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Chapter 1

Introduction

Seismic tomography is a technique to study the internal structure of the Earth. The word
tomography originates from the two Greek wotolsiosmeaninga sliceandgraphimean-

ing to write on and these two words together signifywrite on a slice Seismological
tomography (lyer and Hirahara, 1993) is the discipline where information (e.g. timeshifts,
phaseshifts, absolute travel times or amplitudes) retrieved from seismic waves probing the
Earth is converted into images of the Earth’s velocity structure, so that we can get a better
insight into the structures and processes which take place in the Earth.

Techniques applied in seismology are mostly based on simplified versions of ray the-
ory (Dziewonski, 1984; Woodhouse and Dziewonski, 1984; lyer and Hirahara, 1993;
Trampert and Woodhouse, 1995; Bijwaard and Spakman, 1998; €teis 1998; Ritz-
woller and Levshin, 1998). Ray theory is a high-frequency approximation in which wave
energy propagates along infinitely narrow trajectories called rays. The consequence is that
for wavefield calculations using ray theory, only the velocity structure on the ray between
the source and receiver is important. It is correct to apply ray theory in the description
of the propagation of waves in media with heterogeneity that changes slowly over a char-
acteristic scalea that is large with respect to the wavelengtland the widthLg of the
Fresnel zone. The length-scale ofinhomogeneity, the wavelength and the Fresnel zone are
illustrated in Fig. 1.1. The Fresnel zone is defined as the region between the source and
receiver that generates scattered waves which interfere constructively when they arrive at
the receiver position. In Fig. 1.1, an example of a diffracted wave due to a point scatterer
inside the Fresnel zone is given; A wave is emitted from the source (star) and follows the
pathL; to the point scatterer (thick circular point) and is deflected in the direction of the
receiver (triangle). The diffracted wave propagating towards the receiver follows the path
Lo. The ballistic wave which is the first arriving energy propagating along the straight
line with the length_pqistic between the source and receiver. The condition for construc-
tive interference of waves is that the difference in propagation length of the diffracted
wave and the ballistic wavé,; + Ly — Lpayistic; IS Smaller than a certain fraction of the
wavelength. (In the literature, one uses that the wavelength is divided by 2 or 4 in order
to assure constructive interference of waves, Yilmaz, 1987; Hardage, 1992). Scattering
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2 Chapter 1

theory of waves is relevant for the description of wave propagation in media with velocity
anomalies that vary on scale-lengths comparable to the wavelength and the width of the
Fresnel zone. This causes wave energy to be scattered, and ray theory is inadequate in ex-
plaining the change of wavefields due to the perturbation of the velocity in such complex
media.

Wavelength Length scale of
heterogeneity

—a—

L &z

Fresnel zone

\Lbaisuc/

Figure 1.1:An illustration of the physical variables that are used to define the validity

of ray theory and scattering theory. The wavelength is denoteddnyd the character-

istic length of heterogeneity is written as a. The concept of Fresnel zones is defined in
terms of constructive interference of waves that are scattered by heterogeneity inside the
Fresnel zone. For instance, a diffracted wave propagating from the source (star) and to
the receiver (triangle) following the path k- L is deflected by the point scatterer (thick
circular point). The first arriving wavefield propagates along the linglstic. The width

of the Fresnel zone is denoted hy.L

Present-day high-resolution tomographic models obtained in seismology show length-
scales of inhomogeneity which are comparable with the wavelength and the Fresnel zone
(e.g. Passier and Snieder, 1995). This means that the conditions for ray theory in high-
resolution tomography are often violated, which introduces a problem from a methodolog-
ical point of view. It is unacceptable to use an approximate theory (namely ray theory)
in imaging experiments for which the conditions of the applied theory are not fulfilled
in the end-result (i.e. the tomographic image). In order to improve the theory for wave
propagation in tomographic imaging experiments, it is important to take the scattering of
waves into account.
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In this thesis, a linear theory for transmitted waves is developed by applying the first-
order Rytov approximation (Snieder and Lomax, 1996) on the acoustic wave equation. It
is shown that a frequency-dependent delay time can be expressed as a volume integral of
the slowness perturbation field weighted by thedfét kernel, where the éghet kernel
is a function that specifies the sensitivity to the slowness perturbation field point by point
in the volume between the source and receiver. This sensitivity function that accounts
for non-ray geometrical effects, has the maximum sensitivity to slowness perturbations
away from the geometrical ray. One obtains the counter-intuitive result that for waves
propagating in three dimensions the slowness perturbation sensitivity vanishes on the ray
path connecting the source and receiver. Ray theory predicts that the sensitivity to slow-
ness perturbations is only non-zero on the ray. This result also has been derived using a
different approach, namely a linearised version of the cross-correlation function wherein
the single-scattering of waves is taken into account (Marquetiad), 1998; Tonggt al.,

1998; Marqueringt al., 1999; Dahleret al., 2000; Hunget al., 2000; Zhaeet al., 2000).

The theoretical developments of diffraction theory are tested in a numerical as well as
in a laboratory experiment using ultrasonic waves in which scattering effects are impor-
tant. These experiments clearly show that ray theory and scattering theory give the same
result in media where the conditions for ray theory are valid. For more complex media,
where the conditions for ray theory are no longer satisfied, one needs to use diffraction
theory for the description of the propagation of first arriving waves.

Triplications (related to caustics) are multi-valued wavefield arrivals for which the
amplitude of the first arriving wave may be much smaller than the amplitude of the later
arrivals. It is therefore difficult to detect the first arriving wave when the formation of
caustics is relevant. Triplications occur when a wavefield propagates in a medium with
focusing effects (Kravtsov, 1988). It is shown by using numerical experiments of trans-
mitted waves in complex media that caustics present in the propagating wavefield are
delayed compared with the first arrival. The developed diffraction theory for ballistic
waves is applicable even though the formation of caustics is significant.

The finite-frequency effect of velocity perturbation on transmitted, unconverted sur-
face waves is incorporated in a global surface wave tomographic experiment. Phaseshifts
for Love waves with periods at 40 s and 150 s are used in an inversion for the global phase
velocity using the ray theoretical great circle approximation (Woodhouse and Dziewon-
ski, 1984; Trampert and Woodhouse, 1995) and the scattering theoretical approach. The
scattering of surface waves is increasingly important for increasing period because the
width of the Fresnel zone increases with period. That is why the limitations of ray theory
in surface wave tomography are most restrictive for the longest periods.

The developed diffraction theory is not only limited to the application in global sur-
face wave tomography. The non-ray geometrical effect should be considered in other
wave experiments as well, where the conditions for ray theory are questionable. This
is for example the case in regional surface wave tomography and global body wave to-
mography (van der Lee and Nolet, 1997; Bijwaard and Spakman, 1998; Ritzwoller and
Levshin, 1998), in seismic exploration experiments such as borehole-to-borehole tomog-
raphy, vertical seismic profiling and reflection seismics (Yilmaz, 1987; Hardage, 1992;
Parra and Bangs, 1992; Goudswaatdl., 1998; Hatchell, 2000), in medical imaging
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such as ultrasonic sound imaging of the chest, the heart, the foetus, the veins etc.. (Baba
et al., 1989; King and Shao, 1990) and in ocean acoustics (Hodgkads 1999).

In addition, it is of interest to investigate to what extent diffraction theory in tomo-
graphic wave experiments can increase the resolution in tomographic models. Consider
for instance synthetic aperture radar (SAR) experiments (Massonnet and Feigl, 1998) that
are used to retrieve high-resolution radar images of the Earth’s surface. The radar waves
are emitted and recorded by satellites that circle around the Earth. It is found in SAR
that the highest possible resolution in radar images (for instance of topography) is much
smaller than the width of the Fresnel zone. The high resolution of SAR-images is due to
the fact that SAR focuses the radar images by overlapping the Fresnel zone of these radar
waves. In a similar vein, it is possible to increase the resolution of controlled seismic
wave experiments such as borehole-to-borehole seismic, vertical seismic profiling and re-
flection seismic where the Fresnel zones of seismic waves with different source-receiver
geometry overlap.

The last part of this thesis treats the spectral leakage problem (Trampert and Snieder,
1996). The term spectral leakage means that observed data affected by structures with a
length-scale that is not accounted for in a given inversion can leak into the long-wavelength
structures that are part of the estimated model. In the case of global surface wave tomog-
raphy, surface wave scattering theory is used in an inversion including the spectral leakage
correction of phase velocity measurements for Love waves at periods of 40 s and 150 s.

Chapter two deals with triplications of waves propagating in two and three dimen-
sional media. Criteria for the formation of caustics are derived for models with horizon-
tally layered structures and for Gaussian random media, respectively, using ray perturba-
tion theory. The theory for the formation of caustics is appliedhiapter three, where a
2-D finite-difference wave experiment is carried out using complex media for which scat-
tering theory and focussing effects are both important. The approach based on the scat-
tering of waves is compared with the ray theoretical treatment in the 2-D finite-difference
wave experiment. The conditions for scattering theory are confirmed in a specially de-
signed slowness perturbation model. Additionally, it is shown that scattering theory pre-
dicts very well the observed data obtained from the finite-difference wave experiment
using slowness perturbation media for which the effect of wave scattering is significant.
In chapter four, a test of the developed diffraction theory is carried out in a physical ex-
periment where ultrasonic waves propagate in samples of granite with grain-sizes much
smaller than the Fresnel zones. The ultrasonic wave experiment was conducted at the Ge-
ological Survey of Japan in collaboration with Osamu Nishizawa and Chadaram Sivaji.
In Chapter five, the scattering theory is applied in surface wave tomography. It is shown
in this chapter that present-day global high-resolution surface wave tomography is at the
limits of the application of the ray theoretical great circle approximation. The inversion
of phase velocity measurements is consideredhapter six for Love waves between 40
s and 150 s in global surface wave tomography where surface wave scattering theory is
combined with spectral leakage theory.
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Chapter 2

The formation of caustics in two
and three dimensional media

Abstract.

In terms of ray theory, the focus point (also related to caustics and triplications) is the
point in space where the ray position is stationary for perturbations in the initial condi-
tion. Criteria for the formation of caustics are presented. With ray perturbation theory, a
condition for the development of triplications is defined for plane wave sources and for
point sources. This theory is then applied on two cases of slowness media; 1-D slowness
perturbation models and 2-D Gaussian random media. The focus position in 1-D slowness
models is proportional to the inverse of the square root of relative slowness fluctuations.
For Gaussian random media, the distance at which caustics generate is dependent on the
relative slowness perturbation in a power of - 2/3. It is shown with snaphots of propagat-
ing plane wavefields that caustics develop as predicted by theory. The theory for caustic
formation can be generalised to three dimensions.

2.1 Introduction

In terms of ray theory, the concept of caustics is understood as the focus point in space
through which rays go. The consequence of the generation of caustics in a wavefield is,
in the ray geometrical limit, that the amplitude in the wavefield is infinitely high at the
focus point because the geometrical spreading factor is zero at the caustic point (Aki and
Richards, 1980; Menke and Abbot, 1990). This phenomenon is investigated by several
authors; Whiteet al. (1988) use limit theorems for stochastic differential equations on
the equation of dynamic ray tracing to predict when caustics start to develop in Gaussian
random media. Kravtsov (1988) gives a thorough description of caustics. Brown and
Tappert (1986) use Chapman’s method to write explicitely the variation of 2-D and 3-D

This chapter has been published as J. Spetzler and R. Snig@eophys. J. Int144, 175-182, 2001.
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8 Chapter 2

wavefields in the vicinity of focus points. They set up three properties of transient wave-
fields away from caustics; the most important characteristic of transient waves through
caustics is that the triplication will generate after the ballistic wavefield due to causality.

A new theory for caustic formation is presented. This theory is based on ray pertur-
bation theory but is formally equivalent to dynamical ray theory as used in \ghié
(1988) because the normal derivative of the equations in ray perturbation theory is identi-
cal to the equation of dynamic ray tracing (Pulliam and Snieder, 1998). In contrast to the
treatment of Whiteet al. (1988) this application is not restricted to random media.

In section 2.2, the general theory for caustic formation of wavefields emitted by plane
wave sources and point sources is presented. The theory is then applied on a 1-D slowness
perturbation medium and a 2-D Gaussian random medium for both plane wave sources
and point sources. The results for the 2-D Gaussian random medium are similar to those
found in Whiteet al. (1988). In section 2.3, the theory for caustic formation is tested on
numerical experiments where a plane wavefield propagatesin a 1-D slowness perturbation
field and in a 2-D Gaussian random medium.

2.2 Theory

We demonstrate how the focal length of converging wavefields in 2-D slowness perturba-
tion fields can be computed. First, we derive the general theory for two distinct source
geometries; the plane wave (plw) source and the point source (ps). Second, we apply this
theory on two case studies; 1-D slowness perturbation fields and 2-D Gaussian random
media. The presented theory for caustic formation can be generalised to three dimensions.

2.2.1 General theory

We make use of ray perturbation theory (Snieder and Sambridge, 1992) and separate the
ray into a reference ray and a perturbed ray. The slownesaufieldy + uz, is decom-
posed into the reference slowness figidand the slowness perturbation fielg. The
reference slowness is kept constant in this work which means that the reference ray is
a straight line. The perpendicular deflection from the reference ray to the perturbed ray at
propagation distance) is denoted byj(Xo).

First, the case of an incoming plane wave is treated. Imagine two horizontal reference
rays with slightly different initial positions. One reference ray is at the posiighile the
other reference ray is at the positibi 6z. See Fig. 2.1 for a definition of the geometrical
variables. For each reference ray there is a perturbed ray due to the slowness perturbation
in the medium. The condition for caustics, that is to say that the two perturbed rays
intersect, gives the following equation:

(X0, 2+ 02) + 02— (q(Xo,2) =0, (2.1)
or

0z 52—0 oz

=-1. (2.2)
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N
RN
- 240z q Ref. ray"Xo
—H-> 7 , q
s Caustic Ref. ray"xg
EIEY

Figure 2.1: Definition of the geometric variables for an incoming plane wave in a 2-

D medium with a constant reference slowness. There is one horizontal reference ray at
z and another one at#&z. The caustic develops at the intersection point of the two
perturbed rays.

