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ABSTRACT

Seismic data acquisition and processing are essential steps for seismic exploration, the determination of

deep earth structure, and subsurface monitoring. Common problems in seismic data acquisition are missing

or unusable receivers, and a low signal-to-noise ratio of recorded signals. These problems apply to seismic

interferometry, a passive-source technique to estimate inter-receiver wavefields. In this thesis, I propose novel

methods that use seismic interferometry and compressive sensing to mitigate these problems.

I use inter-source interferometry to estimate body waves that propagate between two earthquakes from

waves that are recorded at a surface receiver array. Inter-source interferometry, which turns an earthquake

into a virtual receiver, allows receivers to be virtually placed at earthquake locations (e.g. inside volcanoes

and subduction zones) that are normally inaccessible for receiver installation. To accurately estimate inter-

source body wavefields, I derive a criterion for how densely receivers must be spaced to retrieve the waves

that propagate between earthquakes. Using waves recorded near the San Andreas Fault, I estimate the

inter-earthquake wavefields.

The problem of missing or unusable receivers is important for receiver arrays that do not regularly sample

the wavefield at the surface. I propose a compressive-sensing-based multi-source wavefield reconstruction to

alleviate the problem of missing or unusable receivers. Using the Fourier and Curvelet domains for sparse

transforms, I show that a multi-source method, which reconstructs correlated wavefields at the locations

of unavailable seismometers from correlograms of all available virtual sources, improves wavefield recovery

compared to single-source reconstruction, which uses a correlogram from a single virtual source. I show

successful applications of multi-source reconstruction for wavefield-recovery improvement over single-source

reconstruction using synthetic data on linear and areal arrays and present a data example using distributed

acoustic sensing data. The methodology is, in principle, applicable to active source seismic surveys.

Also, I develop weighted compressive sensing to mitigate the imprint of noise on the reconstructed

wavefield, and to impose a priori information about the nature of the recovered wavefields. Wavefields

obtained from seismic interferometry may contain spurious arrivals. Using the Fourier basis as a sparse

transform, I show that weighted compressive sensing can suppress these spurious arrivals.
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CHAPTER 1

GENERAL OVERVIEW

Seismic data acquisition is an essential part of seismic signal processing workflow and seismic interpreta-

tion. One acquires seismic signals by deploying seismic receiver arrays and these arrays can be sparse, dense,

regular, or irregular. For practical reasons, one usually installs receivers on the Earth’s surface because the

installation of receivers in the subsurface is difficult and expensive. In addition, receiver arrays are often

sparse and irregular because of problems such as inoperative receivers and restricted locations for receiver

installation. Parts of acquired seismic signals can also be low in quality (low signal-to-noise ratio (SNR))

due to noise contamination of the signals or receiver malfunction during the array deployment. These issues

of receiver installation and low-quality seismic signals appear in the forms of irregular random missing traces

and low-SNR seismic traces.

One can mitigate the difficulty and expense of receiver installation in the subsurface using seismic reda-

tuming techniques and seismic signals recorded from surface receivers. This involves redatuming techniques

based on methods that include the Kirchhoff integral (Wapenaar, 1993), wave-equation based redatuming

(William A. Schneider et al., 1995), amplitude correction (Tegtmeier et al., 2004), interferometric redatum-

ing (Wapenaar et al., 2010; Xiao and Schuster, 2006), and recently, Marchenko imaging which is an inverse-

scattering method (Diekmann and Vasconcelos, 2021; Kiraz et al., 2021; Rose, 2001; Wapenaar et al., 2014).

One can apply these redatuming methods to move the positions of sources and receivers from the surface to

the subsurface.

Irregularity of seismic arrays is another issue of seismic data acquisition that may affect the subsequent

seismic signal processing steps. For example, seismic imaging including the Kirchhoff migration requires

regular seismic profiles to reduce post-migration noise and enhance subsurface imaging (Al-Gain et al., 2020;

Cao et al., 2018; Poole and Herrmann, 2007). Irregular seismic shots also affect removal of ground roll and

noise reduction (Mann and Emanuel, 2006). Regularizing seismic profiles can also enhance the alignment of

reflection events and the SNR of seismic imaging (Chopra and Marfurt, 2013). In addition, parts of acquired

seismic signals from seismic arrays can be unreliable or of low quality for subsequent signal processing

steps because the signals are noisy or corrupted by unexpected factors such as an incorrect orientation of

receiver installation. Thus, regularization or reconstruction of seismic wavefields is required to alleviate the

limitations of irregular and unreliable seismic records.

Seismic data reconstruction helps handling these issues by filling the data gaps and replacing the low-SNR

records with interpolated traces before subsequent processing and interpretations. Different techniques of
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seismic data reconstruction have been performed to interpolate sampled data. There are 5 main categories of

these interpolation methods: wave-equation-based methods, linear prediction filter methods, rank-reduction

methods, deep-learning approaches, and mathematical-transform methods (Liu et al., 2019; Wang et al.,

2016). Wave-equation-based methods use migration and de-migration operators to interpolate sampled

data, but these methods carry a heavy computational cost (Ronen, 1987). Linear prediction filter methods

interpolate seismic records, assuming the data are the superposition of linear or quasi-linear events in the

f-k domain. To interpolate sampled data, the prediction filter methods need a local window to ensure the

linearity of complex and curved events (Naghizadeh and Sacchi, 2007; Spitz, 1991; Wang and Lu, 2017).

Rank-reduction methods assume that the data are of low rank to interpolate sampled seismic data (Trickett

et al., 2010). The rank-reduction techniques can predict NMO corrected data and interpolate curved events

with the decrease in the flexibility of the techniques (Ma, 2013). The missing traces and noise in sampled

seismic data also increase the rank of the data (Trickett et al., 2010). Interpolation methods using deep

learning (e.g. generative adversarial networks or GANs) require large training data sets and usually uses

synthetic data for the training because the acquisition of enough field seismic data is expensive and difficult.

Training of GANs with synthetic data leads to low-quality seismic data reconstruction due to the difference

in the features of test and training data. The bias between the two data sets increases with the increases

in the difference of the two data sets (Alwon, 2018; Wang et al., 2019). GANs can interpolate strongly

under-sampled seismic data but the technique requires some sampled traces in the training (Siahkoohi et al.,

2018). The interpolation of complex-structure seismic data using conditional GANs may also give a low

resolution and non-geological artefacts (Oliveira et al., 2018).

Interpolation of seismic signals using mathematical transform-based approaches is more flexible and

widely used to reconstruct signals from irregular and fewer signal samples. The methods transform the data

into a domain where the data is sparse and use sparse-recovery algorithms for the data reconstruction. The

method can handle irregularly sampled data. The interpolation has been applied using different transforms,

including the Fourier transform (Abma and Kabir, 2006; Gao et al., 2013), Radon transform (Kabir and

Verschuur, 1995; Wang et al., 2010), wavelet transform (Pawelec et al., 2019; Yu et al., 2007), seislet trans-

form (Gan et al., 2015; Liu et al., 2016a), dreamlet transform (Wang et al., 2014), and curvelet transform

(Herrmann et al., 2008; Wang et al., 2015; Yang et al., 2012). A sparse-recovery algorithm that combines

different transforms also improves the efficiency and performance of the data reconstruction (Kim et al.,

2015). In my studies, I use a reconstruction method called compressive sensing to retrieve seismic profiles

from few and irregular seismic traces, addressing the limitations of the irregularity of seismic receiver arrays

due to missing or inoperative receivers.
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1.1 Seismic Signal Recovery using Compressive Sensing

The Nyquist-Shannon sampling theorem requires the sampling rate of a signal to be twice the maximum

frequency of the signal, the Nyquist frequency; signals are uniformly sampled at the Nyquist frequency.

Candès et al. (2006c) and Donoho (2006) introduced a tranform-based method for signal recovery called

compressive sensing (CS) as a new sampling/sensing paradigm that violates the traditional data acquisition

methods which always follow the Shannon sampling theorem as CS can recover signals using fewer samples

than those used by the common sampling methods. CS has been applied to several fields including com-

pressive imaging that include radio interferometry (Vijay Kartik et al., 2017), radar imaging (Gurbuz et al.,

2009; Patel et al., 2010), image processing (Li and Yang, 2011), medical applications (Liu et al., 2015; Otazo

et al., 2015), and communication systems (Liu et al., 2017; Sharma et al., 2016). CS exploits the sparsity or

compressibility of signals to recover the signals and requires irregularly sampled measurements for accurate

signal reconstruction (Candès and Wakin, 2008).

The main applications of CS in seismology are data acquisition, seismic data reconstruction and denoising,

sparsity-promoting based migration, and seismic imaging and inversion. The acquisition of seismic data

using dense arrays is expensive, and in practice, some receivers in arrays can be inoperative or restricted for

installation, resulting in irregular arrays. CS makes it possible to reconstruct dense and regular seismic data

using records from fewer sensors in an irregular array, increasing the efficiency of seismic data acquisition

(Mosher et al., 2014). Mansour et al. (2012) propose a randomized marine-data acquisition scheme that

utilizes the sparse-promoting recovery and reduces overall time to conduct marine surveys. Pawelec et al.

(2019) and Jiang et al. (2019b) also demonstrate the CS reconstruction of land seismic profiles from fewer

randomized samples that are comparable to the dense seismic profiles. Using CS, Herrmann et al. (2008)

and Hennenfent et al. (2010) demonstrate the interpolation and denoising of exploration seismic profiles.

In addition, Boehm et al. (2016) illustrate the memory-requirement reduction in 3D adjoint full-waveform

inversion, and Li et al. (2012) obtain full-waveform inversion comparable to that from conventional methods,

while reducing the computational cost. The wavefield reconstruction using CS helps improve the resolution

and robustness of surface-wave tomography (Zhan et al., 2018).

1.2 Seismic Interferometry and its Connection to Compressive Sensing

Common problems of seismic data acquisition include (1) difficult or restricted locations for seismometer

deployment, (2) missing or inoperative seismometers, and (3) low quality (low-SNR) seismic signals recorded

by seismometers. These issues apply to subsequent signal processing techniques including seismic interfer-

ometry (SI), which is a method to estimate the wavefield (the Green’s function) that accounts for wave

propagation between seismometers. Each seismometer can act as a virtual source. SI has been developed
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for several applications to investigate and image the subsurface using ambient noise (Draganov et al., 2007;

Shapiro et al., 2005), traffic and production noise (Nakata et al., 2011; Vasconcelos and Snieder, 2008b), and

earthquake or active sources (Matzel et al., 2016, 2017). The principles of SI have been explained by several

review papers (Curtis et al., 2006; Larose et al., 2006; Snieder and Larose, 2013a; Wapenaar et al., 2010).

Even though one can apply SI to recover the wavefield between seismometers using deconvolution (Pianese

et al., 2018; van Dalen et al., 2015; Vasconcelos and Snieder, 2008b), cross-coherence (Nakata et al., 2011;

Prieto et al., 2009), or convolution (Curtis and Halliday, 2010; Entwistle et al., 2015), applications of SI have

been usually based on using cross-correlation (Asano et al., 2017; Miyazawa et al., 2008; Mordret et al., 2010;

Shapiro et al., 2005). Passive seismic exploration is an application of cross-correlation SI that utilizes SI

to retrieve inter-receiver wavefields. Receivers used for passive surveys are usually deployed on the Earth’s

surface because the installation of subsurface receivers is difficult and expensive. Rather than using seismic

redatuming techniques, Curtis et al. (2009) have developed a version of SI called inter-source interferometry

that addresses the limitation of installing subsurface receivers by estimating inter-source wavefields, where

the locations of sources may be in the subsurface.

Using inter-source interferometry, one can estimate the wavefields that account for the wave propogation

between two seismic sources (e.g. earthquakes), one of which turns into a virtual receiver. Recovering inter-

source wavefields has been used for many applications. For example, Matzel et al. (2016) and Morency and

Matzel (2017) monitor the micro-seismic events via the observation of the change in the source-mechanism

inversion of the Green’s function retrieved from these micro events. Other applications include imaging

redatumed reflection responses using drill-bit noise as virtual receivers (Liu et al., 2016b), crustal tomography

(Shirzad et al., 2019), and localization of olivine wedge (Shen and Zhan, 2020). Previous applications

of inter-source interferometry involve the cross-correlation of surface wavefields, measuring the dispersion

of the waves. However, estimating body waves using interferometry requires stricter conditions than the

requirements of surface-wave retrieval (Forghani and Snieder, 2010).

In Chapter 2, rather than recovering surface waves as a common application of SI, we apply inter-source

interferometry for body-wave retrieval and investigate the requirements associated with recovery of inter-

source wavefields when sources are located in the subsurface. Using a numerical model, we show that one can

recover direct body wavefields using inter-source interferometry if one satisfies two conditions: (1) seismic

waves are recorded at receivers located inside the stationary phase zone and (2) there are 4 receivers per

wavelength inside the stationary phase location of the interferometric integral. The interferometric stationary

phase zone is explained in Chapter 2. Satisfying these two conditions, we recover direct body waves that

account for wave propagation between two earthquakes in the area of San Andreas Fault and show that we

can use the retrieved direct body waves to estimate the width of the damage zone of the fault, which is
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approximately 4 km.

Apart from the difficulty of installing subsurface receivers, seismic noise interferometry, which is an

application of cross-correlation SI, typically requires much data storage to store long records of seismic noise

that can be as long as 3 months (Nakata et al., 2015) and even 1 year (Lin et al., 2008) for passive seismic

surveys. In addition, seismic receiver arrays for these surveys are often irregular because some receivers may

be inoprative or missing and may record low-quality seismic signals. One can apply wavefield reconstruction

to mitigate the problem of irregular array and to save data storage by discarding some parts of seismic records.

For example, Jayne et al. (2022) use CS to reduce the storage required for cross-correlating long noise records

by reducing the number of samples for cross-correlation in the Fourier domain. Wang et al. (2009), Hanafy

and Schuster (2014), and Xu et al. (2018) use a technique called interferometric interpolation, that utilizes

a matched filter and virtual source gathers provided by SI, to extrapolate and interpolate missing marine

seismic profiles. Since Zhan et al. (2018) demonstrate the reconstruction of surface wavefields generated

from a source on a dense receiver array, we can apply CS to reconstruct interferometric surface wavefields

retrieved from SI on seismic receiver arrays when some receivers are missing or inoperative.

In Chapter 3, we focus on using CS to reconstruct interferometric surface wavefields (cross-correlation

profiles) when gaps of the correlation wavefields appear on the profiles because of inoperative or absent

receivers. We propose and develop an alternative wavefield-recovery technique called multi-source wavefield

reconstruction, where we apply CS to recover the missing correlation profiles recorded from a linear receiver

array using the correlation traces provided from all available virtual sources. Using SNR as a diagnostic for

wavefield-recovery comparison, we show that recovering interferometric wavefields using correlation profiles

from all available virtual sources is more accurate than using correlation profiles from an available virtual

source to reconstruct the wavefields.

The improvement of wavefield reconstruction using information from multiple sources is beneficial to

passive seismic studies. One can apply our multi-source method to existing linear sensor arrays, where some

sensors are missing or inoperative. A recent application of noise interferometry in seismic exploration is to

image and monitor subsurface using signals collected from optical fiber networks using distributed acoustic

sensing (DAS) technology. Commonly, seismic signals collected using DAS cables are highly sensitive to the

orientation of the cables and the direction of incident wavefields (Bakku et al., 2014; Martin et al., 2021;

Shragge et al., 2021). Thus, parts of the collected signals can be inadequate in signal quality and may

be discarded from subsequent signal processing steps. In Chapter 4, we apply our multi-source wavefield

reconstruction to DAS signals collected from an optical fiber located in the area of Perth, Australia. We show

that the multi-source method, which uses correlation profiles from all available virtual sources, is applicable to

field DAS data. The method also shows an improvement in recovering interferometric wavefields, compared
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to the wavefiled reconstruction using a correlation profile from an individual virtual source.

In Chapters 3 and 4, we show the application of our multi-source wavefield reconstruction of seismic signals

collected from linear receiver arrays. In the appendix, we apply our multi-source method to reconstruct

interferometric wavefields collected from an areal receiver array. We show that the multi-source method is

applicable to reconstruct wavefields collected from areal arrays. Using a numerical model, we demonstrate

that similar to linear receiver array examples, the multi-source method gives more accurate reconstruction of

interferometric wavefields, compared to wavefield reconstruction using correlated wavefields from an available

virtual source.

We show in Chapters 3 and 4 and the appendix that one can use interferometry and wavefield reconstruc-

tion techniques to mitigate the problems of difficult receiver installation and missing/inoperative sensors.

Another problem of seismic data acquisition is low-quality (low SNR) signals due to noise assimilation and

signal sensitivity. For example, signals collected from DAS fibers can be sensitive to weather conditions,

where colder air and ground temperatures can vary the velocity of surface waves monitored by near-surface

DAS sensors (Yang et al., 2021). One needs to filter these unreliable signals for subsequent processing steps.

In SI applications, some interferometric traces may be unreliable because these traces include interferometric

noise, which is the wave arrivals prior to the surface waves retrieved by SI. One can reduce this interfero-

metric noise by satisfying the sampling criteria of source distribution provided by Fan and Snieder (2009),

or for noise interferometry, one can stack cross-correlated windows of very long seismic noise records.

In Chapter 5, we investigate how we can use these unreliable signals for wavefield reconstruction. We

develop a weighted compressive sensing wavefield reconstruction technique that helps reduce interferometric

noise. Using a cross-correlation profile that includes both traces with and without interferometric noise, we

show that one can apply the weighted method to reconstruct a correlation profile without interferometric

noise. The quality of wavefield reconstruction using our weighted algorithm depends on the weight and

the degree of unreliability of signals (more details in Chapter 5). Finally, we give a brief conclusion of the

previous chapters in Chapter 6. We also provide potential research directions and applications of inter-source

interferometry, multi-source wavefield reconstruction, and weighted compressive sensing. These applications

include deep-earth investigations, noise reduction, DAS data compression, and interpolation for seismic

exploration.
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CHAPTER 2

INTER-SOURCE INTERFEROMETRY OF SEISMIC BODY WAVES: REQUIRED CONDITIONS AND

EXAMPLES

Reproduced with the permission for The Journal of Pure and Applied Geophysics.1

Patipan Saengduean2, Morgan P. Moschetti3, and Roel Snieder4

2.1 Abstract

Seismic interferometry is widely applied to retrieve wavefields propagating between receivers. Another

version of seismic interferometry, called inter-source interferometry, uses the principles of seismic reciprocity

and expands interferometric applications to retrieve waves that propagate between two seismic sources.

Previous studies of inter-source interferometry usually involve surface-wave and coda-wave estimations. We

use inter-source interferometry to estimate the P-waves propagating between two sources rather than the

estimation of surface waves and coda waves. We show that the recovered arrival times are dependent on the

accuracy of the earthquake catalog of the two sources. Using inter-source interferometry, one can recover

the waveform of the direct body waves and potentially reconstruct the waveform of coda waves, depending

on the source-receiver geometry. The retrieval of these waveforms is accurate only when the wavefield is

sampled with approximately 4 receivers per wavelength in the stationary phase zone. We show that using

only receivers inside the stationary phase region for inter-source interferometry introduces the phase error of

approximately 0.3 radians. In our study, we show an example of the P-wavefield reconstruction between two

earthquakes using the seismic records from an array along San Andreas Fault. The retrieved P waves give a

qualitative estimation of the thickness of the low-velocity zone of San Andreas Fault of approximately 4 km.

2.2 Introduction

Seismic interferometry is a technique to estimate the Green’s function or the wavefield that accounts

for wave propagation between receivers. The inter-receiver technique has been developed for many applica-

tions using ambient noise (Draganov et al., 2007; Shapiro et al., 2005), traffic and oilfield production noise

(Miyazawa et al., 2008; Nakata et al., 2011), and earthquakes or active sources. The principles of seismic

interferometry are explained in several review papers (Curtis et al., 2006; Larose et al., 2006; Snieder and

Larose, 2013b; Wapenaar et al., 2010).

