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ABSTRACT

Electromagnetic methods are effective complementary tools, when combined with

seismic exploration, for the delineation of a hydrocarbon reservoir, because electro-

magnetic methods provide extra information about, for example, electric conductiv-

ity, which is an important property for the economic evaluation of reservoirs. In

this study, we analyze unconventional approaches of electromagnetic inversion: hier-

archical Bayesian inversion and inverse scattering series. We apply the hierarchical

Bayesian inversion to the uncertainty analysis for the joint inversion and utilize rock-

physics models to integrate these two disparate data sets. The study shows that the

uncertainties in the seismic wave velocity and electric conductivity play a more sig-

nificant role in the variation of posterior uncertainty than do the seismic and CSEM

data noise. The numerical simulations also show that the uncertainty in porosity is

most affected by the uncertainty in seismic wave velocity and that the uncertainty

in water saturation is most influenced by the uncertainty in electric conductivity.

The framework of the uncertainty analysis presented in this study can be utilized to

effectively reduce the uncertainty of the porosity and water saturation derived from

integration of seismic and CSEM data. We also study the feasibility of the inverse

scattering series, which can effectively resolve the nonlinearity of an inverse problem,

for the interpretation of electromagnetic data. The application of the inverse scat-

tering series has been limited because the series converges when the reference model

sufficiently close to the true model. This study quantifies convergence conditions of

the inverse scattering series and suggests a different approach of the inverse series,

the modified inverse scattering series, which guarantees the convergence of the series

and facilitates the choice of a reference model.
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Chapter 1

INTRODUCTION

Geophysical methods are based on the theory of different physical fields prop-

agating through the earth’s interior. The most important geophysical methods in-

clude gravity, magnetic, electromagnetic, and seismic methods (Telford et al., 1990).

Among these, seismic exploration provides good structural information of the subsur-

face medium and is the major exploration method for the discovery of a hydrocar-

bon reservoir. Recently, the controlled-source electromagnetic (CSEM) exploration

method has been considered a good complementary tool for hydrocarbon discovery

because the method provides more decisive information about the reservoir composi-

tion than the seismic method. The CSEM method is an electromagnetic exploration

method designed for marine environments; the theoretical foundation of the CSEM

method was laid in the 1980s (Chave & Cox, 1982; Cox et al., 1986). Since then, the

application of the CSEM method for hydrocarbon exploration has been extensively

studied (Hoversten et al., 2006; Constable & Srnka, 2007). The electromagnetic field

is sensitive to electric conductivity, and electric conductivity within the subsurface

is predominantly influenced by water content: increasing water content causes larger

conductivity. Hydrocarbons, on the other hand, are poor electric conductors. The

significant difference of electric conductivity between water and hydrocarbons makes

the CSEM method an ideal tool to distinguish a hydrocarbon reservoir from a water

reservoir.

The goal of geophysical exploration is to determine the subsurface structure from
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geophysical data. One usually approximates real geology by a more or less simple

model and tries to determine the model parameters from the data. This approach is

called an inverse problem. Geophysical inverse problems are very difficult problems

due to the complex structure of the earth’s interior. Moreover, inverse problems

of electromagnetic data are large-scale, strongly nonlinear, and severely ill-posed

(Jackson, 1972; Parker, 1977). The success of electromagnetic data interpretation

thus depends on our ability to approximate real geological structures by reasonable

models, and to solve the corresponding inverse problems effectively (Zhdanov, 2002).

The most common approach of interpreting electromagnetic data is the optimization

method. Two representative approaches of the optimization method have been ap-

plied to the interpretation of a CSEM data set: deterministic (Gribenko & Zhdanov,

2007) and stochastic optimization (Chen et al., 2007). The deterministic approach,

which is also known as gradient-based iterative nonlinear inversion, is more widely

applied than the stochastic approach, which is still impractical when the dimension

of the model parameter is large.

The interpretation result of electromagnetic data is non-unique and strongly

depends on initial assumptions (Aster et al., 2005). Several questions thus arise when

interpreting an electromagnetic dataset. How can one be convinced of an inversion

result? How can one quickly build a good starting model? This dissertation describes

the journey I have taken to answer those questions.

The first question is called the appraisal problem of an inverse problem (Figure

1.1). Chapter 2 describes my study of the appraisal problem for the joint inversion of

seismic and CSEM data, which are sensitive to different medium properties: the seis-

mic method is sensitive to density and seismic wave velocity and the CSEM method

to electric conductivity. There have been several approaches for joint inversion that
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Figure 1.1. Division of an inverse problem into a forward problem, an optimization
problem, and an appraisal problem (Snieder, 1998).

integrate disparate data sets. Some of them assume a common structure (Musil

et al., 2003) or similar structural variations of different medium properties (Gallardo

& Meju, 2004; Hu et al., 2009). Rock-physics models also enable one to interrelate

seismic wave velocity and electric conductivity with the reservoir parameters such as

porosity, water saturation, or permeability. Considering great economic significance of

the reservoir parameters, I utilize rock-physics models to integrate these two disparate

data sets and solve the appraisal problem by adopting a Bayesian model (Bayes, 1763;

Tarantola, 2005; Ulrych et al., 2001). The main goal of the uncertainty analysis is

to investigate the relative contribution of different sources of overall uncertainty that

arise when we use rock-physics models for joint inversion. These include seismic data

noise, CSEM data noise, and uncertainties of rock-physics models. A series of numer-

ical simulations reveals that the uncertainties in the seismic wave velocity and electric

conductivity play a more significant role in the variation of posterior uncertainty than

do the seismic and CSEM data noise. The numerical simulations also show that the
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uncertainty in porosity is most affected by the uncertainty in seismic wave velocity

and that the uncertainty in water saturation is most influenced by the uncertainty

in electric conductivity. The framework of the uncertainty analysis in Chapter 2 can

be utilized to effectively reduce the uncertainty of the porosity and water saturation

derived from integration of seismic and CSEM data.

The rest of this dissertation is associated with the second question: how can

one quickly build a good starting model? This question let me study an intriguing

approach, the inverse scattering series (ISS), that effectively resolves the nonlinearity

of an inverse problem and may be a framework that quickly yields an inversion result.

The ISS is originally an approach of solving inverse problems in quantum scattering

theory (Gel’fand & Levitan, 1951; Jost & Kohn, 1952; Moses, 1956; Prosser, 1969).

The basic idea of the inverse scattering series is apprehended by considering the

following example of two complex variables x and y that are related by

y = ex − 1 =

∞
∑

n=1

xn

n!
, for all x. (1.1)

Regarding equation (1.1) as a forward scattering series between x and y, we express

the inverse scattering series between the two variables as

x =
∞
∑

n=1

any
n. (1.2)

Substituting equation (1.2) into the forward scattering series and equating terms that

are of the same order of y yields the following set of equations:

1 = a1, (1.3)

0 = a2 +
a1
2
, (1.4)
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0 = a3 + a1a2 +
a31
6
, (1.5)

· · ·

One can recursively solve the above set of equations and write the inverse scattering

series as

x =
∞
∑

n=1

(−1)n+1 y
n

n
, for |y| < 1, (1.6)

which coincides with the Taylor series expansion of x = ln(1 + y) in order of y. The

two variables of the example, x and y, correspond to scattered fields and model per-

turbations of inverse scattering problems, respectively. The geophysical application

of the ISS has focused previously on seismic exploration, in particular on velocity

estimation and multiple suppression (Weglein et al., 1981, 1997, 2003). However, the

inverse scattering series has not been widely applied to the interpretation of electro-

magnetic data. This dissertation describes the feasibility study of this application.

The first step of the feasibility study is to analyze the convergence conditions

of the forward (FSS) and inverse scattering series (ISS). Compared to seismic ex-

ploration, electromagnetic methods are characterized by a rapid spatial decay of the

probing field and a strong perturbation of the medium parameters. Chapter 3 dis-

cusses the difference between the convergence patterns of the scattering series for

acoustic wave propagation and electromagnetic diffusion problems. Analysis of the

formal expressions of the scattering series solutions shows that for electromagnetic

diffusion, one can improve the convergence of the ISS by choosing a reference medium

that is less conductive than the true medium. The analysis also shows that there is

no fundamental difference between the convergence pattern of the scattering series
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for the acoustic wave and electromagnetic diffusion equations. In other words, the

rapid spatial decay of a diffusive field does not necessarily mean fast convergence of

the scattering series for the diffusion equation. Model tests with parameters repre-

senting geophysical exploration of hydrocarbon reservoirs suggest, however, that the

scattering series for the electromagnetic diffusion equation converges faster than that

for the acoustic wave equation.

The analysis of the convergence conditions in Chapter 3 provides insight into

model reconstructions via the ISS. Chapter 4 demonstrates 1D examples of electro-

magnetic model reconstruction via the ISS. and exemplifies that the ISS converges

only when the contrast between true and reference models is sufficiently small. Chap-

ter 4 also discusses the origin of the narrow range of convergence and qualitatively de-

scribes that there are two contradictory conditions that determine the convergence of

the ISS. To mitigate the convergence conditions, I propose an alternative approach to

electromagnetic data inversion: the modified inverse scattering series (MISS), which

is based on the iterative dissipative method (IDM) (Singer, 1995; Singer & Fainberg,

1995; Avdeev et al., 1997). The IDM provides an absolutely converging forward se-

ries, and the MISS, which is based on the IDM, converges for a wider contrast of

the electric conductivity between true and reference models than the ISS. Several

1D tests also demonstrate that models reconstructed by the MISS are closer to true

models than models generated via the ISS. This study shows that the MISS enables

fast reconstruction of an electromagnetic model, which can be a good starting model

for large-scale geophysical data processing, such as marine controlled-source electro-

magnetic (CSEM) data inversion.
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Chapter 2

UNCERTAINTY ANALYSIS FOR THE INTEGRATION OF

SEISMIC AND CSEM DATA

2.1 Summary

We study the appraisal problem for the joint inversion of seismic and controlled

source electro-magnetic (CSEM) data and utilize rock-physics models to integrate

these two disparate data sets. The appraisal problem is solved by adopting a Bayesian

model and we incorporate four representative sources of uncertainty. These are un-

certainties in (1) seismic wave velocity, (2) electric conductivity, (3) seismic data, and

(4) CSEM data. The uncertainties in porosity and water saturation are quantified by

a posterior random sampling in the model space of porosity and water saturation in a

marine one-dimensional structure. We study the relative contributions from the four

individual sources of uncertainty by performing several statistical experiments. The

uncertainties in the seismic wave velocity and electric conductivity play a more sig-

nificant role in the variation of posterior uncertainty than do the seismic and CSEM

data noise. The numerical simulations also show that the uncertainty in porosity is

most affected by the uncertainty in seismic wave velocity and that the uncertainty

in water saturation is most influenced by the uncertainty in electric conductivity.

The framework of the uncertainty analysis presented in this study can be utilized to

effectively reduce the uncertainty of the porosity and water saturation derived from

integration of seismic and CSEM data.
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2.2 Introduction

The controlled source electromagnetic (CSEM) method has been studied for the

last few decades (Chave & Cox, 1982; Cox et al., 1986) and its application for the de-

lineation of a hydrocarbon reservoir has recently been discussed (Constable & Srnka,

2007). Currently, there is an increasing interest in the integration of the seismic and

controlled source electro-magnetic (CSEM) method in deep marine exploration (Har-

ris & MacGregor, 2006). Although the CSEM method has less resolution than the

seismic method, it provides extra information about, for example, electric conductiv-

ity. This property is important for the economic evaluation of reservoirs. Therefore,

the CSEM method is considered an effective complementary tool when combined with

seismic exploration.

The seismic and CSEM methods are disparate exploration techniques that are

sensitive to different medium properties: the seismic method is sensitive to density

and seismic wave velocity and the CSEM method to electric conductivity. There

have been several approaches for joint inversion that integrate disparate data sets.

Some of them assume a common structure (Musil et al., 2003) or similar structural

variations of different medium properties (Gallardo & Meju, 2004; Hu et al., 2009).

More recently, the application of rock-physics models for joint inversion has been

studied (Hoversten et al., 2006). Rock-physics models enable us to interrelate seismic

wave velocity and electric conductivity with the reservoir parameters such as poros-

ity, water saturation, or permeability. The main advantage of the approach is that

these reservoir parameters have great economic importance. The application of a

rock-physics model is limited, however, by the fact that such a model is site-specific

and there are not yet any universal solutions to the inverse problem. Furthermore,

even for a particular area of interest, any rock-physics model is generally described
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as a cloud of samples. These limitations imply that joint inversion via a rock-physics

model intrinsically necessitates a stochastic approach. Stochastic inversion has re-

cently been studied for seismic inversion (Spikes et al., 2007) and joint inversion of

seismic and CSEM data (Chen et al., 2007). The contributions of rock-physics model

uncertainties are also being studied (Chen & Dickens, 2009). Generally, the accuracy

of joint inversion of seismic and CSEM data via rock-physics models is limited by the

uncertainty of the rock-physics model as well as by the data noise. The contribution of

seismic and CSEM data noise on the joint inversion via rock-physics models, however,

has not yet been studied. Moreover, it is not yet understood whether rock-physics

model uncertainties play a more significant role than data noise on the joint inversion

process.

We aim to investigate the relative contribution of different sources of overall un-

certainty that arise when we use rock-physics models for joint inversion. These include

seismic data noise, CSEM data noise, and uncertainties of rock-physics models. We

implement several numerical experiments that reflect scenarios we may encounter in

practice and compare the uncertainties in the inferred parameters. The comparison

reveals the relative contributions of different sources of uncertainty and we can utilize

the procedure to more effectively reduce the uncertainty, depending on whether our

interests focus on porosity or water saturation.

2.3 Methodology

The goal of geophysical inversion is to make quantitative inferences about the

earth from noisy data. There are mainly two different approaches for attaining this

goal: in one, the unknown models are assumed to be deterministic and one uses

inversion methods such as Tikhonov regularization (Tikhonov & Arsenin, 1977; Aster
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et al., 2005); in the other, all the unknowns are random and one uses Bayesian

methods (Bayes, 1763; Tarantola, 2005; Ulrych et al., 2001). The objective of this

project is to provide a framework for Bayesian joint inversion that leads to model

estimates and their uncertainties.

The connection between geophysical data d and model m is written as

d = L[m] + e (2.1)

where L denotes a linear or nonlinear operator that maps the model into the data

and e represents data measurement error. The details of the operator are presented

in the modeling procedure section. Bayes’ theorem relates conditional and marginal

probabilities of a data d and a model m as follows (Tarantola, 2005):

π(m|d) = π(m)f(d|m)

π(d)
∝ π(m)f(d|m), (2.2)

where π(m) is a prior probability in the sense that it does not take into account any

information about the data d; f(d|m) is likelihood of the data d, given a model m;

and π(m|d) is a posterior probability density that we are inferring.

2.3.1 Hierarchical Bayesian model

The P -wave velocity and electric conductivity are derived from two reservoir

parameters: porosity and water saturation. These reservoir parameters are the target

model parameters in this project. There are two layers of likelihood probabilities that

have hierarchical dependency. The variables and their hierarchical dependencies are

displayed in Figure 2.1. The uppermost row represents prior probabilities of the

reservoir parameters: the porosity (mφ) and water saturation (mSw
); the middle
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Figure 2.1. A hierarchical dependency structure represented by a directed graph. The
nodes represent stochastic variables, the dashed arrows represent probability depen-
dencies, and the solid arrows represent deterministic relationships. µ and Σ denote
expectation vectors and covariance matrices, respectively. mφ and mSw

represent two
reservoir parameters: medium porosity and water saturation. dVp

and dσe
denote P -

wave velocity and logarithm of electric conductivity, respectively. ds and de represent
two different data sets: seismic and CSEM data.
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row denotes the likelihoods of the P -wave velocity (dVp
) and logarithm of electric

conductivity (dσe
). Finally, the lowermost row represents the likelihoods of the seismic

(ds) and CSEM data (de).

Within the Bayesian framework, the prior probabilities of the reservoir parame-

ters are expressed as πprior(mφ) and πprior(mSw
). Likewise, four possible likelihoods

are expressed as follows: the likelihoods of the P -wave velocity f(dVp
|mφ,mSw

), log-

arithm of electric conductivity f(dσe
|mφ,mSw

), seismic data f(ds|dVp
), and CSEM

data f(de|dσe
). Therefore, the posterior probabilities (πpost) of the porosity and wa-

ter saturation are derived from the prior (πprior) and likelihood (f) probabilities as

follows:

πpost(mφ,mSw
|dVp

,dσe
,ds,de) (2.3)

∝ πprior(mφ)πprior(mSw
)f(dVp

|mφ,mSw)f(dσe
|mφ,mSw)f(ds|dV p)f(de|dσe

).

