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ABSTRACT

Seismic wave fields used in imaging the subsurface are often assumed to be the

response of elastic media that do not dissipate mechanical energy into heat. To

accurately describe the Earth’s response to seismic sources, however, anelastic e↵ects

must be included. Geophysicists incorporate intrinsic attenuation, characterized by

the quality factor Q, to generate enhanced images with correct amplitudes, discern

fluid types and saturation percentages of reservoirs in situ, and use attenuation as

an indicator of structural deterioration to civil structures. In my thesis, I discuss

monitoring civil structures fitted with instruments to estimate intrinsic attenuation.

Structural engineers have measured a building’s response to strong motion from

civil structures that have been instrumented with accelerometers, such as the Robert

A. Millikan Library of the California Institute of Technology. The attenuation of the

motion of this building has been measured using seismic interferometry techniques

in the past. We use the breaking of the temporal symmetry of the wave equation

by attenuation, in combination with seismic interferometry, to estimate attenuation.

These estimates are made from fitting the di↵erences in acausal and causal wave

forms obtained from di↵erent deconvolution processes. We apply deconvolution in-

terferometry to the motion recorded at the Millikan Library and obtain estimates of

intrinsic attenuation that compare well to past measurements. This technique has

more precision for higher frequencies than earlier measurements that are based on

seismic interferometry, and it is not dependent on radiation losses at the base of the

building.

Chapter 1 of my thesis gives an introduction to discuss the importance of measur-

ing intrinsic attenuation and the e↵ects of attenuation concerning time reversal. In

Chapter 2 I discuss time-reversal symmetry and the role time-reversal symmetry plays
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in geophysical data processing. Chapter 3 describes the newly proposed method in

detail to discuss the advantages over past methods of acquiring attenuation estimates

in civil structures and the limitations of this method. I discuss Gabor deconvolu-

tion as being an extension of the proposed method of deconvolution interferometry

with time reversal by performing the fitting procedure in the time-frequency domain

in Chapter 4. I conclude with a brief description of future work for the proposed

method of using deconvolution interferometry with time reversal.
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CHAPTER 1

INTRODUCTION

Geophysicists of today work to determine the structure and properties of the inte-

rior of the Earth for exploration of hydrocarbon, water, and mineral resources. This

work is also extended to include risk and hazard assessment, geotechnical construc-

tion, planetary geophysics, atmospheric science, defense projects, and debris flows.

Processing geophysicists create models that accurately describe the Earth system un-

der investigation through various remote sensing techniques. These techniques yield

data that can be mathematically linked to models that describe relevant properties

of the subsurface of Earth (Tarantola, 2005). Geophysicists also collect potential

field data like gravity, magnetic, electric and electromagnetic field data and seismic

data such as surface seismic (P- and S-waves), sonic logs, and vertical seismic pro-

files for hydrocarbon and mineral resource exploration and water resource exploration

(Telford et al., 1976).

Modern geophysical data are most commonly in a digital format, and such digital

data are processed to infer accurate models of the Earth. The signal convolution

model, equation 1.1 below, is used to describe n elements of a data array u [n] to be

the convolution of a source signal w [n] with the impulse response of the Earth h [n]

(Robinson, 1999). If the source wavelet is known, the impulse response function for

the Earth gives all the information needed by geophysicists to reconstruct wave field

propagation to an accurate model of Earth’s subsurface. The convolution model

u [n] = w [n] ⇤ h [n] (1.1)

is the ideal description of 1D (i.e. no spatial variation) recorded time signals. There is,

of course, additive noise present in the signals, attenuation of signal with propagation,

and other sources of error. Geophysicists eliminate as much noise as possible by the
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application of signal processing techniques to increase the signal to noise ratio of the

recorded data.

Data collected for geophysical applications are typically recorded from energy in-

jected into the Earth which usually propagates in the form of waves. Wave propaga-

tion often satisfies time reversal symmetry. Simply put, data recorded at the surface

of Earth can be collected, time reversed, and used to recreate wave fields propagating

backwards into the Earth. This is, for example, valuable for seismic imaging where

waves back propagated by this procedure are correlated with synthetic data generated

from velocity models of the Earth’s.

Time reversal (TR) is a property of the elastic and electromagnetic wave equations

used to focus energy back to the initial time and exact location of source injection.

This symmetry can be broken by factors such as flow in the medium, rotation of

the medium, and dissipation of mechanical energy into heat (Fink, 2006). I focus

on intrinsic attenuation because it is most relevant for geophysical applications. In-

trinsic attenuation can be troublesome for applications such as imaging, but it is a

necessary phenomena to characterize damping in civil structures after excitation by

earthquakes. Attenuation is of particular importance for the ability of buildings to

withstand earthquakes, because it is the balance of energy injected into the build-

ings by prolonged shaking and attenuation that determines the amplitudes of the

oscillation of buildings.

Attenuation is a broad term to describe the dissipation of the mechanical or

electromagnetic energy. The source energy dissipates with increased distance from

the source location through spherical divergence, scattering of energy from hetero-

geneities, transmission and radiation losses, and energy conversion to heat called

intrinsic attenuation (Gautam, 2003). Intrinsic attenuation is measured by the unit-

less quality factor Q that is related to the viscous damping coe�cient ⇣ = 1/2Q most

commonly used by structural engineers (Kohler et al., 2007).
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Signal attenuation is prevalent in recorded wave propagation data. This poses

challenges and limitations to seismic imaging. Geophysicists use elastic and electro-

magnetic wave propagation theory to probe the Earth’s interior because such theories

describe the relationship between their respective data and model parameters (Taran-

tola, 2005). Elastic stress fields underly seismic wave modeling, while electromagnetic

fields govern wave propagation for field investigation of the electrical properties of the

subsurface.

Attenuation of digital signals is a large contributor to low signal-to-noise ratio in

data. The attenuated signals appear noisy because the amplitudes of the signal de-

crease and eventually fall below the noise level as the waves propagate. Attenuation

is inherent in all wave propagation, and a↵ects the signal at preferentially high fre-

quencies (Futterman, 1962). For this reason the resolution of seismic models decrease

with depth.

Geophysicists attempt to remove the imprint of attenuation e↵ects by applying

Q

�1 filters to gain the amplitudes of attenuated time signals. To gain signals accu-

rately, measurements of the attenuation must be made through inversion algorithms

and lab measurements.

Geophysicists have studied intrinsic attenuation and the role of fluids and friction

at the microscopic scale through lab experiments (Batzle et al., 2005; Behura et al.,

2007; Spencer, 1979; Winkler and Nur, 1979; Winkler et al., 1979; Winkler and Nur,

1982; Wylie et al., 1962). These experiments usually operate at frequencies that

are several orders of magnitude higher than frequencies used in seismic surveys due

to scale in the lab versus the field (Gautam, 2003). Since the quality factor Q is

frequency dependent, lab values for Q are not accurate for seismic frequencies, and

estimations of attenuation have to be made using seismic data (Dasgupta and Clark,

1998).
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In my thesis, I present in Chapter 3 a method to measure intrinsic attenuation

in the Millikan Library of the California Institute of Technology after this building

has been excited by the Yorba Linda earthquake on the 3rd September, 2002. As an

introduction to the concept of time reversal, I discuss in Chapter 2 the behavior of

time reversal symmetry of wave propagation in elastic and electromagnetic wave fields.

This will be done by showing that Newton’s second law is time-reversal invariant, and

by showing the elastic and electromagnetic wave equations are time-reversal invari-

ant when considering media without flow, rotation, or intrinsic attenuation. These

equations include a macroscopic description of attenuation that breaks time reversal

symmetry. Chapter 3 has been accepted by the Bulletin of the Seismological Society

of America for publication.1 In Chapter 4, I discuss method for measuring intrinsic

attenuation using Gabor deconvolution that has potential to be another method for

estimating attenuation in a time-frequency domain. I finish with conclusions and

provide ideas for future work using the methods discussed.