1Reproduced with the permission of Pure Appl. Geophys., 178, 3441-3460. See Appendix for the permission.
2Graduate student, primary researcher, and author at Department of Geophysics, Colorado School of Mines
3Research Geophysicist at U.S. Geological Survey, Golden, CO
4Supervisor at Department of Geophysics, Colorado School of Mines
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In general, one can retrieve the Green’s function between receivers using cross-correlation, deconvolution,

and cross-coherence of the signals recorded at receivers (Nakata et al., 2011; Snieder et al., 2009). Although

applications of seismic interferometry are usually based on cross-correlation (Asano et al., 2017; Miyazawa

et al., 2008; Mordret et al., 2010; Shapiro et al., 2005), some applications also use deconvolution (Nakata et al.,

2013; Pianese et al., 2018; van Dalen et al., 2015; Vasconcelos and Snieder, 2008a,b), cross-coherence (Nakata

et al., 2011; Prieto et al., 2009), and convolution (Curtis and Halliday, 2010; Entwistle et al., 2015). These

data processing methods for Green’s function retrieval have diverse advantages and disadvantages (Snieder

et al., 2009). One has to select the process that is best suited to particular data and research requirements. In

theory, cross-correlation of ambient seismic noise interferometry suppresses strong amplitudes of earthquakes.

In this study, we implement cross-correlation for Green’s function retrieval because, unlike in the case of noise

interferometry, we use real earthquakes, and the cross-correlation correctly handles the strong amplitudes of

the waves that are excited by these earthquakes.

Recovering the Green’s function using inter-receiver interferometry, in particular with the retrieval of

surface waves from ambient noise cross-correlation, has become an accepted technique (Shapiro et al., 2005).

For practical reasons, the receivers used are usually installed on the Earth’s surface. A version of seismic

interferometry, called inter-source interferometry (Curtis et al., 2009), addresses this limitation because it

yields the waves that propagate between two sources, which may be located in the subsurface.

Inter-source interferometry, or the virtual receiver method (VRM), is a technique to estimate the Green’s

function that accounts for wave propagation between two earthquakes, one of which acts as a virtual receiver.

The Green’s function retrieved from the inter-source technique is the wavefield measured through the dynamic

strain induced by the wavefield at one of the earthquakes excited by the other earthquake (Curtis et al.,

2009). Even though the theory of inter-source interferometry for Green’s function retrieval requires receivers

on a closed surface surrounding the earthquakes, the dominant contribution of the retrieved Green’s function

comes from the receivers located inside the stationary phase zones of the pair of sources (Curtis et al., 2009;

Snieder, 2004).

Inter-source interferometry as introduced by Curtis et al. (2009) has been applied in several studies. One

application involves the monitoring of micro-seismic events by observing the change in the source mechanism

inversion of the Green’s function retrieved from these events (Matzel et al., 2016; Morency and Matzel, 2017).

Other applications of inter-source interferometry include the improvement of crustal structure tomography

using inter-event interferometry (Shirzad et al., 2019), the localization and identification of the geometry

of the metastable olivine wedge (Shen and Zhan, 2020), and the determination of the shear-wave velocity

in different source clusters (Eulenfeld, 2020). In addition, Schuster (2009) uses interferometry to convert

VSP data into surface seismic data and thus extracts the waves that propagate between active sources
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at the surface. Curtis and Halliday (2010) use inter-source interferometry as a part of a new form of

interferometry called source-receiver interferometry. Poliannikov et al. (2012) image a subduction slab using

virtual responses between earthquakes located inside the slab. Liu et al. (2016b) turn non-transient sources

such as drill-bit noise into virtual receivers, imaging the redatumed reflection responses close to targeted

areas.

Previous studies of inter-source interferometry usually estimate the Green’s function using the cross-

correlation of surface waves, measuring the dispersion of the waves. However, the estimation of body waves

using seismic interferometry involves stricter requirements on the source-receiver geometry than the extrac-

tion of surface waves (Forghani and Snieder, 2010; Nakata et al., 2011). Since inter-source interferometry can

yield the waves that propagate between earthquakes, this technique has the potential to extract the body

waves that propagate between these earthquakes.

Figure 2.1 Cartoon of a) inter-receiver interferometry with noise or active sources on a closed surface, b)
inter-source interferometry with receivers on a closed surface, c) inter-source interferometry with receivers
in stationary phase zones (pink areas), and d) inter-source interferometry with surface receivers in one
stationary phase zone.

In order to construct the Green’s function using seismic interferometry, one has to satisfy the theoretical

requirements on the source or reciever distribution. Fan and Snieder (2009) have derived sampling criteria

for inter-receiver interferometry. Due to seismic reciprocity, which allows for the exchange of the source

and receiver positions, the same criteria holds for the inter-source technique. However, noise sources in the

inter-receiver interferometry tend to have better spatial distribution than that of receivers in inter-source

interferometry (Figure 2.1a and Figure 2.1d). At the global scale, dominant noise sources (e.g., oceanic

waves) are omnipresent, while smaller-scale noise sources (e.g., traffic and cultural noise) are concentrated at

particular locations such as roads and construction sites. In inter-source interferometry, the reconstruction
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quality of the retrieved waves depends on the spatial distribution of surface receivers. Thus, the applicability

of inter-source interferometry depends on the geometry of the used receiver array (Figure 2.1d).

Instead of measuring the arrival time and the dispersion of surface waves, we seek to retrieve body

waves that can be characterized by the following information: 1) the arrival time of the direct wave, 2) the

waveform of the direct wave, and 3) the waveform of coda waves. In our study, we test to what extent we can

recover this information; we also identify the required sampling criteria (i.e., sampling density and station

locations) for the retrieval of this information using inter-source interferometry. We present the Green’s

function retrieval from the cross-correlation of 1) 2D synthetic acoustic waves excited from two sources in

a homogeneous medium with an embedded scatterer and 2) earthquake seismograms recorded at an array

deployed along San Andreas Fault. The retrieval uses inter-source interferometry and receivers located in

the stationary phase zones.

We first introduce the basic equations of cross-correlation based interferometry and the data processing

steps. We further demonstrate the Green’s function retrieval using different stationary phase zones and

sampling density for the synthetic model. Next, we show a field example of Green’s function reconstruction

of P waves and the qualitative estimation of the low-velocity zone thickness of the San Andreas Fault (SAF)

using the reconstructed P waves. Finally, we explain the reason why we can recover parts of the waveform,

yet cannot recover the arrival time and the full waveform of body waves using inter-source interferometry;

we also discuss the application of the inter-source technique with field examples.

2.3 Theory of Cross-Correlation Based Interferometry

Using the Fourier convention f(t) =
∫
F (ω)eiωtdω and assuming a far-field integration boundary oriented

perpendicularly to wave propagation, Wapenaar and Fokkema (2006) have derived seismic interferometry

for acoustic waves:

G(xA,xB , ω)−G∗(xA,xB , ω)≈− 2iω

ρc

∮
G(xB ,x, ω)G∗(xA,x, ω)d2x, (2.1)

where G(xA,xB , ω) is the frequency-domain representation of the Green’s function that accounts for the

wave propagation from xB to xA, ρ is the mass density, c is the wave velocity, ω is the angular frequency,

and the asterisk denotes the complex conjugation. The factor iω corresponds to a differentiation in the time

domain.

In the frequency domain, the wavefield u(xA,x, ω) excited from a point source at x and recorded at xA

is the Green’s function G(xA,x, ω) convolved with the source-time function W (x, ω). The cross-correlation

of the wavefields measured at xA and xB is, in the frequency domain, given by

CBA = u(xB ,x, ω)u∗(xA,x, ω) = |W (x, ω)|2G(xB ,x, ω)G∗(xA,x, ω). (2.2)
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Integrating the cross-correlation in equation (2) over a closed surface that includes uncorrelated sources on

the closed surface surrounding the receivers (Snieder et al., 2007) gives∮
CBAd

2x = 〈|W (x, ω)|2〉
∮
G(xB ,x, ω)G∗(xA,x, ω)d2x, (2.3)

where 〈|W (x, ω)|2〉 is the average of the spectrum of the squared source-time functions. In practice, we carry

out the integration by stacking all sources on the closed surface (Figure 2.1a). Inserting the integration of

cross-correlation of equation (3) into equation (1) yields:[
G(xA,xB , ω)−G∗(xA,xB , ω)

]
〈|W (x, ω)|2〉≈ − 2iω

ρc

∮
CBAd

2x, (2.4)

where G(xA,xB , ω) − G∗(xA,xB , ω) denotes the difference of the causal and acausal parts of the Green’s

function that accounts for wave propagation between receivers at xA and xB . Equations (1)-(4) represent the

theory of cross-correlation based inter-receiver interferometry. With source-receiver reciprocity, the equations

also hold for inter-source interferometry as Curtis et al. (2009) show that one can estimate the same Green’s

function that accounts for the wave propagation between two sources at the same xA and xB locations, using

the records at receivers on a closed surface (Figure 2.1b) or surface receivers located in the stationary phase

zone (Figure 2.1c and Figure 2.1d). In our study, we define the width of the stationary phase zone as the

region where the phase change of the interferometric integral compared to the point where the phase is at

an extremum is a specified fraction of the dominant period. In our study, we use a quarter of the dominant

period (the appendix (Section 2.9)). The width of the phase zone depends on the source-receiver geometry

and is explained in the following sections.

As shown by Curtis et al. (2009), inter-source interferometry for moment tensor sources MA and MB at

locations xA and xB , respectively, gives an interferometric measurement

v = MB
ipM

A
mq∂

B
p ∂

A
q Gim(xB ,xA) . (2.5)

As shown by Aki and Richards (2002), the displacement generated by a moment tensor source MA at xA is

given by

umomi (x) = MA
mq∂

A
q Gim(xB ,xA) , (2.6)

where G denotes the elastic wave Green’s tensor. According to expression (2.5), inter-source interferometry

thus extracts

v = MB
ip∂

B
p u

mom
i (xB) . (2.7)

Since the moment tensor MB
ip is symmetric, this can also be written as

v = MB
ipε

mom
pi (xB) , (2.8)
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where εmompi = (1/2)
(
∂pu

mom
i + ∂iu

mom
p

)
is the strain field. This means that inter-source interferometry

gives the projection of the strain field at xB onto the moment tensor MB that is associated with elastic

waves excited by a moment tensor source MA at location xA.

2.4 Synthetic Model and Green’s Function Retrieval

Figure 2.2 Cartoon of 2D synthetic model used to compute acoustic wavefields. The model includes two
sources and a scatterer. The stationary phase zones for the direct and scattered waves propagated between
the two sources are Z1 and Z2, respectively. The receiver separation is 25 m and is not drawn to scale.

In a 2D synthetic example, we compute acoustic wavefields in a homogeneous model with a single em-

bedded scatterer. As shown in Figure 2.2, two seismic sources are located at depths of 3 km and 7 km with

a horizontal separation of 3 km. The scatterer is located at a depth of 7 km with a horizontal separation of

3 and 6 km from the two sources, respectively. In our model, 801 receivers are located on the surface with

a uniform separation distance of 25 m between receivers. The wave velocity of this medium is 4 km/s and

the frequency range is 1-10 Hz; thus, the shortest wavelength of this model is 400 m. Figure 2.2 is a sketch

of our synthetic model with two 5 km-wide stationary phase zones; Z1 and Z2 represent the zones for the

direct wave between two earthquakes and the scattered wave from the scatterer, respectively.

We use the cross-correlation based method to construct the Green’s function between two seismic sources.

We first compute the cross-correlation of full wavefields excited from the two sources that are recorded at all

receivers located in the two stationary phase zones. Next, we apply a Gaussian taper to the cross-correlated

traces at the receivers before computing the integration of cross-correlations; the tapering minimizes the

truncation artifacts resulting from the truncation of the integration interval (Burdick and Orcutt, 1979).

The tapering employs a Gaussian window, w(x) = e−(x−x0)
2/2σ2

, where x is the receiver location away from
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the center of the stationary phase zone (x0) and σ is 40% of the width of the receivers array located within

the stationary phase region. For a meaningful comparison, we use equation (4) to match the integrated

correlogram with the direct forward-modelled wavefield between the two sources convolved with the source-

time function. To recover the Green’s function, one needs to take the time derivative of the integrated

correlogram and deconvolve with the squared source-time function. In order to avoid a deconvolution, we

follow equation (4) and compare the scaled time derivative of the correlation (the right hand side of equation

(4)) with the Green’s function’s convolved with the power spectrum of the source-time functions (the left

hand side of equation (4)). Because our comparison uses normalized waveform, we do not account for the

constants 2, mass density, and wave velocity in equation (4).

Figure 2.3 Comparison between the forward-modeled wavefield convolved with the source wavelet (blue)
and the Green’s function retrieved from the inter-source technique (VRM) with a time derivative correction
(red), using all 801 receivers. The amplitude of the two traces are normalized.

The ability to accurately reconstruct the Green’s function depends on 1) the location of the receiver

array and 2) the sampling density of the array. We test the ability to reconstruct the Green’s function

using inter-source interferometry, given these two requirements. We first show the comparison between the

forward-modeled and the interferometric wavefields when we use all 801 receivers on the surface for inter-

source interferometry. Using all the receivers, the waveform extraction is accurate, except for an early arrival

at 0.25 s (Figure 2.3). This early arrival at 0.25 s with an amplitude of approximately 2.5% of the direct

arrival is the contribution from the cross-correlation of scattered waves and has the same arrival time for all

receivers (Figure 2.4). Snieder et al. (2008) show that a full aperture of receiver array can eliminate the early

arrival at 0.25 s. Since we use a limited aperture with receivers only at the surface, we cannot completely
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eliminate this early arrival.

Figure 2.4 Cross-correlation of wavefields recorded at each individual receiver. The bottom-left plot
magnifies the area in the red rectangle, showing weak waves that arrive consistently at 0.25 s at all
receivers.

As the wavefield reconstructed by inter-source interferometry depends on the receiver array location,

we test Green’s function retrieval using cross-correlation of the wavefields recorded at receivers located in

different stationary phase zones. Figure 2.5 and Figure 2.6 compare the forward-modeled wavefield and the

interferometric Green’s function retrieved using only receivers in the stationary phase locations, Z1 and Z2,

respectively. Figure 2.5 illustrates that we can only retrieve the direct wave when we use receivers in the

stationary phase zone (Z1) of the direct wave. By contrast, Figure 2.6 shows the same comparison, using

stations located in the stationary phase zone (Z2) of the scattered wave, indicating that in this case, we can

only retrieve the scattered wave. Notice from Figure 2.5 and Figure 2.6 that the limited aperture of the

used receiver array located inside the stationary phase zone leads to a small phase distortion between the

forward-modelled and interferometric wavefields.

We show in the appendix (Section 2.9) that the small phase distortion in Figure 2.5 is due to an integration

over receivers that is limited to the stationary phase zone. We also show in the appendix that the stationary

phase integral converges slowly in the sense that one needs to integrate over an interval that is much larger

than the width of the stationary phase zone as defined earlier, and that an integration over the stationary

phase zone–defined as the region where the maximum phase delay is a quarter of a period–leads to a phase

error of about 0.273 radians. This phase error does not depend on the distance between the sources.

14



Figure 2.5 Comparison between the forward-modeled wavefield convolved with the source wavelet (blue)
and the Green’s function retrieved from the inter-source technique (VRM) with a time derivative correction
(red), using receivers located in stationary phase region for inter-source path (Z1). The amplitudes of the
traces are normalized.

Figure 2.6 Comparison between the forward-modeled wavefield convolved with the source wavelet (blue)
and the Green’s function retrieved from the inter-source technique (VRM) with a time derivative correction
(red), using receivers located in stationary phase zone for source-scatterer path (Z2). The amplitudes of
the two traces are normalized using the amplitude of the scattered wave.
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Figure 2.7 Comparison between the forward-modeled wavefield convolved with the source wavelet (blue)
and the Green’s function retrieved from the inter-source technique (VRM) with a time derivative correction
(red), using receivers located in Z1 and Z2. The amplitude of the two traces are normalized. Figure 2.7a
and Figure 2.7b have uniform receiver spacings of 100 and 1000 m, respectively, in the stationary phase
zones.

In addition to the different receiver array locations, we also test the connection between the sampling

density of the station array and the retrieved Green’s function using inter-source interferometry by lowering

the number of stations and thereby increasing the station spacing inside the two stationary phase zones (Z1

and Z2). The comparison of the forward-modeled and the retrieved traces in Figure 2.7 involves stations

located in the two stationary phase zones (Z1 and Z2). Using 41 stations with a uniform station spacing

of 100 m in each zone, we can recover both the direct and the scattered waves (Figure 2.7a). By contrast,

Figure 2.7b shows the retrieved direct and scattered waves with oscillations prior to the arrival of these

waves, using 5 stations in each zone with a uniform station spacing of 1 km. The direct and scattered waves

in Figure 2.7 are well-reconstructed using the different station spacing because the width of the stationary

phase locations is well-covered. In the case of Figure 2.7b, the retrieved signal is under-sampled away from

the stationary phase regions as the station spacing is much larger than the smallest wavelength of this

synthetic model (400 m). Thus, the oscillations prior to the direct and scattered waves are not completely

eliminated, compared to the retrieved signal in Figure 2.7a. Similar to Figure 2.5 and Figure 2.6, Figure 2.7

shows a phase distortion between the forward-modelled and interferometric wavefields due to the limited

aperture of the used receiver array located inside the stationary phase zones. We explain the detail of the

phase shift in the appendix (Section 2.9). One can mitigate this phase distortion using all receivers on the
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surface (Figure 2.3), but this is usually not possible with realistic surface array.

Figure 2.8 Different numbers of spatial samples for an integrated oscillatory function.

In this section, we showed that one can reconstruct the waveform of direct body waves, which accounts for

the wave propagation between two sources, using inter-source interferomety and seismic records of receivers

located in the stationary phase zones. The reconstruction is accurate only when the wavefield is sampled

with sufficient spatial sampling density. For the direct summation of the cross-correlated wavefields over

field array receivers, one requires 4 sampling points in a wavelength because two sampling points are not

adequate to numerically integrate an oscillatory function when using a summation over the sampling points;

as shown in the top function in Figure 2.8, these sampling points of an integrated oscillatory function might

be located at zero crossings of the integrand and would thus erroneously suggest that the function vanishes.

However, using techniques such as interpolations of the integrand prior to the summation of the integrand

(Entwistle et al., 2015) or Filon-Trapizoidal rule for numerically integrating oscillatory integral functions

(Tuck, 1967), one can reduce the number of required sampling points and only needs more than 2 sampling

points in a wavelength. With only the direct integration of the cross-correlations over receivers, one needs

at least 4 points per wavelength to numerically integrate such an oscillatory function, although even in that

case the numerical quadrature might not be very accurate.

17



2.5 Green’s Function Retrieval using Seismograms Recorded near the San Andreas Fault
(SAF)

Section 2.4 shows that for the direct summation of the cross-correlated wavefields over array receivers,

one requires at least 4 receivers located within the stationary phase locations to reconstruct the waveform of

the direct body waves. Here, we exemplify the recovery of direct body waves using the inter-source method

and seismic records from two earthquakes recorded at a seismic array inside the stationary phase locations

of the two earthquakes.

Figure 2.9 Map view of seismic line arrays (white triangles) along and across San Andreas Fault and
earthquakes (circles). Blue and red circles represent the shallow and deeper earthquakes, respectively.