Equation (2.3) indicates that the posterior probability is proportional to the product

of individual priors and likelihoods.

In statistics, the central limit theorem states that the sum of a sufficiently large

number of identically distributed independent random variables follows a normal dis-

tribution. This implies that the normal distribution is a reasonable choice for de-

scribing probability. Therefore, throughout this project, we assume that the priors

and likelihoods generally follow multivariate Gaussian distributions with expectation

vector µ and covariance matrix Σ, such that

f(x) =
1

√

(2π)ndet(Σ)
exp

[

−1

2
(x− µ)TΣ−1(x− µ)

]

, (2.4)

where x denotes data or model, and n denotes the dimension of x. Equation (2.4)
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expresses the general form of the probability function used in this project and the

covariance matrices for individual prior and likelihoods are discussed later. Note that

since the forward operations in this project (solid arrows in Figure 2.1) are nonlinear,

the posterior distributions are not necessarily Gaussian.

2.3.2 Prior and likelihood model

In the Bayesian context, there are several approaches to represent prior infor-

mation (Scales & Tenorio, 2001). The prior model encompasses all the information

we have before the data sets are acquired. In practice, the prior information includes

the definition of the model parameters, geologic information about the investigation

area, and preliminary investigation results. Therefore, the prior model is the starting

point of a Bayesian approach, and we expect to have a posterior probability distri-

bution with less uncertainty than the prior probability. The prior model plays an

important role in Bayesian inversion by eliminating unreasonable models that also

fit the data (Tenorio, 2001). Obvious prior information we have is the definition of

the porosity and water saturation, such that 0 ≤ mφi
≤ 1 and 0 ≤ mSwi

≤ 1. This

definition implies that the prior distributions of the porosity and water saturation

are intrinsically non-Gaussian. Furthermore, there can be several fluid phases within

pore space, and the probability distribution of each fluid saturation can be described

by a different distribution such as Dirichlet distribution (Gelman et al., 2003). In this

study, we consider two fluid phases (gas and water) and assume that the variance of

the water saturation is sufficiently small to warrant the assumption of Gaussian a

priori probability density functions. We aim to assess the porosity and water satu-

ration of the subsurface medium that has several layers. Generally, these reservoir

parameters of each layer are correlated and have different variance. The assessment
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of the correlation and variance requires detailed analysis of geology and well logging

data. In this study, we focus on the formulation of Bayesian joint inversion and, as

a starting point, regard that the reservoir parameters of each layer are uncorrelated

and have identical variance. In other words, we assume that the covariance matrices

Σφ and ΣSw
(Figure 2.1) are diagonal and that the diagonal elements within each

covariance matrix are identical.

For the hierarchical Bayesian model shown in Figure 2.1, there are four elemen-

tary likelihoods. Each of these likelihoods describes how well any rock-physics model

or geophysical forward modeling fits with the rock-physics experiment results or the

noisy observations. The details of the likelihood modeling are covered in the modeling

procedure section.

2.3.3 MCMC sampling

The assessment of the posterior probability requires great computational re-

sources and, in most cases, is still impractical for 3-D inverse problems. Pioneering

studies about the assessment were performed for 1-D seismic waveform inversion

(Gouveia & Scales, 1998; Mosegaard et al., 1997). The posterior model space of this

project encompasses porosity and water saturation of several layers. We use a Markov-

Chain Monte Carlo (MCMC) sampling method to indirectly estimate the posterior

probability distribution of the porosity and water saturation. In this project, the

goal of the MCMC sampling method is to retrieve a set of samples, such that the

sample distribution describes the joint posterior probability of equation (2.3). The

MCMC sampling method is a useful tool to explore the space of feasible solutions and

to investigate the resolution or uncertainty of the solution (Mosegaard & Sambridge,

2002; Sambridge et al., 2006). The Metropolis-Hastings algorithm (Hastings, 1970;
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Figure 2.2. The employed marine 1-D model. Seismic source and receiver are located
10 m below the sea surface. CSEM source is located 1 m above the sea bottom and
receiver is on the bottom. The earth is modeled as four homogeneous isotropic layers:
seawater, soft shale, gas saturated sandstone, and hard shale. The air and hard shale
layer are the two infinite half-spaces. The thicknesses (z) of the layers between the
two half-spaces are fixed.

Metropolis et al., 1953) and Gibbs sampler (Geman & Geman, 1984) are the most

widely used samplers for this purpose. We apply the Metropolis-Hastings algorithm

for the assessment of posterior probability. The details of the Metropolis-Hastings

algorithm are presented in Appendix A.

2.4 Modeling procedures

The marine 1-D model used in this research is shown in Figure 2.2. The target

layer, a gas saturated sandstone layer, is located between shale layers. The soft shale

layer is modeled to have the highest clay content and the gas saturated sandstone

layer to have the lowest clay content. The modeled values of the porosities φ, water

saturations Sw, P -wave velocities Vp and electric conductivities σe are summarized in

Table 2.1. The mean prior porosity µφ and water saturation µSw
values are assumed

to be the modeled values.
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Table 2.1. The modeled values of the porosity φ, water saturation Sw, P -wave ve-
locities Vp, and electric conductivities σe of the 1-D model shown in Figure 2.2. φc

is the critical porosity. Kd, K0, and Kf denote the bulk modulus of the dry rock,
mineral material, and pore fluid, respectively. µ0 is the shear modulus of the mineral
material, and ρw and ρ0 are the density of the water phase and mineral material,
respectively. σw denote the electric conductivity of the water phase, and m and n
are the cementation and saturation exponents. CEC is the cation exchange capacity.
The detailed explanation of the rock physics parameters is presented in Appendix B.

soft shale gas saturated sandstone hard shale
φ (%) 35 25 10
Sw (%) 90 10 50

Vp (km/s) 2.28 3.56 4.88
σe (S/m) 0.580 0.007 0.044
φc (%) 60 40 40

Kw (MPa) 2.2 3.2 4.2
Kg (MPa) 0.03 0.03 0.03
K0 (MPa) 16 36 40
µ0 (MPa) 6 24 30
ρw (g/cc) 1 1 1
ρ0 (g/cc) 2.55 2.65 2.75
σw (S/m) 3.33 3.33 3.33

m 2 2 2
n 2 2 2

CEC (C/kg) 10000 2000 6000
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2.4.1 Rock-physics likelihood modeling

Rock-physics models play a central role in the joint inversion presented here.

However, in many cases the rock-physics models are site-specific and complicated

functions of many variables that include porosity, water saturation and clay content.

Furthermore, there is an additional source of uncertainty associated with the choice

of rock-physics model. The motivation of this research is not to develop rock-physics

models that better describe the earth and have smaller uncertainty. Instead, it is

to understand the contribution of rock-physics model uncertainties to the overall

uncertainty of joint inversion. However, by comparing the posterior density functions

from different possible rock-physics models, we can deduce which rock-physics model

better fits the given lithology. In this study, we utilize several empirical relations that

are widely accepted. The quantitative dependence of the P -wave velocity and electric

conductivity on porosity and water saturation is presented in Appendix B.

As stated in Appendix B, the distribution of P -wave velocity is affected by

several rock physics parameters and, in the scale of geophysical exploration, there is

no statistical model that universally describes the distribution of P -wave velocity. The

statistical description of P -wave velocity is therefore site-specific and involves detailed

analysis of well logging data and laboratory experiments. The rough range of P -wave

velocity of the earth minerals is 2 - 10 km/s (Mavko et al., 1998). In this study, we

adopt the Gaussian distribution for the modeling of uncertainty of P -wave velocity. In

contrast, considering that the electric conductivity exhibits exponential variation in

most geologic environments (Palacky, 1987), we assume that the electric conductivity

follows a lognormal distribution. The P -wave velocity and electric conductivity are

derived from the empirical relations, and Gaussian and lognormal random numbers

are thereafter added to the P -wave velocity and electric conductivity, respectively,
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Figure 2.3. Simulated rock-physics model between porosity φ and P -wave velocity
Vp. Among three layers, the P -wave velocity depends least on the porosity in the
soft shale layer. The quantitative dependence of the P -wave velocity on porosity is
presented in Appendix B and Table 2.1.

Figure 2.4. Simulated rock-physics model between water saturation Sw and P -wave
velocity Vp. The P -wave velocity depends less on the water saturation than on the
porosity. The quantitative dependence of the P -wave velocity on water saturation is
presented in Appendix B and Table 2.1.
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Figure 2.5. Simulated rock-physics model between porosity φ and electric conductivity
σe. For each layer, increased porosity tends to accompany larger electric conductivity.
The quantitative dependence of the electric conductivity on porosity is presented in
Appendix B and Table 2.1.

to account for the uncertainty in the rock-physics model. Figures 2.3 through 2.6

show the simulated rock-physics models, where the porosity and water saturation

samples of each layer are retrieved from the prior distributions. The distributions for

the P -wave velocity indicate that the velocity is strongly dependent on the porosity

and the contribution of the water saturation is less significant. In contrast, the

distributions for the electric conductivity show that both the porosity and water

saturation influence the electric conductivity. Note that the dependencies are different

for each layer. The dependency of the P -wave velocity on the porosity is weakest in

the soft shale layer and the dependency of the electric conductivity on the water

saturation is strongest in the sandstone layer. These differential dependencies in the

different layers play a significant role in the joint inversion presented for this project.

We assume the likelihoods of the P -wave velocity f(dVp
|mφ,mSw

) and logarithm
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Figure 2.6. Simulated rock-physics model between water saturation Sw and electric
conductivity σe. Among three layers, the dependency of the electric conductivity on
the water saturation is strongest in the sandstone layer. The quantitative dependence
of the electric conductivity on water saturation is presented in Appendix B and Table
2.1.

of electric conductivity f(dσe
|mφ,mSw

) to follow the multivariate Gaussian distribu-

tion (equation (2.4)). Generally, the P -wave velocity and logarithm of electric con-

ductivity of the layers are correlated and have different variance. The assessment

of the correlation and variance requires detailed analysis of geology and well logging

data, which are beyond the scope this study. For the evaluation of the likelihoods,

we assume that the P -wave velocity and electric conductivity of each layer (Figure

2.2) are independent. We model the covariance matrices ΣVp
and Σσe

(Figure 2.1) as

diagonal matrices whose diagonal elements are constants.

2.4.2 Seismic data likelihood modeling

There are many kinds of seismic data we can utilize: reflection data, travel time

data, amplitude versus offset or angle data, and full waveform data. The full wave-
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form data is the most general and encapsulates the largest amount of information.

Seismic migration is the most common approach for handling the full waveform data

to reconstruct subsurface geometry. The application of the full waveform inversion is

limited by its poor convergence speed. We use the waveform data for the joint inver-

sion of seismic and CSEM data because the Monte Carlo method is effective for the

least-squares misfit optimization for the velocities (Jannane et al., 1989; Snieder et al.,

1989). Seismic waveform data is synthesized by a ray-tracing algorithm (Docherty,

1987) and we model the primary reflections of the P -wave from the top and bottom

boundaries of the target sandstone layer. There are many sources of seismic noise in

a marine environment: ambient noise, guided waves, tail-buoy noise, shrimp noise,

and side-scattered noise (Yilmaz, 1987). We model the seismic noise by adding band-

limited noise. The frequency band of the noise is between 10 and 55 Hz, and the

central frequency of the source wavelet is 30 Hz.

We assume that the seismic data likelihood probability f(ds|dVp
) follows the mul-

tivariate Gaussian distribution (equation (2.4)). For the calculation of the likelihood,

it is necessary to evaluate the covariance matrix Σs (Figure 2.1). For band-limited

noise, the covariance matrix follows from the power spectrum of the bandpass filter

and the resulting covariance matrix is not diagonal; a row of the covariance matrix is

a sinc function. It is possible to derive the inverse covariance matrix from the above

described covariance matrix. However, the inverse covariance matrix is generally un-

stable, and we need to truncate the singular values of the covariance matrix, which

yields an inverse matrix that has no significant improvement over the inverse of a

diagonal matrix. We therefore approximate the covariance matrix of a band-limited

noise as the covariance matrix of a white noise. We model the covariance matrix Σs

(Figure 2.1) as a diagonal matrix whose diagonal elements are constant.



22

Figure 2.7. Two different types of CSEM noise: systematic noise (open dots) and
non-systematic background noise (dashed curve). The systematic noise decreases
with frequency. In contrast, the non-systematic noise is independent of frequency.

2.4.3 CSEM data likelihood modeling

The CSEM signal measured at a receiver location is comprised of three compo-

nents. The first propagates through the solid earth and contains the information on

the reservoir properties. The second propagates through the seawater and attenu-

ates rapidly. It is therefore only significant near the transmitter. The third travels

as a wave along the seawater-air interface (air-wave) and decreases with increasing

water depth. In this project, the depth of the sea is 1.5 km and the air-wave is not

significant.

Even though the deep sub-sea environment has little cultural noise, the CSEM

measurements are not free from noise. These noise sources include the magneto-

telluric signal, streaming potential, and instrument noise. The magneto-telluric signal

is significant at frequencies lower than 1 Hz. The streaming potential is generated
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Figure 2.8. Electric field amplitude and phase response of a noise free (solid and
dashed curves) and noise contaminated case (black and open dots). The exact electric
conductivities are used for the CSEM data calculation shown here. The CSEM noise
is significant in high frequency range.

by seawater movement. The natural background noise at frequencies around 1 Hz

is about 1 pV/m (Chave & Cox, 1982) and its influence can be minimized by using

a stronger transmitter. The instrument noise is more important and mainly comes

from the transmitter amplifier or receiver electrodes. At lower frequency range, the

noise from the amplifier and electrodes is proportional to 1/f and 1/
√
f , respectively.

On the other hand, the instrument noise is saturated at the higher frequency range,

i.e., Johnson noise limit. Furthermore, the CSEM data quality is influenced by the

positioning or aligning error of the transmitter and receiver locations/directions.

The CSEM data we utilize consists of the real and imaginary parts of the CSEM

signal. We design the CSEM noise from the amplitude of the CSEM response and

then add the noise to the real and imaginary parts of the response. The CSEM noise

is categorized as systematic and non-systematic noise as shown in Figure 2.7. The
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systematic noise includes instrument noise and positioning error. We assume the

systematic noise to be proportional to the amplitude of the CSEM signal whereas the

non-systematic noise is independent of the signal. A realization of noisy CSEM data

is shown in Figure 2.8, where the systematic noise is 5% of each noise-free amplitude

and the non-systematic noise is 5 × 10−14 V/m. The CSEM signal decreases with

frequency and the CSEM noise is more obvious.

We assume the CSEM data likelihood probability f(de|dσe
) follows the multi-

variate Gaussian distribution (equation (2.4)). For the calculation of the likelihood,

we assume that the CSEM data noise is independent. We model the covariance

matrix Σe (Figure 2.1) as a diagonal matrix. Assuming that the systematic and non-

systematic noise is uncorrelated, the diagonal element of the covariance matrix that

corresponds to i-th datum (σ2
i ) is derived as

σ2
i (de) = σ2

i (εsys) + σ2
i (εnonsys), (2.5)

where εsys and εnonsys denote the systematic and non-systematic noise, respectively.

Note that σ2
i (εsys) values decrease at the larger frequency whereas σ2

i (εnonsys) is inde-

pendent of frequency.

2.5 Uncertainty Analysis

2.5.1 Histogram analysis of posterior distributions

We perform MCMC sampling to describe the posterior probability distribution

(equation (2.3)). The random sampling is performed within a six dimensional model

space that accounts for porosity or water saturation of soft shale, sandstone, and hard

shale layers (Figure 2.2). The initial sample is drawn from the prior distribution, and
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Figure 2.9. Samples of the water saturation (Sw) of the sandstone layer for subsequent
samples with sampling number n. In the initial stage of random sampling (shaded
area), the random sample is located away from the modeled value (dashed line) and
shows gradual approach toward the posterior distribution (burn-in process). We
discard the burn-in stage from the calculation of the sample variance.

Figure 2.10. Convergence of the variance of the water saturation (Sw) as a function of
the total number of samples. The burn-in samples are excluded from the calculation
of the sample variance. For sufficiently large sampling number n, the variance of the
random samples converges to the posterior variance value (dashed line).
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Figure 2.11. Histograms of posterior porosity (φ) samples of the sandstone layer.
Vertical lines indicate the true porosity values.

Figure 2.12. Histograms of posterior water saturation (Sw) samples of the sandstone
layer. Vertical lines indicate the true water saturation values.
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Table 2.2. Two representative uncertainty levels used in the project.

type of uncertainty source base state variance reduced state variance
seismic wave velocity (0.1 km/s)2 (0.03 km/s)2

electric conductivity (0.1 log10 (S/m))2 (0.03 log10 (S/m))2

seismic noise (30% of max. amplitude)2 (10% of max. amplitude)2

CSEM noise (systematic) (5% of each amplitude)2 (2% of each amplitude)2

CSEM noise (non-systematic) (5× 10−14 V/m)2 (2× 10−14 V/m)2

subsequent samplings are performed by the algorithm summarized in Appendix A.