1
Newton, C. and Snieder, R., Estimating intrinsic attenuation of a building using deconvolution

interferometry and time reversal, Bull. Seismol. Soc. Am., in press, 2012
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CHAPTER 2

TIME REVERSAL IN GEOPHYSICS

Time reversal invariance (TRI) refers to systems that share an intrinsic symmetry

about time in the laws of physics. Sir Isaac Newton articulated the classical laws of

motion that explain the kinematics of our universe. These laws have the property

of of time reversal invariance. We may move forward or backwards in time without

violating equations of motion. This property of TRI allows the back-projection of

the motion of particles or waves to the original location of excitation. This property

may appear trivial, but its applications make it invaluable to many scientists and

engineers in optics, medical imaging, geophysics, and more.

The property of time reversal invariance describes a medium that supports recorded

signals being reversed, reinjected, and focused temporally and spatially on the initial

source (Anderson et al., 2008, 2011; Fink, 2006). If one can accurately describe the

wave propagation through structures with numerical models, we can compare real

data that propagates forward in time through these structures with synthetic data

that propagates backward in time through numerical models. Claerbout (1971) first

used this scheme of back propagation of data to develop seismic migration. This seis-

mic imaging method relies on the assumption that the structures are made of media

that are invariant to time reversal.

Geophysicists rely heavily on numerical modeling to render images of the subsur-

face. Though not all media are time reversal invariant (TRI), assumptions can be

made and modeling can account for e↵ects that break TR.

Most systems indeed break the symmetry of TR. When the medium under inves-

tigation is subject to rotation, flow, or material damping like intrinsic attenuation,

the system is no longer invariant to time reversal (Fink, 2006). This chapter aims
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to explain the concepts of TR in fundamental equations of motion and applying this

symmetrical property to geophysical problems to render accurate models of the sub-

surface. I show how TRI is a consequence of classical laws of mechanics, and extend

this concept to more advanced equations describing acoustic, elastic, and electro-

magnetic wave propagation that aid geophysicists in investigating the subsurface. I

discuss the factors that break TR, and explore more deeply how intrinsic attenuation

breaks TR.

2.1 Time Reversal Invariance

To better visualize TRI, we may observe Newton’s 2nd law. We define Newton’s

2nd law as a vector force F being the partial time derivative of the momentum p given

by

F = ṗ =
@ (mv)

@t

=
@m

@t

(v) +
@v

@t

(m)

=
@m

@ (�t)
(�v) +

@ (�v)

@ (�t)
(m) .

(2.1)

Here m is the mass of a point object and v is the velocity of the object. We observe

the equation remains invariant to time reversal because the equations are the same

after reversing the time t and velocity v. The time reversal procedure would be similar

to recording the motion of an object with a velocity v and viewing the footage in

reverse. One would observe the object moving in a reverse direction with a velocity

�v and arriving exactly where it began.

This symmetry is apparent in linear motion, but should also apply to angular

motion as well. We apply TR to Newton’s 2nd law to an extended object with angular

momentum L given by
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r⇥ F = ˙

L =
@(I!)

@t

= !
@I

@t

+ I

@!

@t

=
(r⇥ v)

|r|2
@I

@t

+ I

@

@t

(r⇥ v)

|r|2

=
(r⇥�v)

|r|2
@I

@(�t)
+ I

@

@(�t)

(r⇥�v)

|r|2
.

(2.2)

Here ! is the angular velocity, r is the radial distance from the origin of the rotation

to the object, and I is the moment of inertia. Again we see the equation behaves

with invariance to the reversal of time. In a rotating system, such as the Earth,

TR invariance is violated by the Earth’s rotation. For waves propagating over a

time t, the Earth’s rotation is ⌦t, with ⌦ = 2⇡/1day being the angular velocity of

the Earth. For the time scale of a seismic experiment, t ⇡ 10s, this dimensionless

number is equal to ⌦t = 2⇡10s/1day = 7.3 ⇥ 10�4 ⌧ 1, so the imprint on Earth’s

rotation on seismic imaging is, in practice, negligible. Ruigrok et al. (2008) considers

teleseismic wave propagation, where the propagation time is much longer, and show

how to incorporate the rotation of the Earth in seismic interferometry.

With TR symmetry supported by the physical laws of motion, we can use this

property for applications in refocusing wave fields for imaging the subsurface and

human organs and other material applications. TR symmetry is clear from the math-

ematics, but may not be so visually intuitive.

Time reversal symmetry can be visualized when considering the experiment of

Derode et al. (1995). The experiment demonstrates how a device termed a Time

Reversal Mirror can recover the initial source impulse. Figure 2.1 demonstrates a

rendition of their experiment. In Figure 2.1a the medium represented by the blue

block is a homogeneous medium with iron bars inserted at random to act as point

scatterers. On the left side of the medium is a piezoelectric transducer that has

transmitting and receiving (T/R) capabilities that injects an impulsive wavelet as the
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(a)

time reversal mirror

point scatterers

source T/R

 

(b)

time reversal mirror

point scatterers

receivers T/R

 

(c)

time reversal mirror

point scatterers

sources T/R

 

(d)

time reversal mirror

point scatterers

receiver T/R

Figure 2.1: Experiment of Derode et al. (1995) with (a) piezoelectric source transducer
and impulse signal, (b) piezoelectric receivers recording scattered waves, (c) receivers
inject time reversed scattered waves where the receivers act as sources to refocus
signal, (d) source in receiving mode records the refocused impulsive signal

source signal. Figure 2.1b shows the receiving array on the right side of the medium

that makes up the time reversal mirror. These receivers record highly scattered signals

that are similar to the signal adjacent to the blue block. Figure 2.1c demonstrates how

the time reversal mirror reinjects a time reversed signal from the receiver locations.

The piezoelectric receivers also have T/R abilities and reinject the time reversed

signal with the correct synchrony to generate a complex wave field that propagates

back through the medium toward the initial source. Figure 2.1d illustrates the source

in receiving mode record the original impulse wavelet injected. This illustration is

not accurate in that the time reversed wave field recorded at the source location

in Figure 2.1d is exactly the same impulse function initially injected. In reality the

signal refocused at the source location would have side lobes as artifacts to the limited

aperture. To fully recover the initial impulse signal, the medium would need to have

full coverage. This limits the ability of TR to refocus the source impulse without

uncertainty, but the refocusing is done with enough accuracy to be used in medical
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applications such as in lithotripsy where kidney stones are located and destroyed

with the refocusing of ultrasonic energy and material applications where materials

are coupled with a unique liquid to determine microfractures in the material (Fink,

2006).

2.2 Acoustic Wave Propagation

A linear acoustic medium does not support shear waves. Therefore, the field rep-

resented by the acoustic wave equation is comprised of only pressure waves. The

homogeneous acoustic wave equation is constructed using Newton’s 2nd law of mo-

tion. Equation 2.3 describes how energy propagates through a liquid or gas having

a real-valued compressibility. Having a complex compressibility introduces intrinsic

attenuation and velocity dispersion through the Kramers-Krönig relations to satisfy

causality (Futterman, 1962). Introducing the complex compressibility will break TR

symmetry. The degree of attenuation needed to break TR symmetry is dependent

upon the measured levels of attenuation and the duration of the signal. For example,

low levels of attenuation may be considered negligible after measuring only over a few

cycles, but considerable if the signal is observed over many cycles.

We may also apply the same test of TR to the acoustic wave equation as we did

with Newton’s 2nd law.

1

c

2

@

2
P

@t

2
= ⇢r ·

✓
1

⇢

rP

◆

1

c

2

@

2
P

@ (�t)2
= ⇢r ·

✓
1

⇢

rP

◆

(2.3)

1

c

2

@

2
P

@t

2
� ⇢r ·

✓
1

⇢

rP

◆
=

1

c

2

@

2
P

@ (�t)2
� ⇢r ·

✓
1

⇢

rP

◆
(2.4)

Here P represents the pressure field and c is the phase velocity of the fluid. This

equation is TRI for small perturbations in a lossless medium. What makes this
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equation invariant to time reversal is that there is no flow in the medium, the medium

does not rotate, and there is no attenuation or velocity dispersion.

The acoustic wave equation allows the modeling of pressure wave fields inside an

acoustic medium without losses. This makes the assumption that the medium fully

restores the energy that passes through any finite element within the medium. An

ideal medium as described above, however, never occurs in nature, and all media will

have some losses at varying scales.

Intrinsic attenuation describes nonadiabatic media that lose some energy to heat

and is characterized by the quality factor Q. There are various types of intrinsic

attenuation that are dependent on the mode of wave propagation (Gautam, 2003),

but I discuss the attenuation for the shear mode only.