We select two earthquakes from the U.S. Geological Survey comprehensive earthquake catalog (Guy et al.,

2015). The first earthquake (Md = 1.48) occurred on July 11, 2014 at 6:56am with depth of approximately

1 ± 1.4 km. The second earthquake (Md = 2.47) occurred on July 11, 2014 at 12:14pm with depth of

approximately 4 ± 0.2 km. We use the seismograms of the two earthquakes recorded at an array installed

in Peachtree Valley, San Andreas Fault (SAF). The array consists of 116 ZLand nodes, along 3 line arrays

(Figure 2.9). For the interferometry, we use the seismic records of the two local earthquakes from the line

array along the SAF (Line 3); seismograms of the earthquakes start at the origin times of the earthquakes

from the catalog (Figure 2.10). The seismograms are bandpassed between 1-3 Hz to accommodate the station

spacing of the array and the sampling criteria.

In this study, we perform inter-source interferometry using the waves arriving in the P-wave time windows.

We first manually pick the arrival times of P and S waves from the shallow earthquake of each station. Then,

we visually pick the P-wave arrival time of the deeper earthquake and determine the local P-wave velocity
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from the picked P-wave arrivals; assuming straight ray paths between the sources and the surface receivers

and using the moveout along the array (local P-wave velocity approximately 4.8 km/s). We assume that

the wave-velocity ratio Vp/VS is constant. Thus, we can estimate the arrival times of S waves for the deeper

earthquake and separate the P- and S-wave time windows of the two earthquakes. The windows we use in our

interferometric study are from the origin times of the earthquakes up to the S-wave arrivals. We then apply

a Hanning taper of 2 periods on both ends of the P-wave signals. Here, all of the seismic stations of the SAF

data set are visually located in the stationary phase zone of the two selected earthquakes (Figure 2.11). The

station spacing of approximately 200 m is less than a quarter of the wavelength for the highest-frequency

waves in the selected 1-3 Hz bandpass (λ/4 is approximately 400 m). The station spacing of the SAF data set

thus satisfies the sampling requirement. Since the data at stations 5 and 40 are missing, we cross-correlate

the waves in the tapered P-wave windows for stations 6-39. (Figure 2.10). Next, we stack the tapered P-wave

windows and then taper the sum of the windows, using the Gaussian window that accounts for approximately

40% of the width of the receivers array used. The two tapers minimize the truncation effects (Burdick and

Orcutt, 1979). The final process is to take the time derivative of the stacked tapered cross-correlated P-

waves. Assuming step functions for the source-time function and using the P-wave seismic records, this

provides an estimate of the P-waves that propagate between the two selected earthquakes (Figure 2.12a).

Figure 2.10 Seismic records of a) shallow earthquake and b) deeper earthquake from the line array along
SAF (Line 3 in Figure 2.9). The records are bandpass-filtered at 1-3 Hz and start at the origin times of the
two earthqaukes from the USGS catalog. Station 1 is the farthest receiver from the two earthquakes.
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Figure 2.11 Cross-section of the selected earthquakes and seismic array along the SAF.

Using receivers only along a line, the interferometric P-waves (Figure 2.12a) provide a qualitative estima-

tion of the P-wave propagation between the two sources. The interferometric signal in Figure 2.12a consists

of 1) a direct arrival at approximately 2.5-3 s and 2) a later arrival after approximately 3 s. The timing of

the direct arrival is consistent with the expected arrival time determined from the earthquake catalog and

the local P-wave velocity of the area.

Figure 2.12 a) Inter-source interferometry of 1-3 Hz bandpass-filtered P-waves. Numerical simulations of
wave propagation in a 3-layer model between a source and a receiver with a thickness of the low-velocity
layer of b) 800 m, c) 2.4 km, and d) 4.2 km.

20



Figure 2.13 a) Synthetic model to compute acoustic wavefields. The model includes surface receivers with
receiver spacing of 200 m and two sources located at the same depth of the selected earthquakes from the
SAF. The errorbar indicates the depth uncertainty of the shallow earthquake from the earthquake catalog.
The green receivers indicate the location of Line 3 (L3) array along the SAF in Figure 2.7. b) The
inter-source interferometric waveforms reconstructed using all surface receivers and the true depth of the
shallow earthquake (solid black), L3 receiver and the true depth of the shallow earthquake (solid green), L3
receiver and the shallow earthquake located at the surface (dashed blue), L3 receiver and the shallow
earthquake located at the lower end of the errorbar in a (dashed red).

We recognize the large uncertainty in the depth of the selected earthquakes from the catalog, and this

high uncertainty may contribute to the error of the wave retrieval using inter-source interferometry because

when the depth of the earthquakes is significantly different from the depths in the catalog, the receiver array

may not adequately sample the stationary phase zone of the interferometric integral. To test the effect of the

depth sensitivity on the interferometric P-wave retrieval, we use a synthetic homogeneous model with two

sources at the same locations of the two selected SAF earthquakes and surface receivers, including the Line 3

(L3) array of 200 m station spacing (Figure 2.13a). Figure 2.13b shows that although the L3 array does not

cover the whole stationary phase zone of the two earthquakes, we can reconstruct the same waveforms using

the records from the L3 array and the full line surface array. By contrast, varying the depth of the shallow

earthquake, we can retrieve the similar waveforms but with different phases of the direct arrivals (red and

blue dashed lines on Figure 2.13b). The depth uncertainty only affects the phase shift of the waveforms but

does not reshape the waveform.

Since we verified that the depth uncertainty of the selected earthquakes does not affect the shape of

the retrieved waveform, we speculate that the recovered later arrival after approximately 3 s is a guided

wave traveling inside the low-velocity fault zone of SAF. To investigate whether the fault-zone wave guide

qualitatively produces the observed waveform characteristics, we simulate the wave propagation between a

source and a receiver in a 3-layer model, both of which are located in the middle slow-velocity layer. This

is a crude model (Figure 2.14) for the host rock and the slow-velocity layers of SAF (Jeppson and Tobin,

2015; Li et al., 2004). The elastic model is the plan view of SAF and accounts for P-S wave conversions.

We use a source-time function given by a Ricker wavelet with the dominant frequency at 3.3 Hz. Assuming
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the two earthquakes occurred inside the fault zone of SAF, we model the source and receiver inside the

low-velocity zone with horizontal and vertical separation distance of 12 km and 350 m, respectively (Fig-

ure 2.14). The horizontal distance of 12 km is approximately the same separation distance between the two

earthquakes (Figure 2.11). The vertical distance of 350 m is arbitrarily chosen to be less than the smallest

fault-zone thickness of SAF, which is less than 1 km (Holdsworth et al., 2011; Jeppson and Tobin, 2015;

Korneev et al., 2004; Li et al., 1990, 2004; Zoback et al., 2011). This arbitrarily chosen vertical distance also

minimizes reflection interference effects from the two boundaries of the slow-velocity layers in our 3-layer

model (Figure 2.14). We simulated the wavefield with a 2D spectral element method (Tromp et al., 2008)

for low-velocity layers with a thickness from 700 m to 7 km. The 2D simulation cannot be expected to

quantitatively explain the waveforms; it is a crude model to explain the qualitative features of the extracted

waveforms.

Figure 2.14 Numerical model of 3 layers used to simulate 2D wave propagation between a source and a
receiver in a low-velocity layer (red) The yellow arrow indicates the direction in which the wave motion is
recorded.

Examples of the wavefield with the middle layer thickness of 800 m, 2.4 km, and 4.2 km, respectively,

are shown in Figure 2.12; the wavefields are bandpass-filtered between 2.5 Hz and 3.8 Hz to account for

the dominant frequency of the interferometric signal at approximately 3.2 Hz. The modeled seismograms

(Figure 2.12b, c, and d) illustrate that a low-velocity zone with a thickness of 4 km best explains the

qualitative features of the extended wavetrains obtained from inter-source interferometry (Figure 2.12a).

Figure 2.12 suggests that the later arrival is likely to consist of guided waves travelling in the damage zone

of SAF with a thickness of approximately 4 km. The crude model used cannot be expected to lead to a fit

of the synthetic waveforms with the waves extracted with the VRM, but the qualitative similarity between

the wavefield estimated by the interferometry and the numerical simulation illustrates that inter-source

interferometry can qualitatively estimate the wavefield, which accounts for the wave propagation between
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two earthquake sources.

2.6 Discussion

Body waves contain three pieces of information: 1) the arrival time of the direct wave, 2) the waveform of

the direct wave, and 3) the waveform of the coda wave. Using inter-source interferometry, one can reconstruct

the direct wave and the coda of a body wave that propagates between two seismic sources, but the retrieved

arrival time of the direct body wave may not be accurate.

Figure 2.15 Cartoon of the map view of the fault-zone-guided waves that travels in a fault zone of the SAF.
The shown fault zone width is not to scale. The cartoon is the plan view of the numerical model in Fig 2.14.

The retrieved arrival time depends on the difference between the origin time of the two sources, which

comes from the earthquake catalog. Using inter-source interferometry, one cross-correlates earthquake seis-

mograms with start time at the origins as recorded in the event catalog. However, the origin time information

taken from the catalog cannot be assumed to be precise, and errors in the origin time lead to errors in the

arrival time of the extracted direct wave. In addition, the depth uncertainty of the selected two earthquake

and the limited aperture of used seismic array also contribute to the phase shift of the retrieved waveform

(Section 2.3, Section 2.4, Figure 2.13, and the appendix) and thus maps the phase error to the errors in the

arrival time retrieval.

We can reconstruct the waveform of the direct body wave by using receivers located within the stationary

phase zone of the two sources. Retrieving this waveform offers a variety of benefits. For example, by

selecting two earthquakes occurring in a fault or subduction zone, and using the inter-source technique, we

can reconstruct the waveform of the direct body wave that travels along the zones and is influenced by the

structure of these zones (Figure 2.15); the direct wave travels in the low-velocity zone of the fault zone or

subduction zone. This direct wave helps to define properties such as the width (thickness) and the wave
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velocity of the zones, for example by using fault-zone guided wave as a diagnostic of structure of fault zones

(Li et al., 1990).

Using VRM, one needs an adequate sampling density of receivers to reconstruct waveforms of direct body

waves. In practice, if the waves propagate horizontally along surface receivers, one needs adequate sampling

points of 4 samples/wavelength to directly integrate the interferometric wavefield (Fan and Snieder, 2009).

However, additional processes prior to the integration of oscillatory functions such as interpolation and

Filon-Trapezoidal rule (Entwistle et al., 2015; Tuck, 1967) can reduce the sampling requirements and one

only needs more than 2 sampling points in a wavelength to adequately sample the interferometric wavefields.

This sampling density can be larger if the wave arrives at an angle to the receivers because only the wavelength

along the surface contributes to the wave reconstruction; the required receiver spacing changes to λ/sin(i),

where λ and i denote the wavelength and the incident angle of the wavefront to the receiver array, respectively.

Figure 2.16 Cartoon of receiver locations needed for the retrieval of coda waves. Figure 2.16a and
Figure 2.16b have a scatterer (red) located below and above two seismic events (blue).

As equation (1) illustrates, to recover the waveform of coda waves using inter-source interferometry,

one needs receivers on a closed surface surrounding the sources. Because the dominant contribution of

Green’s function retrieval comes from the receivers located inside stationary phase zones, one can reconstruct

scattered waves using surface receivers only if scatterers are located below seismic events (Figure 2.16a).

However, one needs underground receivers rather than surface receivers to recover the waveform of coda

waves if scatterers are located above the events (Figure 2.16b). Although Figure 2.16 shows a sketch with

a scatterer, one can apply similar reasoning when retrieving coda waves from a reflector (e.g., core-mantle

boundary and Moho discontinuity).

Our synthetic examples show that to retrieve the waveform of direct body waves, one needs to use

surface receivers located in the stationary phase zone of the selected sources with enough sampling density.
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Figure 2.17 Different geometries of source-receiver interferometry, modified from Figure 5 in Curtis and
Halliday (2010). a) source-receiver geometry with two closed surfaces: S surrounding a virtual receiver and
S’ surrounding a virtual source. b) source-receiver geometry with limited surface receiver coverage
controlled by the stationary phase zones of sources on the surface S and the virtual source. c) similar
source-receiver geometry to b) but with more sparsely distributed sources on the surface S, leading to a
larger surface receiver coverage. Pink hyperbolae denote the stationary phase zones.

These limitations apply to any advances of inter-source interferometry. Curtis and Halliday (2010) apply

inter-source interferometry as an operation for source-receiver interferometry, which estimates the Green’s

function accounted for the wave propagation between a virtual source and a vitual receiver. The operation

requires the stationary phase zone to be parallel to the virtual source and a set of sources located on the

closed surfaces surrounding the virtual receiver (Figure 2.17). Thus, the geometry of the sources and the

virtual source control the size and the location of the stationary phase zone and the surface receiver coverage.

Depending on the distribution of the sources, we may need a large aperture for the stationary phase zone

and the surface coverage, or we may need the entire surface array if the set of sources are very sparsely

distributed away from the virtual source (Figure 2.17c). The requirement for surface receiver coverage also

applies to other interferometric advances. For example, in the virtual source method application, the surface

coverage controls the geometry of the target area and source-receiver positions as well as the resolution of

the reconstructed wavefields (Bakulin and Calvert, 2006).

In section 2.5, we illustrate a field example of inter-source interferometry of P waves recorded from

two earthquakes in the SAF area, in which the recorded seismograms of the example satisfy the stationary

phase location and sampling criteria. Because we lack seismic wavefields across the SAF and only use

seismograms from the array along the fault (Line 3, Figure 2.9) for the inter-source method, we can only

qualitatively reconstruct the P wavefield accounting for the wave propagation between the two earthquakes.
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Figure 2.18 Seismograms with 1-3 Hz bandpass filter of the selected deeper earthquake in Figure 2.11,
recorded at receivers across the SAF (Line 1 and 2, Figure 2.9). The red arrow shows the approximately
wide region that straddles the SAF where the waveforms show an increased complexity.

The retrieved wavefield and the wave simulation using a 2D fault model suggest that the damage zone of the

SAF is approximately 4 km thick. This damage zone is the region straddling the central fault zone where the

surrounding rock is softened by deformation. This concept is explained in detail by Choi et al. (2016) who

call this the cross-fault damage zone. The thickness inferred from the interferometric waveform is different

than the thickness of the SAF damage zone that is estimated to be less than 1 km, in previous studies of

the nearby areas of SAF (Holdsworth et al., 2011; Jeppson and Tobin, 2015; Korneev et al., 2004; Li et al.,

1990, 2004; Zoback et al., 2011). The difference in the thickness estimates may be from the diversity of our

investigated seismic frequency of 1-3 Hz compared to the other studies. Korneev et al. (2004) investigate

the fault zone guide wave of the SAF areas at approximately 3-8 Hz while the investigated trap waves of

Li et al. (1990) contain frequency contents approximately below 100 Hz. Although Li et al. (2004) study

trapped waves with a frequency content below 5 Hz (similar frequency content to our study), the investigated

guided waves are part of the S coda which is different to our investigated P coda. Thus, the difference in

the frequency content and the wave types considered may explain the difference of the estimated thickness

of the SAF damage zone. Other explanations for our different estimates for the thickness may be found in

the following studies of nearby SAF areas and other strike slip faults: 1) the shallow structure of the SAF

may contain local flower structures and splay faults that expand approximately up to 1-3 km (Delong et al.,

2010; Unsworth et al., 1997) and 2) off-fault deformations may occur and extend up to 1-2 km away from
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the primary rupture zone (Gold et al., 2015; Vallage et al., 2015; Zinke et al., 2014). In addition, the 1-3 Hz

bandpass-filtered wavefield of the selected deeper earthquake recorded at receivers across the SAF (Line 1 and

2, Figure 2.9) illustrates a high energy and complicated waveforms in a band with a width of approximately

4 km across the SAF (Figure 2.18), supporting the thickness determined by the interferometric wavefield.

In our SAF example, we used the inline receivers only and only have receivers with a limited aperture.

As a result, we can only recover the qualitative waveform but do not retrieve the complete waveform of

the P wavefield. Halliday and Curtis (2008) show that using an in-line array for interferometry of surface

waves induces phase shifts compared to the true Green’s function. Seismic interferometry implicitly involves

integration of oscillatory integrals where the dominant contribution comes from the stationary phase point.

According to expression (24.40) of Snieder and van Wijk (2015a), each stationary phase integral gives a phase

contribution exp(±iπ/4), where the sign is determined by the curvature of the phase function. Leaving out

the stationary phase integration in the transverse direction gives a phase error of ±π/4. Since we only seek

to compare the character of the waveforms qualitatively, this phase error is not significant.

Our work shows that inter-event interferometry of two earthquakes cannot recover the complete waveform

of coda waves but can retrieve the waveform of the direct body waves, and the accuracy of the retrieved

arrival time of the direct waves depends on the accuracy of the earthquake catalog. The lack of transverse

receiver array also contributes to the incomplete recovery of the direct body waves. However, in active-source

explorations, particularly on land, one has a well-defined catalog of the locations and timing of active sources.

Using inter-source interferometry and well-cataloged active sources, one can better recover the arrival time

of the direct body waves with smaller timing errors, compared to the uses of global or local earthquakes.

2.7 Conclusion

Although one can reconstruct a body wave propagating between two seismic sources (e.g., earthquakes)

using inter-source interferometry, the retrieved arrival time of the direct body wave depends on the difference

between the origin times of the earthquakes that are extracted from the earthquake catalog, and parts of

the catalog could be inaccurate. Moreover, we show that the depth uncertainty influences the phases of the

retrieved direct arrival and maps the error to the retrieved arrival time. Thus, the retrieved arrival time

may be useful only if the origin times and depths of the used events in the catalog are accurate. However,

when one knows the source-time function of at least one of the sources (the virtual sensor), the waveforms

of the direct and coda waves, which are part of the body wave propagated between the two sources, can be

recovered using the inter-source method with receivers on a closed surface.

The retrieval of the waveforms of the direct and coda waves can also be approximated using surface

receivers located in the associated stationary phase zones, but one can retrieve coda waves using surface
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receivers only if the waves are scattered and reflected below the shallowest source. Theoretically, one needs

receivers in the stationary phase zone, which is a patch on the surface, to recover the direct or coda waves

but in practice one may use receivers along a line array.

To reconstruct accurate body waves propagated between two sources using inter-source interferometry,

one needs to satisfy two conditions: 1) using receivers inside the stationary phase location and 2) the sampling

criteria of approximately 4 samples/wavelength for the direct summation of interferometric wavefields over

receivers. In this paper, we illustrate an example of direct P-wave reconstruction using the inter-source

method and real-earthquake wavefields from the SAF satisfying the two requirements. Using finite-element

modelling and a simplified seismic velocity model for the SAF region with a slow-velocity fault zone embedded

in a homogeneous medium, we test the effect of different fault zone thicknesses on the waveform character.

We find that a fault zone thickness of approximately 4 km is needed to qualitatively match the wavetrains of

the P waves recovered using VRM. The width of the fault zone determined from the interferometric waveform

and our modelled solution is consistent with the distance over high-energy, highly scattered, and complicated

waveforms manifested on recordings from surface receivers across the fault.
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2.9 Appendix: Phase Shift and Fresnel Integral

In section 2.4, we show that one can reconstruct direct and scattered body waves using receivers in the

stationary phase zones. Using an array with a limited aperture in the stationary phase region, the phase of

the recovered waveforms differs slightly from the forward-modelled waveforms (Figure 2.5, Figure 2.6, and

Figure 2.7).

When we use the source-receiver geometry in Figure 2.2, we can determine the time differences between

the direct arrivals of the two sources at each receiver. We define the size of the stationary phase zone (SPZ)

using a faction of the dominant period Tdominant of our synthetic signals, where Tdominant = 0.25 s. In Section

2.4, our SPZ covers the receivers within Tdominant/4 from the maximum time difference (Figure 2.19).
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Figure 2.19 Time differences between the direct arrivals of the two sources at each surface receiver in
Figure 2.2. The graph on the bottom left corner is the enlarged version of the area inside the black box.

