ∞

−∞

f(x) exp{jkφ(x)}dx, (D.7)
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where k = ω/c,

f(x) =
|ω|A(n)z

(n)
R ŝ(ω)

4πl
1/2
VS {l

(n)
R }3/2

, φ(x) = lVS − l
(n)
R , (D.8)

with

lVS(x) = |x− xVS| =
√

(x− xVS)2 + z2VS, (D.9)

l
(n)
R (x) = |x− x

(n)
R | =

√

(x− x
(n)
R )2 + (z

(n)
R )2. (D.10)

According to the method of stationary phase (Bleistein and Handelsman, 1975; Erdélyi,

1956) we may approximate I(n) for large |k| by

I(n) ≈

√

2π

|kφ′′(x
(n)
0 )|

f(x
(n)
0 ) exp{j(kφ(x

(n)
0 ) + µπ/4)}, (D.11)

where x
(n)
0 is the stationary point, i.e, φ′(x

(n)
0 ) = 0. The derivatives of the phase are

φ′(x) =
x− xVS

lVS
−

x− x
(n)
R

l
(n)
R

, (D.12)

φ′′(x) =
z2VS
l3VS

−
(z

(n)
R )2

{l
(n)
R }3

. (D.13)

The point x
(1)
0 depicted in Figure D.1c obeys

x
(1)
0 − xVS

zVS
=

x
(1)
0 − x

(1)
R

z
(1)
R

. (D.14)

Generalized for x
(n)
0 , this gives

x
(n)
0 =

xVSz
(n)
R − x

(n)
R zVS

z
(n)
R − zVS

. (D.15)

Substituting this for x into equation D.12 gives φ′(x
(n)
0 ) = 0, hence, x

(n)
0 is indeed the

stationary point of φ(x). According to equations D.9 and D.10 we have

lVS(x
(n)
0 ) =

zVS

z
(n)
R − zVS

|x
(n)
R − xVS|, (D.16)

l
(n)
R (x

(n)
0 ) =

z
(n)
R

z
(n)
R − zVS

|x
(n)
R − xVS|. (D.17)
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Above we defined x
(n)
VS as a mirror image of xVS, obtained in the same way as x

(n)
R is obtained

by mirroring xR. This implies that

|x
(n)
R − xVS| = |xR − x

(n)
VS |. (D.18)

This is illustrated for n = 1 in Figure D.1c. Hence, equation D.11 gives (for large |k|)

I(n) ≈ jωA(n) exp{−j(ω|xR − x
(n)
VS |/c+ µπ/4)}

√

8π|ω||xR − x
(n)
VS |/c

ŝ(ω). (D.19)

Hence,

p̂−0 (xR, ω) =
∞∑

n=1

I(n) =
∞∑

n=1

A(n)Ĝd
0(xR,x

(n)
VS , ω)ŝ(ω), (D.20)

with Ĝd
0(xR,x

(n)
VS , ω) as defined in equation 4.1, but with the source at x

(n)
VS . In the time

domain this becomes

p−0 (xR, t) =
∞∑

n=1

A(n)Gd
0(xR,x

(n)
VS , t) ∗ s(t), (D.21)

see Figure 4.4 for t > 0.
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a) 

z

0
xx

(1)
0 xR

xVS

xVS

xR

b) 

z

0
x

x
(1)
VS

c) 

z

0
xxR

x
(1)
VS

xVS

x
(1)
R

x
(1)
0

Figure D.1: Stationary-phase analysis of equation D.1. a) Analysis of the response of the first

reflector for a fixed receiver at xR. The stationary point is denoted by x
(1)
0 . b) Stationary

rays, like the one in a), for different receivers. The response of the first reflector (indicated

by the label B in Figure 4.4) seems to originate from x
(1)
VS. c) Geometry underlying equations

D.14 and D.18.
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APPENDIX E - RELATIONSHIP BETWEEN PRESSURE-NORMALIZED

REFLECTION AND TRANSMISSION RESPONSES

In this appendix, we derive a Green’s function representation of the correlation-type

for one-way (down- and up-going) fields and a relationship between pressure-normalized

reflection and transmission responses measured on the top and bottom boundaries. We start

from a two-way reciprocity theorem of the correlation-type:

∫

∂D0

{

[Gp,f
3 (x0,x

′′
0, ω)]

∗Gv,q
3 (x0,x

′′′
0 , ω) + [Gv,f

3,3 (x0,x
′′
0, ω)]

∗Gp,q(x0,x
′′′
0 , ω)

}

d2x0 (E.1)