Snieder and Sambridge (1992) show how the perpendicular ray deflgttirfrom
the reference ray can be computed given the slowness perturbgtion

X0 Ul
ao) = [0 [0 (£ ) e 23)
0 Uo
with @, the component of the gradient perpendicular to the reference ray so that
X0 0 up
a) = [ G003 () (9 @4
for a horizontal reference ray. The Green’s function
|0 if Xg <X
G(XO’X)_{ Xo—X ifxg>x"’ (2:5)

has the boundary condition§(0,x) = G(0,x) = 0. The condition for caustics in Eq.
(2.2) contains the partial derivative gfxo) with respect ta. Using Eq. (2.4) together
with the condition for caustics in Eq. (2.2) at giverwe find that caustics are formed at
Xo when

/XO G(Xo x)a—2 (ﬂ) (x)dx= -1 (2.6)
0 7022 \ ug ' '
Second, the point source case is considered. We investigate the generation of caustics
developing for rays that leave a point source with the azinputAssume again that two
reference rays with slightly different initial positions are emitted from the source. One
reference ray is sent in the directipnt+ 8¢ /2, while the other reference ray is emitted in
the directionp — d¢ /2. The distance between the reference rays is givexpdy. The
condition that the two perturbed rays cross each other leads to the following equation:

Q00,0 + 550) + X650 — A, 0 — 35) =0, 27)
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or

156) — _15
1000 1y G000+ 580) 00,0~ 53)
X0 00 X0 36—0 b
Usingd, = (1/x)(0/0¢) in Eq. (2.3) the perpendicular ray deflection to the reference
ray is derived. Hence

-1 (2.8)

/Gxo, xa¢( )(x)dx 2.9)

The Green’s function in Eq. (2.9) for the reference ray with the azimpuththe same as
in the case of incoming plane waves which is stated in Eq. (2.5). With Eq. (2.9) combined
with the condition of caustics in Eq. (2.8) at givenwe get that caustics generatexat

when
uy
_/ Xo, x6¢2< >(x)dx:—1. (2.10)

The second derivative afi/ug with respect to the transverse coordinate is an im-
portant quantity. It reflects that it is the curvature of the relative slowness perturbation
that generates caustics. For example, negatiy@z?(u; /up) andd?/d¢?(uy/up) lead to
focusing of wavefields, whereas in areas with defocusing effects the two quantities are
positive.

2.2.2 A medium with 1-D slowness perturbations

The focus position of a plane wave propagating in a medium with a constant reference
slowness fieldip and 1-D slowness perturbationg(z) can be computed analytically.
The reference ray in such a medium is a straight at giwvehhe condition for caustics
in the case of incident plane waves given by Eq. (2.6) can be used to determine when
caustics start to generate at the offsll{’s at givenz. The integration in Eq. (2.6) is
carried out from 0 toars Hence

pw (7 _72. 2.11

) = Z(9)(2) @10

The focal distancebsysof wavefields emitted by point sources is easily derived from
the condition for caustics in Eq. (2.10). The second derivatly@$? = x?92/3z> which
permits an evaluation of the integration in Eq. (2.10) in the range fromxéite Thus

-6
caud2 =\ [ oo (2.12)
Kad?) =\

The distance between the source and receiver is dehotéabus(z) < L, triplica-

tions will be present in the recorded wavefield.



2.2 Theory 11

2.2.3 Gaussian random media

Secondly, we discuss the formation of caustics in Gaussian random media. The auto-
correlation functior(r) of a Gaussian random medium is given by

F(r)

< ul(rl)ul(rz) >
= (ew)exp(— (1)) (2.13)

wheree is the rms value of the relative slowness perturbatiartgnotes the correlation
length (or roughly the length-scale of slowness perturbationsy aadt1 —r,|. Notice
that the reference slowness is biased in a realisation of a finite Gaussian random model
(e.g. Miller et al., 1992). However, this artifact does not affect derivatives of the slow-
ness.

According to Eqg. (2.2) caustics develop in a plane wavefield vaggdz = —1. This
implies that on average in a random medium caustics develop when

< (3_2>2(X0) >=1 (2.14)

where< ... > is the expectation value. For this reason the following quantity is used to
monitor the formation of caustics.

< (g—j)z(Xo) >,

1 (X ,
2 ) coox)seax)
2

HPY(xo)

d 2, ,
X < 35U (X) (X)) > dXdX. (2.15)

The monitor is zero at the source position &H#"(xo) = 1 when caustics start to develop
at the offsetg according to Eq. (2.14)

We follow the same method as used in Rethal. (1993) to evaluate the right-hand
side of Eq. (2.15). First, the expectation value of the slowness perturbation field dif-
ferentiated with respect totwice at the offsek’ andx’, respectively, in Eq. (2.15) is
expressed in a simple form containing the characteristic parameters for the Gaussian ran-
dom medium. The following expression is evaluated on the horizontal referengg ray

02 0° o

_ _ 4 _ v ! )
< azzul(x’,z)azzul(x’ ,2) > r < 62’262"2u1()(’2')u1(xl Z') > Yt
O4F (1)
= 322077 ppa (2.16)

The auto-correlation functioR(r) is differentiated twice with respect thandZz’ in Eq.
(2.16), which gives

OF(r) 3 (F”(r)— F’(r)) ‘z:z/:zo' (2.17)

072072 |7-7'—2y 12 r
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The prime and double prime &f(r) signifies a single and double differentiation with
respect ta. Using the auto-correlation functidf(r) in Eq. (2.13) for Gaussian random
media the left-hand side of Eq. (2.16) is finally written as

2 2 2
<% L, z) u(¥',2) > :12(822) exp— (;)2). (2.18)

0 a2 =7

The right-hand side of the monitor for plane waves in Eq. (2.15) can be simplified further.
Define

2 2

f(r)= 62 1(X, z) wix',z)>| (2.19)
a =7
wherer = |xX' — x”| and
n(xX,x") = G(x,X)G(xo,X")
X4+ XX —xo(X +X"). (2.20)
We then derive from Eq. (2.15) that
/ / G(x0,X)G(¥0,X") < (%) () >|  dxdx =
=2
/ / n(x’,x”)f(|x’—x”|)d>(d>(’, (2.21)
0 0

for X andx” smaller thanxy. Using the integration technique in Rogh al. (1993)

the expression for the monitor in Eq. (2.15) is simplified further. The details of this
integration method are explained in appendix A; here we just give the results. The double
integration in Eq. (2.21) from O t&p is changed to an integration from 0 %g of the
function f(r) in Eq. (2.19) multiplied by a summation of two integrationg\gk’,x”) in

Eqg. (2.20) fronr to xg and from 0 toxg — r, respectively. In brief, the right-hand side of

Eq. (2.21) is written as

/drf /nx’><’—rd>(+/ n(x,x +r)dx]. (2.22)

The solution to the two integrations nfx’,x”) inside the rectangular brackets are com-
puted analytically.

/ N, X —r)dx = / NOCX 1)Y= 2~ 2+ <r® (2.23)
The expression for the functiof(r) in Eq. (2.19) and for the integration gfx,x") in

Eq. (2.23) are used together with the expression for the monitor in Eq. (2.15). Hence the
monitor for plane waves propagating in a Gaussian random medium simplifies to

2
leW(XO):]_Z; xg Xr + =r3) exp(— ( ) )dr. (2.24)
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By letting xo go to zero in Eq. (2.24) it is easy to verify thaf'V(0) = 0.

Assume first that the propagation length is less than the correlation lengtt,/ae<
1. The exponential function is set to unity in this regime and the integration of the right-
hand side of Eq. (2.24) is carried out directly. Hence

HPY(xo) — 3¢2 (%)4 <1, (2.25)

which reflects that caustics are not formed in this regime.

Suppose instead that the propagation distance is much greater than the correlation
length, i.e. xp/a>> 1. We can then compute the analytical solution of the monitor in
Eqg. (2.24) by letting the range of integration go to infinity because the exponential in the
integrand approaches zero fop> a. Thus

HPW(xy) = / xg X3r + =r3) exp(— ()2)

82 \/_Tlaxg a2x3 a4
12205 ~72 %)

4\/ﬁs2(§)3. (2.26)

We have made use of the assumption thgt > 1 to eliminate the last two terms in
the brackets of Eq. (2.26). Lé&tdenote the source-receiver offset. We then derive the
non-dimensional numbér/a from Eq. (2.26) in the case that caustics developat L.
Hence by usingdP"(L) > 1, we get that

Q

L. = o2 (2.27)
a” @y |
For a point source the generation of caustics can be evaluated along similar lines. The
monitor HPS(Xp) is defined in the same way as the monitor for plane waves except that
the condition for caustics formation in Eq. (2.8) for point sources is applied. Thus

1700 = < (20 ) >

Xo 0
1 [ % N 1
= @/0 A G(XOaXJ)G(XO’X’)XIXII
02 62 ' !
< 352 ()64)2 up (x") > dxXdx’. (2.28)

According to Eqg. (2.8) caustics develop at the offgetvhen the monitor in Eq. (2.28) is

equal to one. The mean valuel, 0¢2 (X)a?pzul( ") > is related to< azzul(x)<;’zzzu1(x”)>

by using the chain rule that
0 _0p0 190

32" 9290 X3’ (2:29)
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becausa = x¢ for small values ofp. Thus

% )2 >= (0 < w9 Lo 2 2.30
< 921X ga(X') >= (XX)° < w2 5w 2) > | (2:30)
The procedure used for the derivation of the monitor for plane waves is repeated for the
monitor for point sources. The only difference from the previous example is that the
functionn (X, X") = G(xo,X)G(Xo, X" )X X" = x3XX" + (XX")2 — Xo(X +X")X'X". The final
result of the rather long derivation of the monitor for caustic formation in the point source
case is given by

2 o 1 4 4 7r° r2
HPS(x0) = 12% ; (1—5>%— éxor2+ ér3+ 1—5%)exp(— (5) )dr. (2.31)
By letting X go to zero it can be shown thiat’S(0) = 0.

Similar to Eq. (2.25), it can easily be shown that triplications due to point source
wavefields do not generate when the length-scale of heterogeneity is greater than the
source-receiver distance. Assume insteadxh# > 1 and carry on exactly as in the
case of incident plane waves. The analytical expression of the right-hand side of Eq.
(2.31) is given by

HPR () = 20762 (%0, (2:32)

The non-dimensional numbeya for the condition that caustics develop in the recorded
wavefield is derived from Eq. (2.32), thus the condition tH&¥(L) > 1 gives that

1/3
Lo (5 )\ e2n_qip2e (2.33)
a— \2ym

Itis instructive to compare Eq. (2.27) for plane waves and Eq. (2.33) for point sources
with estimates obtained by Whitg al. (1988). They use limit theorems for stochastic
differential equations on the equation of dynamic ray tracing in Gaussian random media
to calculate the probability that a caustic occurs at a certain propagation distance. In Fig.
4 and 5 of Whiteet al. (1988), they demonstrate universal curves for the probability of
caustic formation as a function of the universal distance defined as

F= (811)1/682/3%, (2.34)

where we have made a change of symbol from Whital. (1988) by using for the
rms value of relative slowness perturbations anfibr the propagation distance of the
wavefield. This means that in the theory of Whateal. (1988) caustics develop when the
non-dimensional numbér/a is given by

LT s
2= —(811)1/68 . (2.35)
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This expression has the same dependenaeamthe condition for caustics in Eq. (2.27)
and (2.33).

According to Fig. 4 and 5 of Whitet al. (1988) the highest probability for generation
of caustics for plane waves is found fo= 0.9 and for point sources= 1.9. By inserting
the appropriate value dfinto the factort /(8m)Y/6 from Eq. (2.35), we find that the factor
is 0.53 and 1.11 for the case of plane waves and point sources, respectively. Comparing
these two numbers with the corresponding factors in Eq. (2.27) and (2.33), we see that
there is a good agreement between the work of Watitd. (1988) and our work.

Although we have derived the condition for caustics due to plane waves and point
sources in two dimensions, the theory for caustics can be generalised to three dimensions.
In 3-D, the equation for the ray perturbatioqsandqy in the directions perpendicular
to the ray decouples for a homogeneous reference model and a coordinate system that
does not rotate around the reference ray (see Eq. (50) of Snieder and Sambridge, 1992).
The condition for caustics in Eq. (2.2) and (2.8) for plane waves and point sources,
respectively, can be applied to the ray perturbation in two orthogonal directions separately.
For example as it is shown in appendix B, the non-dimensional nulfzeior the point
focus in 3-D Gaussian random media is given by Eq. (2.27) for plane waves and by Eq.
(2.33) for point sources. Notice that in 3-D a caustic is not necessarily the same as a point
focus. A caustic can in that case also be a line of focus points, whereas a focus point, as
the word says, is located at a point.

2.3 Numerical examples

In this section, numerical examples of caustic formation of plane wavefields are shown
for two distinct media; A 1-D medium with the slowness perturbation field described by
u1(2) = v2eupsin((z+2)*/k), and a 2-D Gaussian random medium with the slowness
perturbation field described by Eq. (2.13). The quantgyis the reference slowness
which is constant for all numerical experiments shown in this paper. The rms value of
relative slowness fluctuations is denotedebyThe parameterg, k ande are adjusted
such that the development of triplications in the media is significant.

In Fig. 2.2a, the 1-D slowness medium witfe 350 mk = 1.5x 1019 m?, ug = 2.5 x
104 s/m ande = 0.035 is plotted. It is seen in that figure that the slowness field changes
more and more rapidly with increasirg In Fig. 2.2b, the focal distance of a plane
wavefield propagating in the 1-D slowness medium as shown in Fig. 2.2ais computed by
using Eg. (2.11). The offset from the source position is plotted on the abscissa while the
depth at which caustics start to develop is plotted on the ordinate. The focal distance of
the converging, plane wavefield is shown with the solid line. Notice that there are zones
with defocusing of the plane wavefield which is manifested in Fig. 2.2b between 120 m
and 205 m, between 265 m and 305 m, between 350 m and 380 m, etc... In these zones
the wavefield propagates through a zone with a positive curvature of the relative slowness
perturbation, so caustics do not develop. Thus the focal distance is infinite. The curvature
of the relative slowness fluctuations increases with increasing the focal distance of
the converging wavefield decreases as depth increases.
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Figure 2.2: The 1-D slowness field with= 0.035 is shown in a). The focal distance
(solid line) of a plane wavefield is calculated as function of depth in b). Notice that the
incoming plane wavefield is focusing in regions with positive slowness perturbations and
it is being defocused when the slowness perturbation is negative.

In Fig. 2.3, snapshots of a plane wavefield propagating through the 1-D slowness per-
turbation field with the same value &f, k, ug ande as for the 1-D mediumin Fig. 2.2a are
shown. The snapshots are produced with a finite difference solution of the acoustic wave
equation. The central frequency is 1000 Hz, and the applied source function is a Ricker
wavelet. The snapshots are taken for every 5 ms with the first snapshot at the source
position and the last snapshot at about 100 m offset. Positive amplitudes are dark while
negative amplitudes are bright. The first triplications are visible in the snapshetla
ms (~ 40 m) at depths below 500 m as the wavefield contains large positive amplitudes.
In the snapshots fdr= 15 ms ¢ 60 m), 20 ms £ 80 m) and 25 ms~ 100 m), the trip-
lications generated in the wavefield are very clear as they give rise to a half bowtie-form
wave after the ballistic wavefront. Comparing the theoretically predicted minimum focal
distance of the converging wavefield in Fig. 2.2b with the offset at which triplications
start to develop in the wavefield in Fig. 2.3, we find that there is good agreement between
the presented theory for caustic formation and the numerical 1-D experiment.