An example of the random sampling is shown in Figure 2.9, which shows subsequent

samples of the water saturation of the sandstone layer. In the given example, the

initial sample is far away from the range of the posterior distribution, and the initial

movement of random samples toward posterior distribution, the burn-in stage, is

clearly shown (shaded area). We exclude those samples from assessing the posterior

distribution. For the diagnosis of the convergence of the random sampling toward the

posterior distribution, we monitor the variance of the random samples as a function

of total number of samples (Figure 2.10). For sufficiently large sampling number n,

the variance of the random samples converges, and we use this value for the variance

of the posterior distribution.

The random samples of the porosity and water saturation are drawn from the

posterior probability distribution of three different cases: using seismic data only,

using CSEM data only, and using both seismic and CSEM data. The uncertainty

levels applied to the comparison are summarized as the base state variances in Table

2.2. The posterior distributions of the porosity and water saturation of the target

sandstone layer are summarized as histograms as shown in Figures 2.11 and 2.12.

Note that for the given uncertainties of rock-physics model and data noise levels, the
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histograms show that the models based on seismic data or CSEM data alone weakly

constrain porosity and water saturation. However, the histograms from the joint

interpretation exhibit a narrower sample distribution of the porosity and water satu-

ration. The figures also show that the seismic data is more sensitive to the porosity

than to the water saturation. This is partly due to the rock-physics models in Figures

2.3 and 2.4 which show that the P -wave velocity has weaker correlation with the water

saturation than with porosity. The relatively poor resolution from the CSEM data

is attributed to the fact that the sandstone layer is electrically shielded by the more

conductive overburden (soft shale layer). These examples illustrate the strength and

limitation of both seismic and CSEM methods and explain the motivation of the joint

interpretation of seismic and CSEM data. The histograms of the joint interpretation

show smaller posterior uncertainty than do the single interpretations. The reduction

of uncertainty is more pronounced for water saturation than for porosity.

Next we compare the histograms that describe the posterior probabilities of dif-

ferent layers. Figure 2.13 shows the joint posterior distributions of the porosity of

three layers. The posterior distribution for the soft shale layer is less constrained

than that of the other layers. This is a consequence of the relatively weak correlation

between the porosity and P -wave velocity of the soft shale layer (Figure 2.3). Despite

the stronger sensitivity of the seismic and CSEM methods on the properties of the

uppermost layer, the weaker correlations of the rock-physics model cause larger vari-

ance of the porosity samples. The joint posterior distributions of the water saturation

(Figure 2.14) also exhibit that the posterior distribution for the soft shale layer is less

constrained than for the sandstone layer and that the rock-physics model uncertainty

has more significance on constraining the posterior distribution than the resolution

of the seismic and CSEM methods.
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Figure 2.13. Histograms of posterior porosity (φ) samples of the three layers obtained
from joint inversion of seismic and CSEM data (base uncertainty level). Vertical lines
indicate the true porosity values.

Figure 2.14. Histograms of posterior water saturation (Sw) samples of the three
layers obtained from joint inversion of seismic and CSEM data (base uncertainty
level). Vertical lines indicate the true water saturation values.
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Figure 2.15. Histograms of posterior porosity (φ) samples of the three layers obtained
from joint inversion of seismic and CSEM data (reduced uncertainty level). Vertical
lines indicate the true porosity values.

Figure 2.16. Histograms of posterior water saturation (Sw) samples of the three layers
obtained from joint inversion of seismic and CSEM data (reduced uncertainty level).
Vertical lines indicate the true water saturation values.
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Figure 2.17. Crossplot of posterior water saturation samples of the soft shale and
sandstone layers. The histograms of the corresponding samples are shown in Figure
2.16. The vertical and horizontal lines indicate the true water saturation values. The
correlation coefficient between the two random variables is negative (dashed line).
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Finally, we study two representative uncertainty levels: a base state and a new

state with reduced data uncertainties (Table 2.2). Note that the uncertainty of the

electric conductivity is defined on a logarithmic scale. The seismic data uncertainty

is defined as a ratio from the maximum amplitude value, and the CSEM data uncer-

tainty is defined as a sum of systematic and non-systematic noise. Figures 2.13 and

2.14 represent the posterior probability for the base uncertainty level. The histograms

for the reduced uncertainty level are shown in Figures 2.15 and 2.16. The reduced

uncertainty level leads, of course, to a sharper posterior probability distribution than

the base state and thus increases the accuracy in the estimates of porosity and water

saturation. This stronger constraint is more obvious for porosity than for water sat-

uration. This is due to the smaller resolution of the CSEM method compared to the

seismic method.

The correlation of reservoir parameters between different layers can be studied

by crossplot analysis. An example of the crossplot analysis is shown in Figure 2.17,

where the posterior water saturation samples of the soft shale and sandstone layers

are crossplotted. The example demonstrates that the water saturation of the two

layers has negative correlation, which arises from the weak depth resolution of the

CSEM exploration. Therefore, the correlation between the two layers becomes weaker

as the thickness of the sandstone layer increases. The weaker correlation of a reservoir

parameter between different layers generally accompanies reduced uncertainty of the

reservoir parameter. The correlation analysis can help diagnose the trade-off between

different model parameters.
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2.5.2 Different scenarios for uncertainty reduction

In the previous section, we presented histograms that characterize the poste-

rior uncertainty. As stated before, we assume the multivariate Gaussian distribution

(equation (2.4)) for the calculation of prior and likelihood. There are however sev-

eral factors that make the distribution of the posterior samples non-Gaussian. First,

the porosity or water saturation have values between 0 and 1. Second, the porosity

sampling is bounded by the critical porosity φc. The critical porosity is the thresh-

old value between the suspension and the load-bearing domain and denotes the upper

porosity limit of the range where the rock-physics model can be applied (Mavko et al.,

1998). The critical porosity values we apply for the soft shale, sandstone, and hard

shale layer are 0.6, 0.4, and 0.4, respectively. These bounds can lead to skewed sam-

ple distributions. Furthermore the posterior distributions do not necessarily follow

the Gaussian distribution because of the nonlinearity of the forward models. The

posterior uncertainty can generally be assessed by sample mean and sample variance.

For reasons of clarity, we use the Gaussian curves for the representation of the sample

mean and sample variance.

In this project, we model four factors of uncertainty: rock-physics model uncer-

tainties of the P -wave velocity and electric conductivity, and noise of the seismic and

CSEM data. We discussed the posterior probabilities of the porosity and water satu-

ration for the base and reduced uncertainty levels (Table 2.2) in the previous section

(Figures 2.13 - 2.16). We perform the following numerical experiments to quantify

the contributions of the four possible sources of uncertainty. The initial simulation is

performed based on the base uncertainty level. For analysis of the contributions of

each of the factors on the posterior uncertainties, six subsequent simulations are per-

formed with reduced uncertainty levels of one or two of the four factors of uncertainty.
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Table 2.3. Eight numerical experiments for the analysis of the contributions of four
possible factors of uncertainty. Two states of uncertainty for the individual factors
are listed in Table 2.2.

uncertainty of the individual factors
base level none of the factors are reduced
treatment-1 only reducing P -wave velocity uncertainty
treatment-2 only reducing electric conductivity

uncertainty
treatment-3 only reducing seismic noise level
treatment-4 only reducing CSEM noise level
treatment-5 reducing P -wave velocity uncertainty

and seismic noise level
treatment-6 reducing electric conductivity uncertainty

and CSEM noise level
reduced level reducing all of the four uncertainty factors

We perform the last simulation based on reduced uncertainty levels of all factors of

uncertainty (reduced level). These eight numerical experiments are summarized in

Table 2.3. We compare the posterior distributions from different treatments with the

base and reduced levels, and deduce how much a treatment contributes to the overall

change of the sample variances. The posterior distributions of the porosity and water

saturation are shown in Figures 2.18 - 2.23.

Figures 2.18 and 2.19 show the posterior probability distributions acquired after

performing the treatments 1 and 2. When we reduce uncertainty levels of P -wave

velocity or electric conductivity, the resultant posterior distributions exhibit smaller

sample variances than the base level. Furthermore, the sample means generally are

closer to the modeled values as we reduce the individual uncertainty levels. The prob-

ability density distribution for porosity of the sandstone layer (Figure 2.18) reveals

that the P -wave velocity uncertainty plays a significant role on the overall uncertainty
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Figure 2.18. Posterior probability distributions of porosity φ of the sandstone layer.
The distributions from the treatments 1 and 2 (Table 2.3) are compared with those
from the base and reduced levels. Vertical line indicates the true porosity value.

reduction of the porosity and the contribution of the electric conductivity uncertainty

is limited. In contrast, Figure 2.19 shows that the overall uncertainty variation of the

water saturation is more strongly influenced by the uncertainty of the electric con-

ductivity than by the uncertainty of the P -wave velocity. This is consistent with

the simulated rock-physics models shown in Figures 2.3 - 2.6. From the rock-physics

models, we can deduce that the porosity strongly influences both the P -wave velocity

and electric conductivity. The rock-physics models also show that the water satu-

ration strongly influences the electric conductivity while its influence on the P -wave

velocity is limited.

The posterior probability distributions for the treatments 3 and 4 are shown in

Figures 2.20 and 2.21. When we reduce the noise levels of the seismic or CSEM data,

the improvements of the posterior uncertainties of the porosity and water saturation

are much less significant than the improvements due to the reduction of rock-physics
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Figure 2.19. Posterior probability distributions of water saturation Sw of the sand-
stone layer. The distributions from the treatments 1 and 2 (Table 2.3) are compared
with those from the base and reduced levels. Vertical line indicates the true water
saturation value.

model uncertainties. This shows that the overall uncertainty of the porosity and

water saturation is more influenced by the rock-physics model uncertainties than by

the noise of the seismic or CSEM data. The figures also show that for the given range

of data noise, the seismic data noise reduction yields a more precise estimate than

when the CSEM data noise is reduced.

Figures 2.22 and 2.23 show the posterior probability distributions for the treat-

ments 5 and 6. Compared to the single improvement cases, it is clear that the com-

bined improvements give better assessments about the porosity and water saturation.

The probability density distributions shown in Figures 2.22 and 2.23 are similar to

the distributions shown in Figures 2.18 and 2.19. This implies that the posterior

uncertainty variations from the combined improvements are mainly governed by the

improvement of rock-physics model uncertainties and the contributions of the seismic
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Figure 2.20. Posterior probability distributions of porosity φ of the sandstone layer.
The distributions from the treatments 3 and 4 (Table 2.3) are compared with those
from the base and reduced levels. Vertical line indicates the true porosity value.

Figure 2.21. Posterior probability distributions of water saturation Sw of the sand-
stone layer. The distributions from the treatments 3 and 4 (Table 2.3) are compared
with those from the base and reduced levels. Vertical line indicates the true water
saturation value.
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Figure 2.22. Posterior probability distributions of porosity φ of the sandstone layer.
The distributions from the treatments 5 and 6 (Table 2.3) are compared with those
from the base and reduced levels. Vertical line indicates the true porosity value.

and CSEM data noise are less significant.

The posterior probability distributions shown in Figures 2.18 - 2.23 are sum-

marized in Table 2.4. The comparison of the variance values clearly show that the

reductions of the sample variances of the porosity and water saturation are most

strongly influenced by the uncertainty of the P -wave velocity and electric conduc-

tivity, respectively. The contributions of the rock-physics model uncertainties on the

posterior uncertainties are generally larger than those of the seismic and CSEM data

noise. The numerical experiments suggest different ways of accomplishing uncertainty

reduction depending on whether our interests focus on the porosity or water satura-

tion. When porosity is our prime concern, we can effectively accomplish uncertainty

reduction by improving the P -wave velocity model and by suppressing the seismic

data noise. On the other hand, if we need more accurate assessment of water sat-

uration, the acquisition of more detailed electric conductivity information and the



39

Figure 2.23. Posterior probability distributions of water saturation Sw of the sand-
stone layer. The distributions from the treatments 5 and 6 (Table 2.3) are compared
with those from the base and reduced levels. Vertical line indicates the true water
saturation value.

Table 2.4. Sample variances S2 of porosity φ and water saturation Sw of the
sandstone layer. The details about the treatments are in Table 2.3.

sample variance (×10−3) S2(φ) S2(Sw)
base level 0.560 1.997
treatment-1 0.041 1.456
treatment-2 0.516 0.205
treatment-3 0.501 1.865
treatment-4 0.532 1.728
treatment-5 0.039 1.251
treatment-6 0.498 0.198
reduced level 0.038 0.117
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suppression of CSEM data noise is preferred.

Note that the above assessments are based on marginal analysis of posterior

probability, and possible correlation between different uncertainty factors are ignored.

This can be misleading in the presence of strong correlation. The correlation between

uncertainty factors can be analyzed by the full factorial experiment (Fisher et al.,

1990) that requires 2n treatments, where n is the number of uncertainty factors.

2.6 Conclusions

We have shown that the posterior probability random sampling based on the

Metropolis-Hastings algorithm is capable of assessing the multi-dimensional proba-

bility distribution of porosity and water saturation. We have also shown that the

joint inversion of the seismic and CSEM data can be achieved by introducing rock-

physics models that interconnect the P -wave velocity and electric conductivity. There

are four representative sources of uncertainty that influence the posterior probability

density of porosity and water saturation. These uncertainties are related to seismic

wave velocity, electric conductivity, seismic data, and CSEM data. Even when sin-

gle interpretations poorly constrain the posterior distributions of porosity and water

saturation, the distributions from the joint interpretation are well constrained and

exhibit reduced uncertainty.

Assuming two levels of overall uncertainty, we study the relative contributions

from the four individual sources of uncertainty. The numerical simulations show that

rock-physics model uncertainties play a more significant role on the overall uncertainty

variation than do seismic and CSEM data noise. The numerical experiment also

suggests different ways of accomplishing uncertainty reduction depending on whether

our interests focus on porosity or on water saturation. When porosity is our prime
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concern, we can effectively accomplish uncertainty reduction by acquiring more precise

P -wave velocity information and suppressing the seismic data noise. On the other

hand, if we need a more accurate assessment of water saturation, the acquisition of

more detailed electric conductivity information and the suppression of CSEM data

noise are desirable.

We emphasize that the conclusions explained above depend on the parameters

chosen in this project. Furthermore, there are many sources of uncertainty that we

do not take into account such as lithological variations, variation of mineralogical

composition of clay, and depth of layers. If we include more of the data uncertainties,

the balance between the uncertainties in the seismic wave velocity or electric conduc-

tivity and seismic or CSEM data noise can, therefore, be changed. The methodology

of the uncertainty analysis presented in this project can, however, be extended to

include those parameters and their uncertainties. The employed method can be used

for experimental design and for targeting the source of the error that contributes most

to the posterior uncertainty.

2.7 Acknowledgments

This work was supported by the Consortium Project on Seismic Inverse Methods

for Complex Structures at Center for Wave Phenomena (CWP). We thank Alan D.

Chave (Woods Hole Oceanographic Institution) for providing his CSEM code, which

was critically important for the success of this study. We acknowledge Inge Myrseth

(Norwegian University of Science and Technology), Malcolm Sambridge (Australian

National University), Albert Tarantola (Institut de Physique du Globe de Paris), Luis
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Chapter 3

CONVERGENCE ANALYSIS OF SCATTERING SERIES

ACOUSTIC WAVE PROPAGATION VS. ELECTROMAGNETIC

DIFFUSION

3.1 Summary

The inverse scattering series is a tool that can effectively resolve the nonlinearity

of an inverse problem. The geophysical application of the inverse scattering series

has focused previously on seismic exploration, in particular on velocity estimation

and multiple suppressions. However, the inverse scattering series has not been widely

applied to the interpretation of electromagnetic data. We study the feasibility of this

application. Compared to seismic exploration, electromagnetic methods are charac-

terized by a rapid spatial decay of the probing field and a strong perturbation of the

medium parameters. We focus on identifying the difference between the convergence

patterns of the scattering series for acoustic wave and electromagnetic diffusion prob-

lems. As a prototype of the forward and inverse scattering series, we analyze the 3D

Green function for homogeneous media. The analysis shows that for electromagnetic

diffusion, the reference medium should be sufficiently conductive to allow convergence

of the forward scattering series. The analysis also illustrates that the rapid spatial

decay of a diffusive field does not necessarily mean fast convergence of the scattering

series. However, model tests with parameters representing geophysical exploration of

hydrocarbon reservoirs suggest that the convergence of the scattering series for elec-
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tromagnetic diffusion is faster than that for acoustic wave propagation. The model

tests also show that for the diffusion equation, one can improve the convergence of the

inverse scattering series by choosing a reference medium that is less conductive than

the true medium. This research provides insights into the convergence requirements

of the scattering series and guidelines for further application of the inverse scattering

series to the interpretation of electromagnetic data.