=

∫

∂Dm

{

[Gp,f
3 (xm,x

′′
0, ω)]

∗Gv,q
3 (xm,x

′′′
0 , ω) + [Gv,f

3,3 (xm,x
′′
0, ω)]

∗Gp,q(xm,x
′′′
0 , ω)

}

d2xm,

where the superscripts p and v characterize the Green’s function as a pressure or velocity,

respectively; and x′′
0 = (x′′

H , x3,0 − ǫ) and x′′′
0 = (x′′′

H , x3,0 − ǫ) with ǫ → 0. The superscripts q

and f specify if the source is a point source of volume injection rate (monopole) or a point

source of force (dipole), respectively. The subscript 3 indicates the vertical component of the

velocity or the vertical component of the point source force. We then rewrite Gv,f
3,3 (x,x

′′
0, ω)

as

Gv,f
3,3 (x,x

′′
0, ω) = −

1

jωρ(x)

∂Gp,f
3 (x,x′′

0, ω)

∂x3

+
1

jωρ(x)
δ(x− x′′

0), (E.2)

and insert it into equation E.1 to obtain

∫

∂D0

{

[Gp,f
3 (x0,x

′′
0, ω)]

∗Gv,q
3 (x0,x

′′′
0 , ω) (E.3)

+
1

jωρ(x0)

[

∂Gp,f
3 (x0,x

′′
0, ω)

∂x3,0

]∗

Gp,q(x0,x
′′′
0 , ω)

}

d2x0

=

∫

∂Dm

{

[Gp,f
3 (xm,x

′′
0, ω)]

∗Gv,q
3 (xm,x

′′′
0 , ω)

+
1

jωρ(xm)

[

∂Gp,f
3 (xm,x

′′
0, ω)

∂x3,m

]∗

Gp,q(xm,x
′′′
0 , ω)

}

d2xm.
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Now, we focus on ∂D0 and the result for ∂Dm follows from a similar reasoning. The half-

spaces above ∂D0 and below ∂Dm are homogeneous; hence the medium parameters at ∂D0

and ∂Dm are laterally invariant and we will use this property in the following. We define

the two-dimensional spatial Fourier transform of a space-dependent function as a(χ,x′, ω) =
∫ +∞

−∞

∫ +∞

−∞
a(x,x′, ω) exp(k1x1) exp(k2x2)dx1dx2, where χ ≡ (k1, k2, x3). To keep a simple

notation, we use the same symbol for the space-dependent function and its spatial Fourier

transform. We use G = G+ + G− and apply Parseval’s theorem (Wapenaar and Berkhout,

1989, equation B-27) to equation E.3, this gives

(
1

2π

)2 ∫

∂D0

{

([Gp,f+
3 (χ0,x

′′

0 ,ω)]
∗ + [Gp,f−

3 (χ0,x
′′

0 , ω)]
∗)[Gv,q+

3 (χ0,x
′′′

0 , ω) +G
v,q−
3 (χ0,x

′′′

0 , ω)] (E.4)

+
1

jωρ(x3,0)
(jk3[G

p,f+
3 (χ0,x

′′

0 , ω)]
∗ − jk3[G

p,f−
3 (χ0,x

′′

0 , ω)]
∗)[Gp,q+(χ0,x

′′′

0 , ω) +Gp,q−(χ0,x
′′′

0 , ω)]

}

d2χ0,

where χ0 ≡ (k1, k2, x3), k3 =
√

k2 − k2
1 − k2

2, k =
ω

c(x3,0)
, and

(
∂G±

∂x3

)∗

= ±jk3(G
±)∗ (Wape-

naar and Berkhout, 1989, equation B-29c). Additionally, we assume that k3 is real-valued

and ignore the evanescent waves. We reorder the terms in expression E.4 and obtain

(
1

2π

)2 ∫

∂D0

{

([Gp,f+
3 (χ0,x

′′

0 , ω)]
∗ + [Gp,f−

3 (χ0,x
′′

0 , ω)]
∗)[Gv,q+

3 (χ0,x
′′′

0 , ω) +G
v,q−
3 (χ0,x

′′′

0 , ω)] (E.5)

+([Gp,f+
3 (χ0,x

′′

0 , ω)]
∗ − [Gp,f−

3 (χ0,x
′′

0 , ω)]
∗)

1

jωρ(x3,0)
[jk3G

p,q+(χ0,x
′′′

0 , ω) + jk3G
p,q−(χ0,x

′′′

0 , ω)]

}

d2χ0.