In Fig. 2.4, snapshots of a plane wave propagating in a 2-D Gaussian random medium
with the reference slownesg = 2.5 x 104 s/m, the relative slowness fluctuatier=
0.025 and the correlation lengéh= 7.1 m are presented. The central frequency is 1000
Hz, while the Ricker wavelet is applied as source impulse. The 10 snapshots are com-
puted for every 2.5 ms, where the first snapshot is taken at the initial wavefront and the
last snapshot is taken at about 90 m offset. In the upper and lower part of the plane wave-
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Figure 2.3:Snapshots of plane wave propagation in the 1-D slowness perturbation model
with € = 0.035. The absolute travel times t = 0, 5, 15, 20, 25 ms are marked at the

respective wavefronts. Caustics become very clear after the ballistic wavefronts for t =
15, 20, 25 ms.
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Figure 2.4: Snapshots of plane wave propagation in the 2-D Gaussian random model
with € = 0.025 and a = 7.1 m. The absolute travel timest =0, 2.5, 5, 7.5, 10, 12.5,
15, 17.5, 20, 22.5, 25 ms are marked at the respective wavefronts. Caustics develop in
the wavefields for t larger than or equal to 7.5 ms. The maximum amplitude variation
along the wavefield for each wavefront is shown with the white solid line. Notice that
the colour in the wavefronts gets darker when the maximum amplitude is at a peak. The
bar in the upper right corner shows the percentage variation of the maximum amplitude
in the perturbed slowness model compared with the reference amplitude computed in the
constant reference slowness model.
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fronts in Fig. 2.4, a circular wave due to diffraction at the edge of the numerical grid can
be seen. Inserting the appropriate valuesforto Eq. (2.27) the non-dimensional number
L/a = 6.1 for the development of triplications in the Gaussian random medium is found.
The expectation value of the offset at which caustics start to generate it thel3 m
fora=7.1 m. In Fig. 2.4, no triplications are observed in the wavefrohta® ms, 2.5
ms and 5 ms, i.e. at approximately 0 m, 10 m, and 20 m, respectively. Ther fo5
ms (~ 30 m) and 10 ms~ 40 m) the multipathing that is associated with the formation
of caustics can be seen as a minor wavefield after the ballistic wavefront. This generation
of minor wavefields delayed compared to the ballistic wavefront is neither due to uncer-
tainties in the FD-code or due to scattering effects (for the employed Avave 0.5) but
because of caustic formation. For the last 5 snapshots 42.5 ms & 50 m), 15 ms €
60 m), 17.5 ms+ 70 m), 20 ms 4 80 m) and 22.5 ms~ 90 m) triplications are devel-
oping rather strongly after the wavefront. The maximum amplitude variation along the
wavefield for each wavefront is plotted with the white solid line in Fig. 2.4. For the initial
wavefront at = 0 ms, the amplitude is constant, while the maximum amplitude along the
wavefield varies with increasing extrema for the wavefronts for largdhe bar in the
upper right corner of Fig. 2.4 shows the relative percentage of the amplitude variations
in the perturbed slowness model compared with the reference amplitude computed for
the homogeneous reference slowness model. Notice that the largest positive values of the
maximum amplitude along the wavefronts correspond to the parts of the wavefronts with
darkest colour while the negative amplitude variations are shown with bright colours.
Witte et al. (1996) use the kinematic ray-tracing equation to construct a ray-diagram
for a Gaussian random medium with fixed= 0.03, but with different values of the
correlation lengtha. Using Eq. (2.27) witte = 0.03, gives the non-dimensional number
L/a = 5.4. Looking at the top panel in Fig. 4 of Wit& al. (1996) forL/a = 10, itis
seen that the first caustics generatesat5-6 which corresponds well with the theoretical
value computed with Eq. (2.27).

2.4 Conclusions

In this paper, we develop a theory for the formation of caustics. The theory is based on
ray perturbation theory, but is equivalent to a similar approach by V\itd. (1988)
where the equation of dynamic ray tracing is used to predict when triplications develop in
Gaussian random media.

We have applied the theory for the generation of caustics in two case studies (i.e. 1-
D slowness perturbations fields and 2-D Gaussian random media) where the plane wave
source and the point source are taken into account. The theory for caustic formation can
be generalised to wavefields propagating in 3-D. We find that the formation of caustics for
1-D slowness perturbation fields depends on the inverse of the square root of the second
derivative of the relative slowness perturbation, while for Gaussian random media the
formation of caustics is dependent upon the relative slowness perturbation in a power of
minus two thirds.
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2.5 Appendix A: Derivation of Eq. (2.22)

In this appendix, the step from Eq. (2.21) to Eqg. (2.22) is demonstrated. The right-hand
side of Eq. (2.21) is written as

/XO /Xon(x,x')f(pd —X')dXdx’, (2.36)
0 0
where
2 &
f(lxl _X”D =< @Ul(x,,Z)EU]_(X”,Z) > Z=Zo, (237)
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Figure 2.5:The integration technique which is found in Roth et al. (1993). The area of
integration for [0 dx [X n(x,x —r)f(r)dr and f3° d%fé‘o’xln(x’,x’nL r)f(r)dr in Eq.
(2.41) is shown in a) and b), respectively.
and

n(x,x") = G(xo,X)G(xo,X"). (2.38)

The integration ovex” in Eq. (2.36) is split into one integration ovef from 0 tox’ and
another integration ovet’ from X’ to xg. Thus Eq. (2.36) is rewritten as

/X°d>( [/% N, X' f (X —x”)d>(’+/xor](x’,x”)f(>(’ ~x)dx']. (2.39)
0 0 X

Define nowr = X — X" andr = X’ — X for the first and second integration ovérin the
brackets of Eq.(2.39) and carry out a change of variables in the two integrations’over
inside the brackets. The result is given by

/Oxod%[—/)dor](x’,x’—r)f(r)dr+/oxoXlr](x’,x’+r)f(r)dr] (2.40)

or

/OXde[/OX'n(x,%— r)f(r)dr+/oxo_)dr](x’,x’+r)f(r)dr}. (2.41)

The integration ovex’ multiplied with the first and second integration owein the
brackets of Eq. (2.41) corresponds to the triangle inrtReplane as shown in Fig. 2.5a
and 2.5b, respectively. By changing the order of integration in Eq. (2.41), but still keeping
in mind that the double integration oveandx’ must be over the triangles as shown in
Fig. 2.5a and 2.5b, it is possible to rewrite the Eq. (2.41) in the following way

/Oxodr{/rxon(x’,x’—r)f(r)d>(+/0X07rr](x’,x’+r)f(r)d>( . (2.42)
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Figure 2.6:Estimation of the point focus in a 3-D medium.

After rearranging the ternfi(r) outside the integration ovet, the result is finally given
by

/Oxodrf(r){/rxon(x’,x’—r)d>(+/oxo_rn(x’,x’+r)d>(}, (2.43)

which is the equation that is stated in Eq. (2.22).

2.6 Appendix B: Caustic formation in three dimensions

Imagine that a plane wavefield is propagating along the x-axis with the decoupled ray
deflectionsy; andqy parallel to the y-axis and z-axis, respectively. See Fig. 2.6 for the
experimental setup. Using the results from Snieder and Sambridge (1992), the decoupled
differential equations for the ray deflection coordinates are then given by

d2 A up
WCM =Gi-U (U_O) ; (2.44)

wherei = 1,2. The ray deflections are gathered together in the ray deflection vector
g= (0,01,92). The condition for caustic formation in Eq. (2.2) is applied on each ray
deflection coordinate. Hence,

0
Ha(xo) = ( -1 ) ; (2.45)
~1

for a point focus at the offseq. In order to determine when caustics develop in a 3-D
Gaussian random medium, the expectation valugdif<) - Jq(xo) is computed. Thus
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according to Eq. (2.45) for a point focus, caustics develop when

<Ug-0g>(x) = < <%)2(Xo)+ (%)Z(Xo) >

oy
_ 3q1 )2 a2\ * _
_ . (a_y) (x0) > + < (E (o) >=2, (2.46)
at the offsetg. For 2-D Gaussian random media, the following result is derived;
lw _ aq 2
HPW(x0) =< % (%) >=1, (2.47)

when a caustic develops at the offsgt According to Eq. (2.26)HPW(xg) = 4/Tt €2
(xo/@)3 for xo/a>> 1. This result can be used for each ray deflectjcseparately, so the
monitorsHlp'W(xo) andep'W(xo) for g1 andqp, respectively, are defined as

2 2
HMY(x%) =< (aa—‘;l) (xo) > and  HM(x) =< (%) (x0) >, (2.48)

whereH"(x0) = HY"(x0) = 4,/TE2(x0/a)3. Combining Eq. (2.46) with the monitors
defined in Eq. (2.48), we compute

HP"™ (x0) + HE(x0) = 2, (2.49)
or
X0 3
awme? () =1, (2.50)

for a caustic at the offseg in a 3-D Gaussian random medium which is also the result
found for 2-D Gaussian random media. Similarly, the result for caustic formation due to
a point source in 3-D Gaussian random media is unaltered from the result in the 2-D case.
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Chapter 3

The effect of small-scale
heterogeneity on the arrival time
of waves

Abstract.

Small-scale heterogeneity alters the arrival time of waves in a way that cannot by
explained by ray theory. This is because ray theory is a high-frequency approximation
that does not take the finite-frequency of wavefields into account. We present a theory
based on the first-order Rytov approximation that predicts well the arrival time of waves
propagating in media with small-scale inhomogeneity with a length-scale smaller than the
width of Fresnel zones. In the regime for which scattering theory is relevant we find that
caustics are easily generated in wavefields, but this does not influence the good prediction
of finite-frequency arrival times of waves by scattering theory. The regime of scattering
theory is relevant when the characteristic length of heterogeneity is smaller than the width
of Fresnel zones. The regime of triplications is independent of frequency but it is more
significant the greater the magnitude of slowness fluctuations.

3.1 Introduction

Ray theory is valid only if the wavelength of the waves and the associated widths of Fres-
nel zones are much smaller than the characteristic length of heterogeneity. For example,
in geophysics when working with surface wave tomography it is common to use ray the-
oretical schemes, which offer a computational effective solution of the forward problem.
This approximation, however, poses a problem from a theoretical point of view because
the length-scale of inhomogeneity in high-resolution models is comparable to the widths

This chapter has been accepted for publicatioG@ophys. J. Int.2001.
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of Fresnel zones (Passier and Snieder, 1995). Other domains where scattering is consid-
ered to be important are ocean acoustics (Kupermehah, 1998), medical imaging (Baba

et al., 1989; King and Shao, 1990) and non-destructive testing experiments (etagjue

1999).

Several different approaches to scattering theory are reported in the literature. Mar-
gueringet al. (1998) describe how to calculate sensitivity kernels based on the first-order
Born approximation and surface wave mode coupling. Marquesingl. (1999) de-
velop a sensitivity kernel formulation of the perturbed traveltime starting with the cross-
correlation function. Jensen and Jacobsen (1997) explain how a linearised inversion of
time-distance helioseismic data is established by introducing an approximate Gaussian
sensitivity kernel. Yomogida (1992) utilises the Born approximation and then the Rytov
approximation to derive the sensitivity kernel. Woodward (1992) introduces the finite-
frequency effect on wavepaths, and the concept of Rytov and Born wavepaths for trans-
mitted, reflected and refracted wavefields are explained. Snieder and Lomax (1996) com-
pute a frequency averaging function from the first-order Rytov approximation. Fethler
al. (2000) apply the Rytov approximation to simulate multiple forward wave scattering in
Gaussian random media, and the results are compared with the ones from finite-difference
solutions of the wave equation.

We follow the idea from Snieder and Lomax (1996) that the phaseshift of the scattered
wavefield due to a perturbation of the medium can be expressed as the integration of
a sensitivity kernel multiplied by the slowness perturbations over the complete model
space. In addition to this, we transform the obtained phaseshift expression into a timeshift
expression so that scattering theory is directly applicable to the interpretation of arrival
time data.

Scattering theory includes non-ray-geometrical phenomena. In brief, time residuals
due to scattering theory are altered by slowness perturbations surrounding the geometrical
ray, and the maximum sensitivity to slowness perturbations is largest just besides the
geometrical ray. In contrast, ray theoretical time delays are only sensitive to the slowness
field on the ray path.

The regime of scattering theory is determined from a 2-D numerical experiment wherein
the frequency of the waves, the magnitude of slowness perturbations, the offset of the re-
ceivers and the length-scale of the slowness perturbation field are controlled. We compare
the residual times for ray theory and scattering theory with time delays computed with a
finite-difference solution of the acoustic wave equation. Because we have control over
the parameters in the numerical experiment, the regimes of ray theory, scattering theory
and triplications are investigated. Furthermore, we show with another 2-D numerical ex-
periment that the regimes of scattering theory and triplications remain valid in a more
complex medium (namely Gaussian random media).

In addition, we show that triplications are easily generated in wavefields if the slow-
ness perturbations are sufficiently large. Though the scattering approach is based on a
linearisation of the phase (i.e. the first-order Rytov approximation), the ‘observed’ time
delays estimated from wavefields with caustics are well predicted by scattering theory.

In section 3.2, we explain how to derive the width of Fresnel zones, the focal length
of converging 2-D wavefields, and the timeshifts due to ray theory and scattering theory.
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In section 3.3, we go through the numerical experiment that is used to determine the
regime for scattering theory, and present the experiment for models of Gaussian random
media. In section 3.4, we summarise the results of the numerical experiments and define
the different regimes of ray theory, scattering theory and triplications. In section 3.5, we
give examples, taken from global seismology, ocean acoustic and medical imaging, where
scattering theory is important. Conclusions are drawn in section 3.6.

3.2 Theory

In this section, we present the theory applied to investigate the influence of small-scale
heterogeneity on travel times. The theory is derived for two distinct source geometries:

the plane wave (plw) source, and the point source (ps). First, we derive the width of

Fresnel zones. Then we discuss the focal length of converging wavefields in 2-D slowness
perturbation fields. Finally, we deduce the first-order and second-order linearised ray
theory and the first-order linearised scattering theory for 2-D experiments.