Attenuation observations are dependent upon the dominant wavelength of the

source signal. Scattering attenuation can occur in media with high levels of hetero-

geneities that can be sensed by the wavelength of the source signal. The hetero-

geneities scatter energy into multiple paths before being recorded by the instruments

on the surface. The scattering may or may not significantly attenuate the signal, but

scattering the energy coupled with the energy being converted to heat reduces the

energy recovered by our instruments.

We may also test a visco-acoustic wave equation for TRI by including a damping

term �.

1

c

2

@

2
P

@t

2
� �

@P

@t

= r2
P (original) (2.5)

1

c

2

@

2
P

@(�t)2
+ �

@P

@ (�t)
= r2

P (time� reversed) (2.6)

This partial di↵erential equation describing a visco-acoustic media is not TRI. Solu-

tions to this wave equation describe an amplitude term to decay exponentially with

increasing time after the source excitation. If the attenuation is well understood, the

attenuation can be handled to correctly gain the amplitudes.
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Not having a-priori knowledge of the medium’s attenuation can be disastrous for

structural modeling. TR techniques, however, can give qualitative and quantitative

insight of the magnitude of attenuation given that there are no flows or rotations of the

medium that might break the TR symmetry. To acquire such insight of the presence of

attenuation would require the separation of the wave field into d’Alembert solutions

that describe the direction the wave field is traveling (i.e. upgoing or downgoing

wave fields) (Robinson, 1999). Successful separation of the wave fields should render

symmetric time signals about time t = 0, but if attenuation is present the signals will

have similar shape but di↵erent amplitudes. This procedure is discussed further in

Chapter 3 of the thesis.

2.3 Elastic Wave Propagation

I have shown how the acoustic wave equation supports TR, and I will show how

the elastic wave field also supports TR. As stated before, attenuation breaks TR

symmetry of the elastic wave field. For simplicity, I will show the elastic wave equation

excluding a damping term to account for the attenuation. It should be understood

that including the damping term will break the TR symmetry. Elastic waves in a

homogeneous isotropic medium satisfies the following di↵erential equation (Aki and

Richards, 1980)

(�+ 2µ)r (r · u)� µr⇥r⇥ u� ⇢

@

2
u

@t

2
= 0. (2.7)

Here � and µ are Lamé material parameters, ⇢ is the density of the material, and

u is the displacement vector recorded by the geophones. If we assume the material

parameters � and µ are not time variant within each medium and allow only small

perturbations of the media, the equation will be TRI having only a second derivative

in time of the displacement vector u. The velocities of the medium are implicitly

understood to exist in this equation as the acoustic velocity ↵

2 =
�+ 2µ

⇢

and the

shear velocity �

2 =
µ

⇢

.
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2.4 Electromagnetic Wave Propagation

Time reversal techniques are popular with geophysicists specialized in acoustic

and elastic wave field propagation, but this property can be extended to include

electromagnetic wave propagation as well. Electromagnetic energy is well suited for

investigating the subsurface of the Earth for near-surface reflection responses and in

situ fluid characterizations. To understand this more clearly, we look closer to the

wave equation of the electric field.

To derive the homogeneous wave equation for electromagnetic wave propagation,

we need to remember the following Maxwell’s equations for classical electrodynamics.

r⇥ E = �@B

@t

(2.8)

r⇥B = µ0J+ µ0✏0
@E

@t

(2.9)

We may start by taking the curl of the curl of the electric field E. Recalling the vector

calculus property r⇥ (r⇥V) = r (r ·V)�r2
V, we may write equations 2.8 and

2.9 as

r⇥ (r⇥ E) = � @

@t

r⇥B = � @

@t

✓
µ0J+ µ0✏0

@E

@t

◆
. (2.10)

We now make the homogeneous assumption of there being no electric source (i.e.

r·E = 0) and use the relation of the current density to the electric field J = �E, where

� is the electrical conductivity of the material under investigation. This transforms

our electromagnetic wave equation into

r2
E = µ0�

@E

@t

+
1

c

2
0

@

2
E

@t

2
. (2.11)

We have included the speed of light c0 =
1

p
µ0✏0

in equation 2.11. We observe some

similarities in the factors between the partial di↵erential equations 2.11 and 2.5. From

inspection, one may conclude that the first term on the right side of equation 2.11 is

similar to the damping term in equation 2.5, and the second term on the right side of
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equation 2.11 is the propagation term similar to equation 2.5. Similar to the visco-

acoustic medium, without the single derivative term the wave equation is TRI. If the

single derivative term contributes strongly to the wave propagation, the propagation

will no longer be TRI.

We investigate the e↵ects of these terms more closely. If we consider a complex

exponential solution in the frequency domain for equation 2.11 to be E = E0e
i!t, we

may view equation 2.11 as

r2
E = i!µ0�E� !

2

c

2
0

E, (2.12)

where the imaginary number i =
p
�1 and ! is the angular frequency. The ratio of

the absolute value of the coe�cients of each term can be used to understand what

influences the wave propagation. The ratio of the absolute value of the first coe�cient

to the second coe�cient is

µ0�c
2
0

!

=
�

!✏0
. (2.13)

If we hold the frequency constant, the ratio is really determined by the relationship

between the electrical conductivity of the medium � and the electrical permittivity of

the medium ✏. Note that we have changed ✏0 to ✏ to be more practical by considering

a resisting medium instead of an ideal vacuum.

It is clear that when the medium behaves such that ! � �/✏, the oscillating

term will govern the propagation to behave more like seismic reflections as seen us-

ing ground penetrating radar (GPR). When ! ⌧ �/✏ the medium response will be

di↵usive as is typical when sensing hydrocarbon fluids in situ using controlled source

electromagnetic (CSEM) instruments (Constable and Srnka, 2007).

The electromagnetic wave equation behaves like the acoustic wave equation with

a viscous damping term. Time reversal techniques are applicable to electromagnetic

waves in media that support undamped wave propagation and are similar to meth-

ods that use acoustic waves for imaging the subsurface. When the medium breaks
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the TR symmetry in geophysical applications, it is due to the damping term in the

electromagnetic wave equation. This is used by exploration geophysicists to detect

the presence of hydrocarbon fluids. We will look at geophysical methods that rely on

the theory presented above to render information of the Earth’s subsurface.

2.5 TR in Geophysical Methods

Basic wave equations that explain the propagation of information from a geo-

physical sources to geophysical instruments are invariant to time reversal. The TR

property of wave propagation allows for modeling of the subsurface to yield models

with little uncertainty. Though not all systems are TRI, as most are not, we may

still be able to infer properties of the subsurface under investigation.

I will discuss geophysical methods that use acoustic, elastic, and electromagnetic

wave propagation to make measurements for determining structure and properties of

the subsurface. These methods rely on assumptions of both TR and the breaking of

TR symmetry.

2.5.1 Acoustic and Elastic Wave Modeling

Geophysical methods that use the acoustic and elastic wave equation are referred

to as seismic methods. Seismic methods are used by earthquake seismologists for

determining seismic moment tensors of earthquake sources and tracking teleseismic

events throughout the Earth. These methods are also used by exploration geophysi-

cists to generate subsurface images of the Earth to locate hydrocarbon traps and for

discerning fluid saturation and type in oil and gas reservoirs. Without TR imaging

would not be possible.

Earthquake seismologists are faced with di�culty in survey geometry and having

limited means of determining source signature and location. These surveys are called

passive surveys because the seismologist do not create the seismic source. The source

comes from the earthquake at an undetermined time and location. The instruments
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on the surface are also much more sparse than a typical exploration survey which

reduces the spatial resolution of the earthquake model. This makes the job of an

earthquake seismologist much more challenging to accurately generate tomographic

images and determine the earthquake source magnitude and location.

Nevertheless, earthquake seismologists use clever modeling schemes to estimate

source magnitude and location by iteratively back-propagating surface data using TR

and comparing it against modeled data using stratigraphic velocity models believed

to accurately describe the Earth’s interior. Because the spatial sampling is coarse, the

velocity models are typically more broad than found in exploration surveys. There

are also complications of converted shear waves and multiple reflections that every

imaging geophysicist must face. The acoustic wave equation describes only pressure

waves, but Earth generates both pressure and shear waves and multiple reflections

generated by both wave types. If the shear waves are not used for imaging, they

become noise and must be removed from the data.