3.2 Introduction

The goal of inverse scattering problems is to obtain a quantitative description of

an unknown scatterer from knowledge of the scattering data. The inverse scattering

theory originates from inverse problems in quantum scattering theory and formal so-

lutions of inverse scattering problems (Gel’fand & Levitan, 1951; Jost & Kohn, 1952;

Moses, 1956; Prosser, 1969). The inverse scattering series describes a model pertur-

bation as a series in order of a scattered field. The inverse scattering series has been

applied to seismic exploration for reconstructing subsurface velocity (Weglein et al.,

1981) and attenuating multiples in seismic reflection data (Weglein et al., 1997, 2003).

The main advantage of the inverse scattering series is that no a priori knowledge of

the subsurface (e.g., velocity) is assumed and all refraction, diffraction, and multiple

reflection phenomena are, in principle, taken into account. Recent studies show that

the inverse scattering series can be applied to diverse seismic problems that include

imaging, direct nonlinear inversion, data reconstruction, and wavefield separation

(Ramirez & Weglein, 2009; Weglein et al., 2009; Zhang & Weglein, 2009a,b).

Scattering theory relates the scattered field Gs (the difference between the true

and reference fields) to the perturbation P (the difference between their corresponding

medium properties). The forward scattering series, which is also known as the Born
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or Neumann series (Weglein et al., 1997), describes the scattered field Gs as a series

in order of the perturbation P :

Gs = Gs
1 +Gs

2 +Gs
3 + · · · , (3.1)

where Gs
n is the portion of the scattered field that is the nth order of the perturbation.

On the other hand, the inverse scattering series expands the perturbation P as a series

in order of the scattered field Gs:

P = P1 + P2 + P3 + · · · , (3.2)

where Pn is the portion of the perturbation that is the nth order of the scattered

field. In equation (3.2), P1 is the portion of P that is linear in the scattered field.

In fact, only the linear component in the scattered field ultimately contributes to the

reconstruction of the model, and the nonlinear components are being subtracted in

the inversion (Snieder, 1990a,b). The inverse scattering series effectively incorporates

the nonlinearity of an inverse problem. Generally, the series expressions in equations

(3.1) and (3.2) converge within a finite range of perturbation or scattered field (radius

of convergence) (Prosser, 1969). When these series converge, one only requires the

Green function of the reference medium and the scattered field for the reconstruction

of the perturbation.

Marine electromagnetic surveys are useful complementary tools to seismic sur-

veys in searching for a hydrocarbon reservoir (Constable & Srnka, 2007; Hu et al.,

2009; Kwon & Snieder, 2011b) because electromagnetic data can provide more decisive

information about the reservoir composition than seismic data. The electromagnetic

field is sensitive to the electric conductivity, which is predominantly influenced by
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water content within the subsurface: increasing water content causes larger conduc-

tivity, and hydrocarbons, whether gas or petroleum, are poor electric conductors.

The significant difference of electric conductivity in water and hydrocarbon makes

the electromagnetic surveys ideal tools for distinguishing a hydrocarbon reservoir

from a water saturated reservoir. Inverse problems of the electromagnetic surveys are

strongly-nonlinear (Parker, 1977; Snieder, 1998), and the inverse scattering series can

thus be useful for the inverse problems. However, the geophysical application of the

inverse scattering series has focused previously on seismic exploration, and the inverse

scattering series has not been widely applied to the interpretation of electromagnetic

data. We study the feasibility of this application by a comparative analysis of the

scattering series between seismic and electromagnetic exploration.

In geophysical applications, electromagnetic fields propagate as waves in a high

frequency range (i.e., ground penetrating radar) or in an insulating medium (i.e.,

air). For most earth materials and frequencies of electromagnetic methods used in

hydrocarbon exploration, diffusion is dominant and the contribution of wave propa-

gation is negligible (Chave & Cox, 1982). In contrast, seismic exploration is always

governed by wave propagation. Seismic exploration is performed over a scale of many

wavelengths, whereas electromagnetic fields exhibit rapid spatial decay and diffuse

over a few skin depths that describe the length scale where the amplitude decays to

e−1 Jackson (1999). The seismic and electromagnetic surveys involve different data

acquisition geometries, and noise statistics of marine electromagnetic data is different

from that of seismic data (Kwon & Snieder, 2011b). Furthermore, the strength of the

medium perturbation in electromagnetic exploration is stronger than that in seismic

exploration. In other words, the range of the electric conductivity in the subsurface is

generally wider than the range of seismic wave velocity (Palacky, 1987; Mavko et al.,
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1998). Among many differences between seismic and electromagnetic exploration,

we focus on two distinguishing features of electromagnetic exploration, i.e., diffusive

probing field and strong perturbation. We also take acoustic wave propagation as a

norm of seismic wave propagation. In this study, we analyze convergence conditions

of the scattering series for acoustic wave propagation and electromagnetic diffusion

and study the feasibility of applying the inverse scattering series to electromagnetic

exploration.

In the following, we adopt mathematical prototypes of the wave and diffusion

equations within a homogeneous medium, and identify medium properties that af-

fect acoustic wave propagation and electromagnetic diffusion in the subsurface. We

consider two different states of the infinite homogeneous medium, relate the scat-

tered field Gs and perturbation P via the 3D Green functions of the homogeneous

media, and formulate the forward and inverse scattering series. We thereafter an-

alyze the convergence conditions of these formal series expressions and discuss the

difference between the convergence conditions for acoustic wave and electromagnetic

diffusion equations. Finally, we apply parameters representing geophysical explo-

ration of hydrocarbon reservoirs, estimate the source-receiver offset range where the

series converge, and discuss the feasibility of applying the inverse scattering series to

electromagnetic exploration.
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3.3 Formulation of scattering series

Consider the following differential equations as governing equations for true and

reference media:

L(r;ω)G(r, rs;ω) = −δ(r − rs), (3.3)

L0(r;ω)G0(r, rs;ω) = −δ(r− rs), (3.4)

where L, L0 and G, G0 are the true and reference differential operators and Green

functions, respectively, for an angular frequency ω, δ(r−rs) is the Dirac delta function,

and r and rs are the receiver and source locations, respectively. The information about

the true and reference media properties is encapsulated in L and L0. The scattered

field is the difference between the two Green functions:

Gs(r, rs;ω) = G(r, rs;ω)−G0(r, rs;ω). (3.5)

The perturbation P is defined as the difference between two differential operators

(Weglein et al., 1997, 2003):

P (r;ω) = L(r;ω)− L0(r;ω). (3.6)

For heterogeneous media, the Lippmann-Schwinger equation (Lippmann & Schwinger,

1950; Colton & Kress, 1998) relates the scattered field and perturbation, and the

forward and inverse scattering series involve iterative evaluation of integral equations

(Prosser, 1969; Weglein et al., 2003). In this study, we consider two homogeneous

media, which allow one to relate the scattered field and perturbation via analytic

solution of the Green function. We use the Taylor series to expand the scattered field
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and perturbation in order of the perturbation and scattered field, respectively, and

study the convergence conditions of the forward and inverse scattering series.

The Helmholtz equation describes acoustic wave propagation and electromag-

netic diffusion within a homogeneous medium:

L(ω)G(r, rs;ω) = (∇2 + k2)G(r, rs;ω) = −δ(r− rs). (3.7)

The wavenumber k is given as

k2 =







ω2/c2 (acoustic wave propagation),

iω/d = iωµσ (electromagnetic diffusion),
(3.8)

where c is the acoustic wave velocity (m/s), d the electromagnetic diffusivity (m2/s), µ

the magnetic permeability (N/A2), and σ the electric conductivity (S/m), respectively

(Jackson, 1999). Magnetizable materials are rare in the subsurface (Chave & Cox,

1982), and we take the magnetic permeability µ to be the free space value. We also

assume that the acoustic wave velocity c and electromagnetic diffusivity d are real,

which implies that the wavenumber k is real for the wave equation and complex for

the diffusion equation. The perturbation is described in terms of the acoustic wave

velocity c and electric conductivity σ in this study.

3.3.1 Forward scattering series

Given a source at the origin, the 3D Green function for the Helmholtz equation

is (Morse & Feshbach, 1953)

G(r) =
1

4πr
eikr, (3.9)
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where r = |r|. We denote the wavenumbers of the true and reference media as k and

k0, respectively. From equations (3.6) and (3.7), the perturbation is defined as

P = k2 − k2
0, (3.10)

and the wavenumber of the true medium is expressed as

k = k0

√

1 +
P

k2
0

. (3.11)

Equations (3.5), (3.9), and (3.11) yield the scattered field as follows:

Gs(r) =
1

4πr

[

exp

(

ik0r

√

1 +
P

k2
0

)

− exp (ik0r)

]

. (3.12)

The forward scattering series expresses the scattered field Gs(r) as a series in order

of the perturbation P . Note that a function of a complex variable z, f(z) =
√
1 + z,

has a singular point (branch point) at z = −1, and the radius of convergence of the

Taylor series expansion around z = 0 extends up to the singular point. The series

for the exponential is absolutely convergent. Therefore, equation (3.12) shows that

the forward scattering series converges only for small perturbations compared to the

reference medium properties such that

∣

∣

∣

∣

P

k2
0

∣

∣

∣

∣

< 1. (3.13)

Equation (3.13) resembles the convergence condition of the forward series for the

scattering of an acoustic wave function from a variable index of refraction (Prosser,

1976). In that previous study, the perturbation is represented as k2
0W (r) with W (r)
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denoting the variable index of refraction, and the convergence criterion is given as

|W (r)| < 1. Note that we formulate the forward scattering series via the Taylor series

and deduce a convergence condition that is equivalent to that from the integral equa-

tion approach. Combining equations (3.8), (3.10), and (3.13) provides the following

convergence criteria for acoustic wave propagation and electromagnetic diffusion:







c > c0/
√
2 (acoustic wave equation),

σ < 2 σ0 (electromagnetic diffusion equation).
(3.14)

In other words, the reference medium should have sufficiently a small acoustic wave

velocity to yield a converging forward series for acoustic wave propagation. For elec-

tromagnetic diffusion problems, we need to choose a sufficiently conductive reference

model to achieve convergence of the forward series.

Denoting two complex quantities, ik0r and P/k2
0, as a and z, we express equation

(3.12) as

Gs(r) = G0(r)F (z), (3.15)

where F (z) is a complex function:

F (z) = exp
(

a
√
1 + z − a

)

− 1. (3.16)

As shown in Appendix C, the nth order derivative of F (z) is

dnF

dzn
=

1

2n

n
∑

m=1

βn,ma
n−m+1(1 + z)−

n+m−1

2 exp
(

a
√
1 + z − a

)

, (3.17)
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Figure 3.1. Convergence rate of forward scattering series. The ratio |αn+1/αn| in
equation (3.21) for increasing number of n is compared at two spatial locations: one
is 3 wavelengths apart from the source (k0r = 6π) and the other is 6 wavelengths
(k0r = 12π). The bigger value of |αn+1/αn| at the larger source-receiver offset suggests
that more terms in the forward scattering series are necessary to reach convergence
with increasing source-receiver offset.



53

where

βn,m =















1 (m = 1),

−βn,m−1

m− 1

n−1
∑

l=m−1

l (m = 2, 3, 4, · · · , n).
(3.18)

Applying equation (3.17) to the Taylor series expansion of equation (3.12) gives the

nth order term in the forward series as

Gs
n(r) = G0(r)αn(ik0r)

[

P

k2
0

]n

, (3.19)

where αn(ik0r) is an nth order power series of ik0r:

αn(ik0r) =
1

2n n!

n
∑

m=1

βn,m (ik0r)
n−m+1. (3.20)

The convergence rate is, therefore,

RF
n (r) =

∣

∣

∣

∣

Gs
n+1(r)

Gs
n(r)

∣

∣

∣

∣

=

∣

∣

∣

∣

αn+1(ik0r)

αn(ik0r)

∣

∣

∣

∣

∣

∣

∣

∣

P

k2
0

∣

∣

∣

∣

. (3.21)

The above equation shows that RF
n is proportional to |P/k2

0|, and the forward scat-

tering series converges more rapidly as the perturbation is weaker. To appreciate the

contribution of αn+1/αn on the convergence rate, we consider an acoustic wave prob-

lem where the frequency f is 50 Hz, wave velocity c0 is 3,000 m/s, and wavenumber

k0 is about 0.1 m−1 (Table 3.1). Figure 3.1 shows the variation of |αn+1/αn| at two

spatial locations: one is 3 wavelengths apart from the source (k0r = 6π) and the other

is 6 wavelengths (k0r = 12π). The figure shows that |αn+1/αn| is larger for k0r = 12π

than for k0r = 6π, which implies that as the source-receiver offset increases, more

terms in the series are necessary to reach convergence.
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The formal expression of convergence rate given in equation (3.21) is valid for

both the wave and diffusion equations. The wavenumber of the diffusion problem

(equation (3.8)) has real and imaginary parts, and the Green function for the diffu-

sion equation generally decays more rapidly than that for the wave equation, which

has real wavenumber. However, equation (3.21) indicates that there is no fundamen-

tal difference in the convergence rate between the forward scattering series for the

diffusion equation and the series for the wave equation. In fact, the rapid spatial

decay of a diffusive field does not necessarily mean fast convergence of the scattering

series. This counterintuitive behavior of the convergence rate can be comprehended

by considering the following three functions: ex, e−x, and eix. The three functions

exhibit different variations as a function of x, but their Taylor series expansions in

the variable x show the same convergence rate. This property of the convergence rate

implies that the comparison of the convergence speed between wave propagation and

diffusion depends on the specific parameters that we incorporate instead of the differ-

ence in the behavior of the physical fields. In the following, we choose representative

parameters relevant to hydrocarbon exploration situations and compare the conver-

gence of the forward scattering series for the acoustic wave equation with that for the

electromagnetic diffusion equation. The details of the parameters are introduced in

the next section.

3.3.2 Inverse scattering series

While the forward scattering series expresses the scattered field Gs(r) as a power

series in order of the model perturbation P , the inverse series expresses the model

perturbation as a power series in order of the scattered field. Rewriting equation
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(3.12), we express the perturbation as a function of the scattered field:

P (r)=−2ik0
r

ln

(

1+
Gs(r)

G0(r)

)

− 1

r2

[

ln

(

1+
Gs(r)

G0(r)

)]2

. (3.22)

Note that a function of a complex variable z, f(z) = ln(1 + z), is singular at z = −1,

and the radius of convergence of the Taylor series expansion centered at z = 0 extends

up to the singular point. Equation (3.22) therefore shows that the inverse scattering

series converges only for weak scattered fields that satisfy

∣

∣

∣

∣

Gs(r)

G0(r)

∣

∣

∣

∣

=

∣

∣

∣

∣

G(r)

G0(r)
− 1

∣

∣

∣

∣

=
∣

∣ei(k−k0)r − 1
∣

∣ < 1. (3.23)

A previous study that is based on the integral equation approach qualitatively stated

that the inverse series converges when the perturbation is sufficiently small (Prosser,

1976). Equation (3.23), on the other hand, is a more quantitative convergence crite-

rion and allows one to predict whether an inverse series converges by comparing the

magnitude of the scattered and reference fields.

Denoting a complex variable, Gs/G0, as z, we abbreviate equation (3.22) as

P (r) = −2ik0
r

F1(z)−
1

r2
F2(z), (3.24)

where

F1(z) = ln(1 + z), (3.25)

F2(z) = [ln(1 + z)]2 . (3.26)
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Figure 3.2. Comparison of the absolute values of γn and ζn in equation (3.30). For
k0 = 0.1 m−1 and r = 100 m, |ζn| is much smaller than |γn|. The two terms are
dependent on k0/r and 1/r2, respectively, which implies γn is significant at a large
source-receiver offset and for a large wavenumber of the reference medium.
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The nth order derivative of F1(z) is

dnF1

dzn
= (−1)n−1(n− 1)!(1 + z)−n. (3.27)

The nth order derivative of F2(z) is shown in Appendix E to be

dnF2

dzn
= −2ηn(1 + z)−n + 2(−1)n−1(n− 1)! ln(1 + z)(1 + z)−n, (3.28)

where

ηn =







0 (n = 1),

−(n− 1)ηn−1 + (−1)n−1(n− 2)! (n = 2, 3, 4, · · · ).
(3.29)

Applying equations (3.27) and (3.28) to the Taylor series expansion of equation (3.22)

gives the nth order term in the inverse series as

Pn(r) = 2 [γn(k0, r) + ζn(r)]

[

Gs(r)

G0(r)

]n

, (3.30)

where

γn(k0, r) = (−1)n
ik0
nr

, (3.31)

ζn(r) =
ηn
n! r2

. (3.32)

The above formal expression of the inverse scattering series is valid for both the wave

and diffusion equations. Figure 3.2 shows the absolute values of γn and ζn in equation

(3.30). When the wavenumber of the reference medium is k0 = 0.1 m−1, |ζn| is much

smaller than |γn| at r = 100 m. The coefficient |γn| is proportional to k0/r and |ζn| is

to 1/r2. Therefore, compared to ζn, γn is significant at a large source-receiver offset
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Table 3.1. Physical parameters adopted for model tests, where c and σ represent
acoustic wave velocity and electric conductivity, respectively. Wavenumber k is de-
rived from equation (3.8). The perturbation is real for the acoustic wave problem and
imaginary for the electromagnetic diffusion problem.