Figure 2.20 The forward-modeled and the interferometric waveforms of the direct body waves.
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Figure 2.20 shows the direct wave that propagates between the two sources in Figure 2.2, and the waves

extracted from inter-source interferometry take only receivers into account with a delay time Tdominant/4

relative to the delay time at the stationary phase zone. One should note the slight phase change between the

two waveforms. We show in this appendix that this phase error is associated with limiting the used receivers

to the stationary phase region.

Figure 2.21 Source and receiver positions in interferometry. x is the half-width of the stationary phase zone.

Consider the source-receiver geometry in Figure 2.21. Seismic interferometry for waves in a 2D homoge-

neous medium gives

G(rA, rB , ω)−G∗(rA, rB , ω) ≈ i

4πρ

∮
S′

√
1

rSArSB
eik(rSA−rSB)dS′, (2.9)

where G(rA, rB , ω) − G∗(rA, rB , ω) is the difference between the causal and acausal parts of the Green’s

function accounting for the wave propagation between the points A and B, ω is the angular frequency, ρ

is the mass density, k is the wave number, and S is the source position on a surface S′ (Fan and Snieder,

2009). We can approximate the term rSA − rSB in equation (2.9) using a second-order Taylor series:

rSA − rSB ≈ (LA − LB) +
1

2

(
1

2LA
− 1

2LB

)
x2. (2.10)

Using this second order Tayor expansion for the phase and replacing the geometrical spreading in equation

(2.9) by 1/
√
LALB , the integral in expression (2.9) is in the stationary phase approximation (Snieder and

van Wijk, 2015a) given by

G(rA, rB , ω)−G∗(rA, rB , ω) ≈ i

4πρ

eik(LA−LB)

√
LALB

∫ +∞

−∞
exp

(
ik

2

(
1

LA
− 1

LB

)
x2
)
dx , (2.11)
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where we replaced the integration over a closed surface by an integration over the transverse x-coordinate.

The integral in the right-hand side is of the same form as the Fresnel integral (Sandoval-Hernandez et al.,

2018), which is defined as

F (X) =

∫ X

0

exp
(
i
π

2
x′

2
)
dx′ . (2.12)

This integral is complex and is shown in the complex plane in Figure 2.22 where the the origin corresponds

to the integral for X = 0, and the asymptotic point 0.5 + 0.5i is reached for X → ∞. This graphical

representation is called the Cornu spiral. The many windings of this spiral around the asymptotic point

reflect that the Fresnel integral converges slowly.

Figure 2.22 Fresnel integral from X = 0 to X →∞ in the complex domain (blue). Black and red asterisks
represent the integral over a large part of surface receivers and surface receivers located in the stationary
phase zone, respectively.

The real part of the integrand of the Fresnel integral (2.12) is shown in Figure Figure 2.23. The oscillatory

nature of this integrand explains the shape of the Cornu spiral and the slow convergence of the Fresnel

integral: the alternating positive and negative values of the integrand lead to the slow spiraling of the

Fresnel integral in the complex plane, and one needs to integrate over a large interval for the integral to be

close to its asymptotic value for X →∞.

In the waveforms of Figure 2.20 the summation over receivers was limited to receivers that have a delay

time of less than a 1/4 of the dominant period. That corresponds to a phase delay of less than π/2. In
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the Fresnel integral (2.12), this integration interval corresponds to the upper limit X = 1. As shown by

the black dot in Figure 2.23, this upper limit is at the point where the real part of the Fresnel integral has

its first zero crossing. (This is actually the rationale for restricting the integration to delay times less than

1/4 of the dominant period.) Since the real part of the integrand of the Fresnel integral changes sign, the

real part of the Fresnel integral has a maximum at this point, and hence this upper limit corresponds to the

rightmost point of the Cornu spiral that is indicated by the red star in Figure 2.22.

The important point to note is that the phase of the Fresnel integral for X = 1 differs from the phase of

the integral computed for its asymptotic value for X → ∞; the phase angle for the red star in Figure 2.22

differs by about 0.273 rad from the phase angle for the black star. This phase difference leads to the phase

difference in the waveforms shown in Figure 2.20. The phase difference in the waveforms corresponds to about

0.201 rad. This is slightly less than the phase difference of 0.273 rad predicted above. This discrepancy is

caused by the fact that the argument in this appendix ignores the decay of the interferometric integral

that is due to variations of the geometrical spreading in the integration. Furthermore, the analysis in this

appendix is applicable in the frequency domain, whereas the time-domain waveforms in Figure 2.20 contain

contributions from a range of frequencies. However, the main points from this appendix are that (1) the

interferometric integral converges slowly and (2) truncating this integral can leads to phase errors of about

0.3 rad. Tapering of the interferometric integral will lead to a faster convergence of the integral. Since the

phase error does not depend on the distance between the sources at locations A and B, the impact of the

phase error on estimated velocities decreases with increasing distance between the sources.

Figure 2.23 Real part of the integrand of the Fresnel integral (2.12) for −5 < x′ < 5. Black dot denotes the
first position where the real part changes from positive to negative values.
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CHAPTER 3

MULTI-SOURCE WAVEFIELD RECONSTRUCTION COMBINING INTERFEROMETRY AND

COMPRESSIVE SENSING: APPLICATION TO A LINEAR RECEIVER ARRAY

Modified from a paper submitted to Geophysical Journal International.

Patipan Saengduean5, Roel Snieder6, and Michael B. Wakin7

3.1 Summary

Seismic interferometry is a technique that allows one to estimate the wavefields accounting for the wave

propagation between seismometers, any of which can act as a virtual source. Interferometry, particularly

passive noise interferometry, has been applied to several geophysical disciplines such as passive monitoring

and distributed acoustic sensing. In practice, one requires long recordings of seismic noise for noise interfer-

ometry. Additionally, some receivers in seismic arrays may be absent or inoperative due to issues of receiver

installation and malfunction. Reducing the storage for seismic noise records and alleviating the limitations of

receiver operation and installation require wavefield reconstruction and regularization techniques. Compres-

sive sensing is one such method that can reconstruct seismic wavefields and help mitigate the limitations by

exploiting the sparsity of seismic waves. Using numerical examples, we show that one can apply compressive

sensing to recover interferometric wavefields resulting from interferometry of a linear seismic array. Tradi-

tionally, one can interpolate interferometric wavefields using correlograms provided by one virtual source.

This method is called single-source wavefield reconstruction. We propose an alternative technique called

multi-source wavefield reconstruction, which applies compressive sensing to reconstruct multiple interfero-

metric wavefields using correlograms provided from all available virtual sources. To exploit the sparsity of

interferometric wavefields, we apply the Fourier and Curvelet transforms to the two reconstruction schemes.

Using the signal-to-noise ratio (SNR) to compare the wavefield reconstructions, the Fourier multi-source

method improves the recovery of interferometric wavefields by approximately 50 dB compared to the Fourier

and Curvelet single-source wavefield reconstructions.

3.2 Introduction

Seismic interferometry (SI) is widely applied to estimate the wavefields propagating between seismome-

ters. The technique allows each seismometer to become a virtual source (VS), where wavefields from the VS

are recorded by the other seismometers. Applications and principles of SI have been explained in several

5Graduate student, primary researcher, and author at Department of Geophysics, Colorado School of Mines
6Supervisor at Department of Geophysics, Colorado School of Mines
7Supervisor at Department of Electrical Engineering, Colorado School of Mines
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review papers (Curtis et al., 2006; Larose et al., 2006; Snieder and Larose, 2013a; Wapenaar et al., 2010).

For SI, one can estimate the interferometric wavefields using cross-correlation (Asano et al., 2017; Miyazawa

et al., 2008; Mordret et al., 2010; Shapiro et al., 2005), deconvolution (Nakata et al., 2011; Pianese et al.,

2018; van Dalen et al., 2015; Vasconcelos and Snieder, 2008a,b), cross-coherence (Nakata et al., 2011; Prieto

et al., 2009), or convolution (Curtis and Halliday, 2010; Entwistle et al., 2015).

Seismic noise interferometry is an application of cross-correlation SI that can be used in passive seismic

surveys. Noise interferometry typically requires long seismic records, which requires much data storage. For

example, Lin et al. (2008) and Nakata et al. (2015) cross-correlate noise recordings over 1-year and 3-month

records, respectively. Jayne et al. (2022) handle the long-recording issue by reducing the number of the

Fourier coefficients required for the cross-correlation in the Fourier domain (Snieder and Wakin, 2022). In

addition, seismic arrays (e.g. the US array from IRIS) are usually sparse and irregular. In practice, dense and

regular seismic profiles are not typically acquired due to limitations of installation and operation of seismic

sensors, for example because of restricted locations for receiver installation and low-quality seismic records

(low SNR) in some receivers. These irregular seismic records may affect the performance of subsequent

seismic data processing steps. For example, seismic imaging such as the Kirchhoff migration requires regular

seismic shot lines to enhance imaging of the subsurface and to mitigate post-migration noise (Al-Gain et al.,

2020; Cao et al., 2018; Poole and Herrmann, 2007). Irregular sampling of seismic data can also affect the

attenuation of noise for guided wave and ground roll removal (Mann and Emanuel, 2006). Regularizing

seismic shots can improve the SNR of seismic signals and the alignment reflection events (Chopra and

Marfurt, 2013). Thus, wavefield reconstruction or regularization techniques are required to alleviate the

issue of irregular sampling of seismic data.

Wavefield reconstruction techniques include wave-equation-based methods (Kim et al., 2015; Peters et al.,

2014), linear prediction filter methods (Islam et al., 2015; Vaidyanathan, 2007), rank-reduction methods

(Innocent Oboué et al., 2021; Wu and Bai, 2018), mathematical-transform methods (Wang et al., 2016), and

deep learning (Liu et al., 2019). These techniques help handle the limitations of receiver malfunction and

installation by recovering the missing signals within the gaps of the seismic receiver arrays. Among these

techniques, compressive sensing (CS) is a transform-based method that has gained popularity and been

applied in many signal processing disciplines (e.g. medical and geophysical) (Candès and Wakin, 2008).

The CS method is a sampling paradigm that reduces the traditional sampling requirements of the Shannon

sampling theorem in which the sampling rate of a signal has to be twice the maximum frequency of the signal

(Donoho, 2006). CS has been shown to be effective for interpolating seismic profiles (Hennenfent et al., 2010;

Herrmann et al., 2008) and surface waves (Zhan et al., 2018) using signals recorded on an irregular seismic

array.
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Because SI can estimate the interferometric wavefields accounting for wave propagation between receivers,

SI can provide sampling and coverage of wavefields in the area under receiver arrays. Thus, SI may provide

new perspectives or improvements to seismic signal reconstruction. A technique called interferometric inter-

polation utilizes a matched filter and virtual source gathers provided by SI (Hanafy and Schuster, 2014; Wang

et al., 2009; Xu et al., 2018). This technique can extrapolate near-offset seismic profiles and improve the

interpolation quality of missing seismic traces compared to conventional interpolation methods without SI.

Since Zhan et al. (2018) demonstrate the reconstruction of surface waves on a dense surface array generated

from a source using CS, we can use CS reconstruction to recover surface waves retrieved using SI on a dense

receiver array when some receivers are missing.

In this work, we use a linear receiver array to record noise wavefields when some traces are missing. Using

SI, we retrieve cross-correlation profiles from available traces and then aim to reconstruct the missing cross-

correlation wavefields using CS. We propose a joint reconstruction technique called multi-source wavefield

reconstruction where we use CS to reconstruct the missing interferometric wavefields (i.e. cross-correlations).

Our work focuses on the estimation of fundamental-mode surface waves using SI which is illustrated by

synthetic surface waves. In Section 3.3, we describe the basic theory of cross-correlation interferometry and

CS. We then explain the processes to simulate interferometric surface waves and the Fourier and Curvelet

transforms used in our wavefield reconstruction. In Section 3.4, we show the different wavefield reconstruction

techniques using different sparse transforms and compare these reconstructions to our proposed multi-source

wavefield reconstruction.

3.3 Theory and Synthetic Example

In this section, we describe the theory of cross-correlation interferometry, compressive sensing, and the

synthetic model used in our wavefield reconstruction examples.

3.3.1 Cross-Correlation Interferometry

Using a frequency-domain formulation, one can express the wavefield u(xr,x, ω) excited from a point

source at x and recorded at xr by

u(xr,x, ω) = W (x, ω)G(xr,x, ω), (3.1)

where ω is the angular frequency, W (x, ω) is the source-time function, and G(xr,x, ω) is the frequency-

domain representation of the Green’s function that accounts for the wave propagation from x to xr. The

cross-correlation of two wavefields recorded at receivers xa and xb is given by

Cba = u(xb,x, ω)u∗(xa,x, ω) = |W (x, ω)|2G(xb,x, ω)G∗(xa,x, ω), (3.2)
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where the asterisk denotes complex conjugation. Integrating the cross-correlation equation (eq 3.2) over a

closed surface that includes uncorrelated sources on the surface surrounding the receivers (Snieder et al.,

2007) gives ∮
Cbad

2x = 〈|W (x, ω)|2〉
∮
G(xb,x, ω)G∗(xa,x, ω)d2x, (3.3)

where 〈|W (x, ω)|2〉 is the average of the amplitude spectrum of the source. Because the integrated cross-

correlation in equation 3.3 is proportional to G(xa,xb, ω) (Wapenaar and Fokkema, 2006), one can estimate

the approximate Green’s function that accounts for the wave propagation between xa and xb given by[
G(xa,xb, ω)−G∗(xa,xb, ω)

]
〈|W (x, ω)|2〉≈ − 2iω

ρc

∮
Cbad

2x, (3.4)

where iω corresponds to the time derivative and G(xa,xb, ω) and G∗(xa,xb, ω) are the causal and the acausal

parts of the Green’s function that accounts for the wave propagation between xa and xb, respectively. In

practice, one can estimate the integral in equation 3.4 by stacking the correlograms of all sources on the

closed surface. For noise interferometry, one estimates the integral by stacking cross-correlated noise windows

taken from long noise records. Our work compares seismic correlation profiles recovered using different

reconstruction algorithms. Thus, we only estimate the integrated correlograms, ignoring the constants, the

time derivative, and the source-time function in equation 3.4.

3.4 Signal Recovery using CS and Sparse Transforms

The Nyquist sampling theorem formulates the required sampling rate for a given frequency or wavenum-

ber content of a signal. One can use compressive sensing (CS) to recover a signal from fewer random

measurements than the sampling theorem requires by exploiting the sparsity or compressibility of signals in

a basis or frame (Donoho, 2006; Wakin, 2017).

Using CS, one can represent an N -dimensional signal f via its sparse coefficients α in a basis or frame Ψ:

f = Ψα. For example, one can transform seismic data f using the Fourier basis Ψ with Fourier coefficients

α. The signal f is sparse when K � N , where K is the number of non-zero coefficients in α, and f is

compressible when the sorted coefficients decay rapidly to approximately zero (Wakin, 2017). A K-sparse

signal can be recovered without information loss if a sensing or sampling function Φ, which prescribes how

the signals are sampled, satisfies the restricted isometry property (RIP). This property ensures the stability

and energy conservation of sparse signals; examples of sampling matices that satisfy the RIP are random

Gaussian and sub-Gaussian matrices (Candès and Wakin, 2008; Donoho, 2006; Wakin, 2017). In our example,

the sampling function Φ specifies at which pairs of receivers on a linear array with randomly missing sensors

the correlogram is available.
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To satisfy RIP, one needs at leastM compressive measurements d, where d = Φf andM = O(Klog(N/K)),

to reconstruct a K-sparse signal (Candès and Wakin, 2008; Wakin, 2017). Several different algorithms to

seek the sparse solution have been reviewed by Rani et al. (2018). One common method is to solve the

following l1 optimization problem to recover the signal from noisy data d with noise n, where d = Φf + n

and σ is the constant bound of noise and ||n||2 ≤ σ,

min||α||1 subject to ||ΦΨα− d||2 ≤ σ. (3.5)

Once the coefficient vector α is recovered, one can reconstruct the signal by using f = Ψα.

For our CS wavefield reconstruction examples, we use the 2D and 3D Fourier transforms associated with

space-time and space-space-time dimensions of seismic data, respectively. An example of recovering space-

space-time wavefields using the 3D Fourier transform is the reconstruction of the Green’s function G(ri, rj, t)

for locations ri and rj at time t. The discrete 2D and 3D Fourier transforms are equivalent to the 1D Fourier

transform along each dimension of the signals (Nussbaumer, 1982). To avoid wrap-around of the Fourier

transform, we pad zeroes at the front and the end of our data matrix for each dimension. We also apply

the 2D Curvelet transform in our wavefield reconstruction using CS. The Curvelet transform represents

signals using three parameters: scales, location, and direction. We use the discrete Curvelet transform with

wedge wrapping, previously written and developed by Candès et al. (2006a), to reconstruct interferometric

wavefields.

3.4.1 Numerical Model Used for Wavefield Reconstruction

CS wavefield reconstruction can be applied to both active-source and noise interferometry. We use active-

source interferometry as an example for our CS wavefield reconstruction. Our synthetic model includes a

linear seismic array consisting of 100 receivers and 2000 impulsive sources. The sensors are separated by 10 m

from each other and the sources are uniformly distributed on a rectangle surrounding the array (Figure 5.2).

In our study, we simulate surface waves using the 2D Green’s function of the Helmholz equation (equation

18.46 in Snieder and van Wijk (2015b)) given by

u(x, t) =

∫
W (ω)H

(1)
0 (k(ω)x)e−iωtdω, (3.6)

where u is the wavefield at time t, x is the distance between the receiver and the source, W (ω) is the

source-time function, H
(1)
0 is the first Hankel function of degree zero, k is the wavenumber, and ω is the

angular frequency. One can compute the wavenumber in equation 3.6 by k(ω) = ω/c(ω), where c is the

phase velocity.

In our simulation, the sources are delta functions bandlimited between 5-20 Hz and we use the phase

velocity c(ω) of surface waves for a laterally homogeneous layered medium, determined by Xia et al. (1999),
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to estimate the wavenumber in equation 3.6. Using interferometry, we select a master receiver and cross-

correlate the wavefields recorded at each station to the master sensor. We then stack the cross-correlation

for all sources. Each sensor thus can act as a virtual source providing surface waves recorded by the other

receivers.

Figure 3.1 Geometry of sources and receivers used for the numerical examples. The sources (blue dots) are
uniformly distributed on a rectangle surrounding a linear receiver array (red dots). For clarity the figure
does not show all the sources and receivers. In the example, 100 receivers and 2000 sources are uniformly
spaced.

3.5 Wavefield Reconstruction

Our work involves two steps of signal processing where cross-correlation interferometry of numerical

surface waves is performed prior to CS reconstruction of interferometric wavefields. One can reconstruct

interferometric wavefields using signals provided from a virtual source by cross-correlating the noise recorded

on one master receiver with the noise recorded on all other receivers. We call this traditional method single-

source reconstruction. By contrast, our proposed recovery method of interferometric wavefields is called

multi-source reconstruction, which uses the cross-correlations of all available virtual sources together to fill

the gaps of cross-correlation profiles.
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Figure 3.2 Difference between the two schemes of wavefield recovery of correlation profiles of a linear array.
The middle column shows the correlation gathers before wavefield reconstruction. Single-source
reconstruction (left column) of interferometric wavefields uses correlograms with gaps (i.e. missing the 2nd

and 5th receivers) provided only from a virtual source to recover interferometric wavefields inside the gaps.
The wavefield recovery for each VS is performed separately. Note that single-source reconstruction cannot
recover the correlation profiles for VS2 and VS5 because the master receiver for this virtual source gather
is missing. By contrast, multi-source reconstruction (right column) of interferometric wavefields uses
correlograms with gaps provided from all available virtual sources to recover interferometric wavefields
inside the gaps of all virtual sources including the two missing correlation profiles. The wavefield recovery
of all virtual sources is performed simultaneously.
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Using a linear array consisting of 3 available and 2 missing receivers as an example, Figure 3.2 illustrates

the processes and differences of the single- and multi- source wavefield reconstructions. Each receiver in

the array can act as a master receiver (VS) producing a cross-correlation profile that accounts for the

cross-correlation of wavefields recorded at the VS and the other receivers. Figure 3.2 shows 3 correlation

profiles associated with the 3 available receivers (VS1, VS3, and VS4) before wavefield recovery. Note that

for these available profiles, the cross-correlated wavefields at the missing 2nd and 5th receivers are absent.