Using the acoustic wave equation we can model the primary pressure wave arrivals

and predict their multiple reflections. The elastic wave equation describes both pres-

sure and shear waves, but becomes computationally costly. Using the elastic wave

equation can yield more information about the subsurface material properties and

anisotropy.

Exploration geophysicists have the same goal as earthquake seismologists to image

the subsurface, but use a controlled source. This gives the geophysicist the luxury of

knowing the location and time of excitation. There are still issues, however, of know-

ing and estimating the source wavelet complicated by coupling of the source to the

medium, source instrument errors, and near-surface statics (Robinson, 1999). The

exploration geophysicist has a survey with a finer spatial resolution than the earth-

quake geophysicist. This yields better resolution of the stratigraphy in the subsurface.

Surveys are indeed di↵erent, but both their duty is to image the subsurface.
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The imaging of the subsurface is called migration (Claerbout, 1971), and has

been developed to transition from analog signals physically being migrated with pen-

cil and compass to the digital world of supercomputing highly advanced migration

algorithms to generate three dimensional images. With the advent of supercomput-

ers, algorithms are being developed to handle the elastic wave fields that include both

pressure and shear wave data. As mentioned before, the Earth is not typically TRI,

and this is attributed to intrinsic attenuation in the various stratigraphic sections

in the Earth. Today’s migration algorithms are able to handle attenuation by ap-

plying the appropriate gain levels to the time signals before, or sometimes during,

TR back propagation. Seismic inversion can model for the correct attenuation values

with uncertainty. Understanding the attenuation in the time signals corresponding to

the reservoir section compared to experiments done in the lab to determine intrinsic

attenuation leads to what fluids are saturating the reservoir.

Time reversal is critical to the imaging process done by earthquake seismologists

and exploration geophysicists. It allows for the back propagation of time signal data

to be compared to modeled synthetic data to yield an accurate image. When TR

symmetry is broken by attenuation, inferences can be made about fluids existing in

the subsurface that are valuable to producing a hydrocarbon reservoir.

By determining intrinsic attenuation values, fluid type and saturation levels can

be inferred from lab experiments. Lab experiments can determine attenuation values

for dry and saturated rocks. The attenuation values indicate what fluids are present in

situ. Determining the fluid content can be very di�cult with surface seismic data, but

repeated surveys, known as 4D seismic surveys, will indicate changes in attenuation

if fluids migrate through the reservoir. The change in attenuation is due to di↵erent

attenuation values associated with hydrocarbon fluids and water. Attenuation has

broke the TR symmetry, but has given reservoir development information.
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Changes in attenuation can indicate failure in civil structures as well (Clinton

et al., 2006; Foutch, 1976; Kohler and Heaton, 2007; Kuroiwa, 1967). A select num-

ber of buildings have been fitted with seismic recording instruments to research and

monitor changes over time. By breaking the TR symmetry, we can determine if these

signals have been attenuated.

2.6 Summary

TR symmetry is an important property of wave propagation. It has allowed sci-

entists to accurately image media that has been excited by wave propagation by

back-propagating data compared to modeled forward synthetic data. This unique

symmetry of TR can be broken by attenuation, flow, and rotation. This gives infor-

mation that indicates something has broken the symmetry.
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CHAPTER 3

ESTIMATING ATTENUATION OF THE MILLIKAN LIBRARY

For decades, scientists and engineers have worked to characterize building re-

sponses with the purpose of mitigating earthquake hazards and monitoring building

integrity (Carder, 1936; Çelebi et al., 1993; Chopra and Naeim, 2007; Clinton et al.,

2006; Foutch, 1976; Kohler and Heaton, 2007; Kuroiwa, 1967; Prieto et al., 2010;

Snieder and Şafak, 2006; Trifunac, 1972). This has been done by measuring building

motion, modal frequencies, intrinsic attenuation, shear velocities, and other proper-

ties. After the excitation force drives the motion of the building, intrinsic attenuation,

scattering attenuation, and radiation losses dissipate the energy. Intrinsic attenua-

tion estimates quantify the anelastic dissipation of the building’s motion given by the

quality factor Q or the damping coe�cient ⇣.

⇣ =
1

2Q
(3.1)

Improving the estimation of intrinsic attenuation from the motion excited by

complicated ground motion is the focus of this work. Advancing the estimation

of attenuation, engineers can more accurately describe the motion of civil structures

(Çelebi et al., 1993; Chopra and Naeim, 2007; Kohler et al., 2007), while geophysicists

can produce more accurate models of the subsurface (Calvert, 2003) and diagnose the

presence of fluids and the migration of these fluids in reservoirs (Bakulin et al., 2007).

Much has been learned from advanced instrumentation installed into buildings

such as the Factor Building of UCLA and the Millikan Library of Caltech. These

networks have produced large volumes of data for understanding wave propagation

in buildings. Monitoring these types of buildings suggests that analysis be done over

time to observe changes in the response of the building. Typically, this analysis is

done for the motion excited by earthquakes (Clinton et al., 2006; Kohler et al., 2007;
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Snieder and Şafak, 2006), ambient noise (Clinton et al., 2006; Derode et al., 2003;

Larose et al., 2006; Prieto et al., 2010), or controlled sources (Clinton et al., 2006;

Kohler and Heaton, 2007; Kuroiwa, 1967). Recently, seismic interferometry has been

used for acquiring attenuation estimates (Kohler et al., 2007; Prieto et al., 2010;

Snieder and Şafak, 2006).

Seismic interferometry has received much attention in the seismology community.

The use of seismic interferometry has been explored for extracting Green’s functions,

and from this, other parameter estimations (Bakulin and Calvert, 2006; Halliday

and Curtis, 2010; Snieder et al., 2006; Vasconcelos and Snieder, 2008; Wapenaar

et al., 2010). Deconvolution interferometry is preferable, for reasons discussed later,

for retrieving attenuation estimates. Snieder and Şafak (2006) and Kohler et al.

(2007) use deconvolution interferometry for the Millikan Library and Factor Building,

respectively, to acquire attenuation estimates. Our approach is similar, but we use

upgoing and downgoing decomposed waves and time reversal to attain attenuation

measurements.

The concept that attenuation breaks time reversal symmetry facilitates our mea-

surements of attenuation (Fink, 2006; Gosselet and Singh, 2007). Wave field decom-

position, in combination with deconvolution interferometry, generates acausal and

causal wave forms (Snieder et al., 2006). Here, we define acausal to describe the wave

forms occuring before time t = 0. We compare these wave forms, and from their

di↵erences, estimate intrinsic attenuation. Since our estimate of attenuation hinges

on a comparison of causal and acausal waveforms, we obtain an estimate of intrinsic

attenuation because scattering attenuation is causal and invariant for time reversal.

In the following we use the term attenuation for intrinsic attenuation.

Much like the method used by Snieder and Şafak (2006), we base our estimates

on a linear least-squares fit to the natural logarithm of the deconvolved wave form

envelopes. We acquire accurate and precise estimates of attenuation that are fre-
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quency dependent and compare well to previous attenuation estimates. Our method

acquires frequency-dependent attenuation estimates that do not require any normal

mode analysis and estimates are more precise than estimates taken from traveling

waves.

The recorded shear waveforms were excited by the Yorba Linda earthquake and

consist of two N-S and one E-W accelerations of the Millikan Library in 10 floors above

the surface and a basement below the surface. Only one N-S acceleration dataset was

used for this investigation (Figure 3.1). There were some instrument coupling issues

in the other two datasets as well. Building dimensions and details pertaining to the

structure and instrumentation can be found in many articles, but most historical and

recently notable, Kuroiwa (1967) and Clinton et al. (2006). Using only the N-S motion

of the building constrains our analysis to 1 degree of freedom. The geometry of the

building allows for a clamped beam model to represent the motion of the structure.

The Millikan Library naturally has 3 degrees of freedom in building motion, and 3n

degrees of freedom if we consider a number of floors denoted by n (Şafak, 1999). Our

purpose is to demonstrate the application of this method, but our method can be

extended to include more degrees of freedom.