Acoustic wave propagation Electromagnetic diffusion
f 50 Hz f 10 Hz
c0 3.0× 103 m/s σ0 1.0× 10−1 S/m
c 3.3× 103 m/s σ 1.0× 10−2 S/m
k2
0 1.10× 10−2 m−2 |k2

0| 7.90× 10−6 m−2

k2 0.91× 10−2 m−2 |k2| 0.79× 10−6 m−2

P = k2 − k2
0 −0.19× 10−2 m−2 |P | = |k2 − k2

0| 7.11× 10−6 m−2

and for a large wavenumber of the reference medium. Ignoring ζn, we approximate

the convergence rate of the inverse scattering series as

RI
n =

∣

∣

∣

∣

Pn+1(r)

Pn(r)

∣

∣

∣

∣

≃
∣

∣

∣

∣

γn+1

γn

Gs(r)

G0(r)

∣

∣

∣

∣

=

∣

∣

∣

∣

n

n+ 1

Gs(r)

G0(r)

∣

∣

∣

∣

. (3.33)

The above equation shows that as the scattering becomes stronger, the convergence

speed of the inverse scattering series becomes slower.

3.4 Model tests of scattering series

As noted in the previous section, a comparison of the convergence rates be-

tween wave propagation and diffusion depends on the specific parameters that we

incorporate. We therefore choose parameters that are widely applied for exploring

hydrocarbon reservoirs (Palacky, 1987; Mavko et al., 1998). For the application of the

scattering series expressions in equations (3.19) and (3.30) to the acoustic wave and

electromagnetic diffusion problems, we adopt the parameters summarized in Table

3.1. Note we assume a velocity perturbation of 10% for the acoustic wave problem
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and a perturbation with a factor 10 (σ0/σ = 10) for the electromagnetic diffusion

problem. We also assume that magnetic permeability of the medium is the same as

that of free space (µ = 4π × 10−7 N/A2).

3.4.1 Forward scattering series

Figures 3.3 and 3.4 show the spatial variation of the forward scattering series for

the acoustic wave and electromagnetic diffusion equations, respectively. The solutions

derived from the forward series (solid curve) are compared with the analytic solution

of the scattered field (dotted curve), which is expressed as

Gs(r) =
eikr − eik0r

4πr
. (3.34)

The scattered field of the acoustic wave equation (dotted curve in Figure 3.3) exhibits

spatial oscillations, amplitude modulation, and geometric spreading. The scattered

field of the electromagnetic diffusion equation (dotted curve in Figure 3.4) shows

exponential amplitude decay and monotonous phase change. From equation (3.19),

the first order term in the forward series is

Gs
1(r) =

iP

8πk0
eik0r (3.35)

and near the source, exhibits better agreement with the analytic solution than at far

receiver locations. As we include higher order terms, the partial sum of the forward

series approaches the analytical solution of the scattered field. Note that except

for short source-receiver offset, the forward scattering series for the electromagnetic

diffusion equation (N = 5 in the middle panel of Figure 3.4) requires fewer terms

to achieve good agreement with the analytic solution than the series for the acoustic
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Figure 3.3. Spatial variation of forward scattering series for the acoustic wave equa-
tion (real part only). The employed parameters are summarized in Table 3.1. The
solutions derived from the forward series (solid curves) are compared with the analytic
solution of the scattered field (dotted curves). The top, middle, and bottom panels
show the partial sum

∑N
n=1G

s
n(r) for N = 1, N = 15, and N = 30, respectively. As

we include higher order terms in the forward series, the partial sum of the forward
series approaches the analytic solution of the scattered field at an increasing range of
r.
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Figure 3.4. Spatial variation of the forward scattering series for the electromagnetic
diffusion equation. The employed parameters are summarized in Table 3.1. The
solutions derived from the forward series (solid curves) are compared with the analytic
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∑N
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s
n(r) for N = 1, N = 5, and N = 10, respectively. As

we include higher order terms in the forward series, the partial sum of the forward
series approaches the analytic solution of the scattered field at an increasing range of
r.
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wave equation (N = 15 in the middle panel of Figure 3.3). We therefore conclude

that for the employed parameters (Table 3.1), which are representative of hydrocarbon

exploration, the forward scattering series for the electromagnetic diffusion equation

converges faster and requires fewer series terms than does the series for the acoustic

wave equation.

3.4.2 Inverse scattering series

Figures 3.5 and 3.6 show the spatial variation of the inverse scattering series for

the acoustic wave and electromagnetic diffusion equations, respectively. The solutions

derived from the inverse series (solid curve) are compared with the exact value of the

perturbation (dotted line), which is real for the wave equation and imaginary for the

diffusion equation. Since the true and reference models are assumed to be homoge-

neous, the model perturbation is constant as well. In these figures, rc describes the

maximum distance for which the inverse scattering series converge to exact values as

described below. Considering the convergence criterion given in equation (3.23), we

also compare the variation of |Gs/G0| (solid curve in bottom panels) with the thresh-

old value for convergence (dotted line). The first order terms in the inverse series

exhibit significant deviations from the exact values (the first and second panels), and

the partial sums of the inverse series up to the 20th order diverge in the ranges where

the convergence criterion is violated (the third and fourth panels). For the electro-

magnetic diffusion equation (Figure 3.6), the ratio |Gs/G0| increases exponentially

with the source-receiver offset r, and the inverse series converges to the exact value

of the perturbation within the range that extends from r = 0 to the location where

the convergence criterion is satisfied (r < rc). On the other hand, the ratio |Gs/G0|

varies periodically for the acoustic wave equation (Figure 3.5), and there thus is in-
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Figure 3.5. Spatial variation of the inverse scattering series for the acoustic wave
equation. The employed parameters are summarized in Table 3.1. In the upper four
panels, the solutions derived from the inverse series (solid curves) are compared with
the exact value of the perturbation ω2(1/c2 − 1/c20) (dotted lines), which is real. The
first and third panels compare the real part, and the second and fourth panels show
the imaginary part. The first term in the inverse series (the first and second panels)
differs significantly from the exact value. The partial sum up to the 20th order term
in the inverse series (the third and fourth panels) converges to the exact value within
a limited range where r < rc. Outside the range, the inverse series diverges (white
regions) or converges to a value different from the exact value of the perturbation
(shaded regions). The bottom panel shows the spatial variation of |Gs(r)/G0(r)|.
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Figure 3.6. Spatial variation of the inverse scattering series for the electromagnetic
diffusion equation. The employed parameters are summarized in Table 3.1. In the
upper four panels, the solutions derived from the inverse series (solid curves) are
compared with the exact value of the perturbation iωµ(σ− σ0) (dotted lines), which
is imaginary. The first and third panels compare the real part, and the second and
fourth panels show the imaginary part. The first term in the inverse series (the first
and second panels) differs significantly from the exact value. The partial sum up to
the 20th order term in the inverse series (the third and fourth panels) converges to
the exact value within a limited range where r < rc and diverges elsewhere. The
bottom panel shows the spatial variation of |Gs(r)/G0(r)|.



65

finite number of intervals where the convergence criterion is satisfied. This periodic

variation arises from the amplitude modulation of the scattered field Gs (equation

(3.34) and the dotted curves in Figure 3.3) and illustrates a phenomenon known as

the cycle skipping in seismic exploration (Pratt, 1999; Virieux & Operto, 2009). The

third and fourth panels in Figure 3.5 show that the inverse series for the acoustic

wave equation converges to the exact value only for the first interval (r < rc). Those

panels also show that for the remaining intervals (shaded regions), the partial sum of

the inverse series remains close to the first order term and does not converge to the

exact value.

Compared to the inverse series for the acoustic wave equation (Figure 3.5), the

series for the electromagnetic diffusion equation (Figure 3.6) converges to the exact

value of the perturbation in a wider spatial range. This convergence pattern suggests

that for the employed parameters, the inverse scattering series for the electromagnetic

diffusion equation converges faster than does the series for the acoustic wave equation.

The above observations also reveal that the convergence criterion given in equation

(3.23) plays a crucial role in the reconstruction of the perturbation. We therefore

perform a more detailed analysis on the convergence criterion. As noted before,

wavenumber k is real for the acoustic wave equation. Denoting the spatial radius of

convergence for the inverse series of the wave equation as rc, we derive the following

relation from equation (3.23):

∣

∣ei(k−k0)rc − 1
∣

∣ = 1. (3.36)

The spatial radius of convergence is, therefore, given as

rc =
π

3 |k − k0|
. (3.37)
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In case of the electromagnetic diffusion problem, the wavenumber is derived from

k2 = iωµσ, and we denote the wavenumber as

k =
1 + i√

2
|k|. (3.38)

The convergence criterion given in equation (3.23) is rewritten as follows:

∣

∣

∣

∣

Gs(r)

G0(r)

∣

∣

∣

∣

=
∣

∣

∣
e
− |k|−|k0|√

2
r
e
i
|k|−|k0|√

2
r − 1

∣

∣

∣
< 1. (3.39)

Denoting ξ = (|k|−|k0|)/
√
2, we establish the following relation at r = rc (the spatial

radius of convergence for the inverse series of the diffusion equation):

∣

∣e−ξreiξr − 1
∣

∣ = 1, (3.40)

which can be simplified as

e−ξr = 2 cos ξr. (3.41)

Equation (3.41) is a transcendental equation for the spatial radius of convergence rc

that is analyzed graphically in Figure 3.7. The dotted curve shows the right-hand

side of equation (3.41) while the dashed and solid curves show the left-hand side

for ξ < 0 and ξ > 0, respectively. The distance rc for which the inverse scattering

series converges is larger for positive value of ξ (σ > σ0) than for negative value of ξ

(σ < σ0). In other words, the spatial radius of convergence is larger when choosing a

reference model with a small electric conductivity.

Equation (3.39) shows that as r increases, the ratio |Gs/G0| varies exponentially

with distance: there is exponential decrease when |k| > |k0| (σ > σ0) and exponential
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3.1 (σ ↔ σ0), rc is derived as 1070 m.
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growth when |k| < |k0| (σ < σ0). The inverse scattering problem aims to recover

the unknown perturbation from the measured field and a reference model, and we

have freedom in choosing a reference model. Therefore, the exponential variation

of the ratio |Gs/G0| in equation (3.39) illustrates that given the true medium, we

can accelerate the convergence of the inverse series for the electromagnetic diffusion

equation by choosing a reference medium that is less conductive (smaller wavenumber)

than the true medium. On the other hand, the acoustic wave equation has a real

wavenumber, and the sign of k−k0 is irrelevant to the convergence criterion (equation

(3.37)). Figure 3.8 shows the spatial variation of the inverse scattering series for the

electromagnetic diffusion equation when the true and reference media switch roles

(σ ↔ σ0) from the previous case shown in Figure 3.6. Compared to the case when

the reference medium is more conductive than the true medium (Figure 3.6), the

spatial range of the convergence shown in Figure 3.8 is wider.

Figure 3.9 shows the path of Gs/G0 in the complex plane as the source-receiver

offset r increases for three different cases: the inverse scattering series for the acoustic

wave equation (dotted curve), the series for the electromagnetic diffusion equation

that corresponds to Figure 3.6 (dashed curve), and the series for the electromagnetic

diffusion equation with the reversed medium properties (solid curve). As the source-

receiver distance increases, the value of Gs/G0 moves away from the origin. In the

case of acoustic wave propagation, the path forms a closed circle, and the sign of

c − c0 determines the direction of the movement as r increases (clockwise direction

when c > c0 and counterclockwise direction when c < c0). On the other hand, the

path of Gs/G0 does not form a closed circle for the electromagnetic diffusion problem.

Depending on the sign of σ − σ0, the ratio Gs/G0 moves out of the convergence area

(σ < σ0) and approaches the point where Gs/G0 = −1 (σ > σ0). The convergence of
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the inverse series for the electromagnetic diffusion equation can thus be accelerated

by choosing a reference medium that is less conductive than the true medium. The

different paths represented by the dashed curve (σ < σ0) and solid curve (σ > σ0)

demonstrate the significance of the choice of the reference medium for the convergence

of the inverse scattering series for the electromagnetic diffusion problem.

3.5 Conclusions

We studied the feasibility of applying the inverse scattering series to electromag-

netic exploration by identifying the difference between the convergence patterns of

the scattering series for acoustic wave and electromagnetic diffusion problems. We

considered two different states of infinite homogeneous media, related the scattered

field Gs and perturbation P via the 3D Green functions of the homogeneous media,

and formulated the forward and inverse scattering series. Analysis of the formal ex-

pressions of the scattering series solutions shows that for electromagnetic diffusion,

the reference medium should be sufficiently conductive to allow convergence of the for-

ward series. The analysis also shows that there is no fundamental difference between

the convergence pattern of the scattering series for the acoustic wave and electromag-

netic diffusion equations. In other words, the rapid spatial decay of a diffusive field

does not necessarily mean fast convergence of the scattering series for the diffusion

equation. Model tests with parameters representing geophysical exploration of hydro-

carbon reservoirs suggest, however, that the scattering series for the electromagnetic

diffusion equation converge faster than that for the acoustic wave equation. The

model tests also show that for the electromagnetic diffusion equation, we can facili-

tate the convergence of the inverse scattering series by choosing a reference medium

that is less conductive than the true medium. This study thus provides insights
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into the convergence requirements of the scattering series and guidelines for further

application of the inverse scattering series to the interpretation of electromagnetic

data.

In this study, we considered mathematical prototypes of the wave and diffusion

equations and did not associate our study with specific physical fields such as electric

or magnetic fields. We formulated the scattering series via the Taylor series instead

of the integral equation approach, which is necessary for studies regarding an inho-

mogeneous model (Prosser, 1969; Weglein et al., 2003). The convergence condition

of the forward scattering series deduced in this study is however equivalent to that

from the integral equation approach (Prosser, 1976). Moreover, this study describes

the convergence condition of the inverse scattering series in a more quantitative way

than the integral equation approach. In fact, the convergence criterion of the inverse

scattering series identified in this work is a necessary condition when we apply the in-

verse series to an inhomogeneous model. Note that in the integral equation approach,

the evaluation of the nth order term (Pn) in the inverse scattering series involves a

series that consists of all of the lower order terms (P1, P2, · · · , Pn−1) in the inverse

series (Prosser, 1969; Weglein et al., 2003). This series is analogous with the forward

scattering series, and the convergence condition of the forward series indirectly affects

the convergence of the inverse series. Our next research will substantiate the con-

vergence conditions identified in this work with a specific physical field, the electric

field, within an inhomogeneous medium and examine how the convergence condition

of the forward series affects the convergence of the inverse series.

While comparing the scattering series for acoustic wave propagation and electro-

magnetic diffusion, it is necessary to consider the noise stability of the forward and

inverse scattering series as well as the convergence. The study of the noise stability
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involves the nonlinear error propagation (?Dorren & Snieder, 1997) and necessitates

elaborated modeling of the acoustic wave and electromagnetic data noise. We aim

to extend our research to comparing between the noise stability for acoustic wave

propagation and electromagnetic diffusion.
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Chapter 4

CONVERGENCE ANALYSIS OF SCATTERING SERIES

INVERSE SCATTERING SERIES VS. MODIFIED INVERSE

SCATTERING SERIES

4.1 Summary

The inverse scattering series (ISS) is a tool that enables rapid interpretation

of electromagnetic data using fewer computational resources and less a priori infor-

mation than conventional approaches. However, the ISS converges only when the

contrast between true and reference models is sufficiently small. We discuss the ori-

gin of the narrow range of convergence and qualitatively describe that there are two

contradictory conditions that determine the convergence of the ISS. To mitigate the

convergence conditions, we propose an alternative approach to electromagnetic data

inversion: the modified inverse scattering series (MISS). The MISS is based on the

iterative dissipative method (IDM), which provides an absolutely converging forward

series. We consider several 1D models and study the applicability of the MISS to

inverse problems of electromagnetic data in geophysics. The model tests reveal that

compared to the ISS, the MISS converges for a wider contrast of the electric con-

ductivity between true and reference models. The 1D tests also demonstrate that

models reconstructed by the MISS are closer to true models than models generated

via the ISS. This study shows that the MISS enables fast reconstruction of an electro-

magnetic model, which can be a good starting model for large-scale geophysical data
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processing, such as marine controlled-source electromagnetic (CSEM) data inversion.