Single-source wavefield reconstruction is a source-by-source recovery operation and the method only uses the

cross-correlated wavefields of the available 1st, 3nd, and 4th receivers to reconstruct the correlated wavefields

of the missing 2nd and 5th receivers. Thus, using the single-source method, one can reconstruct 3 correlation

profiles of the 3 available virtual sources but cannot reconstruct the correlation profiles of the 2 missing

virtual sources (Figure 3.2). By contrast, multi-source wavefield reconstruction uses the correlation profiles

provided by the 3 available VSs together to recover 5 correlation profiles for all virtual sources (Figure 3.2).

Figure 3.3 Comparison between (a) the original cross-correlated wavefields when the master sensor is the
35th receiver, and the wavefield images recovered by (b) Fourier multi-source reconstruction, (c) Fourier
single-source reconstruction, and (d) Curvelet single-source reconstruction. In all reconstructions, 80% of
the sensors are absent.
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We compare the two schemes of wavefield reconstructions where CS reconstruction of interferometric

wavefields is performed after cross-correlation interferometry: single- and multi- source wavefield recon-

structions. We use signal-to-noise ratio (SNR) to determine the error of different wavefield reconstructions

compared to the original wavefields. We then compare the SNR of the different CS reconstruction schemes.

The SNR is defined as 20 log(||xori||2/||xori−xrec||2), where xori is the original and xrec is the reconstruction

of the correlograms. Because multi-dimensional Fourier reconstruction is computationally faster than the

Curvelet recovery, we use only the Fourier domain for multi-source reconstruction, while we use both the

Fourier and Curvelet domains for single-source reconstruction. In our work, we apply a discrete Curvelet

transform with wedge wrapping developed by Candès et al. (2006a), using arbitrary scale and direction

parameters given by 4 and 16, respectively.

Figure 3.3 shows the original interferometric wavefield and wavefield reconstruction examples when the

master sensor is the 35th receiver and 80% of the receivers are absent from our array; the locations of

available and missing receivers are shown using yellow and blue colors in Figure 3.4, respectively. The

Fourier and Curvelet single-source reconstructions give inaccurate wavefield reconstruction, in particular

within 200 m (20 receivers) from the master sensor (Figure 3.3c and Figure 3.3d). In contrast, the Fourier

multi-source reconstruction provides the interferometric wavefields (Figure 3.3b) recovered similarly to the

original cross-correlated wavefields (Figure 3.3a).
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Figure 3.4 Available and missing seismic traces used in our wavefield reconstruction examples (Figure 3.3),
shown in yellow and blue, respectively.

Figure 3.5 shows the error of different wavefield reconstructions, which is determined by the relative

difference between each reconstruction image (Figure 3.3b, Figure 3.3c, and Figure 3.3d) and the original
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image normalized with the maximum amplitude of the original image (Figure 3.3a). Note that the colorbar

scale for the single- and multi- source methods are different (Figure 3.5). The relative error of the multi-

source reconstruction is below 0.1% (Figure 3.5a) and is much smaller than the error of the single-source

reconstruction that ranges between 0-50% (Figure 3.5b and Figure 3.5c). The reconstruction error of the

Fourier and Curvelet single-source reconstruction ranges up to 10-40% at all locations along the receiver

array (Figure 3.5b and Figure 3.5c). The Fourier and Curvelet single-source reconstructions produce a

relative difference of approximately 40% at locations within 200 m from the master sensor. By contrast, the

Fourier multi-source reconstruction gives a relative error of less than 0.1% at all locations along the array

(Figure 3.5a).

Figure 3.5 The relative differences (%) between the original wavefield image (Figure 3a) and the
reconstructed images using (a) Fourier single-source reconstruction, (b) Curvelet single-source
reconstruction, and (c) Fourier multi-source reconstruction. The colorbar scales of the two single-source
reconstructions are different and much larger than the scale of the multi-source reconstruction.

To investigate the quality of wavefield reconstruction along the receiver array, we determine the SNR

for the reconstruction using different master sensors. Figure 3.6 shows the SNR of different reconstruction
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schemes averaged over different master sensors. In Figure 3.6, the multi-source reconstruction provides the

SNR at every master sensor location, including the locations where the sensors are absent. By contrast,

the single-source reconstructions do not provide the SNR when the master receivers are absent because as

shown by Figure 3.2, one cannot reconstruct cross-correlated wavefields from missing master receivers using

single-source wavefield reconstructions and thus one cannot provide SNR by comparing the reconstructed

and original images of correlograms. Figure 3.6 shows that the SNR of the multi-source reconstruction is

overall greater than the SNR of the single-source reconstruction by approximately 20-50 dB.
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Figure 3.6 SNR in dB that is averaged over different master receivers for different reconstructions across
the receiver array. Because the single-source reconstruction uses interferometric wavefields provided only
from a VS, the single-source method cannot recover the wavefields when the master receivers are absent as
shown in Figure 3.2. Thus, the single-source method cannot provide the correlation profiles and SNR by
comparing the reconstructed and the original profiles for these missing master receivers. The multi-source
reconstruction, by contrast, can recover the interferometric wavfields for all master receivers.

Using five different realizations of missing receiver locations, we estimate the mean and standard deviation

of the SNR for the different reconstruction schemes. Figure 3.7 shows the SNR comparison for the different

reconstructions for four different fractions of missing receivers. Overall, the SNR of the Fourier multi-

source reconstruction is greater than the SNR of the Fourier and Curvelet single-source reconstructions by

approximately 40-60 dB (Figure 3.7). The wavefield recovery using the Fourier multi-source reconstruction

overall improves the reconstruction of interferometric wavefields compared to the single-source wavefield

reconstructions at different fractions of remaining receivers.
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Figure 3.7 Mean and standard deviation of the SNR (dB) for different reconstructions using different
fractions of remaining receivers and different missing receiver locations.

3.6 Discussion

We show that one can combine seismic interferometry and compressive sensing, which is a signal interpo-

lation technique, to improve the reconstruction of interferometric wavefields retrieved from interferometry.

Our reconstruction of interferometric wavefields takes 2 signal processing steps, where cross-correlation in-

terferometry of seismic traces is performed prior to CS reconstruction of interferometric wavefields.

We propose to perform cross-correlation interferometry prior to CS wavefield recovery because our goal

is not to recover noise but rather the Green’s function itself. The phase spectrum of noisy signals is random

(Figure 3.8a), while the phase spectrum of the correlated noisy signals is consistent as shown by the arrival

at zero time lag for the auto-correlated signal in Figure 3.8b. In addition, the time series with the Green’s

function are short compared to the time series of the noise that is used to extract the Green’s function. Thus,

reconstruction of random noisy signals is more complicated than reconstruction of their correlations. In this

way, performing wavefield reconstruction after interferometry is preferable. Using the Fourier transform,

we compare the computational efficiency of the CS wavefield reconstruction performed before and after

interferometry in the appendix by comparing the number of the Fourier coefficients associated with the CS

reconstruction of noise and cross-correlated wavefields.
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When one has two sets of signals A and B where signals in B are processed from signals in A, in some

occasions, reconstructing the processed signals B rather than the direct measurements A may provide more

computational efficiency and accurate signal recovery. For example, Chen et al. (2015b) and Ariananda

and Leus (2012) directly reconstruct the covariance and power spectrum estimated from their original mea-

surements by using less complex computation and minimal memory requirements than reconstructing the

original signals before estimating the covariance and power spectrum. The benefits of reconstructing pro-

cessed signals rather than the original signals are similar to our work, where the direct reconstruction of the

cross-correlated signals is more efficient than recovering the original seismic profiles before performing the

cross-correlation.
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Figure 3.8 a) Noisy signal bandlimited between 5 and 20 Hz and b) auto-correlation of the noisy signal of
a), representing seismic ambient noise and correlation of ambient noise, respectively.

In Section 3.5, we show two ways of reconstructing interferometric wavefields after cross-correlation:

single- and multi- source reconstructions. One can use single-source reconstruction, which uses cross-

correlated wavefields provided from a virtual source. Using SNR as a diagnostic for the quality of wavefield
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reconstructions, we show in Section 3.5 that our proposed multi-source reconstruction, which uses cross-

correlated wavefields provided from all available virtual sources, improves the recovery of interferometric

wavefields compared to the single-source reconstruction. The Fourier multi-source reconstruction gives

higher SNR by approximately 40-60 dB, compared to the SNR of the Fourier and Curvelet single-source

reconstructions.

The CS signal reconstruction depends on the reconstruction method as well as the sparsity and the

sampling of signals (Candès and Wakin, 2008; Wakin, 2017). Since we use the same randomly missing

patterns of the receiver array for the single- and multi- source reconstructions, we use a consistent sampling

of the signals. Thus, in the reconstruction comparison between the two reconstruction schemes, the wavefield

recovery depends on the signal sparsity and the reconstruction method. Dabov et al. (2007) and Maggioni

et al. (2013) show that by grouping similar data, which are image and volume fragments, into a volume and

a tesseract (4D structure), respectively, one can enhance the sparsity of the data and improve the signal

reconstruction and separation of signals and noise.
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Figure 3.9 Decay of the Fourier and Curvelet coefficients. The graph shows the coefficient amplitudes
normalized by the maximum amplitude of the coefficients across the number of the coefficients normalized
by the maximum number of coefficients.

The enhancement of signal sparsity by grouping lower-dimensional fragments is similar to our work,

where the sparsity of Fourier coefficients is enhanced when we group 2D images of the correlated wavefields

from all virtual sources into a 3D volume, compared to the sparsity of the Fourier and Curvelet coefficients
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of a 2D image of the wavefields only from a VS. Figure 3.9 shows the absolute value of the Fourier and

Curvelet coefficients normalized with the maximum coefficient amplitude against the number of the coeffi-

cients normalized with the total number of coefficients. The normalized Fourier coefficients of the 3D volume

grouping 2D images of the interferometric wavefields from all virtual sources decay more rapidly than the

decay of the normalized Fourier and Curvelet coefficients of a 2D image from a VS. Thus, the coefficients of

a 3D volume are sparser than those of a 2D image, improving the wavefield reconstruction. Apart from the

sparsity enhancement, we speculate that the improvement of wavefield recovery using the multi-source re-

construction relies on exploiting the redundancy in the correlation that is due to the translational invariance

of the interferometric waveforms. For example, the 5th and 55th master receivers give the same correlation

response as the response provided from the 10th and 60th master receivers.

In addition, reconstructing a 3D volume rather than a 2D image of the interferometric wavefields requires

fewer sensors. For a K-sparse signal of length N , one requires at least M measurements such that M =

O(Klog(N/K)) to reconstruct the signal. Because the sparsity of a 3D volume is greater than the sparsity of

a 2D image as shown by the different decay rates of coefficients in Figure 3.9, we can lower the requirements

of M measurements (number of sensors). In our numerical examples of 20% remaining receivers, the single-

source reconstruction recovers 100 virtual shots from 20 virtual shots, using 20% of the full data for the

recovery. By contrast, the multi-source reconstruction recovers the 10000 virtual shots from 400 virtual

shots, using 4% of the full data for the recovery. Thus, the multi-source reconstruction uses fewer relative

measurements but gives more accurate reconstruction quality in term of SNR compared to the single-source

reconstruction.

The improvement of wavefield recovery using multi-source reconstruction can be beneficial to applications

in passive seismic explorations. One can apply the reconstruction technique to seismic profiles from existing

linear receiver arrays, where some receivers are absent or malfunctioning. In addition, SI has been applied

to seismic data collected from optical fiber networks using distributed acoustic sensing (DAS) technology to

investigate and monitor the subsurface (Baird et al., 2020; Dou et al., 2017; Lellouch et al., 2019; Shragge

et al., 2021; Zeng et al., 2017). Seismic data recorded using DAS fibers are highly sensitive to the arrival

angles of wavefields and the fiber orientation (Martin et al., 2021; Shragge et al., 2021). Thus, the signals

recorded from some parts of DAS fibers may be inadequate in signal quality and be discarded from subsequent

signal processing steps. One can apply the multi-source reconstruction to mitigate the sensitivity limitation

of DAS fibers by reconstructing the interferometric wavefields for the DAS sensors where inadequate-quality

signals are recorded.
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3.7 Conclusion

We implement a two-stage signal reconstruction, where compressive sensing is performed after cross-

correlation interferometry of seismic wavefields. Using the Fourier and Curvelet transforms, we exploit the

sparsity of interferometric wavefields for CS reconstruction of correlograms from a linear seismic array. We

propose a technique called multi-source wavefield reconstruction to reconstruct interferometric wavefield by

combining interferometry with compressive sensing. The multi-source method uses interferometric wavefields

provided from all available virtual sources to fill the gaps of seismic correlation profiles. Our multi-source

method is an alternative improvement of wavefield reconstruction, compared to the traditional single-source

method that uses interferometric wavefields provided only from a VS to fill the gaps. The Fourier multi-

source reconstruction improves the quality of recovered interferometric wavefields compared to the Fourier

and Curvelet single-source reconstruction by a considerable SNR difference of approximately 50 dB. One can

apply the multi-source method to recover missing seismic correlation profiles recorded from seismic receiver

arrays where some receivers are absent, inoperative, or restricted for installation.
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3.10 Appendix A: Fourier Coefficients Associated with SI and CS

In Section 3.5, we argue that directly reconstructing correlograms is more efficient than reconstructing

original seismic waves prior to performing cross-correlation interferometry of seismic wavefields. Here, we

use the Fourier transform to compare the number of the Fourier coefficients associated with CS when 1) one

reconstructs seismic wavefields before performing SI (conventional method) and 2) one cross-correlates wave-

fields before performing CS reconstruction of the interferometric wavefields (our suggested method). These

numbers of Fourier coefficients associated with CS reconstruction enable comparison of the computational
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efficiency.

We use interferometric wavefields from ambient noise and active-source interferometry for our comparison

of the Fourier coefficients. For ambient noise interferometry, the associated coefficients are the length of a

noise window in samples (S), number of noise windows (Ws), and the number of receiver from the dense

array (N). For active-source interferometry, the coefficients are the length of signals (S), number of sources

(Ns), and the number of receivers from the dense array (N).

Table 3.1 shows the required number of Fourier coefficients for the conventional and our suggested meth-

ods. When the number of noise windows (Ws) in ambient noise interferometry and the number of sources

(Ns) in active-source interferometry are much greater than the number of receivers from the dense array (N),

the number of Fourier coefficients required for the CS reconstruction of our suggested method are smaller

than the number of coefficients required for the conventional method. Note that the Fourier coefficients

shown in Table 3.1 are the total number of coefficients associated with the wavefield reconstruction and are

not the same as the number of computational operations such as the fast Fourier transform. In addition,

rather than reconstructing the whole time windows of noise wavefields (Figure 3.8a), the window of the

correlation of signals (Figure 3.8b) that we reconstruct can be shorter compared to the window of noise

wavefields, where the length of this shorter time window is s and s < S (Table 3.1). Thus, our method

of directly reconstructing correlograms involves fewer Fourier coefficients and shorter time windows than

reconstructing seismic wavefields before performing interferometry, allowing better computational efficiency.

Table 3.1 The number of the Fourier coefficients associated with CS wavefield reconstruction when the
reconstruction of seismic wavefields is performed prior to interferometry (conventional method) and the
reconstruction is performed after interferometry (our suggested methods). Both methods are carried out
for ambient-noise and active-source examples.

Example Method
Number of the Fourier coefficients
associated with CS reconstruction

Ambient noise interferometry
Conventional S x N x Ws
Our method s x N x N

Active-source interferometry
Conventional S x N x Ns
Our method s x N x N

3.11 Appendix B: Multi-Source Reconstruction of 2D Wavefields from an Areal Array

Previous sections of Chapter 3 show that one can apply multi-source wavefield reconstruction to recover

correlated wavefields from a linear receiver array. In this section, I show an application of the multi-source

method to recover correlated wavefields from an areal seismic array.
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3.11.1 Synthetic Model

I use a numerical model to simulate surface waves recorded at a 10× 10 receiver array (blue) from 10000

sources located on a red rectangle surrounding the receivers (Figure 3.10). The spacing of the sources and

receivers are 4 m and 100 m, respectively. Using the 2D Green’s function of the Helmholz equation (Equation

3.6 and Equation 18.46 from Snieder and van Wijk (2015a)), I simulate synthetic surface waves recorded on

each receiver. I use the spectrum of a delta function bandlimited between 5 and 20 Hz for the source-time

function at angular frequency W (ω). The phase velocity c(ω), determined by Xia et al. (1999) for a laterally

homogeneous medium, is used for the wavenumber k in Equation 5.3, where k(ω) = ω/c(ω). Applying

seismic interferometry to the synthetic surface waves recorded at the receivers (blue array in Figure 3.10),

where each receiver can act as a virtual source, I estimate the correlated wavefields which account for the

wave propagation between each pair of receivers.

Figure 3.10 Geometry of sources and receivers used to generate synthetic surface waves. Sources are
located on the red rectangle surrounding a 10× 10 receiver array. Because the source spacing is 4 m which
is much smaller than the scale of the figure, the sources appear as a solid rectangle.
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3.11.2 Wavefield Reconstruction

In this section, I compare the single-source and multi-source wavefield reconstructions, described in

previous sections of Chapter 3, for recovery of correlated wavefields recorded on an areal seismic array.

Because the discrete Fourier transform is more computationally efficient than the discrete Curvelet transform

for multiple dimensions, I use only the Fourier domain as a sparse domain for recovery of correlated wavefields

for the single-source and multi-source methods.

Figure 3.11 Locations of available (yellow) and missing (blue) receivers of the 10× 10 receiver array.
Because the graphical visualization of correlated wavefields recorded on an areal array is difficult, two
linear profiles of correlated wavefields are chosen for the comparison of wavefield recovery using
single-source and multi-source wavefield reconstruction (indicated by red and green arrows).

Using a 10 × 10 receiver array, where only 40% receivers are available, I show an example of wavefield

recovery using single-source and multi-source wavefield reconstruction; the locations of missing and available

receivers on the array are shown in blue and yellow colors, respectively (Figure 3.11). Because the graphical

visualization of correlated wavefields recorded on the areal array is difficult to visualize, I select a linear profile

(indicated by red arrows on Figure 3.11) of correlograms to show the comparison of the reconstruction of

correlated wavefields using the single-source and multi-source methods.
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Figure 3.12 Profile of correlated traces, when the 7th receiver is the master receiver, from the selected
linear receiver array indicated by red arrows on Figure 3.11. The black original correlated traces are
compared to the red traces recovered by (a) single-source and (b) multi-source reconstructions. Residuals
(i.e., the difference between the original and the reconstructed traces) of (c) single-source and (d)
multi-source reconstructions.
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Figure 3.12 compares the correlated traces reconstructed by the single-source and multi-source methods to

the original correlated traces recorded on the linear receiver array indicated by red arrows in Figure 3.11 and

show the residual of wavefield reconstruction, which is the difference between the original and reconstructed

traces, when the 7th receiver is the master receiver. Single-source reconstruction provides accurate wavefield

recovery only for the 1st and 7th receivers, which are the available receivers shown in Figure 3.11, but the

single-source method recovers inaccurate correlated wavefields for the other missing receivers (Figure 3.12a),

because the residuals of single-source reconstruction appear negligible for the 1st and 7th traces, compared

to the residuals of the other traces (Figure 3.12c). By contrast, multi-source reconstruction recovers more

accurate correlated wavefields than single-source reconstruction because the correlated traces reconstructed

by the multi-source method overlap the original traces (Figure 3.12b) and the residuals of multi-source

reconstruction appear negligible for all traces, compared to the residuals of single-source reconstruction

(Figure 3.12d).
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Figure 3.13 Comparison of the original traces (black) and the traces reconstructed by multi-source
wavefield reconstruction (red) when the 5th master receiver is missing on the linear profile indicated by
green arrows in Figure 3.11.