We first discuss the basic theory behind deconvolution interferometry and time

reversal. We give an example of why deconvolution interferometry is chosen, and

how the deviation from time reversal symmetry indicates the presence of attenuation

and facilitates the measurement of attenuation. Next, we discuss the methodology

used to achieve these results. We finish by comparing estimates of attenuation with

those made from past interferometric methods of the Yorba Linda earthquake data

recorded at the Millikan Library.

3.1 Theory

Seismic interferometry using deconvolution has become increasingly popular for

applications in seismic imaging, parameter estimation, and passive monitoring (Curtis
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Figure 3.1: Yorba Linda earthquake data recorded at the Millikan Library, California
Institute of Technology in Pasadena, California. The wave forms indicate accelera-
tions in the N-S direction, and the floor numbers correspond to the location in the
building where the data were recorded. Floor 0 is the basement floor.

et al., 2006; Kohler et al., 2007; Minato et al., 2011; Prieto et al., 2010; Snieder and

Şafak, 2006; Snieder et al., 2006; Vasconcelos and Snieder, 2008). Typically cross

correlation representation theorems are used to acquire the correct Green’s function

between receivers. Snieder (2007) shows that in the presence of dissipation, cross

correlation type seismic interferometry cannot accurately determine the attenuation

response between receivers unless the medium is completely covered by sources. We

first briefly explore the reasons why deconvolution seismic interferometry is preferred

over cross correlation seismic interferometry in estimating attenuation, especially with

passive seismic data.

Consider a simple one-dimensional seismic-interferometry experiment in a homo-

geneous dissipative medium to illustrate my decision to use deconvolution interfer-

ometry. Consider a source located at position rS, and receivers located at rA and rB,

Figure 3.2. If a dissipating wave propagates away from the source and is recorded

by receivers, seismic interferometry can be used to determine the response between

those receivers. Seismic interferometry is a tool to measure the response between

receivers, where the source position is redatumed to a known receiver location by the

virtual source method (Schuster, 2009). Though the source signature of the actual

21



source and virtual source are indeed di↵erent, the wave state obtained from seismic

interferometry obeys the same wave equation as the original system (Snieder et al.,

2006), and we can determine the system response to a virtual source. Examining the

deconvolution and cross correlation operations, for this example, gives insight why

deconvolution is preferred for measuring attenuation. In our thought experiment, the

receivers record the following frequency-domain wave fields:

  

Figure 3.2: Definition of geometric parameters for 1D wave propagation example

U(rA,!) = S(rS,!) e
��(rA�rS)

e

ik(rA�rS) (3.2)

U(rB,!) = S(rS,!) e
��(rB�rS)

e

ik(rB�rS)
, (3.3)

where S(rS,!) is the source spectrum, k is the wavenumber, and � the attenuation

coe�cient.

The choice of which seismic interferometric operation gives an accurate estimation

of the attenuation becomes apparent from the application of each interferometric

technique to the wave forms U(rA,!) and U(rB,!). Cross correlation interferometry

applied to these wave fields gives, in the frequency domain,

CC(rB, rA,!) = U(rB,!)U
⇤(rA,!)

= |S(rS,!)|2 e

��(rB+rA�2rS)
e

ik(rB�rA)
.

(3.4)

The phase is correct, but the amplitude is incorrect because it depends on the sum

of the positions rB + rA rather than the di↵erence rB � rA. The amplitudes esti-
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mated from cross correlation are thus incorrect for attenuation analysis. In contrast,

deconvolution of the fields of equations (2) and (3) in the frequency domain gives

D(rB, rA,!) =
U(rB,!)

U(rA,!)

= e

��(rB�rA)
e

ik(rB�rA)
.

(3.5)

With deconvolution interferometry, we thus obtain the correct phase, eik(rB�rA),

and amplitude, e��(rB�rA), that accounts for the attenuation of the waves that prop-

agate between the two receivers. Note that cross correlation requires the power spec-

trum of the source signal as well as the source location, as where deconvolution

interferometry is independent of the source properties. Because of these properties,

we use deconvolved wave forms for our attenuation measurements. Equation 5 is

potentially unstable when the reference spectrum U(rA,!) ! 0. For our method,

we use a stabilized deconvolution given by

D(rB, rA,!) =
U(rB,!)

U(rA,!)

) U(rB,!)U⇤(rA,!)

U(rA,!)U⇤(rA,!) + ✏

,

(3.6)

where we take ✏ to be 1% of the average power of U(rA,!).

3.2 Methodology

Attenuation of waves is expressed in the quality factor that is defined as the rel-

ative energy loss over a cycle of oscillation (Aki and Richards, 1980). Estimations

of attenuation can be made by measuring the loss in the amplitudes as waves prop-

agate between receivers. These estimations are based on the assumptions that both

receivers are coupled accurately to the medium, and the amplitude picks correspond

to the same seismic event. Previous studies of Snieder and Şafak (2006) measured
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attenuation with the Millikan Library data using interferometry to reduce the imprint

of a variable receiver coupling. Our method estimates attenuation from individual

recordings deconvolved with a common signal, and estimates can be averaged over

the array of recordings to reduce and estimate the error. Deconvolution interferome-

try with a reference signal decomposed into upgoing and downgoing waves, generates

wave states with an impulsive upgoing and downgoing wave, respectively, at the base

of the building (Snieder et al., 2006). The upgoing and downgoing wave forms of an

individual receiver can be compared to give measurements of attenuation.

We separate the wave field at the base of the building into upgoing (u+) and

downgoing (u�) waves using the following decomposition (Robinson, 1999):

@u+

@t

=
1

2

✓
@u

@t

� c

@u

@z

◆
(3.7)

@u�

@t

=
1

2

✓
@u

@t

+ c

@u

@z

◆
. (3.8)

The z-derivative follows from the di↵erence of the motion recorded in the basement

and on the first floor. We use the value c = 322 m/s as determined by Snieder and

Şafak (2006).

Deconvolving the wave forms with their upgoing and downgoing waves separates

the signal into causal and acausal waves (Snieder et al., 2006). The causal and acausal

wave forms would be symmetric in time if attenuation were not present. We measure

the attenuation from the di↵erences in the causal and time-reversed acausal wave

forms of each floor. The procedure begins by directionally separating the wave fields

in the reference floor using equations (7) and (8). We choose the basement floor

recording as our reference signal and separate the signal into upgoing and downgoing

waves. I estimate the z-derivative from the di↵erences in the motion recorded in the

basement and at the first floor. The dip filter described above, generates wave forms

that are either causal or acausal in the floors above the basement. This procedure

simulates a pure upgoing or downgoing impulsive virtual source in the basement at
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Figure 3.3: Wave forms deconvolved with decomposed waves and their superpositions
both before and after time reversal. a) Wave forms obtained by deconvolving the
waves at every floor with the upgoing wave in the basement, b) with the downgoing
wave in the basement, c) superposition of causal and acausal wave forms of above
figures, d) and superposition after time reversal of acausal wave forms.
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t = 0.

Using only the upgoing waves in the reference signal, our interferometry method

extracts the building response from an upgoing impulsive source in the basement of

the building at t = 0. The deconvolutions of all the floors, in the frequency domain,

are ratios of the full wave field spectra of an individual floor and the upgoing wave

spectra of the reference floor. We apply this type of deconvolution to all the floors to

get eleven deconvolved wave forms (Figure 3.3a). Deconvolution, with the upgoing

waves in the reference floor, compresses all the upgoing waves in the basement into

one upgoing virtual impulse injected at t = 0. The response of the building to

this virtual source is non-zero for times t > 0. The use of the upgoing waves for

deconvolution generates causal wave forms because the building only oscillates after

the upgoing wave enters the building. In a similar manner, we also deconvolve the full

wave forms of each individual floor with the downgoing wave form from the basement

signal. This downgoing wave is the result of upgoing waves entering the building at

earlier times (i.e. t < 0). This procedure therefore generates acausal wave forms

(Figure 3.3b). Collapsing all the downgoing waves in the basement to one downward

impulse, requires energy to be present in the building before time t = 0, which

corresponds to the acausal wave forms seen in Figure 3.3b.