3.2.1 The width of Fresnel zones

Fresnel zones are defined in terms of the difference in propagation path lengths for rays
with nearby paths. All points of a ray taking a detour compared with the ballistic ray
are inside the Fresnel zone if the difference in length of propagation paths for the bal-
listic ray and the detour ray is less or equal than a certain fraction of the wavelkength
(e.g. Kravtsov, 1988). This is the first Fresnel zone, which physically signifies construc-
tive interference of the scattered wavefield produced by single-point scatterers inside the
Fresnel zone. We prefer to keep the formulas as general as possible, so the Fresnel zone
is defined as the set of points that give single scattered waves with a detour smaller than
the wavelength divided by a number

Let x € [0;L] denote the ballistic propagation distance between the source and the
receiver, with the source-receiver separation indicateld. iyor a plane wave in a homo-
geneous medium, the detadiis

d=1/(L—X)%2+q?(x) +x—L, (3.1)

whereq(x) is the perpendicular distance to the geometrical ray at positEdong the ray.
The Fresnel zone condition is thét< A /n. To estimate the boundary of Fresnel zones,
we use the sign of equality in the Fresnel zone condition. To leading ordéx)ifL —x),

the perpendicular distance from the ballistic ray is then isolated from Eq. (3.1) as

q(x) = w (3.2)

The widthwP" of the Fresnel zone is twice the perpendicular distance from the ballistic
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ray. Hence,

WPW(x) = w. (3.3)
The maximum widtH.2"™ = /8AL/n is obtained at the initial wavefronk & 0), while
the width of Fresnel zones for plane waves to first order of approximation goes to zero at
the receiver positiorx(= L).
The width of Fresnel zones for point sources in homogeneous media is calculated in
the same way as in the plane wave case. The detour is

VL=%024+G2(0) + /%2 + 62(x) L
1 L
qu(x) (L—x)x

d

(3.4)

The Fresnel zone condition is again used to compute the width of Fresnel zones. Hence,

8AX(L —x)
WPS(x) = 4 | = :
(%) T (3.5)
which is maximum ak = L/2. The maximum width.2* = /2\L/n. Notice that_P* =

LEW /2.

For Eq. (3.3) and (3.5), the reference medium is homogeneous which means that ray
bending is not taken into account. However, it is possible to compute the boundary of
Fresnel zones in heterogeneous media as well (Pulliam and Snieder, 1998). In addition,
the formulas for the Fresnel zone in Eq. (3.3) and (3.5) are obtained by using first order
perturbation theory. The exact solution of the Fresnel zone in a homogeneous medium
for a point source is an ellipse with the source and the receiver in the two foci, and for
a plane wave the Fresnel zone is a semi-ellipse with the receiver in the focus point. For
low-frequency waves, the backscattering field near the source and receiver may be rather
large, so Eq. (3.3) and (3.5) are inaccurate close to these points.

3.2.2 Estimation of caustics in 2-D slowness perturbation fields

We discuss in this section at which point caustics, also called triplications, start to develop
in the special case of a slab with a perturbed slowness field depending only on depth and
in the general case of Gaussian random media. The general theory for the formation of
caustics is explained thoroughly in Spetzler and Snieder (2001).

First, we consider the case that caustics develop when an initially plane wave propa-
gates in thex-direction through a slab with a depth-dependent slownessuiéirl. The
setup of this experiment is shown in Fig. 3.1. The vertical slab is at the afffeim the
source, and the slab width is denotd The slowness field to the left of and to the right
of the slab is set to the constant reference slownesstfield

First of all, it is assumed that caustics are developing before the ballistic wavefield
leaves the slab. We use Eq. (6) in Spetzler and Snieder (2001), where the integration
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W&

Figure 3.1:Explanation of the variables used in the experiment with a vertical slab of
heterogeneity. A plane wave is incident from the left.

along the reference ray is carried out fropto Xcaus (for Xcaus— X < W), to determine
when caustics form inside the slab. Hence,

Xeaud?) = X+ /g_;#_;(z). (Inside slab) (3.6)

If triplications develop after the waves pass the slab &> X + W), then the propa-
gation length of plane wavefields at which caustics start to occur is

Xcaud2) =X + }W - — (After slab) 3.7)

20w

Let the distance between the source and receiver be dendfed,usz) <L, triplications
will be present in the recorded wavefield.

Next, we discuss the formation of triplication in Gaussian random media. The auto-
correlation function of a Gaussian random medium is given by

< U (ra)un(rz) >= (eup)2e(72?, (3.8)

wheree is the rms value of the relative slowness perturbation fluctuatiardgnotes
the auto-correlation length (or roughly the length-scale of slowness perturbations) and
r=\ri—ral.

Spetzler and Snieder (2001) show for an incoming plane wave in Gaussian random
media that the formation of caustics is significant when

> 0.526 %3, (3.9)

o
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with the source-receiver distance denoted-or wavefields emitted by point sources in
Gaussian random media, the non-dimensional numpefor the condition that triplica-
tions develop in the recorded wavefield is given by

% > 1126723, (3.10)

(see Spetzler and Snieder, 2001).
The conditions for the formation of caustics in Eq. (3.9) and (3.10) are independent
of the wavelength but they depend on the rms value of relative slowness fluctuations.

3.2.3 Timeshift derivations

We apply two approaches to derive the residual times in a 2-D isotropic, perturbed slow-
ness medium. First, we explain how the time delay due to first-order and second-order
ray perturbation theory is estimated. Second, we show how the timeshift based on first-
order linearised scattering theory can be written as a linear function of the 2-D slowness
perturbation field. Third, we discuss the properties of the scattering theory.

The ray geometrical timeshift

According to second-order ray perturbation theory (e.g. Snieder and Sambridge, 1992),
the travel time is the sum of three components, namely

T=To+Th+T. (3.11)

To is the contribution from the reference ray in the reference mediynis, the timeshift

due to the slowness perturbation field along the reference ray (based on Fermat’s princi-
ple) and the terni, is a more complicated expression that accounts for the deflection of
the ray by the slowness perturbation. A complete explanation of how to calduléte

given in Snieder and Sambridge (1992).

Inthe numerical experiment presented here, we compute the ray-theoretical time delay
ot due to a perturbed slowness medium to first order. This implies that the timeshift is
expressed as a linear function of the slowness anomdh) along the reference ray.
Hence

d =T
= uy(r)ds 3.12
/Ref ray a(r) ( )

In our experiment the reference slowness is constant, so the reference ray is a straight line
between the source and receiver.

In the numerical examples shown here the second-order travel-time perturBason
much smaller than the first-order travel time perturbafiprior this reason the first-order
travel time perturbation is used for the ray-geometrical travel time.
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Ray theory is valid when the characteristic lengtbf heterogeneity is much larger
than both the wavelengthand the width of Fresnel zonés. Hence in non-dimensional
numbers, the condition for ray theory is written as

% <1, and — <1 (3.13)
See Menke and Abbot (1990).

Single-scattering theory

We show that the time perturbatidd) (L) for the receiver at the offsétis written as an
integration over the slowness perturbation fiei@x, z) multiplied by a sensitivity kernel
K(x,2):

:/m /OLul(x,z)K(x,z)dxdz (3.14)

The first-order perturbation of the phase of the wavefield follows from the Rytov ap-
proximation. The unperturbed wavefield is denoteghpyThe Born approximation gives
the first-order perturbatiop; of the wavefield. According to Beydoun and Tarantola
(1988) and Snieder and Lomax (1996), the phasedbiiit the frequency-domainis given
by

6¢:mﬂ%L (3.15)

The condition for the validity of the Rytov approximation for transmitted waves is that
koL(uz/Up)? < 1, wherekg is the wavenumber. Comparing this condition with the condi-
tion for the Born approximation for transmitted wakgku; /ug < 1 (Snieder and Lomax,
1996), we see that the Rytov approximation has validity for a larger slowness perturbation
parameter than does the Born approximation for transmitted waves.

Snieder and Lomax (1996) demonstrated that the Born approximation to the solution
of the acoustic wave equation with constant density is

palre ) = o*/%) [ 706 [ o - et (3.16)
r;t—

for an incident plane wave that is given py= exp(ikox). The volume for the integration

in Eq. (3.16) is denoted by V. The receiver is at the positiorzj). We assume thaz —
zj)/(L—x) < 1,and sefrg—r| and I/ /|rg — r| to the first order and zeroth order Taylor
approximation, respectively (Snieder and Lomax, 1996), see Fig. 3.2 for a definition of
the geometric variables.

_2.)\2
2 ZJ), and t 1 (3.17)

Im,—r|~(L—Xx)+
ror= L= VirR—t] VL=X
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Figure 3.2: Definition of the geometric variables for an incoming plane wave in a 2-D
medium with a constant reference slowness.

We insert these two small-angle approximations in Eq. (3.16), and define the full-space
integration as a double integration going from QLtfor the offsetx and from—co to o
for the perpendicular distanedrom the geometrical ray.

p1(r, 0) = 0¥2/uo/ (2r)e™ Aot /oL %/

—00

0 (z-z )2

U (x,2)€920% dzdx  (3.18)

Using Eqg. (3.15) the phaseshift at the receiver positiog; ) is then given by

G e o sin(koSri )
3 (L, w) =w3/2,/ﬁ[w/o u1(x,2) = dxdz (3.19)

So far all the calculations in this section are done in the frequency domain. In spite
of this, we can express the linearised phase perturbation as a linearised time delay, sup-
porting this statement by mathematically representing wavég@gexp(idp (w)), where
the amplitudeA(w) and the phasé(w) = wt depend on the angular frequerwy The
phaseshift is then expressed as

53¢ = wdt, (3.20)

wheredt is the time perturbation which is a function of frequency. Hence, the theoretical
timeshift due to single-scattering is

oG o sin(ko%—k%)
ot(L,w) = ,/E[w/() u1(x,2) T dxdz (3.21)

Wavefields are never monochromatic so we need to frequency-average the timeshift.
For example, the time perturbation can be calculated for a frequency-band in the range
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fromvg — Av to vg + Av, wherevg is the central frequency arkb is the half width of the
frequency-band. Moreover to account for the variation of the frequency spectrum in the
range of frequency integration, we introduce the normalised amplitude spe&tvirof

the recorded wavefield. The normalisation condition for the amplitude spectrum is that

\)’OOfAAv" A(v)dv = 1. The frequency-band averaged timeshift is calculated as

Vo+Av
B)(L) — / A(W)Bt(L,v)dv
—Av
oo L Vo+Av
- [ [ wx2vim AWV)VY
—00J0 vo—Av
sin(nvuo ((Z,___Z'X); + E)
v0L—x

Comparing Eq. (3.22) with Eq. (3.14), we identify the sensitivity kernel for an incoming,
plane wave as

X

dvdxdz (3.22)

_5.\2
olw Vo+Av \/_Sin(T[uo\)((ZL_ZJX)) +%)d
K X,Z) = /U AV)VV V. 3.23
2=V | AV = (3.23)

For point sources, the sensitivity kernel in Eq. (3.23) is modified by taking the
point-source geometry into account. For a point source in a 2-D medium, the solu-
tion to the zeroth-order wavefield using the far-field approximation is givepgby
—(1/v/8rkr) expi(kr 4+ 11/4), wherek is the wavenumber andis the propagation length.
This solution for the source geometry contains the geometrical spreading fagfor 1
yielding the sensitivity kernel for a point source,

i z-27)®  n
Vo-+Av sin( TupvL s + 7
KPS(x,2) = \/UoL / AW (vt iy + %) dv. (3.24)
vo—Av X(L—x)

The properties of the sensitivity kernel

The sensitivity kernels for plane waves in Eq. (3.23) and for point sources in Eq. (3.24),
assuming a constant frequency spectrum over the range of integration, are shown in Fig.
3.3. The perpendicular distance to the geometrical ray is plotted on the horizontal axis
and the sensitivity to slowness perturbations is plotted on the vertical axis. The figure
shows that the maximum sensitivity to the slowness perturbation field is off the path of the
geometrical ray. This phenomenon is observed by several other authors (viz. Marquering
et al., 1998; Marqueringt al., 1999; Snieder and Lomax, 1996; Yomogida, 1992). Thus,
scattering theory deviates from ray theory, which predicts that the travel time is sensitive
to only the slowness field on the ray. We see furthermore that the sensitivity kernel has
sidelobes with a decreasing amplitude away from the ray path. This means that finite-
frequency time perturbations are sensitive to slowness perturbations surrounding the ray
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Figure 3.3:The sensitivity kernel for an incident plane wave (solid line) and for a point
source (dashed line). The reference slowness is<21® 4 s/m, the constant frequency-
band is between 150 Hz and 250 Hz, and the offset is 100 m. The sensitivity kernel for a
plane wave is computed at the initial wavefront, whereas the sensitivity kernel for a point
source is evaluated at the half distance between the source and receiver. The maximum
width of the positive, central lobe of the sensitivity kernel for a plane wave is twice the
maximum width of the positive, central lobe of the sensitivity kernel for a point source.

path. In 3-D, the sensitivity kernel is even zero on the ray, which is well-illustrated in
Marqueringet al. (1999).

The width of the positive, central lobe of the sensitivity kernel for plane waves is
computed by setting the sine-function in Eq. (3.23) equal to zero. Hence

sin(Twov (2= Zi()z + E) —o. (3.25)

We isolatez— z; and multiply by two in order to calculate the widws‘?e'ﬁ’,vs(x) of the
positive, central lobe:

WEW(x) = /3A(L —X), (3.26)

In the same manner, we derive from Eq. (3.24) the witih.¢{x) of the positive central
lobe of the sensitivity kernel for point sources.

3AX(L —X)

(3.27)

Next we compare the widtHagangx) andWe¢x) with the width of Fresnel zones in

Eqg. (3.3) and (3.5), respectively. Except for different factors 3 gfmg e two kinds of
expressions have the same dependence arandL. Equating these factors enables us
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to get an estimate of the numhem Eqg. (3.3) and (3.5) for the width of Fresnel zones.
We find that

n= 3 (3.28)
in two dimensions. In 3-Dn = 2, which can by derived by comparing the width of the
positive, central lobe of 3-D sensitivity kernels with the width of Fresnel zones. The value
of nis important because Fresnel zones are physically interpreted as positive interference
of waves with a detour less thagn. In 2-D, this difference in propagation length must
not exceed B/8 for the first Fresnel zone. We interpret the width of the positive, central
lobe of sensitivity kernels as the width of Fresnel zones.

Finally, we show with the stationary-phase approximation (Bleistein, 1984) that the
integration of the product of the slowness perturbation field and the sensitivity kernel
for plane waves over space is equivalent to Eq. (3.12) which is valid for first-order ray
perturbation theory. Although we use the sensitivity kernel for plane waves in Eq. (3.23)
in the derivation, the result is also valid for the sensitivity kernel for point sources in 2-
D as well as for a point source or a plane incoming wave in 3-D. We assume that the
slowness perturbation field depends only on the propagation distance from the source.
Thus, by making use of the 2-D sensitivity kernel for plane waves, it follows that, for
z; =0,

/OL[Zul(x)KDIW(x,z)dzdx = U v:OZiVA(v)\/\_) OL\/U%

o v T
x[w3|n(vmo(L_X) +Z)dzdxd)

_ Vo ot L w(x)
T A(V)\/\_}/o TTx

></°° (ei(vTuJO(LZfo)*g) _eﬁi(vmoﬁhz‘[))dzdxd)

\/U_O Vo-+AvV L U]_(X) CL=x

el A AWIVY | L_X(zu/ i )dxow
Vo+Av L

/ A(v)dv / U1 (x)dx

OfA\) 0

Q

/OL up(x)dx, (3.29)

which is directly comparable to the result for ray theory in Eq. (3.12).