In addition, as described in Section 3.5, the single-source method cannot reconstruct missing correlograms

for the missing master receivers Figure 3.2. Thus, for the example of 10×10 receiver array where 60% receivers

are missing, as shown in Figure 3.11, the single-source method can recover only 40 correlograms. In contrast,
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the multi-source method can recover correlograms for all receivers including those from the missing master

receivers. Figure 3.13 shows the black original correlated traces compared to the red traces reconstructed by

the multi-source method for the linear profile, indicated by green arrows in Figure 3.11 when the 5th master

receiver is missing. Because the black and red traces overlap, the multi-source method recovers accurate

correlated wavefields for the missing master receiver.
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Figure 3.14 Mean and standard deviation of the SNR of Fourier single-source and multi-source
reconstructions, using different realizations and fractions of available receivers in the 10× 10 array.

I use SNR (described in Section 3.5) to quantitatively compare the reconstruction of correlated wavefields

from the single-source and multi-source methods when one uses different realizations and fractions of missing

receivers. Figure 3.14 shows the mean and standard deviation of the SNR of single-source and multi-

source reconstructions when different realizations and fractions of available receivers in the 10× 10 array are

used. Because single-source reconstruction cannot recover correlograms of the missing master receivers, I

estimate the mean and the standard deviation of the SNR for the single-source method only from available

receivers (black line). By contrast, I estimate the mean and the standard deviation of the SNR of multi-

source reconstruction from available receivers (red line) and all receivers (blue line). Figure 3.14 shows that

54



multi-source reconstruction provides more accurate wavefield recovery than single-source reconstruction by

approximately 5-40 dB, depending on the fraction of available receivers.
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Figure 3.15 Comparison of the decay of the sorted Fourier coefficients between single-source and
multi-source wavefield reconstruction. The graph shows the sorted Fourier coefficient amplitudes
normalized by the maximum amplitude of the Fourier coefficients across the number of the coefficients
normalized by the total number of the coefficients.

Section 3.6 explains that the multi-source reconstruction provides more accurate wavefield recovery be-

cause signal sparsity is enhanced by grouping 2D images of correlated wavefields into a 3D volume. For

wavefields recorded from an areal array, one groups the 3D volumes of correlated wavefields into a 4D struc-

ture for multi-source wavefield reconstruction. Figure 3.15 shows the sorted absolute value of the Fourier

coefficients normalized with the maximum amplitude of the coefficients against the number of the coefficients

normalized with the maximum number of the coefficients. The decay of the Fourier coefficients of the 4D

structure grouping 3D volumes of correlated wavefields from all virtual sources is faster than the decay of

the coefficients of a 3D volume from a single virtual source. Thus, the sparsity of a 4D structure is higher

than that of a 3D volume, improving the reconstruction of correlated wavefields. Additionally, in Section 3.6,

I speculate that the multi-source method exploits the redundancy in the correlation from the translational

invariance of correlated wavefields for the linear array example. For areal array cases, the multi-source re-

construction also exploits the redundancy of correlation from azimuthal invariance of correlated wavefields.
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For example, the correlation of the 2nd and the 7th receivers on the west-east direction is the same as the

correlation of the 4th and 9th receivers on the north-south direction.
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CHAPTER 4

MULTI-SOURCE WAVEFIELD RECONSTRUCTION OF DAS DATA USING COMPRESSIVE

SENSING AND SEISMIC INTERFEROMETRY

Modified from a paper to be submitted to the Journal of Acoustical Society of America.

Patipan Saengduean8, Jihyun Yang9, Jeffrey Shragge 10, Roel Snieder11, and Michael B. Wakin12

4.1 Abstract

Seismic data recorded by distributed acoustic sensing (DAS) interrogator units on deployed optical fiber

is increasingly being used for a variety of subsurface imaging and monitoring investigations. To reduce the

costs of active-source surveying for DAS applications and to allow for quasi-continuous recording, seismic

interferometry can be applied to estimate inter-sensor wavefields from DAS records. However, recording

long-term DAS records for ambient interferometry requires considerable data storage and parts of DAS

fibers may also be unusable because of broadside sensitivity considerations from the DAS fiber configuration

and due to localized coherent energy sources with amplitudes significantly larger than the ambient signal

of interest. Compressive sensing, a wavefield reconstruction technique exploiting wavefield sparsity, can

mitigate the problems of large data storage and unusable data. We apply compressive-sensing-based multi-

source wavefield reconstruction to estimate correlograms of ambient DAS records from an urban fiber array

located in Perth, Australia. The multi-source method uses correlograms from all available virtual sources

for simultaneous wavefield reconstruction and is different from the conventional single-source method that

separately and serially reconstructs correlated wavefields from each virtual source. Using the Fourier and

Curvelet transforms to sparsify correlated wavefields, we show that the multi-source method can be applied

to the DAS data and that the Fourier multi-source reconstruction can improve the recovered wavefields by

approximately 5-10 dB, compared to the Fourier and Curvelet single-source wavefield reconstructions.

4.2 Introduction

Distributed acoustic sensing (DAS) is a technology increasingly used in geophysics investigations to

replace traditional geophones with an optical fiber to investigate the subsurface by recording strain along

the fiber. DAS is widely applied to vertical seismic profiles (VSP) (Martinez et al., 2021; Nizkous et al., 2015;

8Graduate student, primary researcher, and author at Department of Geophysics, Colorado School of Mines
9Graduate student at Department of Geophysics, Colorado School of Mines
10Associate Professor at Department of Geophysics, Colorado School of Mines
11Supervisor at Department of Geophysics, Colorado School of Mines
12Supervisor at Department of Electrical Engineering, Colorado School of Mines
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Young et al., 2022), micro-seismic monitoring (Karrenbach et al., 2017; Walter et al., 2020), and monitoring

of reservoirs and hydraulic fracturing (Bakku et al., 2014; Mateeva et al., 2014).

To reduce costs for subsurface investigations using active-source profiling, seismic interferometry (SI),

a technique for estimating inter-sensor wavefields, can be applied to DAS applications for passive surveys.

Examples of DAS-based passive-source applications include near-surface monitoring from traffic-induced

vibrations (Dou et al., 2017), time-lapse monitoring of geothermal fields using borehole signals (Chang and

Nakata, 2022), monitoring of CO2 sequestration using DAS-VSP interferometric imaging (Sidenko et al.,

2021), subsurface investigation using surface-wave inversions from ambient waveform data (Shragge et al.,

2021), and ocean-current observation using data from ocean-bottom fiber deployments (Williams et al.,

2022).

One requirement for accurate estimation of surface waves is that SI requires long seismic ambient records

to extract the waves that propagate between sensors (or sensing locations along a fiber). In practice, such

records of long-term ambient waveforms require considerable storage and may not be fully available due to

interference arising from strong but highly localized energy sources, and the insensitivity of DAS fibers to the

angle of incoming wavefield energy with wave motion in the direction highly oblique to the fiber orientation

(Bakku et al., 2014; Martin et al., 2021; Shragge et al., 2021). Thus, parts of a DAS fiber may not record

usable wave-motion data, making the seismic record effectively irregular. The irregularization of DAS data

can affect subsequent seismic analyses (e.g., full-wavefield imaging and inversion methods) which benefit from

regular seismic profiles to enhance the signal-to-noise ratio (SNR) of subsurface images (Al-Gain et al., 2020;

Chopra and Marfurt, 2013; Poole and Herrmann, 2007). However, one may perform signal reconstruction or

regularization to mitigate the irregularization and data storage volume challenge.

Compressive sensing (CS) is a signal reconstruction technique that exploits signal sparsity to recover

dense regularized wavefields from irregularly undersampled wavefields (Candès et al., 2006c). Mosher et al.

(2014) and Zhan et al. (2018) show that one can reconstruct regularized seismic waves when seismometers

are missing or unusable from regularly sampled arrays. CS is applied to recover wavefields from irregular

marine and land seismic profiles (Jiang et al., 2019b; Mansour et al., 2012; Pawelec et al., 2019) and is

used for wavefield interpolation and denoising for seismic exploration applications (Hennenfent et al., 2010;

Herrmann et al., 2008). Muir and Zhan (2021a,b) use the Curvelet transform for the CS applications of field

DAS data. Saengduean et al. (2022) use CS to recover regular interferometric wavefields and improve the

SNR of the reconstruction of interferometric wavefields by using signals from multiple virtual sources; the

multi-source method also allows source interpolation at unavailable locations.

We apply the multi-source CS reconstruction of interferometric wavefields proposed by Saengduean et al.

(2022), which can recover regularly sampled correlated wavefields from an irregular seismic array, to help
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alleviate the limitation of irregularization of interferometric DAS data due to unusable sensors and lim-

ited sensor sensitivity. Section 4.3 presents the acquisition and processing of the DAS data used for our

wavefield reconstruction. In Section 4.4, we describe the basic theory of CS and the multi-source wavefield

reconstruction proposed by Saengduean et al. (2022). We then show the reconstruction of interferometric

DAS wavefields in Section 4.5. Finally, we respectively discuss the wavefield-recovery improvement from

the application of multi-source wavefield reconstruction and the potential applications of the mulit-source

technique in Sections 4.6 and 4.7.

4.3 Acquisition and Processing of DAS Data

To test the application of multi-source wavefield recovery on DAS records, we apply wavefield recon-

struction to ambient virtual shot gathers (VSG) of DAS data generated by Shragge et al. (2021) following

a seismic interferometry approach (Bensen et al., 2007; Shapiro et al., 2005; Snieder, 2004; Wapenaar et al.,

2010). The seismic data are acquired from a DAS fiber deployed at approximately 0.5 m depth in the sub-

urban area of Perth, Australia in a buried utility conduit. The usable deployed fiber length is 15 km and

Figure 4.1 shows parts of the deployed DAS fiber (white line). The DAS data set was acquired in 19-20

December 2017 using an earlier prototype of the Terra15 Treble interrogator unit. The sampling rate of the

acquired DAS data is 250 Hz and the waveform outputs are at 10 m receiver spacing with a 100 m gauge

length applied as a post-acquisition filtering operation. We use the 4 km linear section of the DAS fiber

(indicated by the red rectangle in Figure 4.1) that is perpendicular to the coast for seismic interferometry

to minimize the sensitivity problem where the orientation of the DAS fiber is highly oblique to that of the

microseism energy that largely propagates in an easterly direction.

The DAS data were acquired in 60 s windows roughly every 15 minutes from 7:30 pm and 1:00 am on

a night where Perth had a winter storm with high ocean swell and significant wave activity. The lowpass

filter between 0.04 and 1.80 Hz is applied to the acquired DAS data before smoothing this data with a 3× 3

2D triangular-smoothing convolution operator (Shragge et al., 2021). We apply SI to the smoothed ambient

noise DAS data to generate a VSG volume. Using the Fourier-domain representation, one can estimate a

volume C of VSG by cross-correlating noise wavefields u recorded at two receivers, one of which acts as

a virtual source excited at position xa and the other as a receiver at position xb. In theory, the ambient

waveforms need to be generated on a closed surface that includes uncorrelated sources on the surface to

generate the waves that propagate between xa and xb (Snieder et al., 2007; Wapenaar and Fokkema, 2006).

For ambient seismic interferometry, one can generate the VSG by stacking the cross-correlation of ambient
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waveform windows taken from N long ambient wavefield records,

C(τ, xb, xa) = F−1
[

1

N

N∑
n=1

u(ω, xb, n)u∗(ω, xa, n)

]
, (4.1)

where τ is the correlation lag (s), ω is the angular frequency, n is the index of ambient waveform windows,

F−1 denotes the inverse Fourier transform, and the asterisk denotes complex conjugation in the frequency

domain. In our work, we stack 20 minutes of correlated 60 s ambient waveform windows when the storm-

induced energy is the strongest.

Figure 4.1 Map of the Western Suburbs of Perth, Australia with a deployed DAS fiber (white line). The
red box indicates the 4 km linear section of the DAS fiber that is used for seismic interferometry and our
wavefield reconstruction example. Modified from Figure 1 in Shragge et al. (2021).

4.4 Compressive Sensing and Multi-Source Wavefield Reconstruction

We apply multi-source wavefield reconstruction developed by Saengduean et al. (2022) to the VSGs of

the Perth DAS data set. The multi-source method uses CS, which is a wavefield reconstruction technique

that recovers signals from few irregular samples (Candès et al., 2006c; Donoho, 2006; Wakin, 2017).

Using CS, one can recover a signal f by expanding the signal in its sparse or compressible domain Ψ:

f = Ψα, (4.2)

where α denotes the sparse coefficients. For example, seismic signals can be represented using the Discrete

Fourier Transform coefficients. An N -dimensional signal f is sparse when the number K of non-zero coeffi-

cients is much less than N , and f is compressible when the sorted coefficients decays rapidly to zero (Wakin,

2017). One can recover the sparse signal f without information loss if the sampling function Φ describing

how the signals are sampled ensures the stability and energy conservation of sparse signals; examples of this
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sampling function are Gaussian and sub-Gaussian matrices (Candès and Wakin, 2008; Donoho, 2006; Wakin,

2017). In our work, we aim to recover the the correlogram signal f , while the sampling function Φ prescribes

the locations of receiver pair on a linear section of a DAS fiber where correlograms are available.

Recovering a K-sparse signal f using CS requires at least M compressive measurements d (Candès and

Wakin, 2008; Wakin, 2017), where d = Φf and

M = O(K log(N/K)). (4.3)

Rani et al. (2018) review different algorithms to solve the underdetermined equation d = Φf for a solution

f that is sparse in the desired transform domain Ψ. For our work using the multi-source method, we solve

the following l1 optimization problem to reconstruct the signal from noisy data measurements d = Φf + n:

min ||α||1 subject to ||ΦΨα− d||2 ≤ σ, (4.4)

where σ is a constant bound of the added noise: ||n||2 ≤ σ. One can recover the signal f once the sparse

coefficients α are recovered, using f = Ψα.

For our CS wavefield reconstruction, we use the Fourier and Curvelet transforms for the sparse domains Ψ

of our correlated DAS data. We use the 2D and 3D Fourier transforms across the time-space and time-space-

space dimensions of correlated DAS data, respectively; reconstructing time-space-space wavefields using the

3D Fourier transforms ideally leads to the recovery of the band-limited Green’s function G(t, xa, xb) for time

t at locations xa and xb. The discrete 2D and 3D Fourier transforms are equivalent to repeated discrete 1D

Fourier transforms along each dimension (Nussbaumer, 1982). We also apply the 2D Curvelet transform for

our CS wavefield recovery. The Curvelet transform uses scale, location, and direction parameters to represent

a signal (Candès et al., 2006b; Candès and Demanet, 2005; Hennenfent et al., 2010; Stehly et al., 2011). We

recover correlated DAS data (i.e., VSG) using the discrete Curvelet transform with wedge wrapping developed

by Candès et al. (2006b).

One can interpolate or reconstruct the missing wavefield from a virtual source gather by using inter-

polation techniques (e.g., compressive sensing); this modality of wavefield recovery is called single-source

reconstruction. The multi-source wavefield reconstruction developed by Saengduean et al. (2022) applies CS

to recover correlated wavefields using correlograms provided from all available virtual sources. Figure 4.2

shows the difference between single-source and multi-source wavefield reconstructions. The panels illustrate

examples of five receiver locations with three available and two unusable receivers for wavefield recovery; the

second and fifth receivers (virtual sources) are unusable. The three available virtual sources produce three

correlograms while two correlograms from VS2 and VS5 are missing because the master receivers for these

VSG profiles are assumed to be unusable. The single-source method recovers the correlated traces from the

two unusable receivers for each available correlogram but cannot recover the correlograms of VS2 and VS5
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due to the unusable master receivers for these VGS profiles (left column of Figure 4.2). By contrast, using

three available correlograms (VS1, VS3, and VS4), the multi-source reconstruction method simultaneously

recovers the five correlograms of all receivers, including the unusable correlograms of VS2 and VS5 (right

column of Figure 4.2).

Figure 4.2 Single-source and multi-source reconstruction of correlated wavefields recorded on linear arrays
of three available and two unusable receivers; the 2nd and 5th receivers are unusable. Single-source
reconstruction (left column) is performed separately for three correlograms provided by three available
receivers and recovers the two unusable correlated traces for each available correlogram. Note that the
single-source method cannot reconstruct the correlograms of VS2 and VS5 because the master receivers for
those VSGs are unusable. The multi-source method (right column) is performed simultaneously and uses
correlograms with gaps provided by three available virtual sources to reconstruct correlograms of all virtual
sources including the unusable VS2 and VS5 profiles. Adapted from Figure 2 in Saengduean et al. (2022).

4.5 Comparison of Different Wavefield Reconstructions

We apply the multi-source method to correlated DAS data, where the wavefield is missing at a number

of recording points. We compare the reconstructed DAS correlograms using single-source and multi-source

wavefield reconstructions to the original correlated wavefields. For the single-source reconstruction method,
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we use the 2D Fourier and 2D Curvelet transforms as described in Section 4.3. Because the Fourier transform

is more computationally efficient than the Curvelet transform for multiple dimensions, we use only the 3D

Fourier transform for the multi-source method.

Figure 4.3 Images of (a) original correlograms when the 14th sensor is the master receiver, and the
correlograms recovered by (b) the Fourier multi-source reconstruction, (c) the Fourier single-source
reconstruction, and (d) the Curvelet single-source reconstruction. 60% of the sensors are absent for each
reconstruction in (b)-(d). The offset distance is from the master sensor along the linear segment of the
DAS fiber.

We compare the recovery of wavefields using single-source and multi-source wavefield reconstructions with

DAS data. Figure 4.3 shows the original cross-correlated wavefield and the reconstructions of cross-correlated

wavefields using the single- and multi- source methods where the 14th sensor is set as the master receiver.

For each reconstruction in Figure 4.3, 60% of the sensors are assumed to be unusable, where the unusable

and available sensors are indicated by blue and yellow colors, respectively, in Figure 4.4. The Fourier and

Curvelet single-source reconstructions provide less accurate recovery of correlated wavefields, particularly

within 200 m (20 sensors) from the location of the master sensor (Figure 4.3c and Figure 4.3d), compared
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to the wavefield recovery by the Fourier multi-source method (Figure 4.3b).

Figure 4.4 Locations of the assumed unusable (blue) and available (yellow) seismic traces in our wavefield
recovery examples (Figure 4.3). The availability of traces does not depend on time lag, hence the vertical
structure of the blue and yellow bands.

We use relative difference between each wavefield reconstruction (Figure 4.3b, Figure 4.3c, and Fig-

ure 4.3d) and the original image normalized to the maximum amplitude of the original image (Figure 4.3a)

to quantify the error of wavefield recovery; Figure 4.5 shows the reconstruction errors of each wavefield recov-

ery that range between 0% and 40%. The error in the single-source reconstruction of correlated wavefields

(Figure 4.5b and Figure 4.5c) at locations within 200 m from the master sensor is approximately 30-40%.

By contrast, the multi-source reconstruction produces a reconstruction error of less than 10% at all locations

along the linear sensor arrays (Figure 4.5b).

Both the single-source and multi-source methods can recover the correlated wavefield for the 14th mas-

ter sensor because this virtual source is available in our reconstruction example as illustrated by Figure 4.2.