A superposition of the causal and acausal wave forms of Figures 3.3a and 3.3b as

shown in Figure 3.3c, reveal a quasi-symmetry of the wave forms around t = 0. Time

reversal breaks down under certain conditions, such as rotation, flow, and intrinsic

attenuation (Fink, 2006). The intrinsic attenuation in the building has broken the

time reversal symmetry of the wave forms in Figure 3.3c. This is apparent from

Figure 3.3d, where the acausal wave forms generated from the deconvolution using

downgoing waves of the reference floor, have been time reversed. This plot shows the

superposition of the time reversed acausal wave forms and causal wave forms. Note

that the amplitudes do not match, and from this di↵erence in amplitudes we measure
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attenuation.

We band-pass filter the deconvolved signals using Butterworth filters of the 3rd

and 2nd order to the respective dominant frequency bands 0.2-3.0 Hz and 5.0-7.8 Hz of

the power spectra shown in Figure 3.4. This allows us to retrieve constant Q values

within each frequency band chosen for analysis, and thereby yielding a frequency-

dependent Q in a discrete sense. After band-pass filtering our deconvolved signals

using the frequency bands of Figure 3.4, we compute the envelopes of all the wave

forms. To demonstrate the estimation of attenuation, we discuss the procedure for

the low frequency band-passed data in detail.

  

Figure 3.4: The rms power spectra of floor 7 with horizontal bars indicating the
frequency bands used for band-pass filtering.

The two curves depicted in Figure 3.5, are a deconvolved wave form from the

upgoing wave of floor 4 (gray curve) and the envelope corresponding to this wave

form (black curve). This deconvolved wave form is generated from the spectra of the

fourth floor and the upgoing wave at the basement. We then apply the low frequency

Butterworth band-pass filter of order 3 to this deconvolved wave form. The envelope

is acquired from the modulus of the analytic signal using the Hilbert transform. We

next take the natural logarithm of this wave form (Figure 3.6). The second curve is
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Figure 3.5: Signal from floor 4 deconvolved with upgoing waves after low band-pass
filtering (blue curve). Envelope of the corresponding signal (black curve).

the natural logarithm of the envelope of the wave from the fourth floor obtained from

deconvolution using the downgoing wave and time reversed.

The first observation is that these two curves are not the same; this di↵erence

is due to attenuation. The second observation is that these curves decay almost

linearly for the first 2 seconds. During this time duration, the di↵erence of these

natural logarithms is also linear with respect to time, and a constant Q value model

corresponds to the slope of the di↵erence of these curves. This model is set up by

examining the envelopes of the deconvolved signals of an individual floor. We define

the envelopes of the deconvolved signals to be

d+(t) = A+ e

�mt (3.9)

d�(�t) = A� e

+mt
.

Taking the natural logarithm of the ratio of d+ to d� yields an equation suited for a

linear regression where the slope parameter solves for the attenuation coe�cient m

in a least-squares sense.

ln

����
d+

d�

���� = �2mt (3.10)

This model does make the assumption that the initial amplitudes are approximately

equal, such that A+ ⇡ A�. Figure 3.7, shows the di↵erence of the curves (black curve)
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of Figure 3.6, for the initial 2 seconds, and the linear least-squares fit (magenta curve).

This procedure is repeated for all the floors, excluding floor 8 because of receiver

coupling issues, to generate estimates of the attenuation coe�cient.

We also use this procedure for the higher frequency band-pass filtered data of

5.0-7.8 Hz. In this case, the linear trend of the di↵erence of natural logarithms of the

envelopes only has a 1 second duration. The higher frequency content of the signal

is expected to lead to a more rapid decay of the envelope than of the low frequency

content. Figure 3.8 shows that noise dominates the signal after 1 second duration

because the envelope stabilizes to a near-constant value after that time. Therefore we

do our fitting within the first second, and this fitting of the di↵erence of the curves

of Figure 3.8 can be seen in Figure 3.9.
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Figure 3.6: The natural log of envelopes from upgoing and downgoing deconvolved
wave forms after low frequency 0.2-3.0Hz band-pass filtering

To estimate the error in our measurement of ⇣ due to errors in the slope of the

fitting curve and the width of the employed frequency band, we use the following

equations. If we write the attenuation coe�cient as

m = !̄⇣, (3.11)

where !̄ is the weighted mean of the angular frequency for a given frequency band,

and the attenuation coe�cient m is given by the slope from our fitting curve, we
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Figure 3.7: The di↵erence of the curves in Figure 3.6 (black curve), and linear fit
(magenta curve)
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Figure 3.8: The natural log of envelopes from upgoing and downgoing deconvolved
wave forms after high frequency 5.0-7.8Hz band pass filtering
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Figure 3.9: The di↵erence of the curves in Figure 3.8 (black curve), and linear fit
(magenta curve)
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Table 3.1: Damping Coe�cients; TR = time reversal, NM = normal mode, TW =
traveling wave

Method ⇣ �⇣ Frequency Mode

TR 1.14% 0.50% fundamental
NM 1.15% 0.41% fundamental
Newton (half-power) 1.57% NA fundamental
Bradford et al. 2.39% NA fundamental
Clinton et al. 1.63% NA fundamental
Kuroiwa (half-power) 1.54% NA fundamental
Kuroiwa (mode shape) 1.47% NA fundamental
Kuroiwa (Hudson’s) 1.74% NA fundamental
TR 1.74% 0.39% first overtone
TW 1.58% 1.36% first overtone
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where �! is our standard deviation of !̄ given by

!̄ =

R
⌦ !P (!)d!R
⌦ P (!)d!

, (3.13)

�

2
! =

R
⌦(! � !̄)2P (!)d!R

⌦ P (!)d!
, (3.14)

where P (!) is the power spectrum within the employed frequency band ⌦. �m,i is our

standard deviation of the attenuation coe�cient of the ith floor from estimates of the

discrepancy of the data from the least-squares linear fit (Bevington and Robinson,

2003). This procedure for �⇣,i is repeated and averaged for all the floors except the

eighth floor. Equation (12) is based on the assumption that the frequency and slope

are independent measurements, and therefore that their covariance vanishes. The

attenuation estimates with their errors are presented in Table 1.

3.3 Relation to Previous Work

The motion of the Millikan Library has been used before to estimate intrinsic

attenuation using deconvolution interferometry (Snieder and Şafak, 2006), and we
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compare our results to these past measurements. Snieder and Şafak (2006) developed

two techniques using deconvolution interferometry. A technique that measures atten-

uation from the normal mode oscillation of the building and another that measures

attenuation from higher frequency traveling waves.

The technique employing the normal mode oscillations of the building uses the

basement floor signal as the reference signal for the deconvolution defined by Equa-

tion 6. This technique, however, does not decompose the wave field into up and

downgoing waves. Using the full spectra of the reference signal, we generate the de-

convolution wave forms in Figure 3.10. In this figure, the motion at the basement

floor is compressed to a band-limited spike at t = 0. For t > 0, the figure shows

the response of the building to the impulsive excitation. This response is dominated

by the fundamental mode of the building with a period of about 0.6 seconds.
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Figure 3.10: The motion of the building in Figure 3.1 after deconvolution with the
motion recorded in the basement.

We first bandpass filter the waveforms of Figure 3.10 between 0.2-3.0 Hz, using the

low frequency range indicated by the left horizontal bar in Figure 3.4. A linear curve is

fit to the natural logarithm of the envelopes of the deconvolved wave forms similar to

our time reversal method. Figure 3.11 shows the natural logarithm of the envelope of

the signals in Figure 3.10 in solid lines and the least-squares fits in dashed lines. The

slope of the least-squares fits is proportional to the attenuation coe�cient. Table 1

shows the average damping estimate corresponding to the normal mode measurement
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indicated NM for this method. An attempt to measure the damping with this method

at the higher frequency band yielded poor results. This is due to low amplitude in

the power spectrum of the frequency band of 5.0-7.8 Hz.
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Figure 3.11: Natural log of envelopes from signals in Figure 3.10 (solid curves), and
linear fit (dashed curves)

The next deconvolution interferometry technique developed by Snieder and Şafak

(2006) uses higher frequency traveling waves. Snieder and Şafak (2006) make their

attenuation measurements using the top floor signal as the reference signal for the

deconvolution. Note that there is no decomposition of the wave fields at the reference

floor for this traveling wave procedure. The deconvolved wave forms in Figure 3.12

uses the full spectra of each signal. In Figure 3.12, a traveling wave moves up and

then down the building. Knowing the shear velocity of the building, the ratio of

the amplitudes of the upgoing and downgoing waves, the distance traveled from each

receiver to the top of the building and back down to the receiver, and the travel times,

one can estimate the attenuation. Table 1 displays the results of these measurements

marked TW for the traveling wave technique. Since this estimate depends only on

the amplitude ratio of the upgoing and downgoing waves at each floor, this estimate

is not a↵ected by variations in receiver coupling. The observation that the signals

are quiescent after the traveling wave has moved up and down through the building

in Figure 3.12 also suggests there is little scattering caused by the individual floors.
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Figure 3.12: The motion of the building in Figure 3.1 after deconvolution with the
motion at the top floor.