3.3 Setup of the numerical experiment

In order to scrutinise the discrepancy between ray theory and scattering theory, we have
constructed a 2-D, numerical experiment with a slab of slowness perturbations that varies



36 Chapter 3

increasingly rapidly as a function of depth. The wavefield is initialised by a plane wave
source. The name of this experiment is the ‘sweep-experiment’ because the function of
the slowness perturbation field resembles the sweep source function used in exploration
seismology. The heterogeneous slab has the WAdihith its left hand-side at offseq

from the source as shown in Fig. 3.1. The slowness field is defined as

Uo outside the slab
u(z) (3.30)

Uo+ ﬁsuosin(%) inside the slab

whereuy is the reference slowness aads the rms value of slowness perturbation fluc-
tuations. The two parametezs = 300 m anck = 1.5 x 10 m* are used to adjust the
sweep-function to the situation in which scattering theory becomes significant. In every
sweep-experimenti = 2.5 x 1074 s/m,x = 20 m andW = 20 m. The size of this ex-
periment is 100 mx 600 m, with the horizontal source position at zero-offset, and the
vertical receiver array is dt = 100 m offset. In the sweep-experiment in Fig. 3.4A and
3.4B,e =0.017 and 0.035, respectively.

In addition to the sweep-experiment, with another numerical experiment we demon-
strate the validity of our scattering theory in a realisation of the Gaussian random model.
The auto-correlation function for Gaussian media is given in Eq. (3.8). For one case, we
applied the plane wave source as in the sweep-experiment, and in the other case we used
a point source to verify that the sensitivity kernel due to point sources in Eq. (3.24) is
correct. The Gaussian random media experiments in Fig. 3.5A and 3.5B measure 200 m
x 230 m and 100 nx 130 m for the plane wave source and the point source, respectively.
For the incident plane wave, the initial wavefront isxat 0, and the offset of the vertical
array receivers ik = 200 m. For the point source, the source at zero-offset is located at
65 m depth, and the vertical receiver array i€ at 100 m offset.

Because the mean value of slowness perturbations in finite-sized realisations of Gaus-
sian random media is not necessary zero, the value of the constant reference slpwness
differs in the two Gaussian random media experiments. It can be proven that

i / N(r)dV#£0 then < up>#0, (3.31)

whereN(r) is the autocorrelation of the random mediumuMf et al., 1992). We have
chosen the reference slowness field to be equal to the mean value of the slowness field in
the two Gaussian, random media, aelg=< u >. Due to the more severe grid condition

for using a point source than an incoming plane wave in the numerical experiment, we
used different realisations of a Gaussian, random medium in the two Gaussian experi-
ments. As a result, the reference slowness is givengby 2.470 x 10~ s/m for the

test with an incoming plane wave, andt26 x 10~4 s/m for that with a point source.
However.e = 0.025 in both experiments.

To ascertain whether ray theory or scattering theory is dominant, we compare the
theoretical residual times for ray theory and scattering theory with the ‘observed’ data de-
termined in the following way. First, synthetic data for a reference model and a perturbed
model are computed with a finite-differences solution of the wave equation (FD-code).
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Figure 3.4:Performance of ray theory versus scattering theory in the numerical experi-
ments. The slowness field is shown with grey-scale colours. Time residuals for first-order
ray perturbation theory (dashed line) and for scattering theory (dotted line) are compared
with the ‘observed’ timeshifts (solid line). A) The sweep-experiment using a plane wave
with € =0.017. B) The sweep-experiment using a plane wavegawith.035.
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Figure 3.5:As in Fig. 3.4. A) The Gaussian random media experimentsnitd.025 and

a =7 m. The wavefield is initialised by a plane wave source. B) The Gaussian random
media experiment with= 0.025 and a = 3 m, but with a different slownesss medium than
that in Fig. 3.5A. The wavefield is initiated by a point source.
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For the reference model, the slowness field is set to the consgteantd, for the perturbed
model, the sweep-model or the Gaussian random medium is applied. The ‘observed’
residual times are then obtained by comparing the waveforms in the filtered reference
wavefields with the waveforms in the filtered perturbed wavefields. By filtering is meant
that the FD-data are band-pass filtered in the same frequency-range over which the sensi-
tivity kernels are averaged. The first extremum of the waveform is used as a markpoint to
get the absolute travel time for each set of filtered waveforms. The ‘observed’ delay time
is then defined as the difference between the absolute travel time for the filtered reference
wavefields and for the filtered perturbed wavefields.

3.4 Results

In Fig. 3.4A and 3.4B we show the traveltime changes for the sweep-experiment due to
an incident plane wave. The frequency-band of the recorded wavefield is in the range
[150;250] (Hz). The 2-D slowness field is shown with grey-scale colours in both figures.
The time delays due to first-order ray perturbation theory are plotted with the dashed
line, residual times computed with the Rytov approximation are shown with the dotted
line, and the ‘observed’ timeshifts are shown with the solid line. In both examples of the
sweep experiment we used the sensitivity kernel in Eq. (3.23). It is observed in Fig. 3.4A
and 3.4B that the FD-time delays have some small, but abrupt, oscillations that are due to
errors in the picking of the ‘observed’ data.

In Fig. 3.4A and 3.4B, we mark with a jagged, black line the transition zone where ray
theory breaks down in favour of scattering theory based on the condition for ray theory in
Eq. (3.13) that the width of Fresnel zones in Eq. (3.26) is less than the local length-scale
a of slowness perturbations in the sweep-experiment. For a central waveleag m,
andx = 70 m (the central distance of the heterogeneous slab from the receiver), we have
thatWins= 65 m. For comparison, in the center of the transition zam260 m) the half
wavelength of the sweep-function in Eqg. (3.30) is about 61 m. We conclude from these
two experiments that, in general the non-dimensional nurhﬁ't‘é"r/a for the regime of
scattering theory is

I_'p:)lw
-->1 (3.32)

WhereL,EIW is the maximum width of Fresnel zones for plane waves.

In Fig. 3.4A and 3.4B, below the transition zone from ray theory to scattering theory
the timeshifts computed with first-order ray perturbation theory cannot fit the ‘observed’
residual times; moreover, these ray-theoretical time delays are even out off phase with
both the ‘observed’ timeshifts and the finite-frequency time delays for depths between 450
m and 560 m. The time delays due to single-scattering theory predict the FD-timeshifts
rather well. The scattering theory predicts not only the order of magnitude of the ‘ob-
served’ time delays, but it also gives the correct result for depths below 450 m in the
sweep-experiment, where the FD-timeshifts are anti-correlated with the ray-theoretical
residual times.
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Figure 3.6:The focal length of a plane wavefield is calculated for the case of the sweep-
experiment witle = 0.071. If the focal length (solid line) of the converging wavefield is
to the left of the receiver position (dashed line) then caustics will occur in the recorded
data.

In Fig. 3.6, we show a plot that shows the focus positigfs of a plane wavefield
passing through the sweep-model witk= 0.071, which is on purpose a larger value
than that applied in the sweep-experiments in Fig. 3.4A and 3.4B. Given a zidpth
focal length (solid line) in Fig. 3.6 is computed with Eq. (3.6) and (3.7), while the
dashed line marks the source-receiver distance. Where the focal length of the converging
wavefield is smaller than the distance between the source and receiver, caustics develop
before measuring the wavefield at the receivers. Additionally, in Fig. 3.7 we show six
shapshots (taken at the absolute travel timed ms, 5 ms, 10 ms, 15 ms, 20 ms and 25
ms) of the wavefield that propagates through the sweep-model£dd.071. The thin
slab of inhomogeneity is marked in the figure with a black box and black stripes. For
the earliest two snapshots, the wave propagates in a constant slowness fidld. Jor
ms, the wave has just passed through the slowness perturbation field, so the wavefront
has been deflected by slowness heterogeneities. The first two triplications occur between
40 m and 60 m offset. Note the high energy density at the kinks in the wavefront; these
kinks are associated with the caustics. In the latest two snapshots; 20 ms and 25
ms, the caustics are much more clear as they give rise to half-bow-tie shaped wavefronts
(triplications) behind the ballistic wavefield. The distances at which the caustics in Fig.
3.7 start to generate correspond well with the focal lengths that are predicted in Fig. 3.6.

For the sweep-experiment with= 0.017, no caustics are produced in the wavefield,
while for € = 0.035, triplications occur before recording the wavefield at receivers at
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depths below 480 m. The zone with caustics is indicated in Fig. 3.4B. At this point, we
must reconsider the validity of the Rytov approximation for transmitted waves where trip-
lications are present in the recorded wavefield, such as in results of the sweep-experiment
as shown in Fig. 3.4B. In comparing the Rytov approximation with the Born approxima-
tion, Beydoun and Tarantola (1988), Brown (1967), DeWolf (1967), Fried (1967), Huf-
nagel and Stanley (1964), Keller (1969), Sancer and Varvatsis (1970) and Taylor (1967)
conclude that the Rytov approximation has validity for a larger range of the slowness per-
turbation parameter than does the Born approximation. They, however, do not investigate
the validity of the Born and Rytov approximations when non-linear effects such as the
development of triplications become operative. In this study, we have tested the validity
of the Rytov approximation in the regime of caustics. We computed the perturbed wave-
fields for the sweep-experiment withs 0.017, 0.035, 0.071, 0.11 and 0.14, and estimated
the FD-time delays by using the first extremum of the filtered waveforms. For the sweep-
experiment withe = 0.017, the theory for caustics in 1-D slowness perturbation fields
predicts that triplications would not be recorded in the data, but for |artygplications

would always occur in the measured wavefield. We have shown the sweep-experiment
with the two lowest values of in Fig. 3.4A and 3.4B, but the sweep-experiment with
largere are not shown here. In brief, we find that the Rytov approximation does a good
job even in areas with a strong development of triplications. We therefore propose that
the validity of the Rytov approximation of ballistic waves extends into the regime where
caustics are present in data.

In order to demonstrate the validity of the single-scattering theory in more complex
media, we use the Gaussian random media experiment, where scattering is significant.
The rms value of relative slowness fluctuati@ns given by 0.025, and the length-scale
of slowness anomalies = 7 m for the incoming plane wave experiment amnd¢ 3 m
for the point source experiment. We use the same linetype convention as in the sweep-
experiment for the residual times computed with ray theory, scattering theory and the
FD-code. Results for this experiment, for an incident plane wave and a point source,
respectively, are shown in Fig. 3.5A and 3.5B, where we make use of the sensitivity kernel
formulation in Eq. (3.23) and (3.24) to compute the scattering theoretical timeshifts.

For an incident plane wave, the frequency is from 150 Hz to 250 Hz, so according to
Eq. (3.32), ray theory breaks down when the characteristic length of slowness anomalies
is smaller tharLE'W =110 m. In this case, the length-scale of slowness perturbations
7 m, so the ‘observed’ time delays should be strongly dominated by scattering. This is in-
deed what is observed in Fig. 3.5A. The finite-frequency residual times fit the ‘observed’
time delays correctly while ray theory does not account for the travel time deviations.

Fig. 3.5B shows results of the Gaussian random media experiment for a point source
with frequencies ranging from 200 Hz to 400 Hz. Using the sensitivity kernel in Eq.
(3.24) to compute the residual times due to scattering theory we compute the maximum
width of Fresnel zones d¢° = 31.9 m forA = 13.6 m and L = 100 m. The length-scale
of slowness anomalies= 3 m, is thus about 10 % cbf,?s. In Fig. 3.5B, scattering theory
predicts the ‘observed’ residual times well but the ray-theoretical timeshifts do not fit the
FD-time delays. As in the experiments in Fig. 3.4A, 3.4B and 3.5A where a plane wave
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Figure 3.7:Snapshots of plane wave propagation in the sweep-experimerg wiitD71.

The slab of slowness heterogeneities is shown with the black box and black stripes. The
absolute travel timest =0, 5, 15, 20, 25 ms are marked at the respective wave fronts. The
triplications become clear in the wavefronts fort = 15, 20, 25 ms.

is applied, we conclude that the regime of scattering theory for wavefields emitted by a
point source is significant when

LPs
?F >1. (3.33)

We have computed if the recorded wavefields for plane waves and point sources, re-
spectively, in the Gaussian random media experiments contain triplications. By inserting
€ = 0.025 in the condition for caustic formation in Eq. (3.9) and (3.10), we find that

L 6.1 for plane waves
a S { 131 for point sources (3.34)

With the auto-correlation length = 7 m for the plane wave and= 3 for the point
source, this implies that caustics are present in the recorded wavefields in the Gaussian
experiments in Fig. 3.5A (a plane wave with- 200 m) and 3.5B (a point source with
=100 m).

The non-dimensional numbers for the regime of ray theory, scattering theory and
triplications are summarised in Table 3.1. Notice that four parameters determine when
these three distinct regimes are significant. These four parameters are the wavelength
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Regime of; A/a | Lg/a L/a
Ray theory <1l| x1 X
Scattering theory  x >1 X

o 0.5267273 (plw),
Triplications X X | > { 11223 (ps)

Table 3.1:The non-dimensional numbeé¥ga, Lr /a and L/a which describe the regime of
ray theory, scattering theory and triplications. The crog3 indicates that this parameter
is not of relevance for the physical effect that is considered.

the source-receiver distantethe rms value of relative slowness fluctuati@nsnd the
length-scale of inhomogeneity.

3.5 Application of the regime of scattering theory

We consider implications for three examples taken from seismology, ocean acoustic and
medical imaging for which scattering theory is important. The source in all three cases is
a point source, so the condition for scattering theory due to point sources, Eq. (3.33), is
thatLP®/a > 1. The example from seismology is global surface wave tomography where
the surface waves propagate in two dimensions on a sphere, while in the case of ocean
acoustic or medical imaging the wave propagation is in the three-dimensional Cartesian
space. Thus the dimension of the wave propagation in each particular experiment must be
considered.

The maximum width of Fresnel zones for point sources is at the half source-receiver
distance. We find that
L= /P an(2 PS_ VAL (3- i
F=\> an( 2) (asphere) andLg = VAL (3-D Cartesian space)(3.35)

(See appendix A for a derivation of the width of Fresnel zones for surface waves.) For
the width of the Fresnel zone on the sphere, we have used according to Eq. (3.28) that
n=8/3. On the sphere both the wavelength and the epicentral distance are measured in
radians. The parametArdenotes the epicentral distance between the source and receiver.
ForLP®in a 3-D Cartesian space, we applied Eq. (3.5)fer 2.

In global surface wave tomography (Trampert and Woodhouse, 1995; Trampert and
Woodhouse, 1996), a characteristic propagation distance is about 145 degrees, and the
wavelength is about 700 km for Love waves at 150 s. For a high-resolution, global surface
wave experiment, slowness anomalies have a length-scale as small as 1000 km. We find
thatL,‘ES =4600 km, so scattering theory is important. Scattering theory will be even more
significant for larger wavelengths and source-receiver distances.