Next, we test the reconstruction of correlograms for the 50th master sensor, which is unusable as indicated by

Figure 4.4. Because the virtual source is unusable, the single-source method cannot recover the correlogram

for this virtual source whereas the multi-source method can recover this missing correlogram. Figure 4.6

compares the original correlated wavefields to those reconstructed by the multi-source method. These re-

sults show the reconstruction error shown by the relative difference between the original and reconstructed
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correlogram. The multi-source method recovers a wavefield image (Figure 4.6b) that closely resemble that of

the original wavefield (Figure 4.6a). The error of the multi-source wavefield recovery is below approximately

20% throughout the wavefield image (Figure 4.6c). Although this error is higher than the previously shown

reconstruction error of less than 10% for the available 14th master sensor (Figure 4.5a), the multi-source

wavefield recovery can reconstruct the completely missing correlograms due to the missing virtual sources

while the single-source method is precluded from recovering wavefield information at any missing virtual

source location.

Figure 4.5 Relative difference (%) between the original correlogram (Figure 4.3a) and correlograms
recovered by (a) the Fourier multi-source reconstruction, (b) the Fourier single-source reconstruction, and
(c) the Curvelet single-source reconstruction. The offset distance is from the master sensor along the linear
DAS fiber.

We use the signal-to-noise ratio (SNR) to quantitively determine the reconstruction error for each wave-

field recovery; the SNR is defined by

SNR = 20 log(
||fori||2

||fori − frec||2
), (4.5)
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where fori and frec are the original and reconstructed correlograms, respectively. Using different realizations

of missing DAS sensor locations, we determine the mean and standard deviation of the SNR for different

wavefield reconstructions. Because single-source methods cannot recover correlograms for the missing virtual

sources, we estimate the mean and the standard deviation only from all available virtual sources. For the

multi-source method, the mean and the standard deviation are computed using 1) all available virtual sources

and 2) all virtual sources (including the previously missing virtual sources). Figure 4.7 shows the comparison

of the SNR of different wavefield reconstructions using four different fractions of remaining DAS sensors. The

multi-source method overall achieves higher SNR than the single-source reconstruction by approximately 5-

10 dB. The multi-source recovery improves the reconstruction of correlated wavefields for different fractions

of remaining DAS sensors.

Figure 4.6 Comparison of (a) original correlogram and (b) the correlogram recovered by the Fourier
multi-source reconstruction. (c) The relative difference (%) between the original and reconstructed
wavefields in (a) and (b). The offset distance is from the 50th master sensor along the linear DAS fiber.

66



Figure 4.7 Mean and standard deviation of the SNR for different wavefield reconstructions using different
fractions of remaining DAS sensors and different missing-sensor locations. For the single-source method,
the mean and standard deviation are determined from only correlograms of all available virtual sources.
The estimation of the mean and standard deviation for the multi-source method is presented both from
correlograms of all available virtual sources (red) and from all virtual sources (green dash).

4.6 Discussion

Compressive sensing can be used to fill in gaps in interferometric waveforms obtained from DAS data. The

improvement in wavefield reconstruction when some sensors are unusable is beneficial to DAS applications.

Correlating DAS records has been used for Green’s function retrieval (Dou et al., 2017; Lindsey et al., 2017;

Martin et al., 2021). However, storing long-term DAS records for subsequent subsurface investigations and

monitoring is expensive. In addition, during the deployment, DAS sensors can be inoperative and DAS

fibers are highly sensitive to the orientation of incident wavefields, which can result in missing wavemode

data from DAS fiber segments (Bakku et al., 2014; Martin et al., 2021; Shragge et al., 2021). Previous studies

mitigate the expensive cost of data storage by storing seismic noise in a low-rank factorized form prior to

interferometry (Martin, 2019) and mitigate the issue of missing data by applying wavefield reconstruction

to fill the missing data (Saengduean et al., 2022; Zhan et al., 2018). With the improvement of wavefield

recovery from DAS wavefield correlations, one may apply the multi-source method to reconstruct ambient

correlograms of DAS data and the multi-source wavefield reconstruction can help mitigate the issue of missing

data in DAS applications.

Similar improvement of wavefield reconstruction by the multi-source method over the single-source coun-

terpart has been noted by Saengduean et al. (2022); the signal sparsity is enhanced when one groups images
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of noise correlograms from multiple virtual sources into a signal volume for wavefield reconstruction, com-

pared to reconstructing an individual correlogram image from a virtual source. The enhancement of signal

sparsity may result from signal redundancy due to the translational invariance of correlated wavefields; for

example, if the medium exhibits only weak lateral variations, the correlation of the wavefields from the 15th

and 35th master sensors is the same as that of the wavefields of the 50th and 70th master sensors. Using a

laterally homogeneous medium as a numerical example for the reconstruction of correlograms, Saengduean

et al. (2022) show that the multi-source method improves the recovery of correlograms by approximately

40-60 dB, compared to the single-source method. The improvement of wavefield recovery shown by Saeng-

duean et al. (2022) relies on a laterally invariant medium. We speculate that because the field DAS data

sets is likely influenced by lateral variance of interferometric wavefields propagating along our linear DAS

fiber, the improvement of our recovery of correlated DAS wavefields by approximately 5-10 dB is less than

the improvement of wavefield recovery shown by Saengduean et al. (2022). Nevertheless, the present paper

supports the use of the CS-based multi-source reconstruction on field data.

Because the multi-source method reconstructs correlated wavefields by relying on sparse signal repre-

sentations, the multi-source wavefield reconstruction provides an alternative for mitigating the problem of

expensive DAS data storage. One may require to store fewer significant sparse signal coefficients before

recovering the correlated DAS wavefields for subsequent signal processing steps. In addition, although we

show the application of multi-source wavefield reconstruct on DAS data and Saengduean et al. (2022) apply

the multi-source method to seismic data recorded on a linear array, one may apply the multi-source technique

to reconstruct wavefields recorded from an areal array using recorded VSG volumes.

4.7 Conclusion

We apply the multi-source wavefield reconstruction technique developed for recovering interferometric

wavefields in the absence of some linear array receivers to DAS records from Perth, Australia. We exploit

the sparsity of correlated DAS wavefields in the Curvelet and Fourier domains, and show that one can

use the multi-source method for recovering noise correlograms of DAS data when some sensing locations

are unusable. The Fourier multi-source method, which uses correlograms from multiple virtual sources,

improves the reconstructed correlograms of DAS records by approximately 5-10 dB, compared to the Fourier

and Curvelet single-source methods that separately use a correlogram from each virtual source for wavefield

reconstruction. The multi-source method also allows recovery of correlograms at locations where master

receivers are unavilable. The improvement of wavefield recovery from the multi-source method provides an

alternative way to reconstruct wavefields for DAS data applications.
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CHAPTER 5

WEIGHTED COMPRESSIVE SENSING APPLIED TO SEISMIC INTERFEROMETRY: WAVEFIELD

RECONSTRUCTION USING PRIOR INFORMATION

Modified from a paper to be submitted to Seismological Research Letters.

Patipan Saengduean13, Roel Snieder14, and Michael B. Wakin15

5.1 Abstract

Seismic interferometry is widely used for passive subsurface investigation using seismic noise. The tech-

nique requires much storage for long noise records to suppress interferometric noise which consists of spurious

arrivals that do not correspond to the inter-receiver surface waves. Such long recordings may not be avail-

able in practice. Compressive sensing, which is a wavefield reconstruction technique operating on incomplete

data, may reduce the unavailability and storage limitations of long noise time series. Using a numerical

example of a linear array surrounded by sources and the Fourier basis for a sparse transform, we show that

inter-receiver wavefields can be recovered at the locations where seismometers are unavailable, reducing the

storage required for interferometry. We propose and develop a weighted compressive sensing algorithm that

helps suppress the spurious arrivals by incorporating a-priori information about the arrivals of surface waves

that can be expected.

5.2 Introduction

Signal acquisition is a significant step prior to the processes of analyzing acquired signals. The quality

of acquired signals determines the complexity of the subsequent signal processing steps. Usually, acquired

measurements or signals are contaminated by noise. In seismology, receiver arrays collecting seismic signals

are often irregular and sparse because of missing or malfunctioning receivers. Some available receivers

may record noisy signals or experience environmental changes (e.g. local temperature variations) that may

fluctuate seismic signals recorded by the receivers (Wu et al., 2020; Yang et al., 2021). These noisy signals

are usually unreliable and may be discarded from subsequent signal processing steps.

Seismic interferometry (SI) is a seismic processing technique using correlation of ambient seismic noise

or diffusive wave coda to estimate wavefields that propagate between seismometers (Curtis et al., 2006;

Larose et al., 2006; Snieder and Larose, 2013b; Wapenaar et al., 2010). SI has been applied for subsurface

imaging and monitoring, using seismic noise (Draganov et al., 2007; Nakata et al., 2011; Shapiro et al.,

13Graduate student, primary researcher, and author at Department of Geophysics, Colorado School of Mines
14Supervisor at Department of Geophysics, Colorado School of Mines
15Supervisor at Department of Electrical Engineering, Colorado School of Mines
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2005; Vasconcelos and Snieder, 2008a), active event sources (Matzel et al., 2016, 2017), and signals collected

by distributed acoustic sensing (DAS) (Baird et al., 2020; Dou et al., 2017; Lellouch et al., 2019; Shragge

et al., 2021). Some correlation traces used for SI applications may be contaminated with interferometric noise,

which consists of wave arrivals that do not correspond to the surface wavefields retrieved by SI (Li et al., 2020;

Snieder et al., 2008, 2006). These noisy traces may be unreliable and discarded from subsequent processing

steps. One can alleviate interferometric noise by using the adequate source-distribution requirement for

SI provided by Fan and Snieder (2009), or by stacking correlated windows of long noise records for noise

interferometry. However, recording long seismic noise signals for correlation SI, as long as 3 months (Nakata

et al., 2015) or 1 year (Lin et al., 2008) depending on the sampling frequency, requires much data storage.

DAS increases the storage requirements for ambient records even more (Ben-Zion et al., 2015; Martin, 2019;

Martinez et al., 2021; Sweet et al., 2018).

Recovery of correlation wavefields from fewer samples is an alternative to reduce the storage required

for correlating long noise records. For example, Jayne et al. (2022) reduce the storage by reducing the

frequency components that are used for cross-correlation in the Fourier domain. Exploiting the sparsity of

seismic signals, Zhan et al. (2018) and Saengduean et al. (2022) reconstruct regular surface wavefields from

irregular receiver arrays. One can improve seismic signal reconstruction using constraints from well-log or

geological data (Gao et al., 2022; Wang et al., 2020). Additionally, when one expects varying reliability of

samples in the signals, one can reconstruct signals by applying higher weights to signal samples with higher

reliability (Anderson et al., 1997; Shin, 2013). For SI applications, although correlation traces with large

interferometric noise can be discarded from subsequent signal processing, these traces may contain parts of

surface wavefields which one aims to retrieve using SI. Thus, one may use these unreliable traces for signal

reconstruction.

Rather than discarding unreliable signals before wavefield recovery, we propose and develop a weighted

wavefield reconstruction technique to recover correlation wavefields and suppress interferometric noise. We

formulate wavefield recovery as an optimization by minimizing an objective function which places higher

weights on the signal samples with higher reliability. In Section 5.3, we describe the theory of traditional

compressive sensing (CS), which is a wavefield reconstruction method exploiting the sparsity of signals, and

explain the weighted CS algorithm that is modified from the traditional CS. In Section 5.4, we further explain

the numerical model and synthetic wavefields used in our CS wavefield reconstruction. In Section 5.5, we

show the comparison of the interferometric wavefields reconstructed using both traditional and weighted CS.

Finally, we show that weighted wavefield recovery can reconstruct interferometric wavefields and reduce the

spurious arrivals introduced by using inadequate source distribution for SI.
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5.3 Sparse Wavefield Recovery using Compressive Sensing

Figure 5.1 Regular samples of signals with an uniform interval (top). Irregular random samples with a
non-uniform interval due to missing samples (missing triangles). Combination of two sets of irregular
samples which have different degrees of signal reliability (black and red triangles).

The Nyquist sampling theorem states that one needs to sample signals at greater than twice the highest

signal frequency. By explioting sparsity of signals, compressive sensing (CS) is a wavefield reconstruction

technique that allows one to sample signals from fewer samples than the Nyquist theorem requires.

A signal f can be represented in a sparse domain Ψ: f = Ψα, where α is a vector of coefficients. A

N -dimensional signal f is sparse when the number of non-zero coefficients K in α is less than N, and f is

compressible when the sorted coefficients decay rapidly to zero (Candès and Wakin, 2008; Wakin, 2017).

One can reconstruct a sparse signal when the sampling function Φ, which describes how signals are sampled,

consists of random Gaussian or sub-Gaussian matrices; these matrices satisfy the restricted isometry property

(RIP) that ensures energy conservation and stability of sparse signal reconstruction (Candès and Wakin, 2008;

Donoho, 2006; Wakin, 2017). To reconstruct a K-sparse signal, one requires at least M measurements, where

M = O(Klog(N/K)). Different algorithms can be used to seek sparse-signal reconstruction (Rani et al.,

2018), but in our study, we minimize the following l1 optimization to reconstruct sparse signals from noisy

data d,

min||α||1 subject to ||ΦΨα− d||2 ≤ σ, (5.1)

where σ is the constant bound of the residual such that ||n||2 ≤ σ, and d = Φf +n; n is signal residual which

is the difference between the reconstructed and measured signals. After one recovers the coefficient vector

α, the signal f can be reconstructed using f = Ψα.

When one regularly samples signals in space, some samples may be missing, which may render the signal

acquisition irregular (Figure 5.1). Traditional CS (Equation 5.1) helps recover these samples from remaining

samples. When one knows which signal samples are likely to be nonzero, one can perform weighted l1

optimization to enhance signal sparsity and signal recovery (Khajehnejad et al., 2009). In addition, prior
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information of signals (e.g. previously acquired signals or geology of investigated area) helps constrain

traditional CS reconstruction of signals (Chen et al., 2008; Wang et al., 2020).

Rather than missing samples, one may acquire samples with different degrees of signal reliability (black

and red triangles in Figure 5.1). In the spirit of weighted least-squares and prior-constrained CS, we propose

to apply a weight matrix W to the l1 optimization (Equation 5.1) for signal recovery from samples with

different degrees of signal reliability. We generalize Equation 5.1 to

min||α||1 subject to ||W (ΦΨα− d)||2 ≤ σ. (5.2)

This weight matrix W is a diagonal matrix consisting of weights with values 0, 1, or w. Missing or completely

unreliable signal samples have zero weight while fully reliable samples have weight 1 and 0 < w < 1,

depending on the reliability of the signal samples. The weighted CS (Equation 5.2) is equivalent to traditional

CS (Equation 5.1) when the weight matrix consists of weights only with values 0 and 1.

The traditional and weighted CS algorithms are sparse-promoting recovery of wavefields. We use the

Fourier transform for both unweighted and weighted CS wavefield reconstructions as a sparse transform for

seismic signals (Abma and Kabir, 2006; Gao et al., 2013). The discrete 2D Fourier transform, associated

with space-time dimension of seismic data, is equivalent to the 1D Fourier transform along each dimension

of the signals (Nussbaumer, 1982). We avoid the wrap-around of the Fourier transform by padding zeroes

at each end of our data matrix for every dimension.

5.4 Numerical Model and Synthetic Wavefields

Using SI for surface wavefield retrieval requires appropriate source distribution surrounding the receivers

to mitigate interferometric noise. One can achieve the perfect source distribution (PSD) when sources are

perfectly and appropriately distributed according to the requirement in Fan and Snieder (2009). Otherwise,

sources are inappropriately and imperfectly distributed for SI. We call this case an imperfect source distri-

bution (ISD) which introduces interferometric noise to the retrieved wavefields. In our work, we simulate

surface wavefields using both PSD and ISD cases for wavefields with and without interferometric noise.

Figure 5.2 shows the source-receiver geometry used for our wavefield simulations. We use a linear seismic

array consisting of 100 receivers that are regularly spaced at a separation of 10 m. For the PSD case, 8000

sources (shown in blue) are randomly distributed on the rectangle in Figure 5.2, where the sources are on

average 5 m apart from each other. For ISD case, 400 red sources are randomly distributed around the array

where the average source separation is approximately 100 m (Figure 5.2). To simulate surface waves, we use

the 2D Green’s function of the Helmholz equation (equation 18.46 from Snieder and van Wijk (2015a)),

u(x, t) =

∫
W (ω)H

(1)
0 (k(ω)x)e−iωtdω, (5.3)
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where x is the source-receiver distance, u is the wavefield at time t, W (ω) is the source-time function at

angular frequency ω, H
(1)
0 is the first Hankel function of degree zero for wavenumber k; k(ω) = ω/c(ω),

where c is the phase velocity.
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Figure 5.2 Source-receiver geometry. Black linear seismic array is located in the center of the geometry.
Surrounding the receiver arrays, blue sources are perfectly distributed (PSD) while red sources are
randomly and imperfectly distributed (ISD).

For W (ω), we use the spectrum of delta functions bandlimited between 5-20 Hz, and use the laterally

layered homogeneous medium with phase velocity c(ω) determined by Xia et al. (1999) for the wavenumber

in Equation 5.3. For SI, each receiver can act as a virtual source (master receiver). After we cross-correlate

wavefields recorded at each receiver and at the master receiver, we stack the correlation wavefields for all

sources for both PSD and ISD cases.

5.5 Comparison of Different CS Wavefield Reconstructions

Figure 5.3 shows the cross-correlated wavefields when we apply SI to seismic records on a linear array

associated with the source-receiver geometry in Figure 5.2 when the 35th receiver is used as master receiver.

Figure 5.3a shows the cross-correlated wavefields using the PSD. Our aim is to reconstruct correlation

wavefields that closely resemble the PSD wavefields (Figure 5.3a), when most receivers are missing or the

seismic records of these receivers are unreliable.
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Figure 5.3 Cross-correlated wavefields recorded on a linear array surrounded by sources (Figure 5.2) when
the master receiver is the 35th and the source distribution is (a) fully PSD and (b) 40% PSD with 60% ISD.

When 60% receivers are absent from the array, one can apply the traditional CS to recover the missing

correlation traces from the remaining traces; the missing and remaining traces (i.e. missing receivers) are

shown using blue and yellow colors in Figure 5.4a, respectively. Figure 5.4d shows the correlation wavefields

recovered by the traditional CS. For the case of seismic records of some receivers being unreliable, we use

combined correlation wavefields of 40% PSD and 60% ISD traces (Figure 5.3b) as an example for wavefield

reconstruction using our weighted CS; the PSD and ISD traces are shown by yellow and light blue colors in

Figure 5.4b, respectively. Because we mix ISD traces, 60% of correlation wavefields exhibit interferometric

noise which arrives in time between the acausal and causal surface waves (as indicated by the white arrow

in Figure 5.3b). Using an arbitrary weight 0.4 for ISD traces and weight 1 for PSD traces, the correlation

wavefields reconstructed by the weighted CS is shown in Figure 5.4e.

Since we know that interferometric noise arrives in time between the causal and acausal surface waves

(Figure 5.3b), one can differently weigh the parts of interferometric noise and surface wave arrivals in the

time dimension if one knows the expected arrivals of surface waves. Because parts of surface wave arrivals

are more reliable than interferometric noise, one can give higher weight to the parts of surface waves than

the parts of interferometric noise. We use the lowest and highest phase velocities of our numerical model

to estimate the earliest and latest time arrivals of surface waves for each ISD traces, respectively. Once we

estimate the time windows of the surface wave arrivals, we apply a weight 1 (yellow) to the PSD traces and

we apply an arbitary weight 0.4 only to the expected time windows of surface wave arrivals (light blue cone)

and a weight 0 (dark blue) to the other time windows for ISD traces with interferometric noise (Figure 5.4c).

The reconstruction of correlation wavefields using weighted CS with known time arrivals of surface waves is
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shown in Figure 5.4f.

Figure 5.4 (a) traditional CS, (b) weighted CS, and (c) weighted CS with priori background velocity.
Reconstruction of cross-correlated wavefields using (d) traditional CS, (e) weighted CS, and (f) weighted
CS with priori background velocity.