4.2 Introduction

Marine electromagnetic surveys are efficient complementary tools to seismic sur-

veys in searching for a hydrocarbon reservoir (Hoversten et al., 2006; Hu et al., 2009;

Kwon & Snieder, 2011b). The advantage of electromagnetic exploration over seismic

methods originates from its capability to discern the reservoir composition: hydrocar-

bon is a poor electric conductor while water within a reservoir increases the electric

conductivity. The most well-known marine electromagnetic technique for hydrocar-

bon exploration is the controlled-source electromagnetic (CSEM) method (Chave &

Cox, 1982; Cox et al., 1986; Srnka et al., 2006). The typical frequency range and depth

of investigation of the method are 0.1 - 10 Hz and several kilometers, respectively. To

ensure greater depth penetration, CSEM data can be combined with magnetotelluric

(MT) data, which are generated by natural low-frequency sources (Abubakar et al.,

2009; Commer & Newman, 2009).

There is a wide spectrum of approaches to the modeling of CSEM and MT data:

the finite-difference (Yee, 1966; Alumbaugh et al., 1996), finite-element (Pridmore

et al., 1981; Um et al., 2010), and integral equation methods (Hohmann, 1975; Zh-

danov et al., 2006). Several approximate methods that require various prerequisites

such as a low-contrast assumption (Habashy et al., 1993; Torres-Verdin & Habashy,

2001) are also available. Among them, the finite-difference method is the most preva-

lent approach for large-scale geophysical problems because of its apparent simplicity of

numerical implementation and adaptability to model complexity. The finite-difference

method, on the other hand, necessitates more computational resources and process-

ing time. Furthermore, a reasonable interpretation of marine electromagnetic surveys
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generally involves 3D inversion, which still remains a difficult and computationally in-

tense task (Newman & Alumbaugh, 1997; Commer & Newman, 2008). Only recently,

the first successful examples of 3D electromagnetic inversion have been reported, and

the inverse problem is currently an area of intense research (Avdeev, 2005).

The difficulty of 3D electromagnetic inversion arises from the fact that the in-

verse problem is large-scale, strongly nonlinear, and severely ill-posed (Jackson, 1972;

Parker, 1977). The inversion process aims to retrieve a model that has infinitely

many degrees of freedom from a finite amount of data (Snieder, 1998). There are

many factors that help constrain the output from the process that include the use of

a priori information, using different starting models of the inversion, and the design

of the data misfit function or model regularization (Tikhonov & Arsenin, 1977). In

this study, we implement a scheme for electromagnetic data processing that enables

rapid interpretation of data and provides a good starting model for more rigorous

large-scale inversion. The inverse scattering series (ISS) is adequate for this goal

because it can effectively resolve the nonlinearity of an inverse problem and recon-

struct an electromagnetic model using fewer computational resources and less a priori

information than the conventional approaches addressed above.

The inverse scattering theory quantitatively retrieves the scatterers from knowl-

edge of the scattering data. The theory originates from inverse problems in quantum

scattering theory and formal solutions of inverse scattering problems (Gel’fand &

Levitan, 1951; Jost & Kohn, 1952; Moses, 1956; Prosser, 1969). The ISS expresses

the retrieved model perturbation as a series in order of the scattered field. The

geophysical application of the ISS has focused on seismic exploration, in particular

on multiple suppressions (Weglein et al., 1997) and seismic imaging (Weglein et al.,

2010). However the ISS has not been widely applied to the interpretation of electro-
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magnetic surveys. Kwon & Snieder (2010) have recently investigated the feasibility

of this application and clarified the difference between scattering series for acoustic

wave propagation and electromagnetic diffusion. Their analytic study also identifies

convergence conditions of the forward and inverse series for homogeneous models.

In the following, we formulate the ISS for 1D electromagnetic model reconstruc-

tion and exemplify that the ISS converges only when the contrast between the true

and reference models is sufficiently small. We also show that in addition to the con-

vergence condition of the inverse series, there is another condition that determines

the convergence/divergence of the ISS, and we illustrate that this condition is closely

related to the convergence condition of the forward series. We thereafter propose

an alternative approach, the modified inverse scattering series (MISS). The MISS is

based on the iterative dissipative method (IDM), which guarantees an absolutely con-

verging forward series (Singer, 1995; Singer & Fainberg, 1995; Pankratov et al., 1995),

and the convergence of the MISS is thus free from the newly identified condition. Fi-

nally, we show that the MISS more robustly converges than the ISS and discuss the

advantage of the MISS over the original by comparing the inversion results from the

two methods.

4.3 1D formulation of inverse scattering series

The fundamental equations for electromagnetism, the Maxwell’s equations (Jack-

son, 1999), in an isotropic medium are

∇×E− iωµH = 0, (4.1)

∇×H− (σ − iωǫ)E = Js, (4.2)
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where E is the electric field (V/m), H the magnetic field (A/m), Js the electric cur-

rent source (A/m2), µ the magnetic permeability (N/A2), σ the electric conductivity

(S/m), and ǫ the dielectric permittivity (C2/Nm2), respectively. We consider a single

Fourier component corresponding to a time variation e−iωt. Outside of certain types

of ore bodies, magnetizable materials are rare in the subsurface (Chave & Cox, 1982),

and we take the magnetic permeability µ to be the free space value. For frequen-

cies of electromagnetic methods used in hydrocarbon exploration, the displacement

current (ωǫE) is much smaller than the induction current (σE) in the subsurface

(Hohmann, 1975). We therefore ignore the variation of the dielectric permittivity

ǫ and approximate it to the value of water. The 1D electromagnetic model of this

study is illustrated in Figure 4.1: the electric conductivity varies in the z-axis di-

rection, and a harmonic plane wave propagates in the same direction. Applying the

1D assumption to the Maxwell’s equations, we derive the following scalar Helmholtz

equation:

L(z;ω)G(z, zs;ω) = −δ(z − zs), (4.3)

where G is the Green function of the electric field (the component of E parallel to

the electric current source), zs represents the location of the unit current source, and

the differential operator L is

L(z;ω) =
1

iωµ

d2

dz2
+ σ(z)− iωǫ. (4.4)

Note that as shown in Figure 4.1, the electric field direction is opposite to the electric

current source, and the unit of the Green function is Ω (electric field / (unit current

source × unit length)).
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Figure 4.1. 1D electromagnetic radiation geometry for this study. The Poynting
vector S indicates the direction of energy flux. The electric field E is divergenceless,
and the direction of the electric field is opposite to that of the infinitely planar current
source Js on the (x, y) plane. The electric conductivity σ varies in the direction normal
to the current source.

We consider two types of 1D electromagnetic media: the true (perturbed) and

reference (unperturbed) media. The governing equations for the two media are rep-

resented by two differential operators: L and L0, respectively. We denote the Green

functions for the two media as G and G0, respectively. The Lippmann-Schwinger

equation (Lippmann & Schwinger, 1950; Colton & Kress, 1998) relates the Green

functions for the true and reference models as

G(z, zs;ω) = G0(z, zs;ω)

+

∫

G0(z, z
′;ω)P (z′)G(z′, zs;ω) dz

′, (4.5)

where the perturbation P is defined as the difference between the two differential
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operators:

P (z) = L(z;ω)− L0(z;ω) = σ(z)− σ0(z). (4.6)

The scattered field Gs is the difference between the two Green functions (G−G0) that

can, in operator form, be expanded as an infinite series in order of the perturbation

P :

Gs = G0PG0 +G0PG0PG0 + · · · . (4.7)

The above equation is known as the Born, Neumann, or forward scattering series

(Weglein et al., 1997). It is known that for homogeneous models, the forward scat-

tering series of electromagnetic diffusion problems converges only when the reference

medium is sufficiently conductive (Kwon & Snieder, 2010) such that

σ < 2 σ0. (4.8)

The divergence of the forward series implies that strong scattering occurs, and the

term G0P in equation (4.5) is no longer a contracting kernel (Pankratov et al., 1995).

While the forward series describes the scattered field Gs as a series in order of

the perturbation P , the inverse scattering series (ISS) addresses the perturbation as

a series expansion in order of the scattered field:

P = P1 + P2 + P3 + · · · , (4.9)

where Pn is the portion of P that is of the nth order of the scattered field. Substituting

expression (4.9) into the forward series (equation (4.7)) and equating terms that are
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of the same order of the scattered field Gs (Prosser, 1969; Weglein et al., 2003) yield

the following set of integral equations represented in operator form:

Gs = G0P1G0, (4.10)

0 = G0P2G0 +G0P1G0P1G0, (4.11)

0 = G0P3G0 +G0P1G0P2G0 +G0P2G0P1G0

+ G0P1G0P1G0P1G0, (4.12)

· · ·

Equation (4.10) is the linear or Born approximation which allows P1 to be determined

from the scattered field Gs. P2 is then computed from P1 with equation (4.11).

Equation (4.12) determines P3 from P1 and P2. Starting with the scattered field, one

continues the iterative process and constructs the entire series for the perturbation P .

The nth order term in the inverse series is derived by solving the following Fredholm

integral equation of the first kind (Morse & Feshbach, 1953):

Dn(G
s, P1, P2, · · · , Pn−1;ω)

=

∫

G0(z, z
′;ω)Pn(z

′)G0(z
′, zs;ω) dz

′, (4.13)

where Dn generally consists of 2n−1−1 terms. In this study, we assume that the source

and receiver are coincident. Applying this assumption and utilizing the reciprocity

principle yield the following relation:

G0PlG0PmG0 = G0PmG0PlG0, (4.14)
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where l and m are arbitrary. The above relation simplifies Dn to

Dn =



















Gs (n = 1),

−G0P1G0P1G0 (n = 2),

−G0P1Dn−1 (n = 3, 4, · · · ).

(4.15)

Kwon & Snieder (2010) have shown that for homogeneous models, expression (4.9)

converges only for weakly scattered fields that satisfy

∣

∣

∣

∣

Gs

G0

∣

∣

∣

∣

< 1. (4.16)

This convergence condition suggests that for electromagnetic diffusion, we can im-

prove the convergence of the ISS by choosing a resistive reference medium for which

the amplitude of the reference Green function |G0| is large.

The main advantage of the ISS is that it enables rapid interpretation of elec-

tromagnetic data. The merit of the ISS is best taken advantage of by choosing a

reference model for which the Green function G0 is known analytically. Throughout

this study, we assume the simplest reference model, a homogeneous medium. In the

case of a homogeneous reference medium, the solution of equation (4.3) is (Morse &

Feshbach, 1953)

G0(z, zs;ω) = −ωµ

2k0
eik0|z−zs|, (4.17)

where k2
0 = ω2µǫ+ iωµσ0, and equation (4.13) becomes

Dn(ω) =

(

ωµ

2k0

)2∫

eik0(|z−z′|+|z′−zs|)Pn(z
′) dz′.

(4.18)
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The above expression can, however, generate a negative conductivity. A conventional

approach to avoid this unphysical solution is inverting for the logarithm of the electric

conductivity (Newman & Alumbaugh, 1997). Following that convention, we introduce

an intermediate parameter M such that σ = σ0 e
M , assume that σ is close to the

reference conductivity, and approximate the perturbation as

P (z) = σ(z)− σ0 ≃ σ0 M(z). (4.19)

Expression (4.18) is then rewritten as

Dn(ω) =

(

ωµ

2k0

)2∫

σ0e
ik0(|z−z′|+|z′−zs|)Mn(z

′) dz′.

(4.20)

We solve equation (4.20) for Mn through singular value decomposition (Golub &

Reinsch, 1970) and reconstruct the electric conductivity as follows:

σ(z) = σ0 exp
(

∑

Mn(z)
)

. (4.21)

Note that the approximation in equations (4.19) - (4.21) is a deviation from the

rigorous definition of the ISS approach in equations (4.6) - (4.18) because expression

(4.19) is a linear approximation, and we discard higher order terms of the Taylor

series expansion of σ(M). We adopt the approximation to clarify limitations of the

ISS and to highlight the advantages of a modified approach that we propose later in

this study.
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4.4 Model tests of inverse scattering series

To simulate the electric field for true (perturbed) models, we use the finite-

difference method with the staggered grid algorithm (Yee, 1966) and suppress artificial

reflections from the boundary of the modeling domain via the perfectly match layer

method (Berenger, 1994). The spatial range of the modeling domain is −20 < z <

20 km, the spatial discretization interval ∆z is 20 m, and the unit electric current

source is at the origin. We add frequency independent Gaussian random noise with a

standard deviation 10−9 V/m to the simulated electric field. To solve equation (4.20)

for Mn, we discretize the inverse problem: the frequency sampling range is 0.1 - 10

Hz, and 51 frequency samples are evenly distributed on a logarithmic scale.

The inverse problem is ill-posed (Jackson, 1972; Parker, 1977) and nonlinear

(Snieder, 1998). It is thus necessary to include a stabilizing functional (Tikhonov &

Arsenin, 1977) for the reconstruction of a stable solution. The stabilizing functional

Φm is part of a penalty functional Φ and trades off between data misfit Φd and a priori

information: Φ = Φd+βΦm, where β is a trade-off coefficient or model regularization

factor. The choice of stabilizing functional is important for electromagnetic inverse

problems. In this study, we regularize the roughness of the model (Constable et al.,

1987) as follows:

Φm =

∫
(

w(z)
d2M

dz2

)2

dz, (4.22)

where a depth weighting factor w(z) is proportional to e|z/1km|. The trade-off coeffi-

cient β is model-dependent, and we determine the coefficient from an L-curve analysis

(Hansen, 1992) for each model. In this section, we consider resistive and conductive

anomaly models.
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Figure 4.2. Resistive anomaly model. (a) True model (solid curve) versus reference
model (dotted line) of the inverse series. The reference conductivity is identical with
the background conductivity of the true model. (b) The convergence requirement of
the inverse series, expression (4.16), is satisfied in the employed frequency range.

4.4.1 Resistive anomaly model

Figure 4.2(a) presents the true (solid curve) and reference (dotted line) media

of the resistive anomaly model. The true medium consists of a resistive structure at

z = 1.5 km and a conductive background. Note that the resistive layer constitutes

a strong perturbation: the ratio of the electric conductivity between the conductive

background and resistive target is 10. The conductivity of the background is same

as that of the reference medium. Figure 4.2(b) illustrates that within the frequency

range used in the experiment, the scattered field has a smaller amplitude than the

reference Green function and fulfills the convergence condition of the inverse series in

expression (4.16).

Figure 4.3 demonstrates how the ISS evolves as we include higher order pertur-
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Figure 4.3. ISS solutions for the resistive anomaly model shown in Figure 4.2. The
solutions are derived from equation (4.21) and compared for increasing order n of the
inverse series. The thin solid curve denotes the true model. The ISS converges.

bation terms. The inverse series converges for the resistive anomaly model: the ISS

solution evaluated up to the 10th order (n = 10) is practically identical to the solu-

tion evaluated up to the 20th order (n = 20). This convergence pattern of the ISS is

consistent with the value of |Gs/G0| shown in Figure 4.2(b). The reconstructed model

is a linear combination of singular vectors that span the resolvable model space and

shows a more significant oscillatory variation near the resistive target. The recon-

structed conductivity value of the resistive target is roughly three times that of the

true model because the reconstruction of the resistive target is physically limited by

the relatively conductive background medium, which shields the resistive structure.

The Born approximation (n = 1) accounts for most of reconstructing the resistive

structure of this model.
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4.4.2 Conductive anomaly model

Figure 4.4 depicts a conductive structure at z = 1.5 km and a relatively resis-

tive background. The conductivity of the reference model is same as that of the

background medium. As in the case of the previous model, the scattered field has a

smaller amplitude than the reference Green function within the employed frequency

range, which suggests convergence of the inverse series. The inverse series shown in

Figure 4.5, however, does not converge for the conductive anomaly model. The model

reconstructed by the Born approximation (dotted curve) reveals the conductive struc-

ture, but the subsequent higher order solutions diverge. The divergence of the ISS

for this model suggests that in addition to the amplitude of the scattered field Gs

(expression (4.16)), there is another factor that affects the convergence/divergence of

the ISS. Recall that during the ISS procedure, we iteratively solve equation (4.20) for

the increasing order n of the inverse series, and its solution Mn depends on the left

hand side of equation (4.20), Dn. Figure 4.6 shows that contrary to the case of the

resistive anomaly model, |Dn| increases exponentially during the iterative process for

the conductive anomaly model. This divergence of Dn causes the divergence of the

ISS.