In ocean acoustic, Hodgkiss al. (1999) and Kupermaat al. (1998) carry out a
time-reversed mirror experiment wherein the source-receiver distance is 6.3 km, and the
characteristic wavelength= 3.4 m (the sound speed in sea water with 3.5 % salinity at
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20 degrees celcius is 1522 m/s, and the characteristic frequency of acoustic waves in the
experiment is 445 Hz). The width of Fresnel zones is then 146 m, which is larger than the
surface-bottom depth in their experiment. This means that any heterogeneity within the
region of the experiment is smaller than the width of Fresnel zones, so scattering theory
is significant.

In medical imaging (Babat al., 1989; King and Shao, 1990), ultrasound is applied to
scan the chest, the heart, the foetus, the veins, etc... The velocity of the employed waves
varies between 1440 m/s (fat) and 1675 m/s (collagen), while the frequency is in the MHz-
range so let the frequeney= 30 MHz. The wavelength then varies betweeru#8and
56 um and an average distancéetween the transducer and receiver instrument is about
20 cm. The width of Fresnel zonég® ~ 3 mm, which is greater than the diameter of
blood vessels and cell structures in the body. Thus scattering theory is important.

3.6 Conclusions

We have shown that first-order ray theory fails in favour of linearised scattering theory in
predicting the travel timeshifts of waves in heterogeneous media when the length-scale of
slowness heterogeneity is smaller than the width of Fresnel zones. The condition for the
regime of scattering theory depends on the frequency content of the recorded wavefield
and the propagation length of the ballistic wave between the source and receiver.

The scattering theory presented in this paper is based on the first-order Rytov approx-
imation, so the scattering theoretical time delays are well-defined for finite-frequencies.
Physically, this means that finite-frequency timeshifts have the maximum sensitivity to
slowness fluctuations off the path of the ray and, moreover, is sensitive to the slowness
fluctuation field in the whole space of wave propagation. In contrast, ray theoretical resid-
ual times are dependent on only the slowness fluctuation field which is on the geometrical
ray.

Scattering theory can predict the travel residual times of waves in inhomogeneous
media even if triplications are present in the recorded wavefield. We have presented a
condition for the regime of caustics in heterogeneous media, both with a 1-D slowness
field and with a Gaussian random medium for initially plane waves and point sources.
This condition is independent of the frequency of the recorded wavefield. Not surpris-
ingly, we have found that the greater the magnitude of the slowness fluctuations, the more
easily triplications develop in the wavefields. However, ¢h&3-dependence for slow-
ness fields described by Gaussian random media is nontrivial. Notice that in the numerical
experiments the Rytov approximation provides an accurate estimate of the timeshift, re-
gardless of the fact whether caustics have developed or not.

The numerical experiments carried out in this paper are kept as general as possible.
The results for the regime of scattering theory and of triplications are therefore applica-
ble to domains such as seismology, ocean acoustic, non-destructive testing and medical
imaging where wave phenomena are important.
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3.7 Appendix A: The width of Fresnel zones on a sphere

According to Fig. 3.8, the epicentral distance between the source and receiver is denoted
by A, and the epicentral distance between the source and scatterer point and the scatterer
point and receiver are marked m&ndn’, respectively. The half-width of Fresnel zones
at the offsety is denotedy. Using the law of cosines on a sphere to relateith g andy,
we get that

cosn) — cosa)cosy) + sing)sinfy) cos )

= cogq)cogy). (3.36)
Isolatingn from Eq. (3.36) and assuming that the ray deflectigmsmall gives
n = arccos(cos(q) cos(y))

arccos{cos(y) — %qz cos(y))
qZ

Q

AT -t (3.37)
Similarly, we have fon’ that
: 9
n = (A_y)+2tar(A—y)' (3.38)
The detoun +n’ — Ais calculated as
P ! 1
ntn-4 = 3 (tan(y) Jrtan(A—y))
2 -
_ 0 sin(A) (3.39)

2 sin(y)sin(A—vy)"

The condition for Fresnel zones on the sphere that the detour is less than the wavelength
divided by a numben is given by

(3.40)

S| >

n+n'—A<

wherel is the wavelength measured in radians. The detour in Eq. (3.39) is inserted in the
Fresnel zone condition in Eq. (3.40), where the sign of equality is applied for the Fresnel
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Figure 3.8:Explanation of the variables used to construct the Fresnel zone due to a point

source on the sphere.

zone boundary. Thereby the half widitof Fresnel zones is given by

| 2Asin(y)sin(A—y)
a= \/ nsin(A) ’ (3.41)
which has the largest value fge= A/2. For that case,
A A
q= ﬁtan(§>. (3.42)

The maximum widtH_P° of Fresnel zones due to point sources is the half-widthEq.
(3.42) multiplied by 2; thus

LPS = Ft'c1n(§), (3.43)

whereLP® and\ are measured in radians.
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A test of ray theory and
scattering theory based on a
laboratory experiment using
ultrasonic waves and numerical
simulations by finite-difference
method

Abstract.

The structure of the Earth is represented by a wide spectrum of small-scale structures,
as well as large-scale structures. However, tomographic imaging techniques based on ray
theory are often applied inappropriately in models with the characteristic length of het-
erogeneity smaller than the wavelength and the width of the Fresnel zone. In other words,
the conditions for ray theory are not satisfied in such models. It is therefore necessary to
apply diffraction theory of waves in tomographic reconstruction techniques in order to re-
trieve images of the Earth with the correct theory. Physically speaking, scattering theory
takes the finite-frequency effect of waves into account.

We performed a test of ray theory and scattering theory in an ultrasonic wave exper-
iment and in a numerical finite-difference experiment using random media with correla-
tion lengths smaller than the width of the Fresnel zone. We used a stochastic approach
to compute the mean squared value of timeshift variations calculated from ray theory
and diffraction theory. The theoretical results were compared with the experimental val-
ues obtained in the laboratory experiment using rock samples with different length-scales

In revision by J. Spetzler, C. Sivaji, O. Nishizawa and Y. Fukushim&feophys. J. Int 2001.
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of heterogeneity and from numerical experiments on wave propagation in quasi-random
media. We observed that ray theory overestimates the mean squared value of timeshift
variations, while the observed statistical values from the two kinds of laboratory exper-
iments are well predicted by scattering theory. This means that tomographic imaging
techniques based on ray theory suffer from a loss of resolution when the reconstructing
models have a characteristic length of heterogeneity smaller than the width of the Fresnel
zone.

4.1 Introduction

In this study, we examinate ray theory and scattering theory in a laboratory experiment us-
ing ultrasonic waves propagating in granite samples with small-scale heterogeneity. Ray
theory is a high-frequency theory which is valid if the characteristic length of inhomo-
geneity is larger than the wavelength and the width of the Fresnel zone. Accordingly,
it is only justified to use ray theory in modeling of sufficiently smooth media. On the
other hand, people working with seismology (van der Lee and Nolet, 1997; Trampert and
Woodhouse, 1995; Bijwaard and Spakman, 1998; Cattal., 1998) or with exploration
seismics (Parra and Bangs, 1992; Goudswatml., 1998; Hatchell, 2000) focus more

and more on small-scale structured media for which the conditions for ray theory are
generally not satisfied. For such media with heterogeneity comparable or smaller in size
than the width of the Fresnel zone, scattering theory of propagating waves is important
(Spetzler and Snieder, 2001a).

There has been much attention on scattering theory during the last decade in the lit-
erature. Yomogida and Aki (1987), Yomogida (1992), Woodward (1992), Snieder and
Lomax (1996) and Spetzler and Snieder (2001a) use the Rytov approximation on the 2-D
acoustic wave equation to introduce finite-frequency effects in transmitted waves. Mar-
gueringet al. (1998), Tonget al. (1998), Marqueringt al. (1999), Dahleret al. (2000)
and Hunget al. (2000) utilise the cross-correlation function to introduce the frequency-
depending timeshift in three dimensional body wave tomography. In many of these arti-
cles, it is shown that scattering theory in 2-D and 3-D media predicts that the maximum
sensitivity to slowness perturbations is off-path the geometrical ray. Moreover a para-
doxical result is found for the scattering of waves in three dimensions; the sensitivity to
slowness fluctuations is zero on the ray path. It is a counter-intuitive result compared to
ray theory which predicts non-zero sensitivity to the slowness field on the ray path.

Several authors have worked with laboratory experiments using ultrasonic waves. Lo
et al. (1988) tested the Rytov approximation and the Born approximation in VSP, cross-
borehole and surface reflection tomography by using ultrasonic waves propagating in a
water tank with gelatin cylinders as scatterers. They found that diffraction tomography is
better than ray tomography to reconstruct the model when the size of scatterers is com-
parable to the wavelength. Schultz and Tak$1995) studied scattering from randomly
grooved interfaces. Scattering phenomena have been studied in order to understand the
attenuation of seismic waves and the generation of coda waves (Dubendorff and Menke,
1986; Vinogradowet al., 1989; Matsunami, 1991; Vinogradev al., 1992; Schultz and
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Toksdz, 1993; Schultz and Toksg; 1994).

In this study, we combine the developments in scattering theory with high-quality ul-
trasonic waveforms measured in a laboratory experiment using samples of Westerly and
Oshima granite. The two granites have the property that the slowness perturbation field
can be described using an exponential auto-correlation function. We benefit from this
property by using a statistical approach to test ray theory and scattering theory in the real
laboratory experiment. That is to say that we compute the ray theoretical and scattering
theoretical mean squared value of timeshift fluctuations for exponential random media
which are comparable with those obtained from the observed ultrasonic waveforms. In
that way, we show that scattering theory is more accurate than ray theory in predicting the
observed mean squared value of timeshifts for Westerly and Oshima granite. In addition,
we simulate the real laboratory experiment with a 2-D, numerical finite-difference exper-
iment which supports the results found in the ultrasonic wave experiment rather well.

In section 4.2, we show how ray theory and scattering theory can be adapted to de-
terministic and stochastic models. The laboratory experiment is explained in section 4.3,
while we describe in section 4.4 how the independent determination of the exponential
auto-correlation function for Westerly and Oshima granite was carried out. The 2-D nu-
merical experimentis described in section 4.5. In section 4.6, we present the results from
the ultrasonic wave experiment and the numerical experiment, and finally in section 4.7
and 4.8 the discussion and conclusions are given.

4.2 Theory

In this section, the mean squared (MS) value of timeshift fluctuations using ray theory
and single-scattering theory is derived. We work with two kinds of stochastic media;
the exponential random medium which has the auto-correlation function for the slowness
perturbation field given by

< Bu(r)Bu(r") >= (suo)zexp(—%), 4.1)

and the Gaussian random medium with the auto-correlation function for slowness pertur-
bations given by

< 3u(r')du(r”) >= (gup)?exp(— (;) 2). (4.2)

In the two auto-correlation functions in Eq. (4.1) and (4.2), the reference slowness is
denoted by, the rms value of relative slowness perturbation field, ihe correlation
length (or roughly the length-scale of heterogeneity) is writteaasdr = |r'—r"| is the
distance between the two pointsandr”. See Sato and Fehler (1998) for a thorough
description of random media.
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4.2.1 Ray theory

We follow the idea from Roth (1997) to derive the MS-value of timeshift fluctuations
based on first order ray perturbation theory (also related to Fermat’s principle). The
derivation is valid for timeshifts obtained in experiments with 2-D and 3-D wave propa-
gation. According to first order ray perturbation theory (Snieder and Sambridge, 1992),
the timeshift for deterministic slowness perturbation média ) is given by

Bt(L) = /0 “su(s)ds 4.3)

2
whereL is the source-receiver distance. The squared timeé&ib (L) is obtained by
taking the square of the timeshift in Eq. (4.3), hence

(6t)2(L) - /O : /O " Bu(s)ou(s")dgde. (4.4)

The expectation value is taken of the squared timeshift in Eq. (4.4), so we get the MS-
2
value of timeshift fluctuations: (ét) > (L) due to ray theory.

< (6t>2 S (L) = /OL /OL < 3u(8)du(s’) > ddd¢’

Z/OL(L—r)N(r)dr, (4.5)

where the auto-correlation functiof(r) =< éu(s)du(s’) > andr = |s' —s"|. The step
to reduce the double integration to a single integration in Eq. (4.5) is explained in Roth
(1997).

First the case that the source-receiver distance is much smaller than the correlation
length, (i.e. L/a <« 1) is considered. The exponential and Gaussian auto-correlation
function in Eq. (4.1) and (4.2) are set (eup)? in this regime. Hence, the MS-value of
timeshift fluctuations is given by

L

<(6t)2>(L) ~ 2(eu0)2/0 (L—r)dr
= (gwl)?, (4.6)

which is the same result as for a homogeneous slowness perturbation field.

Second, consider the case that the source-receiver offset is much larger than the cor-
relation length, (i.eL/a>> 1). For the exponential auto-correlation function in Eq. (4.1),
the MS-value of timeshift fluctuations can be calculated in the following way;

< (6t)2 S (L) ~ Z(SUO)Z/OOO(L—r)eXp(—;)dr
= 2(sup)?al. (4.7)
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The upper limit in the integration along the source-receiver path is approximated to in-
finity, because the exponential auto-correlation function goes towards zers as For
Gaussian random media, the MS-value of timeshift fluctuations is derived in a similar
way with the result that

< (&)2 > (L) = (eup)>v/TaL. (4.8)

Ray theory is valid when the correlation length of heterogeneity is larger than the
wavelengthA and the widthLg of the Fresnel zone. In non-dimensional numbers, the
conditions for the regime of ray theory are written as

A <1, and Le <1 (4.9
a a

See Menke and Abbot (1990).