Comparing reconstructed correlation wavefields to the PSD wavefields (Figure 5.3a), the traditional CS

recovers a less accurate wavefield (Figure 5.4d) than the weighted CS wavefield reconstruction (Figure 5.4e

and Figure 5.4f), in particular within 20 receivers (100 m) from the master receiver. We arbitrarily select

the 88th trace of the wavefields in Figure 5.4 to compare the reconstructed cross-correlations of different CS

algorithms. Figure 5.5 shows the comparison of the PSD trace to the traces reconstructed using weighted

and unweighted CS. Compared to the traditional CS (blue), the two weighted CS algorithms (red and green)

reconstruct surface waves that are closer to the original PSD trace (black). Although the weighted CS can

reconstruct the surface wave arrivals, without the prior known time arrivals of surface waves, the weighted

CS also reconstructs the spurious arrivals (i.e. interferometric noise) of the cross-correlation between -0.6

and 0.6 s (red line in Figure 5.5). With the prior known time arrivals of surface waves, the weighted CS

reconstructs surface waves that are comparable to the PSD signals but reduces the interferometric noise in
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the wavefield reconstruction (green line in Figure 5.5).
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Figure 5.5 Comparison between the trace of the perfect-source distributed (PSD) wavefields and the traces
recovered using traditional CS (TCS), weighted CS (WCS), and weighted CS with priori
background-velocity knowledge. The traces are from the 88th receiver in Figure 5.4.

5.6 Discussion and Conclusions

We show that one can reconstruct the correlograms without interferometric noise from the combination of

cross-correlations with and without interferometric noise by applying weights to the expected time windows of

surface wave arrivals during the CS reconstruction. Compared to the traditional CS which uses only available

traces without interferometric noise for wavefield recovery, the weighted CS gives accurate reconstruction of

interferometric wavefields and reduces interferometric noise.

In our numerical example, we arbitrarily choose the weight (w = 0.4) for wavefield reconstruction but the

weight can be any value from 0 to 1, depending on the reliability of the data. We show in the appendix that

one can estimate the optimal weight wopt that maximizes the signal-to-noise ratio (SNR) of wavefields; the

SNR is defined by = 20log(||xori||2/||xori − xrec||2) where xori is the original and xrec is the reconstructed

wavefields. The optimal weight is given by

wopt ≤
σ√

Σi∈conen2i
, (5.4)

where n is the signal error, which is the difference between the PSD and ISD signals, and the cone area is

the light blue expected time windows of surface wave arrivals in Figure 5.4c. Our optimal weight expression
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is similar to weighted least-squares inversion where the optimal weight for the weighted least-squares also

depends on the signal error (Shin, 2013; Spilker and Vicini, 2001).

Although we use active-source interferometry as an example for weighted wavefield recovery, one can

apply the weighted CS to noise interferometry that requires long seismic noise records to suppress interfer-

ometric noise. Previous studies mitigate storage problems by using records from sparse arrays for wavefield

reconstruction (Zhan et al., 2018), using random subsampling in the frequency domain (Jayne et al., 2022),

and storing seismic noise in a low-rank factorized form before performing interferometry in a compressed

form (Martin, 2019). Rather than using subsampling or performing seismic interferometry in a compressed

form, one may apply the weighted CS to reconstruct the correlograms from noise recorded by seismic receiver

arrays, where majority of receivers records short duration of noise for interferometric contribution while the

other few receivers records long duration of noise for noise interferometry. The weighted CS may help reduce

storage requires for noise interferometry applications becuase one can store short noise records for most

receivers and store long noise signals only from few receivers.

Although in our example, we apply weighted CS to interferometry, one can apply this weighted method

to any digital measurements where parts of the signals are corrupted by noise or signal sensitivity. In these

cases, one can down-weight the noisy parts of the data, depending on the reliability of the data.

5.7 Appendix

Using PSD and ISD cross-correlations, weighted CS reconstruction can recover PSD correlograms that are

closer to the original PSD signals, compared to the traditional CS reconstruction. In the previous sections,

we use an arbitrary weight for wavefield recovery. Here, we derive an optimal weight that provides the most

accurate wavefield reconstruction by maximizing the SNR. Equation 5.2 shows that weights w and a constant

bound of signal residual σ (i.e. the difference between the reconstructed and measured signals) are required

for weighted CS reconstruction. Using the l2 norm definition, we replace Equation 5.2 by

ΣNi=1[W (Φx− d)]2i ≤ σ2, (5.5)

where x = Ψα is the reconstructed signals in the sparse domain and N is the signal length. Because the

values wi in W can only be 0, 1, and w, the summation reduces to

02Σi(Φx− d)2i,wi=0 + 12Σi(Φx− d)2i,wi=1 + w2Σi(Φx− d)2i,wi=w ≤ σ
2

Σin
2
i,wi=1 + w2Σin

2
i,wi=w ≤ σ

2,
(5.6)
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where n = d − Φx and is the signal residual which is the difference between the ISD and PSD signals.

Rearranging Equations 5.5 and 5.6 give the optimal weight,

w ≤

√
σ2 − Σin2i,wi=1

Σin2i,wi=w

. (5.7)

When the signal error of fully-reliable data (at wi = 1) is neglegible, the optimal weight expression reduces

to

w ≤ σ√
Σin2i,wi=w

. (5.8)

This optimal weight is scaled by a constant bound of noise and the signal error at parts of signals that are

not fully reliable.

We use signal-to-noise ratio (SNR) to compare the accuracy of wavefield reconstruction. Using the

numerical example in Sections 5.4 and 5.5, Figure 5.6 shows the SNR of weighted CS reconstruction at

different weights and σ. We use Equation 5.8 to estimate the optimal weights for different σ (red line). We

compare these expected optimal weights to the asterisk positions that gives the highest SNR for different

σ from our numerical example. Figure 5.6 shows that the optimal weights estimated by Equation 5.8 are

consistent with the highest-SNR wavefield reconstruction for different σ. Thus, one can use Equation 5.8 to

estimate σ and weight that give the most accurate reconstruction of correlation wavefields.
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Figure 5.6 SNR (dB) of the weighted CS wavefield reconstruction, when the expected arrivals of surface
waves are known, as a function of weights w and constant bounds of signal residual σ. The red line
represents the optimal weight estimated by σ using Equation 5.8, while the black asterisks show the
positions of highest SNR for each σ using our numerical example (Sections 5.4 and 5.5).
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this chapter, I provide a general summary of my thesis and recommend some future research ideas

which can be built on the foundations that I have explored for the projects included in this thesis. The

significant contribution of my thesis is that one can recover wavefields from the locations where either

seismic receivers are missing or are impractical for receiver deployment, using inter-source interferometry

and compressive sensing.

In Chapter 2, I show that one can extract body wavefields which account for the wave propagation between

two seismic sources, using inter-source interferometry and wavefields recorded by surface receivers. The inter-

source method requires four receivers per wavelength and the receiver array must cover the stationary phase

region of the two sources to retrieve inter-source body wavefields. In practice, acquiring seismic data with

adequate sampling is difficult. To achieve the sampling requirements, one may need dense seismic arrays that

are usually deployed for industrial seismic exploration. Using wavefields recorded by surface receivers near

the San Andreas Fault, I show that one can estimate the wavefields which account for the wave propagation

between two earthquakes close to the fault. The inter-earthquake wavefields can be used to determine some

properties of the fault. For example, I use the retrieved inter-source wavefields to determine the width of

the damage zone of the San Andreas Fault which is approximately 4 km. The estimation of body wavefields

using inter-source interferometry provides an alternative to receiver installation in the subsurface, which is

expensive and may even be impossible in the mantle or inside volcanoes.

I show in Chapter 3 that one can use compressive sensing to reconstruct wavefields missing due to absent

or inoperable receivers from a linear seismic receiver array. I propose a multi-source wavefield reconstruction,

which is an application of compressive sensing, to reconstruct correlated wavefields using correlograms from

multiple available virtual sources; the multi-source method is different from single-source wavefield recon-

struction, which uses a correlogram for wavefield recovery from a single virtual source. The multi-source

method can improve the reconstruction of correlograms obtained from interferometry by approximately 40-60

dB, compared to the single-source method, when the medium is laterally homogeneous. Although a linear

receiver array is used as an example in Chapter 3, I show in the appendix that one can apply the multi-

source method to 2D wavefields recorded on a 10× 10 areal seismic receiver array. The multi-source method

also reconstructs more accurate correlated wavefields than the single-source method because the fraction of

significant sparse coefficients for 2D arrays is smaller than those of 1D arrays.
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In Chapter 4, I apply the multi-source method proposed in Chapter 3 to DAS data recorded in Perth,

Australia. I show that one can apply the multi-source method to reconstruct missing correlated wavefields

due to the inoperable sections of DAS cables. The multi-source method improves the reconstruction of

correlated DAS records by approximately 5-10 dB, compared to wavefield recovery using the single-source

method. Although the wavefield-recovery improvement for DAS example is less than that of 40-60 dB from

the numerical example shown in Chapter 3, the improvement supports the use of the multi-source method

for DAS applications and for complicated (translation variant) wavefields.

In Chapter 5, I propose a weighted compressive sensing technique, which is a modified version of tradi-

tional compressive sensing, to reconstruct signals with variable signal reliability. Parts of the signals contain

noise or are sensitive to unfavorable orientation of the fiber and incoming wavefields, and thus can be less

reliable than the other parts of the signals and may be discarded or down-weighted from subsequent signal

processing. I use correlated wavefields obtained from interferometry as an example for wavefield reconstruc-

tion. In general, interferometric noise can be produced if one cannot satisfy the source-reciver distribution

required by Fan and Snieder (2009). My reconstruction example consists of correlated wavefields with and

without interferometric noise. Using weighted compressive sensing for wavefield recovery, I show that one

can reduce interferometric noise and reconstruct correlated wavefields from correlated wavefields with and

without interferometric noise.

6.1 Future Research

A number of future innovations can be further implemented from the wavefield reconstruction methods

shown in this thesis. These new directions include applications of inter-source interferometry to reconstruct

inter-event wavefields for deep-earth investigations (e.g. inside subduction zones, the mantle, and the core),

DAS data compression using the multi-source method and compressive sensing, and noise reduction using

the weighted compressive sensing method. In the following sections, I discuss some possible future research

directions for inter-source interferometry, multi-source wavefield reconstruction, and weighted compressive

sensing.

6.1.1 Deep-Earth Investigation using Inter-Source Interferometry

I show that one can apply inter-source interferometry to retrieve body wavefields that account for wave

propagation between two seismic events. One often uses surface or shallow subsurface receivers for deep-

earth investigation because the installation of receivers in deep crust, mantle, or volcanoes is impossible.

Successful retrieval of inter-earthquake body waves provides opportunities for deep-earth investigations by

converting a deep earthquake into a virtual seismometer. One can recover inter-earthquake body wavefields
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from deep earthquakes that occur due to rupture between a subduction slab and the mantle for deep-earth

investigations. Such deep earthquakes include 2018 Fiji and Tonga earthquakes at a depth of approximately

600 km, which occurred due to subduction slabs (Jia et al., 2020; Lutikov et al., 2021).

Because subduction-zone earthquakes occur on the rupture surface of slabs and the mantle, the inter-

event wavefields, which propagate along subduction slabs, can be used to investigate the property of the

subduction zone or parts of the mantle. For example, Shen and Zhan (2020) uses inter-source wavefields

to localize the meta olivine wedge inside a subduction slab beneath Japan. One can recover body waves

traveling between subduction earthquakes to infer the properties (e.g. the thickness of the layers) of the

subduction zone.

One may apply inter-source interferometry to S-waves generated from two deep earthquakes and are re-

flected from the core-mantle boundary for retrieval of inter-earthquake wavefields. This inter-event wavefields

are sensitive to the structure and may help estimate the properties and locations of seismic structures (e.g.

hot plumes and D” layers) located in the mantle, using modeling and imaging of travel-times and S-waves

(Cottaar and Romanowicz, 2012; He et al., 2015; Stockmann et al., 2019; Yuan and Romanowicz, 2017). In

addition, P-waves can travel through the outer core layers. One may retrieve inter-earthquake wavefields

from P-waves generated by two earthquakes and passing through the core to infer the core structure, materi-

als, and properties; the inter-event P-waves should be sensitive to the core structure. For example, modeling

and analyzing the differential travel times and waveforms of P-waves can help estimate the structure and

elastic properties of the outer cores (Irving et al., 2018; Yu et al., 2005).

6.1.2 DAS Data Compression using the Multi-Source CS Reconstruction of Wavefields

In this thesis, I show that using correlograms of multiple virtual sources provides higher-SNR recovery

of correlated wavefields, compared to using a correlagram of a single virtual source. The multi-source

method exploits sparser signal coefficients than the single-source method for the reconstruction of correlated

wavefields.

Storing DAS data for subsequent data processing is often expensive. Thus, the idea of storing large

amount of signals in a compressive format has recently become popular to alleviate the expensive data storage

issue. For example, Martin (2019) stores DAS data into a low-rank factorized format before performing

interferometry for noise correlation, and Rodriguez (2021b) uses compressive sensing and deep learning to

record DAS data in a compressed form and facilitate fast data transmission and fast estimations of moment

tensors and locations of events. Because the multi-source method reconstructs correlograms from sparser

signal coefficients, the method allows a possibility that one may store only few significant sparse coefficients

of a dense signal acquisition (e.g. DAS data) for subsequent signal recovery and processing.
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6.1.3 Reasons of Wavefield-Recovery Improvement from the Multi-Source Reconstruction

In this thesis, I show that the multi-source method improves wavefield recovery, compared to the single-

source method, by relying on sparser wavefield coefficients. I also speculate that the higher sparsity of

coefficients is likely due to the redundancy of the translational invariance of correlated wavefields, which

propagate along a linear seismic array.

The application of the multi-source method to field DAS data shows lower wavefield-recovery improvement

than the reconstruction of wavefields numerically simulated using a laterally homogeneous medium, because

the DAS wavefields may propagate through a laterally varying medium along a linear array. Thus, one needs

a larger number of significant Fourier coefficients to represent the seismic signals. In the future, one may

numerically test the effect of medium heterogeneity that affects the translation of correlated wavefields that

propagate along a linear arrays, in terms of wavefield sparsity and recovery.

6.1.4 Wavefield Reconstruction for a Non-Uniform Sampling Grid

I show in this thesis that the multi-source wavefield reconstruction can be applied to wavefields recorded

from a uniform-spaced seismic receiver array when some receivers are randomly missing or inoperative. How-

ever, arrays of uniformly spaced receivers are usually not available due to restrictions of receiver installation.

For example, the USarray deployed by IRIS throughout the US is randomly spaced and irregular.

The idea of reconstructing signals for non-uniform sampling grid, which have been shown in non-

geophysical disciplines, includes a variational approach based on spline spaces (Condat, 2013), neural network

frameworks (Jiang et al., 2019a; Zhang et al., 2021), and compressive sensing using localized random samples

(Barranca et al., 2016). Additionally, random subsampling for signal reconstruction provides fewer artifacts

in the recovered signals, compared to regular subsamples (Snieder and Wakin, 2022). Thus, one may apply

these techniques to incorporate the multi-source method using several virtual sources for wavefield recovery

of a randomly non-uniform spaced receiver array such as the USarray.

6.1.5 Incorporating Machine Learning to Multi-Source Wavefield Reconstruction for Efficient
Computation and Improved Wavefield Recovery

The multi-dimensional compressive sensing applications (e.g. the multi-source wavefield reconstruction)

usually involve expensive computation. The fundamental idea of compressive sensing is to minimize l1

optimization problem. One may shorten the computation of compressive sensing by using fast l1 minimiza-

tion algorithms. Examples of these algorithm include iterative-thresholding l1 optimization (Drori, 2007;

Yang et al., 2010), constrained l1 optimization with an indicator function (Chen et al., 2015a), and l1 − l2

optimization using a proximal operator (Lou and Yan, 2018).
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Incorporating machine learning to compressive sensing applications is an interesting alternative to improve

the performance of the computation and wavefield recovery of compressive sensing. Previous studies show

that integrating machine learning with compressive sensing can facilitate efficient computation and improve

signal recovery, compared to conventional compressive sensing (Bright et al., 2013; Kravets and Stern, 2022;

Zhang et al., 2021). In addition, the combination of compressive sensing and machine learning is applied

to recovery of seismic wavefields, improving the wavefield recovery and efficiency of compressive-sensing

computation for the reconstruction of missing seismic traces (Lu et al., 2019), moment tensor estimation

(Rodriguez, 2021a), and passive seismic monitoring (Rodriguez, 2021b). One may incorporate machine

learning to the multi-source method to facilitate the computation efficiency and wavefield recovery of multi-

source wavefield reconstruction.

6.1.6 Applications of the Multi-Source CS Wavefield Reconstruction for Passive and Active
Source Exploration

Although, in this thesis, I show the multi-source reconstruction for correlated wavefields from a linear

array and a linear parts of a DAS fiber, the multi-source method can also be applied to correlated 2D

wavefields recorded from an areal seismic array as shown in the appendix. I only show a numerical example

of using the multi-source method to reconstruct correlated 2D wavefields. However, one may apply the

multi-source method to field 2D seismic data recorded from areal arrays. Furthermore, the field data can be

not only seismic noise but also active sources recorded on seismic arrays.

In this thesis, I use the multi-source method for the reconstruction of only correlated wavefields obtained

by interferometry. However, one may apply the idea of using wavefield images from multiple sources for

recovery of missing seismic profiles or shot gathers for exploration. Because the multi-source method relies

on the translational invariance of wavefields propagating along a seismic array, the correlogram image from

each virtual source contain similar structures of correlated waveforms, creating a linear translation structure

for the data volume that consists of these correlograms. One may apply the multi-source method to seismic

arrays deployed for nearly layered subsurface; an example of such surface is a geotechnical field in Sweden

which consists of a bedrock overlain by sedimentary layers (Auken and Christiansen, 2004). In this case, the

multi-source method can rely on the translational waveform structures from the nearly layered medium for

wavefield reconstruction. The exploitation of the multi-source method for wavefield recovery is similar to

that of 5D seismic interpolation which exploits the similar seismic structures from different inline, crossline,

azimuth, offset, and frequency of seismic profiles (Al-Gain et al., 2020; Trad, 2009).
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6.1.7 Non-Seismic Application of Weighted Compressive Sensing

Although using weighted compressive sensing, I show a numerical example of the successful reduction of

interferometric noise from correlograms obtained by interferometry, one may apply the weighted compressive

sensing method to any digital signals, where parts of the signals are corrupted or contaminated by some

issues such as noise or instrument sensitivity.

For example, one may apply the weighted reconstruction method to separate singing voices and back-

ground music accompaniments. Singing voices and background music are usually harmonic and non-

stationary. Because of the non-stationary behavior and variation of the frequency of human voice and

background music, the voice separation problem is very interesting and challenging. Past studies use pitch-

based or model-based method (Ozerov et al., 2007; Vembu and Baumann, 2005) and frequency factorization

(Virtanen et al., 2008) for the separation of voice signals. Hsu et al. (2012), who exploit the temporal conti-

nuity and the hamonicity of different voice pitches from song recordings to detect the pitch range of singing

voices for different time frames, outperform the previous studies for the extraction of singing voices. Because

of the temporal continuity behavior of singing voices, one may apply the weighted compressive sensing for

voice separation from music accompaniments, where one may give higher weight for the time frames of the

sound signals during the pitches of singing voices than during the time frames of prioritized background

music.

In addition, the weighted compressive sensing can be applied for noise reduction of digital noisy signals

that have been computed using the weighted least squares method; examples of such application include

fitting scattered noisy signals (Zhou and Han, 2008) and denoising data volumes (Zhang et al., 2019).

Because one can set the weight depending on the size of the noise for the weighted least-squares method,

one may use a similar idea to provide the weight for the weighted compressive sensing, depending on signal

reliability.
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