To illustrate the convergence condition ofDn, we rewriteDn from equation (4.15)

as

Dn = (−1)n+1 (G0P1)
nG0 (4.23)

and observe the similarity between Dn and the forward scattering series. Assume

that we solve a forward scattering problem for a true model that is identical to the

model recovered from the Born approximation (P = P1 and σ = σ1). The nth order
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Figure 4.4. Conductive anomaly model. (a) True model (solid curve) versus reference
model (dotted line) of the inverse series. The reference conductivity is identical with
the background conductivity of the true model. (b) The convergence requirement of
the inverse series, expression (4.16), is satisfied in the employed frequency range.

term in this forward series then becomes

Gs
n = (G0P1)

nG0. (4.24)

Considering the convergence condition for homogeneous models in equation (4.8), we

qualitatively estimate the convergence condition of this forward series as

σ1 < 2 σ0. (4.25)

Note that equations (4.23) and (4.24) have an identical kernel G0P1, and expression

(4.25) therefore also qualitatively describes the convergence condition of Dn: for the

convergence of Dn, the reconstructed model from the Born approximation σ1 needs
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Figure 4.5. ISS solutions for the conductive anomaly model shown in Figure 4.4. The
solutions are derived from equation (4.21) and compared for increasing order n of the
inverse series. The thin solid curve denotes the true model. The ISS diverges. The
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of the ISS for f = 1 Hz. The dotted and dashed curves represent the ratio |Dn/D1|
for the models shown in Figures 4.2 and 4.4, respectively. Contrary to the resistive
anomaly model, the ratio exhibits an exponential increase for the conductive anomaly
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(Figure 4.5). Choosing a more conductive reference model (σ0 = 0.5 S/m) decreases
the ratio (dot-dashed curve).
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to be sufficiently resistive compared to the reference model. In other words, it is

necessary to choose a sufficiently conductive reference model that allows σ1 to satisfy

expression (4.25).

Figure 4.5 shows that near z = 1.7 km, the maximum conductivity of the solution

retrieved from the Born approximation (n = 1) is 10 times larger than the reference

conductivity (0.1 S/m), and the criterion (4.25) for convergence is not satisfied. The

left hand side of equation (4.20) and the inverse series consequently diverge as we

incorporate higher order terms. This example demonstrates the challenge of recon-

structing a conductive anomaly via the inverse scattering formulation and suggests

that for the convergence of the inverse series, the reference model must be sufficiently

conductive such that the Born approximation yields a solution that satisfies expres-

sion (4.25). One therefore may choose a more conductive reference model that allows

Dn to decrease during the ISS procedure as shown in Figure 4.6 (dot-dashed curve).

Figure 4.7(a) presents the situation, where the reference conductivity σ0 is 5 times

larger than the background value of the previous example in Figure4.4(a). The more

conductive reference model yields, however, a smaller amplitude of the reference Green

function and a larger ratio between the scattered field and reference Green function

in expression (4.16). Figure 4.7(b) shows that by choosing the more conductive refer-

ence model, the convergence condition of the inverse series (|Gs/G0| < 1) is violated.

The corresponding divergence of the inverse series is demonstrated in Figure 4.8.

4.4.3 Limitation of inverse scattering series

The convergence conditions of expressions (4.16) and (4.25) are contradictory:

expression (4.16) favors more a resistive reference model, and expression (4.25) prefers

more a conductive model. The two examples presented in Figures 4.4 - 4.8 pose the
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Figure 4.7. Conductive anomaly model with a more conductive reference model than
the model shown in Figure 4.4. (a) True model (solid curve) versus reference model
(dotted line) of the inverse series. The reference conductivity is 5 times larger than
the background conductivity of the actual medium. (b) The convergence requirement
of the inverse series, expression (4.16), is violated in the employed frequency range.
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Figure 4.9. Dilemma of the ISS. A conductive reference model increases the possibility
of violating the convergence condition of inverse series, expression (4.16). A resistive
reference model, on the other hand, can result in the divergence of the left hand side
of equation (4.20) and the inverse series itself. The range of the reference conductivity
that allows convergence of the inverse series is limited by both the upper and lower
bounds (dotted lines).
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dilemma of choosing a reference model, which is inherent in the ISS procedure. Figure

4.9 summarizes the dilemma. As we choose a more conductive reference model, it

is increasingly likely to violate the convergence condition of the inverse series in

expression (4.16). On the other hand, the left hand side of equation (4.20) more

readily diverges by choosing a more resistive reference model. The two contradictory

conditions result in a narrow range of the reference model in which the ISS converges.

This limitation of the ISS therefore necessitates an alternative approach of the inverse

series. In this study, we remove the lower bound of convergence in Figure 4.9 and

guarantee the convergence of the inverse series within a wider range of reference

models.

4.5 1D formulation of modified inverse scattering series

As discussed in the previous section, the application of the ISS is limited by both

the convergence condition of the inverse series and that of Dn, which is closely related

to the forward series. We next remove the latter limitation. For electromagnetic

diffusion, the iterative dissipative method (IDM) allows one to formulate an absolutely

converging forward series for physically meaningful medium parameters, i.e., positive

and finite electric conductivity. The IDM is also an efficient preconditioner that is

necessary for large scale 3D electromagnetic forward problems (Avdeev, 2005). The

IDM has been implemented for 3D electromagnetic problems (Avdeev et al., 1997)

and applied to forward simulations of field data (Kuvshinov et al., 2005). In this

study, we apply the IDM in an inverse sense and formulate an alternative approach

of the inverse series: the modified inverse scattering series (MISS). The application of

the modified approach is not restricted by the convergence condition of the forward

series.
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The basic idea of the IDM originates from the fact that the electric current

created in a conductive medium by an external current source is smaller than the

external current. The IDM is valid for arbitrary conductive media (Singer, 1995;

Singer & Fainberg, 1995). The IDM transforms the Lippmann-Schwinger equation

(4.5) into the following modified scattering equation (Avdeev et al., 2002):

χ(z, zs;ω) = χ0(z, zs;ω)

+

∫

Q(z, z′;ω)R(z′)χ(z′, zs;ω) dz
′, (4.26)

where

χ(z, zs;ω) =
1

2
√

σ0(z)
[ (σ(z)+σ0(z))G(z, zs;ω)

− 2σ0(z)G0(z, zs;ω) ], (4.27)

χ0(z, zs;ω)

=

∫

Q(z, z′;ω)
√

σ0(z′)R(z′)G0(z
′, zs;ω) dz

′,

(4.28)

Q(z, z′;ω) = δ(z − z′)

+ 2
√

σ0(z) G0(z, z
′;ω)

√

σ0(z′), (4.29)

and the conductivity ratio R is defined as

−1 < R(z) =
σ(z)− σ0(z)

σ(z) + σ0(z)
< 1. (4.30)
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Contrary to the Lippmann-Schwinger equation, the modified scattering equation has

a contracting kernel QR such that

∀χ :

∣

∣

∣

∣

∣

∣

∣

∣

∫

Q(z, z′;ω)R(z′)χ(z′, zs;ω) dz
′
∣

∣

∣

∣

∣

∣

∣

∣

< ‖χ‖,

(4.31)

where ‖χ‖ denotes the L2-norm of χ (Pankratov et al., 1995). Equation (4.26) there-

fore yields the following forward series that absolutely converges:

χ = χ0 +QRχ0 +QRQRχ0 + · · · . (4.32)

In this modified forward series, the χ field is expressed as a series in order of the

conductivity ratio R, and the true Green function G is subsequently derived using

equation (4.27) from the χ field and electric conductivity at the receiver location.

In this study, we consider homogeneous reference models and rewrite equation

(4.32) as

χ√
σ0

= QRG0 +QRQRG0 + · · · . (4.33)

Following the procedure of the ISS presented in the previous section, we formulate

the MISS that describes the conductivity ratio R as a series in order of the χ field:

R = R1 +R2 +R3 + · · · , (4.34)

where Rn is the portion of R that is of the nth order of the χ field. We substitute

the above series into equation (4.33), equate terms that are of the same order of the
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χ field, and derive the following integral equation:

D̃n(χ,R1, R2, · · · , Rn−1;ω)

=

∫

Q(z, z′;ω)Rn(z
′)G0(z

′, zs;ω) dz
′, (4.35)

which allows one to iteratively solve for Rn from the measured χ field and all of the

lower order terms of the modified inverse series. Note that for the evaluation of the

χ field, we require both the electric conductivity at the receiver location and the

scattered field (equation (4.27)). As in the case of the ISS, D̃n consists of 2n−1 − 1

terms for higher order cases. In this study, we locate the source and receiver at the

same position (z = 0), assume that the reference conductivity at the location is the

true electric conductivity, and establish the following relation in operator form:

QRlQRmG0 = QRmQRlG0, (4.36)

where l and m are arbitrary. The above relation simplifies D̃n to

D̃n =



















χ/
√
σ0 (n = 1),

−QR1QR1G0 (n = 2),

−QR1D̃n−1 (n = 3, 4, · · · ).

(4.37)

Since QR1 is a contracting kernel, D̃n does not diverge. The convergence of D̃n implies

that we resolve the dilemma of the ISS and remove the lower limit of convergence in

Figure 4.9. The reference Green function is given by equation (4.17), and equation
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(4.35) is expressed as

D̃n(ω) = Rn(z)G0(z, zs;ω)

+

∫

G0(z, z
′;ω)Rn(z

′)G0(z
′, zs;ω) dz

′

=

(

ωµ

2k0

)2∫

2σ0e
ik0(|z−z′|+|z′−zs|)Rn(z

′) dz′, (4.38)

where we apply that the reference conductivity is the true electric conductivity at

the receiver location (Rn(z) = 0). Note the similarity between the equation above

and equation (4.20). We iteratively solve equations (4.37) and (4.38) for Rn and

reconstruct the electric conductivity from

σ(z) = σ0
1 +

∑

Rn(z)

1−
∑

Rn(z)
. (4.39)

4.6 Model tests of modified inverse scattering series

In this section, we identify a different convergence pattern between the ISS and

MISS for three representative models: resistive, conductive, and complex anomaly

models. We also discuss the difference between the inversion results from the ISS

and MISS. The input electric field data are identical for the two cases. The sta-

bilizing functional Φm however is not identical. As shown in equation (4.22), the

implemented ISS approach recovers models that exhibit a smooth variation in terms

of the logarithm of the electric conductivity. The MISS, on the other hand, regularize

the conductivity ratio R as

Φm =

∫
(

w(z)
d2R

dz2

)2

dz, (4.40)
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where w(z) is the same depth weighting factor as the ISS. Therefore, the trade-off

coefficient β should be different from the model tests of the ISS, and we derive the

model-dependent coefficient from an independent L-curve analysis. We also require

the trade-off coefficient to yield a physically valid electric conductivity: −1 < R < 1.

The rest of the MISS procedure is identical to that of the ISS procedure.

4.6.1 Resistive anomaly model

We consider the model of Figures 4.2 and 4.3. Figure 4.10 shows that as in the

case of the ISS, the MISS converges for the resistive anomaly model. The convergence

criterion illustrated in Figure 4.2(b) adequately predicts the convergence of the mod-

ified inverse series. The convergence pattern also shows that the Born approximation

(n = 1) contributes most to the model reconstruction of this resistive structure, and

the contribution of the higher order terms are less significant.

Figure 4.11 compares the two solutions from the ISS and MISS. The difference

between the two inversion results are insignificant near the origin and becomes more

obvious near the resistive target. This difference originates from the fact that the

relatively conductive background medium shields the resistive structure, and the re-

construction of the resistive target is physically limited. As a result, the inverse

problem is ill-posed, and the solutions shown in Figure 4.11 are constrained by the

employed regularization. Since the regularization acts on different functions in the

ISS and MISS (M and R, respectively) with different regularization parameters, the

reconstructed models differ. With respect to the location and conductivity value of

the reconstructed resistive structure, the MISS yields a model that is closer to the

true model (solid curve) than the ISS. From equations (4.21) and (4.39), we can ex-

press the differential dependence of the electric conductivity on the two parameters
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Figure 4.10. MISS solutions for the resistive anomaly model shown in Figure 4.2. The
solutions are derived from equation (4.39) and compared for increasing order n of the
inverse series. The thin solid curve denotes the true model. Both the ISS (Figure
4.3) and MISS converge.

M and R as

∂ σ

∂M
= σ0e

M = σ (4.41)

and

∂ σ

∂R
=

2σ0

(1− R)2
=

(σ + σ0)
2

2σ0

, (4.42)

respectively, whereM andR are the partial sums up to the nth order. These equations

suggest that the variation of the electric conductivity depends more strongly on the
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Figure 4.11. Comparison between the reconstructed models from the ISS and MISS
for the resistive anomaly model shown in Figure 4.2. The MISS solution (dot-dashed
curve) is closer to the true model (thin solid curve) than the model generated via the
ISS (dashed curve).

conductivity ratio R than on the logarithm of the conductivity M :

∂ σ

∂M
<

∂ σ

∂R
. (4.43)

As depicted in Figure 4.11, the MISS therefore enables more detailed model recon-

struction than the ISS.

4.6.2 Conductive anomaly model

Figures 4.4 and 4.5 illustrate that the ISS do not converge for the conductive

anomaly model. This divergence arises from the fact that the electric conductivity

from the Born approximation surpasses the approximate limit shown in expression

(4.25), and the left hand side of equation (4.20), Dn, diverges (dashed curve in Figure
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Figure 4.12. The left hand side of equation (4.38), D̃n, as a function of the order n of
the MISS for f = 1 Hz. The dotted and dashed curves represent the ratio |D̃n/D̃1|
for the models shown in Figures 4.2 and 4.4, respectively. Contrary to the case of
the ISS (dashed curve in Figure 4.6), the ratio decreases for the conductive anomaly
model.
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Figure 4.13. MISS solutions for the conductive anomaly model shown in Figure 4.4.
The solutions are derived from equation (4.39) and compared for increasing order n
of the inverse series. The thin solid curve denotes the true model. Contrary to the
ISS (Figure 4.5), the MISS converges.

4.6). The MISS, on the other hand, is based on an absolutely converging forward se-

ries and free from the limitation. Figure 4.12 illustrates that for the same conductive

anomaly model, the left hand side of equation (4.38), D̃n, decreases. The MISS thus

yields a solution that corresponds to the prediction of the convergence criterion in

Figure 4.4(b) (|Gs/G0| < 1). Figure 4.13 shows that contrary to the ISS, the MISS

converges to a model that reveals the conductive anomaly structure. The conver-

gence of the MISS demonstrates that it provides a converging solution for a larger

contrast between the true and reference models than the ISS. Figure 4.14 compares

the reconstructed model from the MISS with that from the Born approximation of

the ISS. As in the case of the resistive anomaly model, the MISS solution is closer to

the conductive target than the model retrieved via the ISS.
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Figure 4.14. Comparison between the reconstructed models from the ISS and MISS for
the conductive anomaly model shown in Figure 4.4. The MISS solution (dot-dashed
curve) is closer to the true model (thin solid curve) than the model reconstructed by
the Born approximation of the ISS (dashed curve).

4.6.3 Complex anomaly model

We consider a complicated conductivity structure that further highlights the ad-

vantage of the modified approach over the ISS. Figure 4.15(a) shows the true and ref-

erence conductivity distributions of the complex anomaly model, and Figure 4.15(b)

depicts the ratio between the scattered field and reference Green function. Within

the employed frequency range, the scattered field satisfies the convergence criterion of

the inverse series in expression (4.16), and both the ISS and MISS converge (Figures

4.16 and 4.17). Compared to the previous models, the contribution of the higher

order terms in the inverse series is more pronounced for the complex anomaly model.

As a result, the solutions evaluated up to the 20th order are substantially different

from the models reconstructed by the Born approximation, which suggests that the
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Figure 4.15. Complex anomaly model. (a) True model (solid curve) versus reference
model (dotted line) of the inverse series. The reference conductivity is identical with
the background conductivity of the true model. (b) The convergence requirement of
the inverse series, expression (4.16), is satisfied in the employed frequency range.
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Figure 4.16. ISS solutions for the complex anomaly model shown in Figure 4.15. The
solutions are derived from equation (4.21) and compared for increasing order n of the
inverse series. The thin solid curve denotes the true model. The ISS converges.
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Figure 4.17. MISS solutions for the complex anomaly model shown in Figure 4.15.
The solutions are derived from equation (4.39) and compared for increasing order n of
the inverse series. The thin solid curve denotes the true model. Both the ISS (Figure
4.16) and MISS converge.

ISS and MISS are more significant with increasing model complexity. This reflects

that the Born approximation cannot be expected to give a useful result for strongly

non-linear problems (Snieder, 1990a).