3.4 Discussion

Table 1 shows that our method of using deconvolution interferometry with time

reversal gives estimates of attenuation that compare well to values found previously

using seismic interferometry and classical methods. The new method we propose has

several benefits compared to the past methods. Our method recovers attenuation

estimates in the normal mode and the first overtone. This makes the new proposed

method more robust than the past interferometric methods because the proposed

method’s ability to perform at higher frequencies. Classical methods, such as the

half-power method, lose their robustness in higher overtones because of uncertainty

in the half-power amplitude picks on either side of the peak frequency for a given

overtone.

This method removes the radiation damping from the global attenuation estimate,

leaving only internal mechanisms for energy loss like scattering attenuation, constant

Coulomb internal friction, and intrinsic material attenuation. This proposed method

shares the ability to separate the radiation damping with past seismic interferomet-

ric methods. Table 1 gives estimates that employ classical modal analysis that are

available in the literature (Bradford et al., 2004; Clinton et al., 2006; Kuroiwa, 1967).

These methods recover global damping values of the soil-structure system. These val-
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ues include radiation damping that occurs at the soil-structure interface. Our method

using deconvolution interferometry with time reversal removes the radiation damping

by allowing the energy to leave the system. For instance, the upgoing deconvolution

used in our proposed method simulates one upgoing wave injected into the building in

the basement at time t = 0. The wave moves up and then down through the building

and continues down. In essence there is a reflection coe�cient of 0 in the basement.

This leaves only internal mechanisms of attenuation in our deconvolved signals from

which we measure. Figure 3.12, of the traveling wave experiment, indicates that there

may be little contribution from scattering attenuation. Combining classical methods

with our proposed method could refine our knowledge of civil structure behavior and

improve earthquake modeling.

Our method is built upon a linear mathematical framework which may lead to lim-

itations in this method and require an attenuation model representation beyond the

constant Q description. This method is described by a linear elastic behavior of the

medium, and strong shaking may invalidate the assumption of linearity. Structures

proximal to epicenters of large earthquakes will have strong ground motion excita-

tion which can generate nonlinear e↵ects due because the mechanical properties of the

building may depend on excitation levels (Clinton et al., 2006). In this dataset for the

Millikan Library we did not observe many internal reflections and consequently little

scattering attenuation. Datasets with stronger scattering attenuation may introduce

complications to this method’s ability to accurately measure intrinsic attenuation.

In the future, this method should be tested on more data to further understand the

limitations of this method. Elements of nonlinearity and other sources of attenuation

could pose problems for this method. Other civil structures with di↵erent geometries

such as other building designs, bridges, and downhole arrays could also benefit from

this method of attenuation investigation. An extension to include higher degrees of

freedom would benefit this method to perform in more complex structures. This new
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method of deconvolution interferometry with time reversal has proved to be a viable

method for this dataset and should be continued to be explored for further advanced

applications.

3.5 Conclusion

We have shown using data recorded in the Millikan Library that deconvolution

interferometry with time reversal is an e↵ective method to measure attenuation in civil

structures. This method extracts estimates of intrinsic attenuation from the breaking

of time reversal symmetry. By time reversing the acausal wave forms, we estimate

intrinsic attenuation using a fitting procedure that is similar to past methods using

normal mode oscillations. By comparing the estimates of our time reversal method to

that of past seismic interferometry methods, we have shown that our results compare

well to the past methods of Snieder and Şafak (2006). Additionally, the time reversal

method has higher precision than the traveling wave method and not constrained to

measuring only the fundamental mode.

3.6 Data and Resources

The data are recorded and made available through the National Strong Motion

Project Data Sets of the US Geological Survey. The data for the Yorba Linda earth-

quake can be accessed through:

http://nsmp.wr.usgs.gov/data_sets/20020903_1.html#Downloads

36

http://nsmp.wr.usgs.gov/data_sets/20020903_1.html#Downloads


CHAPTER 4

GABOR DECONVOLUTION

In the previous chapter, I presented a method using deconvolution interferometry

and time reversal to measure intrinsic attenuation in a civil structure aligned with

a vertical array of accelerometers. This method provided attenuation estimates for

the normal and first higher mode of oscillation of the Millikan Library. The fitting

procedure was done in the time domain.

Gabor (1946) presented the concepts of time-frequency analysis on communication

signals. Typical signal analysis takes place in either the time or frequency domain, but

Gabor suggests a time-frequency domain analysis because ”time and frequency play

symmetrical parts.” His work discusses the precision limitations that are consequences

of sampling time signals for time-frequency analysis. The product of the uncertainty

in time and frequency of any time signal obeys a lower bound. Therefore, a suitable

time duration of the signal should be chosen for analysis to complement a suitable

bandwidth for a given measurement.

4.1 Theory and Methodology

Theoretically, we should be able to optimize the error in both the time and fre-

quency domain, with regard to the Gabor limit, when estimating attenuation by using

Gabor deconvolution. Gabor deconvolution operates in the time-frequency domain

by windowing segments of the time signal and Fourier transforming these segments.

Each windowed segment overlaps the adjacent segment by a percentage which is typ-

ically larger than fifty percent. The analysis lies in the realm of short-time Fourier

transforms which is analogous to Gabor transforms when a Gaussian is chosen for the
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windowing function. Grossman et al. (2001) defines the Gabor transform, Vg to be

Vgs (⌧,!) =

Z 1

�1
s (t) g (t� ⌧) e�i!t

dt. (4.1)

The time signal s(t) is windowed by the Gabor analysis window g(t), which is typically

a Gaussian or a raised cosine window such as a Hann or Hamming window. The Gabor

analysis window g(t) slides through the time signal s(t) with the center of the Gabor

analysis window falling on the time sample ⌧ . At each position of the Gabor analysis

window a Fourier transform is made.

The time signal, s(t) is considered to be nonstationary and is represented to be

Grossman et al. (2001); Margrave (1998); Margrave et al. (2002)

S (!) = W (!)

Z 1

�1
↵ (t,!) r (t) e�i!t

dt. (4.2)

The source wavelet spectrum W (!) is stationary in time and convolved with the

attenuation operator ↵(t,!) and reflection series r(t). This description of the non-

stationary time signal s(t) is transformed into a mix domain by the Gabor transform

(Grossman et al., 2001). The absolute value of the transformed nonstationary signal

has, in the frequency domain, the form:

|Vgs (⌧,!)| = |W (!)||↵ (⌧,!)||Vgr (⌧,!)| (4.3)

|Vgs (⌧,!)| ⇡ |W (!)||↵ (⌧,!)|. (4.4)

Following the assumption of Grossman et al. (2001), the Gabor transformed re-

flectivity series Vgr(t) can be assumed to have a ”white” spectrum and thus average

to unity. This assumption is valid because deconvolution interferometry simulates a

boundary condition where the reference signal fully reflects energy without changing

the wave state (Snieder et al., 2006). With this assumption, equation 4.3 simplifies

to equation 4.4. The authors continue by generating a least-squares problem to min-

imize ↵ for Q by assuming |↵(⌧,!)| = e

�!⌧/2Q, or equivalently ln|↵| + !⌧/2Q = 0.

Inserting equation 4.3 for |↵| and minimizing the result in the least-squares sense
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leads to the objective function

� (Q,W ) =

Z

⌦

✓
ln

Vgs (⌧,!)