4.2.2 Scattering theory
The scattering theoretical timeshdit(L) is written as a volume integration of the deter-
ministic slowness perturbation fiedai(r ) multiplied by the sensitivity kerné{(r) due to
non-ray geometrical effects (Spetzler and Snieder, 2001a). Hence,
B(L) = / Su(r)K (r)dV, (4.10)
%
where the integratiolfy, - - - dV is written asfoL [, - -dxdzfor wave propagation in two

dimensions and aﬁ,L %[5, - dxdydZor waves propagating in three dimensions. The
scattering theoretical timeshift in Eq. (4.10) is squared, so

(5t)2(L) - /V L, Bu(r)Bu(r K (K (7 )aV'aV", (4.11)

2
The MS-value of timeshift fluctuations (6t) > (L) using scattering theory is obtained
by taking the expectation value of Eq. (4.11), thus

2
<(a) > = / / < 3u(r)du(r") > K(r)K(r")dv'dv”. (4.12)
The 2-D sensitivity kernel for a point source is given by

VOJrA\) Sln(Tl\)UoLﬁ + TZI)

Kix2) = \/UO_L/VO—A\; AWV X(L —X)

dv, (4.13)

(see Spetzler and Snieder, 2001a). The sensitivity kernel in Eq. (4.13) is integrated in the
frequency-rangey — Av tovg +Av, where the normalised power spectr OfAA\,V A(v)dv
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= 1. The central frequency is denotegand the width of the frequency-band i&\2 For
a constant power spectrum over the frequency-bandX{\e. = 1/(2Av)), the scattering
sensitivity kernel in Eq. (4.13) can be evaluated analytically (see appendix A), hence

VuoL
2Av+/X(L —X)

X E\/g(sin(bv) - cos(bv))
ey T, e

whereb = TupLZ?/ (x(L — X)) and the function€ andS are the Fresnel cosine integral

and sine integral, respectively. Abramowitz and Stegun (1970) give a description of the
Fresnel cosine and sine integrals. The sensitivity kernel for a point source using scattering
theory for 3-D wave propagation is given by

K(x,2) =

Vo+Av Siﬂ(mu&%)
K(X,Y,2z) = upL A(v)v , 4.15
(xy2) =wl [ © AWV (4.15)

(see Spetzler and Snieder, 2001a for an explanation of how to derive the 3-D scattering
theoretical sensitivity kernel in Eq. (4.15)). Assuming a constant power spectrum, the
analytical solution of the sensitivity kernel in Eq. (4.15) is found to be

b _cosby)  sin(bv) VotAv
~ 2Avx(L—X) b b2

K(%Y.2) (4.16)

Vvo—Av

whereb = Tl (y? 4 2%)/(X(L — X)), (see appendix A). The sensitivity kernel due to the
scattering of waves propagating in 2-D and 3-D media is shown in Fig. 4.1A and 4.1B,
respectively. We have used Eq. (4.14) to compute the 2-D scattering sensitivity kernel
and Eg. (4.16) to evaluate the scattering sensitivity kernel for wave propagation in three
dimensions. The sensitivity kernels are calculated for the half source-receiver offset for
which the central lobe has the maximum width. The source-receiver didtanc&cm,
the central frequencoyp = 500 kHz, the half frequency-bal = 200 kHz and the refer-
ence slownessy = 2.5 x 10~* s/m. For both scattering sensitivity kernels in Fig. 4.1, it
is seen that the maximum sensitivity to slowness perturbations is off-path the geometrical
ray and that the sensitivity kernels have sidelobes. However, the 2-D scattering kernel is
non-zero on the ray path and the 3-D scattering kernel vanishes on the geometrical ray.
This is a very counter-intuitive result for wave propagation in three dimensions compared
with ray theory which predicts non-zero sensitivity to slowness perturbations on the ray.
This result is also found in Marquerirey al. (1998), Tonget al. (1998), Marqueringt
al. (1999), Dahleret al. (2000), Hunget al. (2000) and Zhaet al. (2000) who work
with scattering theory in body wave tomography.

Consider the case that the source-receiver distance is smaller than the correlation
length, (e.gL/a< 1). This limit corresponds to a medium with a homogeneous slowness
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A) 2-D wave propagation
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Figure 4.1: The cross section of the scattering sensitivity kernel. The source-receiver
distance L= 0.08 m, the reference slowness=2.5 x 10~ s/m, the central frequency

Vo = 500 kHz and the frequency-badflv = 400 kHz. The sensitivity kernels are plotted

at the half offset for which the width of the central lobe is maximum. A) The scattering
theoretical sensitivity kernel for a point source due to waves propagating in 2-D. B) The
sensitivity kernel for a point source due to 3-D scattering theory. Notice that scattering
theory in 3-D predicts a zero sensitivity to slowness perturbations on the geometrical ray
while according to ray theory there is only non-zero sensitivity to slowness perturbations
on the ray path.
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perturbation so the auto-correlation functions in Eq. (4.1) and (4.2) can be (seb}®.
The MS-value of timeshift fluctuations using 2-D or 3-D scattering theory in Eq. (4.12)
is given by

< (6t)2 > (L) = (euol)?, (4.17)

which is the same result obtained with ray theory in Eq. (4.6). We derive Eq. (4.17) in
appendix B.

Consider instead that the correlation length goes towards zero. It is shown in appendix
C that the MS-value of timeshift fluctuations either using 2-D or 3-D scattering theory
converges to zero in the limit that the correlation length goes to zero, hence

. 2
lim < (6t) > (L) 0. (4.18)

In this regime, waves propagate in an average medium which is the homogeneous refer-
ence medium. The same result can be obtained with Eq. (4.7) for exponential random
media and Eq. (4.8) for Gaussian random media using ray theory.

Spetzler and Snieder (2001a) determine in a numerical experiment when the regime of
scattering theory is significant. They find that the regime of scattering theory is important
when the characteristic lengthof heterogeneity is smaller than the width of the
Fresnel zone. Hence,

Lr
= >1 4.1
e (4.19)

Moreover, Spetzler and Snieder (2001a) show that the width of the central lobe of the
sensitivity kernels in Fig. 4.1 defines the width of the Fresnel zone. For a more detailed
analysis of the properties of the scattering theoretical sensitivity kernel, we refer to Spet-
zler and Snieder (2001a).

4.3 Setup of the 3-D laboratory experiment

In order to quantify and substantiate the theoretical aspects discussed in the previous sec-
tions, we made use of the experimental results from Satagil. (2001). The laboratory
experiment involves measurements of ultrasonic waves propagating in various rock me-
dia. The schematic of the experiment is given in Fig. 4.2. The dimensions of the rock
samples are 8 cm30 cmx 30 cm. Elastic waves are sent through the rock sample by
triggering the Piezo-electric transducer (PZT) with the source function that is a single cy-
cle sine-wave of 500 kHz frequency. The propagating elastic waves generate vibrations
in the sample which are detected by a laser Doppler vibrometer (see laser optical unit in
Fig. 4.2). A laser beam is made incident on the reflection sheet attached to the sample
surface and the Doppler shifted frequency of the reflected laser beam is measured. The
reflection sheet reflects the laser beam almost in the incident direction which enables an
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Figure 4.2:Sketch of the laboratory ultrasonic wave experiment. A 500 kHz single-cycle
sine pulse is emitted in the sample at the transducer. Wavefields are recorded with the
laser detector and stacked 1000 times to get a clear signal of the waveform.

accurate measurementin very small aperture. The details of the experiment are elaborated
in Nishizawaet al. (1997, 1998).

Sivaji et al. (2001) performed the waveform measurements on a homogeneous steel
sample and heterogeneous granite samples (i.e. Westerly and Oshima). A photo of the
micro-structure of Westerly and Oshima granite is shown in Fig. 4.3. The measurements
were carried out over a small aperture grid of length 10 mm and spacing of 1 mm. Sivaji
et al. (2001) related the arrival time and energy fluctuations to the scale-length of het-
erogeneity. They found a positive correlation between the variance of arrival time/energy
fluctuations and the scale-length of heterogeneity. In this paper, we make use of their
waveform data to calculate the MS-value of timeshift fluctuations obtained from Westerly
and Oshima granite.

For estimating the timeshift of the observed ultrasonic waveforms, we determine the
arrival time of the P-wave. First of all, the parabolic equation for spherical waves is
applied to correct the P-wave traveltimes for the slightly different source-receiver dis-
tance because of the variable receiver position on the reflection sheet. Then we use a
Butterworth filter to bandpass-filter the corrected waveforms so that unwanted noise is
removed. The bandwidth of the Butterworth filter is determined from the power spectrum
of the original waveforms; the central frequency is fixed to 500 kHz and the width of the
pass-band is set to 400 kHz. After examining all the bandpass-filtered waveforms, we
then estimate the first arrival time of each waveform. We apply the first clear minimum
of the waveforms which is close to the first onset time, to obtain the arrival time. The
deviations of the measured arrival times from their mean value is then considered as the
timeshift variation in the ultrasonic laboratory experiment. The MS-vaiu@t)? > of
timeshift fluctuations is calculated by taking the square of the observed timeshifts and
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then calculate the mean value. Hence

< (&)2 >= %E‘(&i)z, (4.20)

where the integeM is the number of timeshifts in the sample (see Kreyszip, 1993). The
observed MS-value of timeshift fluctuations for Westerly and Oshima granite is 5.1
10162 and 5.5x 10 1% <2, respectively, (see Table 4.1).

In order to access the error in the timeshift picking using the ultrasonic waveforms, we
estimated the timeshifts of ultrasonic waves that have propagated through a homogeneous
steel sample with the dimensions 8 80 cmx 30 cm. The square root of the MS-value

of the timeshift variation for steel that i§ < (8t)> > = 2.76 x 10 8 s, is defined as the
average error of the timeshift picking in the ultrasonic experiment. Notice that the square

root of the MS-value of the timeshift fluctuations for Westerly gram'&k/;( (6t)2 > =

2.3x 1078 s) is comparable with the root mean squared value of the timeshift variations
for steel. Westerly granite can therefore be considered almost homogeneous.

4.4 Auto-correlation function for Westerly and Oshima
granite

The major constituent minerals present in Westerly and Oshima granite are biotite, quartz
and plagioclase, identified by the black, grey and white areas in the photos of Westerly
and Oshima granite in Fig. 4.3 (Fukushima, 2000). The distribution of these minerals is
random in nature with different grain sizes. The grain size in Westerly granite appears to
be small compared to that of Oshima granite. The characteristics of random media are de-
scribed by spatial auto-correlation functions of the slowness and density fluctuations or by
their power spectra (Sato and Fehler, 1998). Well-log data are often applied for represent-
ing the underground randomness (\&fual., 1994; Shiomit al., 1997). Since well-log

data are sampled against depth with an equal interval, they are considered as continu-
ous data which can be converted to the slowness or density fluctuations, and their auto-
correlation functions are calculated directly from the data. On the other hand, Holliger
and Levander (1992, 1994) and Levandeal. (1994) applied discrete data based on ge-
ological maps in which each rock facies corresponds to the laboratory-measured seismic
slowness. We have adopted the second methodology to estimate the scale-length of het-
erogeneity for Westerly and Oshima granite based on the images of their micro-structure
in Fig. 4.3. The micro-structure is assumed isotropic for both granites. The colour-tone
distribution of the minerals along a traverse line in the micro-structure images is converted
into a tri-mode colour pattern. Then the P-wave slowness values are assigned to each area
of the tri-mode colour pattern. We use the \Voigt-Reuss averages for the P-wave slow-
ness for quartzguar, = 1.527x 10~* s/m) and plagioclas@ifjagiociase= 1.639x 10~*

s/m) (Simmons and Wang, 1971). For biotite, we select the slowness randomly from the
range between the maximum and minimum P-wave slownggs+£ 1.282x 10~% s/m
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Westerly granite

Figure 4.3:Photograph of Westerly and Oshima granite which shows the micro-structure
of the samples. The three major constituent minerals are biotite (black), quartz (grey) and
plagioclase (white).
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2
Sample Vo (M/s) | € (%) | a(mm) | < (6t> >) (F)
Westerly granite| 4851.9 | 8.5 0.22 5.1x 10°1°
Oshima granite | 4644.1| 9.4 0.46 55x 10°1°

Table 4.1: The statistical parameters for the exponential auto-correlation function and
the MS-value< (3t)2 > of timeshift variations for Westerly and Oshima granite. The
reference velocity is denoteg,the rms value of relative slowness perturbation is written
ase and the correlation length is denoted a.

andumax= 2.375x 10~4 s/m) because of strong anisotropy in biotite (Alekesandrov and
Ryzhova, 1961). Therefore slowness fluctuations are controlled mostly by the distribution
of biotite minerals and their grain sizes. The slowness perturbation is then calculated by
removing the mean slowness value of the slowness distribution. After applying an anti-
aliasing filter, the power spectral density function (PSDF) is estimated. This procedure is
repeated for 20 profiles and the average PSDF is obtained. The PSDF for Westerly and
Oshima are shown in Fig. 4.4A and 4.4B. The auto-correlation function is computed by
taking the inverse Fourier transform of the average PSDF. The observed auto-correlation
functions that are shown with the solid line in Fig. 4.4C and 4.4D, are fitted by an ex-
ponential type auto-correlation function given by Eq.(4.1). The best fitting values for the
relative slowness perturbation and correlation length for Westerly and Oshima granite are
8.5 % and 0.22 mm, and 9.4 % and 0.46 mm, respectively, (Table 4.1). The exponential
auto-correlation functions with the best fitting values of the relative slowness perturbation
and correlation length are plotted with the dashed line in Fig. 4.4C and 4.4D. Notice that
the characteristic length of heterogeneity for Oshima granite is about twice as large as that
for Westerly granite.

The width of the Fresnel zone is = v/AL &~ 2.7 cm for both Westerly granite and
Oshima granite using ultrasonic waves with the central frequency equal to 500 kHz (
9.7 mm for Westerly granite ankl= 9.3 mm for Oshima granite) arld= 8 cm. (The
width Lg of the Fresnel zone is derived in Spetzler and Snieder, 2001a.) By comparing
the width of the Fresnel zone with the correlation length for Westarty 0.22 mm) and
Oshima graniteg = 0.46 mm), we see that the ultrasonic laboratory experimentis in the
regime of scattering theory according to Eq. (4.19).

4.5 2-D numerical experiment to test the stochastic scat-
tering approach

We use a finite-difference (FD) solution of the acoustic wave equation to test the scattering
theory for the statistical measurements of the MS-value of timeshifts variations in the real
ultrasonic wave experiment. The applied source function is a Ricker wavelet. An incident
plane wave is emitted in a 2-D, Cartesian medium and recorded at the source-receiver
distanceL = 8 cm. The waveforms measured at the receiver positions are bandpass-



4.5 2-D numerical experiment to test the stochastic scattering approach 61

0.01¢
I Westerly
0.001 §

0.0001 |

0.00001 | ——t
1 100

0.01 4 -
E Oshima

0.001 1

Power spectral density function
=)

0.0001

[os)

0.00001 ——+—+ ' —_—
1 10 100

Wave number (1/mm)

0.008 } Westerly

0.005 4\,

0.002 1

-0.001 t t t t t t t t
0 0.4 0.8 1.2 1.6 2

0.008 Oshima

0.005 1

Auto-correlation function

0.002 1

-0.001 ' ¢ = ' = + = '
0 0.4 0.8 1.2 1.6 2
Lag (mm)

Figure 4.4: The independent determination of the auto-correlation funtion which de-
scribes statistically the slowness perturbation field of Westerly and Oshima granite.
A) The PDSF for Westerly granite. B) The PDSF for Oshima granite. C) The auto-
correlation function for Westerly granite and its statistical parameters. D) The auto-
correlation function for Oshima granite and its stochastic parameters. It is found that the
best fitting auto-correlation function to the curve in C) and D) is exponential. The best
fitting exponential auto-correlation functions are shown with the dashed line in C) and
D).
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filtered between 250 kHz and 1000 kHz. We operate with two slowness fields in the
FD-modeling experiment; the reference slowness field which has the constant reference
slownesslp = 2.5 x 10~* s/m, and the perturbed slowness field with the slowness field
u(r) = uy(r)+uy(r) whereuy(r) is a realisation of the exponential or Gaussian quasi-
random medium. For both kinds of quasi-random media, we fix the relative slowness
perturbation to 3 % and 10 %, and the correlation length varies between 0.4 mm and 2
mm.