Figure 4.18 compares the reconstructed models from the ISS and MISS. The

difference between the two solutions is insignificant near the source/receiver loca-

tion (z = 0) but increases with distance from that location. Note that the MISS

recovers the resistive structure at z = 1.3 - 1.7 km, which the ISS fails to retrieve.

This example demonstrates that compared to the ISS, the modified approach more

effectively reconstructs the complicated conductivity structure. Combined with the

previous model test that demonstrates the robust convergence of the MISS, the suc-

cessful reconstruction of the complex anomaly structure manifests the superiority of

the modified approach to the original.
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Figure 4.18. Comparison between the reconstructed models from the ISS and MISS
for the complex anomaly model shown in Figure 4.15. The true (thin solid curve)
and reference (dotted line) models are also depicted. The ISS does not retrieve the
resistive structure at z = 1.3 - 1.7 km. The MISS, on the other hand, recovers the
resistive structure.
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4.7 Conclusions

We formulated the ISS and MISS for the 1D electromagnetic radiation geometry

and identified the difference between the convergence patterns of the two approaches

for three representative anomaly structures: the resistive, conductive, and complex

anomaly models. We also studied the difference between the reconstructed models

from the ISS and MISS. The analysis of the ISS shows that in addition to the con-

vergence condition of the inverse series, there is another condition that determines

the convergence/divergence of the ISS, and this condition is closely related to the

convergence condition of the forward series. These two convergence conditions are

contradictory and, as a result, strongly restrict the application of the ISS: the inverse

series converges only for a narrow range of a reference conductivity that is close enough

to a true model. The MISS, on the other hand, allows one to more freely choose a

reference model, and the newly identified convergence condition no longer affects the

convergence of the MISS. Moreover, the models reconstructed by the MISS are closer

to the true models than the models generated via the ISS: the resistive target of the

complex anomaly model is not identified by the ISS while the modified approach re-

trieves the target within the resolution limits of the inverse problem. In addition to

the robust convergence, the estimate of the resistive target signifies that the MISS is

more advantageous than the ISS for the reconstruction of electric conductivity, which

varies in the order of magnitude within the subsurface.

The Born approximation plays the most significant role during the iterative

model update of the inverse series. The contribution of the higher order terms is in-

significant for the simple structures with an isolated resistive or conductive anomaly.

The higher order terms, however, play a more significant role in the inversion with

increasing model complexity: in the case of the complex anomaly model, the solution
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evaluated up to the 20th order of the MISS is substantially different from the model

retrieved from the Born approximation. In searching for a hydrocarbon reservoir,

the electromagnetic inversion involves complex geological structures and is a com-

putationally intensive process. The MISS is therefore an effective scheme that can

provide a good starting model for more rigorous large-scale inversion for the three-

dimensional conductivity structure of the subsurface. In this study, we consider the

1D radiation geometry shown in Figure 4.1, assume that the source and receiver are

coincident, and simplify the left hand side of equations (4.20) and (4.38) as equations

(4.15) and (4.37), respectively. However, the application of the MISS to more general

cases is straightforward, and the conclusions deduced in this study are still valid for

3D radiation geometries and arbitrary source/receiver locations.
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Chapter 5

CONCLUSION

We have analyzed two unconventional approaches of electromagnetic inversion:

hierarchical Bayesian inversion and inverse scattering series. We applied the hierarchi-

cal Bayesian inversion to the uncertainty analysis for the joint inversion and utilized

rock-physics models to integrate these two disparate data sets. Numerical simulations

show that rock-physics model uncertainties play a more significant role on the overall

uncertainty variation than do seismic and CSEM data noise. The numerical experi-

ment also suggests different ways of accomplishing uncertainty reduction depending

on whether our interests focus on porosity or on water saturation. When porosity is

our prime concern, we can effectively accomplish uncertainty reduction by acquiring

more precise P -wave velocity information and suppressing the seismic data noise. On

the other hand, if we need a more accurate assessment of water saturation, the acqui-

sition of more detailed electric conductivity information and the suppression of CSEM

data noise are desirable. We have also studied the feasibility of the inverse scattering

series (ISS), which can effectively resolve the nonlinearity of an inverse problem, for

the interpretation of electromagnetic data. The application of the inverse scattering

series is limited because the series converges when the reference model is sufficiently

close to the true model. The analysis of the inverse scattering series shows that there

are two contradictory conditions that determine the convergence/divergence of the

series. These two conditions strongly restrict the application of the ISS: the inverse

scattering series converges only for a narrow range of a reference conductivity that
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is close enough to a true model. We have therefore suggested the modified inverse

scattering series (MISS), which allows one to more freely choose a reference model,

Moreover, the models reconstructed by the MISS are closer to the true models than

the models generated via the original inverse scattering series: the resistive target of

the complex anomaly model is not identified by the ISS while the modified approach

retrieves the target within the resolution limits of the inverse problem. In addition to

the robust convergence, the estimate of the resistive target signifies that the MISS is

more advantageous than the ISS for the reconstruction of electric conductivity, which

varies in the order of magnitude within the subsurface.
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APPENDIX A

METROPOLIS-HASTINGS ALGORITHM

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is a

method for generating a sequence of samples from a probability distribution that is

difficult to sample directly. The actual implementation of the algorithm is comprised

of the following steps.

1. Pick an initial sample mprev ∈ R
n and set k = 1, m(k) = mprev.

2. Increase k → k + 1.

3. Draw a proposal samplemprop ∈ R
n from the proposal distribution q(mprev,mprop)

and calculate the acceptance ratio

α(mprev,mprop) = min

[

1,
πpost(mprop)q(mprop,mprev)

πpost(mprev)q(mprev,mprop)

]

. (A.1)

4. Draw t ∈ [0, 1] from uniform probability density.

5. If α(mprev,mprop) ≥ t, set m(k) = mprop; otherwise, m
(k) = mprev.

6. When k is the desired sample size, stop; otherwise, repeat the procedure starting

with step (2).

We choose a Gaussian distribution as a proposal distribution as follows:

mprop ∼ N(mprev, σ
2
i I), (A.2)
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where the variances σ2
i describe the probabilistic sampling step of the model param-

eters during the random simulation. If σ2
i is too large, the drawn mprop is practically

never accepted. On the other hand, if σ2
i is too small, a proper sampling of the

distribution requires a prohibitively large sample set. A good rule of thumb is that

roughly 20 - 30% of all mprop should be accepted (Kaipio et al., 2000).
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APPENDIX B

ROCK-PHYSICS MODELS OF THIS STUDY

P -wave velocity Vp is defined as function of bulk modulus K, shear modulus µ,

and density ρ, such that

Vp =

√

K + 4
3
µ

ρ
. (B.1)

The bulk modulus K is related to porosity φ and water saturation Sw. For a fluid

saturated medium, the bulk modulus is given by Gassmann’s equation (Gassmann,

1951; Han & Batzle, 2004) as follows:

K = Kd +
(1− Kd

K0
)2

φ
Kf

+ 1−φ
K0

− Kd

K2
0

, (B.2)

where Kd, K0, and Kf are the bulk modulus of the dry rock, mineral material, and

pore fluid, respectively. We model two phases of pore fluid: water and gas. A mixture

of two different pore fluids can be regarded as an effective fluid model and the bulk

modulus is derived from Wood’s equation (Wood, 1955; Batzle & Wang, 1992) as

follows:

1

Kf
=

Sw

Kw
+

1− Sw

Kg
, (B.3)
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where Kw and Kg are the bulk modulus of the water and gas phases. We also relate

the bulk modulus of the dry rock Kd and shear modulus µ with porosity φ as follows:

Kd = K0

(

1− φ

φc

)

, (B.4)

µ = µ0

(

1− φ

φc

)

, (B.5)

where µ0 is the shear modulus of mineral material, and φc is the critical porosity which

is the threshold porosity value between the suspension and the load-bearing domain.

Finally, we model the dependence of density ρ on porosity and water saturation as:

ρ = φSwρw + (1− φ)ρ0, (B.6)

where ρw and ρ0 are the density of water phase and mineral material, respectively.

The relationship between the reservoir parameters and electric conductivity is

first given by Archie’s second law (Archie, 1942), which describes electric conductivity

in clean sands. In fact, electric conductivity in shaley sands is complicated by the

presence of clays and is described by Waxman-Smits formula (Waxman & Smits,

1968):

σe = φmSn
w

[

σw +
BQv

Sw

]

, (B.7)

where m is the cementation exponent, n is saturation exponent, and σw is electric

conductivity of pore fluid. The parameter B is an equivalent counterion mobility and

Qv is the excess of surface charge per unit pore volume. The parameter B is given
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empirically at 25◦C by

B = B0

[

1− 0.6 exp
(

− σw

0.013

)]

, (B.8)

where σw is in S/m and the maximum counterion mobility B0 is given by 4.78 ×

10−8m2/V/s (Revil et al., 1998). The parameter Q is related to the mineral density

ρ0 (in kg/m3) and the cation exchange capacity (CEC) by

Qv = ρ0
1− φ

φ
CEC. (B.9)

The CEC is only significant for clay minerals, and the variation of CEC for different

clay minerals is dramatic.

The modeled values of each rock physics parameters introduced above are sum-

marized in Table 2.1.
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APPENDIX C

THE nTH ORDER DERIVATIVE OF

F (z) = exp(a
√
1 + z − a)− 1

We prove that given a complex number a and complex variable z, the nth order

derivative of a complex function,

F (z) = ea
√
1+z−a − 1, (C.1)

is expressed as

dnF

dzn
=

1

2n

n
∑

m=1

βn,ma
n−m+1(1 + z)−

n+m−1

2 ea
√
1+z−a, (C.2)

where

βn,m =















1 (m = 1),

−βn,m−1

m− 1

n−1
∑

l=m−1

l (m = 2, 3, 4, · · · , n).
(C.3)

Direct differentiation of equation (C.1) yields

dF

dz
=

a

2
√
1 + z

ea
√
1+z−a. (C.4)
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For n = 1, equations (C.2) and (C.3) give

dF

dz
=

1

2
β1,1a(1 + z)−

1

2 ea
√
1+z−a =

a

2
(1 + z)−

1

2 ea
√
1+z−a, (C.5)

which is the same result with the direct differentiation of F (z). From equation (C.2),

we write the (n− 1)th order derivative of F (z) as

dn−1F

dzn−1
=

1

2n−1

n−1
∑

m=1

βn−1,m an−m(1 + z)−
n+m−2

2 ea
√
1+z−a (C.6)

for any integer n ≥ 2. Differentiating equation (C.6), we derive

dnF

dzn
=

1

2n

n−1
∑

m=1

βn−1,m an−m+1(1 + z)−
n+m−1

2 ea
√
1+z−a

− 1

2n

n−1
∑

m=1

(n+m− 2)βn−1,m an−m(1 + z)−
n+m

2 ea
√
1+z−a

=
1

2n

n−1
∑

m=1

βn−1,m an−m+1(1 + z)−
n+m−1

2 ea
√
1+z−a

− 1

2n

n
∑

m=2

(n+m− 3)βn−1,m−1 a
n−m+1(1 + z)−

n+m−1

2 ea
√
1+z−a. (C.7)

Rearranging terms, we express the nth order derivative of F (z) as

dnF

dzn
=

1

2n
βn−1,1 a

n(1 + z)−
n
2 ea

√
1+z−a

+
1

2n

n−1
∑

m=2

[βn−1,m − (n+m− 3)βn−1,m−1] a
n−m+1(1 + z)−

n+m−1

2 ea
√
1+z−a

− 1

2n
(2n− 3)βn−1,n−1 a(1 + z)−

2n−1

2 ea
√
1+z−a. (C.8)

We apply the recursive relations of βn,m (Appendix D) and simplify the above expres-
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sion as

dnF

dzn
=

1

2n
βn,1 a

n(1 + z)−
n
2 ea

√
1+z−a

+
1

2n

n−1
∑

m=2

βn,m an−m+1(1 + z)−
n+m−1

2 ea
√
1+z−a

+
1

2n
βn,n a(1 + z)−

2n−1

2 ea
√
1+z−a

=
1

2n

n
∑

m=1

βn,m an−m+1(1 + z)−
n+m−1

2 ea
√
1+z−a, (C.9)

which conforms with equation (C.2). Q.E.D.
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APPENDIX D

RECURSIVE RELATIONS OF βn,m

Given an integer n ≥ 1, we define the following recursive formula:

βn,m =















1 (m = 1),

−βn,m−1

m− 1

n−1
∑

l=m−1

l (m = 2, 3, 4, · · · , n),
(D.1)

for any integer n ≥ m ≥ 1, and prove the following relations:

βn,1 = βn−1,1, (D.2)

βn,m = βn−1,m − (n+m− 3)βn−1,m−1 (m = 2, 3, 4, · · · , n− 1), (D.3)

βn,n = −(2n− 3)βn−1,n−1. (D.4)

It is obvious from the definition that

βn,1 = βn−1,1 = 1. Q.E.D. (D.5)



132

We prove equation (D.3) by rewriting it as

βn,m = βn−1,m − (n +m− 3)βn−1,m−1

= −βn−1,m−1

m− 1

n−2
∑

l=m−1

l − (n+m− 3)βn−1,m−1

= −βn−1,m−1

m− 1

[

n−2
∑

l=1

l −
m−2
∑

l=1

l

]

− (n+m− 3)βn−1,m−1. (D.6)

After an algebraic calculation, we can simplify the above equation as

βn,m = −βn−1,m−1
(n+m− 2)(n+m− 3)

2(m− 1)
. (D.7)

For m = 2, equation (D.7) becomes

βn,2 = −βn−1,1
n(n− 1)

2
= −

n−1
∑

l=1

l, (D.8)

which is the same result with the definition in equation (D.1). From equation (D.7),

we write βn,m−1 for any m ≥ 3 as

βn,m−1 = −βn−1,m−2
(n +m− 3)(n+m− 4)

2(m− 2)
. (D.9)

We also establish the following relation from the definition:

βn−1,m−1 = −βn−1,m−2

m− 2

n−2
∑

l=m−2

l. (D.10)
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Therefore, βn,m is written as

βn,m = −βn,m−1

m − 1

n−1
∑

l=m−1

l = −βn−1,m−1
(n+m− 3)(n+m− 4)

2(m− 1)

∑n−1
l=m−1 l

∑n−2
l=m−2 l

= −βn−1,m−1
(n +m− 3)(n+m− 4)

2(m− 1)

∑n−1
l=1 l −

∑m−2
l=1 l

∑n−2
l=1 l −

∑m−3
l=1 l

. (D.11)

We can simplify the above equation as

βn,m = −βn−1,m−1
(n+m− 2)(n+m− 3)

2(m− 1)
, (D.12)

which conforms with equation (D.7). Q.E.D.

Applying m = n to equation (D.7), we derive

βn,n = −(2n− 3)βn−1,n−1, (D.13)

which is identical to equation (D.4). Q.E.D.
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APPENDIX E

THE nTH ORDER DERIVATIVE OF

F (z) = [ ln(1+z) ]2

We prove that given a complex function F (z) of a complex variable z,

F (z) = [ ln(1+z) ]2 , (E.1)

the nth order derivative of F (z) is

dnF

dzn
= −2ηn(1+z)−n + 2(−1)n−1(n−1)!(1+z)−n ln(1+z), (E.2)

where

ηn =







0 (n = 1),

−(n−1)ηn−1 + (−1)n−1(n−2)! (n = 2, 3, 4, · · · ).
(E.3)

Direct differentiation of equation (E.1) yields

dF

dz
=

2 ln(1+z)

1+z
. (E.4)

For n = 1, equations (E.2) and (E.3) give

dF

dz
= −2η1(1+z)−1 + 2(1+z)−1 ln(1+z) = 2(1+z)−1 ln(1+z), (E.5)
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which is the same result with the direct differentiation of F (z). From equation (E.2),

we write the (n−1)th order derivative of F (z) as

dn−1F

dzn−1
= −2ηn−1(1+z)−n+1 + 2(−1)n−2(n−2)!(1+z)−n+1 ln(1+z) (E.6)

for any integer n ≥ 2. Differentiating equation (E.6), we derive

dnF

dzn
= 2(n−1)ηn−1(1+z)−n

+ 2(−1)n−1(n−1)!(1+z)−n ln(1+z) + 2(−1)n−2(n−2)!(1+z)−n. (E.7)

Rearranging terms, we express the nth order derivative of F (z) as

dnF

dzn
= 2(−1)n−1(n−1)!(1+z)−n ln(1+z)

− 2
[

−(n−1)ηn−1 + (−1)n−1(n−2)!
]

(1+z)−n. (E.8)

Applying the recursive relation in equation (E.3), we simplify the above expression

as

dnF

dzn
= 2(−1)n−1(n−1)!(1+z)−n ln(1+z)− 2ηn(1+z)−n, (E.9)

which conforms with equation (E.2). Q.E.D.