W (!)
+

!⌧

2Q

◆2

d⌧d!. (4.5)

Where ⌦ is the appropriate time duration and bandwidth under investigation. Eval-

uating equation 4.5 and solving for Q, Grossman et al. (2001) find

Q = ⇡

R
⌦ ⌧

2
f

2
d⌧df

R
⌦ ⌧f ln

W (f)

Vgs (⌧, f)
d⌧df

. (4.6)

Where f = !/2⇡ is the frequency in Hertz.

Grossman et al. (2001) continue solving for Q by assuming a source wavelet spec-

trum W (f). Assuming a source wavelet is a risky task when the source is not de-

termined. With seismic interferometry the source spectrum is known because it is

redatumed to a known receiver location.

Equation 4.6 can be extended by using signals generated from deconvolution inter-

ferometry and time reversal. In Chapter 3, deconvolution interferometry was applied

to the Millikan Library time signals after separating wave fields into upgoing and

downgoing waves. I can continue to work with these deconvolved signals and Gabor

transform them into:

Vgd+ (⌧, f) = W+ (f) e
�⇡f⌧

Q

Vgd� (⌧, f) = W� (f) e
⇡f⌧
Q

If we consider W+ ⇡ W�, then the ratio Vgd�/Vgd+ = e

2⇡f⌧
Q , and taking the natural

logarithm, the ratio becomes ln|Vgd�/Vgd+| = 2⇡f⌧/Q. Substituting the natural

logarithm of the ratio above into equation 4.6 and multiplying by a factor of 2 to

acquire Q estimate such that equation 4.6 becomes

Q = 2⇡

R
⌦ ⌧

2
f

2
d⌧df

R
⌦ ⌧f ln

Vgd� (⌧, f)

Vgd+ (⌧, f)
d⌧df

. (4.7)
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Table 4.1: Damping Coe�cients; TR = time reversal, NM = normal mode, TW =
traveling wave, GTR = Gabor time reversal

Method ⇣ �⇣ Frequency Mode

TR 1.14% 0.50% fundamental
NM 1.15% 0.41% fundamental
GTR 1.59% NA fundamental
TR 1.74% 0.39% first overtone
TW 1.58% 1.36% first overtone
GTR 0.23% NA first overtone

Theoretically, this should give accurate values of Q. In practice, the results for the

normal frequency mode were comparable to previous esitmates, but not the estimate

for the first higher mode. No error analysis was done on the Gabor method because

the priority was getting measurements comparable to previous methods.

4.2 Results

Equation 4.7 gives Q estimates for deconvolution interferometry signals with time

reversal, but the results were not comparable. I have applied this method to the

Millikan Library data with results that agree with estimates for the normal mode

frequency band, but with inaccurate results for the higher frequency band.

I implement equation 4.7 by defining ⌦ to include only the frequency band of 0.2-

3.0 Hz for the normal mode and ⌦ to include only 5.0-7.8 Hz for the first higher mode.

The results of the Gabor method labeled GTR are presented in Table 4.1. For com-

parison, previous methods using deconvolution interferometry to acquire attenuation

estimates are expressed in the damping ratio ⇣.

Table 4.1 show that the attenuation coe�cients obtained by the Gabor decon-

volution for the fundamental mode agree well with estimates obtained from other

methods within the observational errors. For the first overtone, there are discrep-

ancies between the attenuation estimates obtained from Gabor deconvolution, and

other methods. It is not well understood why the Gabor deconvolution cannot ac-

40



quire accurate attenuation estimates. The inaccuracy in my Q measurement of the

first overtone most likely is related to the ratio of the Gabor transformed deconvolved

signals in equation 4.7.
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CHAPTER 5

CONCLUSION

Geophysics continues to be a science that investigates Earth by using observed

seismic waves. By injecting energy into the Earth, we introduce wave fields whose

propagation characteristics depend on material properties in the Earth. The impor-

tant properties of time reversal symmetry and intrinsic attenuation are inherently

a part of wave propagation. Because attenuation in the Earth is generally weak

(Q ⇡ 100), we assume, in practice, that TR invariance and attenuation are mutually

exclusive.

TR is a valuable property to back-project seismic or ground penetrating radar

(GPR) data on reflecting surfaces as part of the imaging process. This renders seis-

mic and GPR images comprised of subsurface velocities and densities and electrical

permittivities, respectively, with depth. TR symmetry is broken in the presence of in-

trinsic attenuation, flow in the medium, and/or rotations of the medium. This thesis

focused on intrinsic attenuation a↵ecting the TR symmetry of geophysical data.

Intrinsic attenuation a↵ects the amplitude of geophysical data through e↵ects on

the amplitude of wave fields. This allows imaging algorithms to acquire the correct

kinematics and have amplitudes stack out images with strong reflectors through con-

structive interference. Of course, if the attenuation is strong, the amplitudes do not

stack out. This explains why gaining procedures are done to enhance the imaging

process.

TR applied to geophysical data can also indicate the presence of attenuation

by discrepancies in the amplitudes of causal and time reversed acausal signals. By

applying a dip filter to the Millikan data to decompose observed waves into upgoing

and downgoing wave fields, I generated impulse response functions from an upgoing
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and downgoing source and compared their quasi-symmetrical time signals. I utilized

the breaking of TR symmetry to diagnose the presence of intrinsic attenuation in the

Millikan Library by reversing the acausal signals into causal signals. This provided

observations that the signals were asymmetric due to di↵erences in their amplitudes.

A linear least-squares fitting procedure was designed to optimize for attenuation for

di↵erent frequency modes in the building.

This method introduced a new way to measure the intrinsic attenuation of a

building fitted with seismic recording instruments that has been subjected to ground

motion from earthquakes and active sources. The method was only possible through

deconvolution interferometry which yields the impulse response function to a virtual

shear source excited in the basement of the building at time t = 0. The fitting proce-

dure was done in the time domain which allowed for intrinsic attenuation estimates

for two frequency bands representing the fundamental and first higher mode. This

is an advance in building monitoring compared to previous methods that include

half-power, mode shape, and Hudson’s methods for acquiring attenuation estimates

because with these methods only the attenuation associated with the fundamental

mode could be found. Though this method of deconvolution interferometry and time

reversal has worked for the Yorba Linda earthquake data taken from the Millikan

Library, other data sets should be tested for robustness with this proposed method.

This method estimated intrinsic attenuation measurements in the time domain

through a linear least-squares fitting procedure. This brings up the uncertainty prin-

ciple in which the uncertainty in the time domain is inversely proportional to the

uncertainty in the frequency domain. If we decrease our uncertainty in the frequency

domain then we increase our uncertainty in the time domain.

The Gabor method discussed in Chapter 4 has potential to acquire accurate esti-

mates of attenuation, but more e↵ort needs to be given in discovering error sources

and optimizing frequency and time samples to optimize resolution.
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5.1 Future work

The deconvolution interferometry method with time reversal should be tested

on more data sets of civil structures to test for robustness. Testing for robustness

should include buildings with di↵erent geometries that could prove challenging for

this method. The Millikan Library has a geometry that is simple and closely re-

sembles a clamped a beam. There are data sets for buildings much di↵erent than

the Millikan Library, with respect to geometry, that are fitted with seismic receivers

that could provide interesting results from the application of the proposed method of

deconvolution interferometry with time reversal.

Civil structures such as bridges should also be tested to see if there is an application

to these structures. Though bridges would require a horizontal array, this should not

compromise the accuracy of this proposed method.

Borehole data could also be ideal for acquiring attenuation estimates for decon-

volution interferometry with TR. The geometry of seismic arrays in a borehole, such

as vertical seismic profiles (VSP), are well designed for this method. The benefit to

applying this method to VSP data is that the source used in VSP lies in the surface

seismic frequency band. Many times acoustic sonic logs are used to acquired Q esti-

mates, but these sources are several orders of magnitude greater than surface seismic

sources. Acoustic sonic logs should not be dismissed either. The application of my

method could also be beneficial to acquiring attenuation estimates for acoustic sonic

logs as well.

Lastly, the Gabor method should be further investigated to better understand its

potential to yield accurate estimates of attenuation. Applying the Gabor deconvolu-

tion to the Millikan Library data set has been inconclusive on whether it is a viable

method for attenuation estimation. Error analysis should be performed to understand

where there are significant contributions of error. More studies should be conducted

with Gabor deconvolution to include attenuation estimates of higher modes.
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