Then, we use ∓jk3(G
±)∗ = ∂G±

∂x3

(Wapenaar and Berkhout, 1989, equation B-29b) and apply

Parsevel’s theorem to expression E.5, yielding

∫

∂D0

{

([Gp,f+
3 (x0,x

′′

0 , ω)]
∗ + [Gp,f−

3 (x0,x
′′

0 , ω)]
∗)[Gv,q+

3 (x0,x
′′′

0 , ω) +G
v,q−
3 (x0,x

′′′

0 , ω)] (E.6)

+([Gp,f+
3 (x0,x

′′

0 , ω)]
∗ − [Gp,f−

3 (x0,x
′′

0 , ω)]
∗)

1

jωρ(x0)
[−

∂Gp,q+(x0,x
′′′

0 , ω)

∂x3,0
+

∂Gp,q−(x0,x
′′′

0 , ω)

∂x3,0
]

}

d2x0.

Using the relation

Gv,q
3 (x,x′′′

0 , ω) = −
1

jωρ(x)

∂Gp,q(x,x′′′
0 , ω)

∂x3

, (E.7)

we rewrite expression E.6 as

∫

∂D0

{

([Gp,f+
3 (x0,x

′′
0, ω)]

∗ + [Gp,f−
3 (x0,x

′′
0, ω)]

∗)[Gv,q+
3 (x0,x

′′′
0 , ω) +G

v,q−
3 (x0,x

′′′
0 , ω)] (E.8)

+([Gp,f+
3 (x0,x

′′
0, ω)]

∗ − [Gp,f−
3 (x0,x

′′
0, ω)]

∗)[Gv,q+
3 (x0,x

′′′
0 , ω)−G

v,q−
3 (x0,x

′′′
0 , ω)]

}

d2x0.
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In expression E.8, the terms containing Green’s functions propagating in the same directions

(e.g. [Gp,f+
3 ]∗Gv,q−

3 ) cancel; hence we obtain

2

∫

∂D0

{

[Gp,f+
3 (x0,x

′′
0, ω)]

∗G
v,q+
3 (x0,x

′′′
0 , ω) + [Gp,f−

3 (x0,x
′′
0, ω)]

∗G
v,q−
3 (x0,x

′′′
0 , ω)

}

d2x0 (E.9)

= 2

∫

∂Dm

{

[Gp,f+
3 (xm,x′′

0, ω)]
∗G

v,q+
3 (xm,x′′′

0 , ω) + [Gp,f−
3 (xm,x′′

0, ω)]
∗G

v,q−
3 (xm,x′′′

0 , ω)
}

d2xm,

where we assumed that the evanescent waves can be neglected. This is a one-way reciprocity

theorem of the correlation-type.

We define two acoustic states that will be used in the one-way reciprocity theorem,

defined by equation E.9, to derive a relationship between the pressure-normalized reflection

and transmission responses measured on ∂D0 and ∂Dm. Both states are defined in the actual

medium between the boundaries ∂D0 and ∂Dm, as in Figure 5.1. We choose an impulsive

point source of volume injection rate at x′′′
0 , just above ∂D0, and define state A1 as

x ∈ ∂D0 =







2Gv,q+
3 (x0,x

′′′
0 , ω) = δ(xH − x′′′

H),

2Gv,q−
3 (x0,x

′′′
0 , ω) = −R(x′′′

0 ,x0, ω),
(E.10)

x ∈ ∂Dm =







2Gv,q+
3 (xm,x

′′′
0 , ω) = T (x′′′

0 ,xm, ω),

2Gv,q−
3 (xm,x

′′′
0 , ω) = 0.

(E.11)

For state B1, we choose a point source of force at x′′
0, just above ∂D0:

x ∈ ∂D0 =







2Gp,f+
3 (x0,x

′′
0, ω) = δ(xH − x′′

H),

2Gp,f−
3 (x0,x

′′
0, ω) = R(x0,x

′′
0, ω),

(E.12)

x ∈ ∂Dm =







2Gp,f+
3 (xm,x

′′
0, ω) = T (xm,x

′′
0, ω),

2Gp,f−
3 (x0,x

′′
0, ω) = 0.

(E.13)

Now, we plug the expressions of states A1 and B1 into equation E.9 and obtain

∫

∂Dm

[T (xm,x
′′
0, ω)]

∗T (x′′′
0 ,xm, ω)d

2xm (E.14)

= δ(x′′
H − x′′

H)−

∫

∂D0

[R(x0,x
′′
0, ω)]

∗R(x′′′
0 ,x0, ω)d

2x0. (E.15)

133



This is the pressure-normalized version of equation (20) in Wapenaar et al. (2004).
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