Notice that the mean value of slowness perturbations is not necessarily zero in a finite
sampling of a random medium (seaiN&i et al. 1992). We have corrected the realisations
of the exponential and Gaussian slowness fields by substracting each point of the FD-grid
with the difference between the mean value of the slowness field sample and the reference
slownessly. Thereby, each realisation of the exponential and Gaussian random media in
the numerical experiment has the mean value equal to the reference slowness.

The synthetic timeshifts are obtained by comparing the bandpass-filtered reference
waveforms from the constant reference model with the bandpass-filtered perturbed wave-
forms due to the perturbation models. The traveltime of the reference waveform and of
the perturbed waveform is determined using the first clear minimum of the waveforms
as point of measurement. The FD-timeshift is the difference between the reference and
perturbed traveltime. For each distinct correlation length and magnitude of the slowness
perturbation field, five realisations of the exponential and Gaussian random media with
different random seed number are used to generate the FD-timeshifts. For each realisation
of the random media, 150 timeshifts are measured in the FD-experiment. Given the cor-
relation length and magnitude of the slowness perturbation field for either the exponential
media or the Gaussian random media, the MS-value of the sample of the FD-timeshift
fluctuations for every realisation is calculated with Eq. (4.20). It gives five MS-values of
timeshift fluctuationsg (6t)2 >, wherej = 1,..,N andN = 5, for each combination of
the correlation length and the relative slowness perturbation for the exponential random
media and the Gaussian random media. The average vaﬂﬁtez > ave Of the sample of
MS-values of FD-timeshifts for each set of the correlation length and the relative slowness
perturbation field is computed as

< (6t)2 > ave= % i < (6t)2 > (4.21)
£

The standard deviatiom(< (5t)® >) of the sample of MS-values of FD-timeshift varia-
tions for each combination of the correlation length and the relative slowness perturbation
field is given by

2

2 1 N 2 2
o%(< (6t> >) = N——lj;(< (6t) >i— < (6t> >ave) , (4.22)

(see Kreyszip, 1993). The standard deviation of the sample of the MS-values for FD-
timeshifts is defined as the observed error in the estimation of the MS-value of FD-
timeshifts.
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In order to compute the scattering theoretical MS-value of timeshift fluctuations in
Eq. (4.12) for exponential and Gaussian random media in the FD-experiment, we must
use the 2-D sensitivity kernel for a plane wave due to diffraction theory, hence

Vo+AV Sil’l(TlVUo% + %)

K(x2)= VT [ AWV

which is explicitly derived in Spetzler and Snieder (2001a). The ray theoretical MS-value
of timeshift fluctuations is calculated with Eq. (4.5) wherein the exponential and Gaussian
auto-correlation function is inserted.

The width of the Fresnel zone due to a plane wave is abput v/3AL = 3.9 cm
(Spetzler and Snieder, 2001a) foe= 8 cm and\ = 1/(ugvp) = 6.4 mm. According to
Eqg. (4.19), we are in the regime of scattering theory using the correlation langth4
mm - 2 mm in the numerical experiment.

dv, (4.23)

4.6 Results

In this section, we present the statistical measurements of the MS-values of timeshift fluc-
tuations from the laboratory experiment and from the FD-numerical experiment. In Fig.
4.5, the theoretical MS-value of timeshift fluctuations for different correlation lengths be-
tween 0.15 and 0.55 mm are computed using ray theory (dotted line) in Eq. (4.5) and 3-D
scattering theory (dashed line) in Eq. (4.12) for the exponential random medium in the
laboratory experiment. Notice that a logarithmic scale is used for the y-axis. The refer-
ence slowness and relative slowness perturbation given in Table 4.1 for Oshima granite
were applied as statistical model parameters in the exponential auto-correlation function
for the two granite samples. The observed MS-value of timeshift perturbations for West-
erly (a= 0.22 mm) and Oshima(= 0.46 mm) granite is shown with points and errorbars.
The size of the errorbars of the MS-value of timeshifts for Westerly and Oshima granite
indicates the picking error of the timeshifts in the ultrasonic wave experiment. Westerly
granite has a slightly different reference slowness and relative slowness fluctuation than
Oshima granite so the observed MS-value of timeshift fluctuations for Westerly granite
in Fig. 4.5 has been corrected by multiplying with the faciafySre©sn)? /(ul/esgWesy2
= 1.33. We see in Fig. 4.5 that ray theory overestimates the observed MS-values of
timeshift fluctuations for Westerly and Oshima granite. The MS-value of timeshift vari-
ations computed with scattering theory is inside the errorbars of the observed statistical
value for Westerly granite and a bit outside the lower errorbar of the observed MS-value
for timeshifts for Oshima granite. However, the MS-values of timeshifts that take the scat-
tering of waves into account are in the same order of magnitude as the observed statistical
values for Westerly and Oshima granite, while the MS-values of timeshift fluctuations
computed with ray theory are a factor 10-15 larger than the stochastic values observed in
the ultrasonic wave experiment.

We have simulated the ultrasonic wave experiment with a 2-D numerical experiment
which is explained in details in section 4.5. The MS-values of timeshift fluctuations for an
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Figure 4.5:The MS-value of timeshift fluctuations versus the correlation length computed
with ray theory (dotted line) and 3-D scattering theory (dashed line) for the exponential
random medium in the ultrasonic wave experiment. The offset8L.cm, the slowness

Up = 2.153 x 10~ s/m and the relative slowness perturbatior 9.3 % for Oshima
granite. The observed MS-value of timeshift fluctuations from the laboratory experiment
is plotted at the correlation length a = 0.22 mm (Westerly) and 0.46 mm (Oshima) with
points and errorbars. We see that scattering theory predicts rather well the observed MS-
value of timeshift fluctuations obtained from Westerly (within the errorbars) and Oshima
granite (just below the errorbars), while ray theory overestimates the observed MS-values
of timeshift variations in the laboratory experiment.

exponential and Gaussian quasi-random medium are shown in Fig. 4.6. The MS-values
of timeshift variations computed with ray theory and 2-D scattering theory are shown
with the dotted line and dashed line, respectively, while the numerically observed MS-
values of timeshift fluctuations for several correlations length are plotted with points and
errorbars. In Fig. 4.6A (exponential quasi-random medium) and Fig. 4.6B (Gaussian
quasi-random medium), the relative slowness perturbatien3 % and in Fig. 4.6C
(exponential quasi-random medium) and Fig. 4.6D (Gaussian quasi-random medium),
€ = 10 %. It is seen that 2-D scattering theory predicts the numerically observed MS-
values of timeshift perturbations within the errorbars, while the ray theoretical MS-values
of timeshift variations are generally too large.

We show in Fig. 4.7 and Fig. 4.8 that 2-D scattering theory (dashed line) is much more
accurate than ray theory (dotted line) to predict the FD-timeshifts (solid line) using deter-
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Figure 4.6:MS-values of timeshift fluctuations for exponential and Gaussian random me-
dia with different correlation lengths in the FD-experiment. The reference slowness is
2.5 x 10~ s/m, the source-receiver offset is 8 cm for an incident plane wave and the
frequency-range is from 250 kHz to 1000 kHz. The MS-value of timeshift fluctuations for
ray theory is plotted with the dotted line and for scattering theory with the dashed line.
The numerical data are computed for the correlation length which is between 0.4 mm
and 2 mm. The errorbars show the standard deviation of the numerically observed mea-
surements. A) The exponential random medium with the relative slowness perturbation
€ = 3%. B) The Gaussian random medium with- 3 %. C) The exponential random
medium withe = 10 %. D) The Gaussian random mediugm= 10 %. Scattering theory

for waves propagating in 2-D is better than ray theory to predict the observed MS-values
of timeshift fluctuations computed in the numerical experiment.
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Figure 4.7: Timeshifts obtained from ray theory, 2-D scattering theory and the FD-
solution of the wave equation for different realisations of an exponential quasi-random
medium with the reference slownegs=t12.5 x 10~* s/m and the relative slowness per-
turbatione = 10%. The source-receiver offsetL 8 cm for an incident plane wave. The

measured waveforms are bandpass-filtered in the frequency-range from 250 kHz to 1000
kHz. A) The correlation length-a 0.4 mm, B) a= 1 mm and C) a 2 mm.
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Figure 4.8:As in Fig. 4.7, but using different realisations of the Gaussian quasi-random

medium with the relative slowness perturbatéos 10 %. A) The correlation length &
0.4 mm, B) a=1 mm and C) & 2 mm.
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ministic realisations of exponential and Gaussian quasi-random media with correlations
length smaller in size than the width of the Fresnel zone. The ray theoretical timeshift is
calculated with Eq. (4.3) and the timeshift due to scattering theory is computed with Eq.
(4.10) using the 2-D sensitivity kernel for a plane wave in Eq. (4.23). For the realisations
of exponential quasi-random media and Gaussian quasi-random med&a=wit@ % in

Fig. 4.7 and Fig. 4.8, respectively, the correlation lergth 0.4, 1 and 2 mm which
corresponds to the points for which the numerically observed MS-values of timeshift
fluctuations in Fig. 4.6 are computed. In all the figures with the timeshift fluctuations ob-
tained from deterministic realisations of exponential and Gaussian quasi-random media,
it is observed that the scattering theoretical timeshift fit the FD-timeshift quite well while
ray theory often overestimates the FD-timeshifts.

4.7 Discussion

The results of this study has serious implications for seismic exploration and seismology.
We present in Table 4.2 the characteristic values for the waveléngthe lengthL of

the ray path between the source and receiver, the vigltbf the Fresnel zone and the
length-scale of slowness anomalies found in present-day tomographic inversions in seis-
mic exploration and seismology. For references, see Parra and Bangs (1992) for vertical
seismic profiling tomography (VSP), Goudswaatdal. (1998) for crosswell tomogra-

phy (CT), Hatchell (2000) for reflection seismic (RS), van der Lee and Nolet (1997) for
regional surface wave tomography (RSWT), Trampert and Woodhouse (1995) for global
surface wave tomography (GSWT) and Bijwaard and Spakman (1998) for global body
wave tomography (GBWT). For 3-D wave propagation experiments that is VSP, CT and
GBWT, we have used that the maximum width of the Fresnel zone is given by

Lr = VAL, (4.24)

(Spetzler and Snieder, 2001a) and for RS, the maximum width of the Fresnel zone at
the reflector is as well given by Eq. (4.24) but the paramketey then the two-way
length of the wave path from the source to the reflector and back to the receiver. Surface
wave tomography (e.g. RSWT and GSWT) is a 2-D wave propagation experiment, so the
maximum width of the Fresnel zone on the sphere is given by

ER)

L=/

tan(%) , (4.25)

whereR is the radius of the Earth, and the epicentral distdnéein radians, (see Eq.

(35) in Spetzler and Snieder, 2001a). By comparing the width of the Fresnel zone with
the characteristic length of inhomogeneity for the different wave experimentsin Table 4.2,
we see that the regime of scattering theory is important according to Eq. (4.19) in most
of the tomographic experiments under consideration.
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A L Le a
VSP 5-250 m 300 m 38-274m 10-15m
CT 2-10 m 500 m 32-70m 5-10 m
RS 80m | 200 m (shallow)-8 km (deep) 126-800 m 25-50m
RSWT | 450 km 1-70 deg 200-1735km 1000 km
GSWT | 450 km 20-160 deg 870-4940 km| 3000-4000 km
GBWT | 6km 100-20000 km 25-346 km 50-100 km

Table 4.2:Characteristic values of wave experiments in seismic exploration and seismol-
ogy. The wavelength is denotadthe length of the ray path between the source and
receiver is L, the length-scale of observed slowness anomalies is a and the width of the
Fresnel zone is written asFL. The following abbreviations are used; VSP: vertical seis-
mic profiling, CT: crosswell tomography, RS: reflection seismic, RSWT: regional surface
wave tomography, GSWT: global surface wave tomography and GBWT: global body wave
tomography.

4.8 Conclusions

We have shown evidence that scattering theory is more accurate than ray theory to predict
timeshifts for media with length-scales of inhomogeneity smaller in size than the width
of the Fresnel zone. We used a stochastic approach to compute the MS-value of timeshift
variations using ray theory and scattering theory because the slowness perturbation field of
Westerly and Oshima granite used in the laboratory experiment could be described rather
well as an exponential random medium. We compared the MS-value of the observed
timeshift distribution for Westerly and Oshima granite in the ultrasonic wave experiment
with those calculated theoretically with ray and scattering theory wherein the statistical
parameters for the two granite samples were applied. Interestingly, we saw that ray theory
would predict too large MS-values of timeshift variations, while scattering theory gave
well-fitting values which are close to the observed MS-values of timeshift fluctuations for
Westerly and Oshima granite. The result of the laboratory experiment was simulated with
a numerical FD-experiment using small-scale structured random media. In the numerical
experiment, we showed that scattering theory is better than ray theory to fit both the MS-
value of FD-timeshifts from different stochastic models and the FD-time delays measured
in deterministic realisations of the random media.

Present-day tomographic models in seismic exploration and seismology are at the
edge to explore Earth models with structures smaller than the width of the Fresnel zone.
It is therefore necessary to incorporate the finite-frequency effect of waves in seismic
reconstruction techniques so that we can get more reliable small-scale models of the Earth.
In addition, the applied scattering theory in this paper is a linear theory which makes it
just as easy to apply as ray theory. It is therefore feasible in the near-future to incorporate
the non-ray geometrical effect into tomographic imaging techniques.
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4.9 Appendix A: Analytical integration over a constant
frequency-band

To derive the analytical solution of the 2-D scattering sensitivity kernel in Eq. (4.14), we
use that the integration of the functiondl sin(bv + 11/4) is given by

/ Vusin(bu+ 7)dv = %(sin(bv)—cos(bv))

+b3—‘//§2<0(\/zg))—5( @ﬂ)) (4.26)

where the function€ andSare the Fresnel cosine integral and sine integral, respectively.
See Abramowitz and Stegun (1970) for a description of the Fresnel cosine and sine inte-
grals. For the 3-D sensitivity kernel due to non-ray geometrical effects in Eq. (4.16), an
integration of the functionalsin(bv) gives that

/ vsin(bv)dv — —Vcogb") + Si”éf") . (4.27)

4.10 Appendix B: The MS-value of timeshift fluctuations
using scattering theory in a homogeneous slowness
perturbation medium

We derive Eq. (4.17) explicitly for 2-D scattering theory. The source-receiver distance

is assumed to be much smaller than the correlation length which allows us to set the

exponential function in Eq. (4.1) for exponential random media and in Eq. (4.2) for
Gaussian random media to unity. The MS-value of timeshifts fluctuations is then derived
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by rewriting Eq. (4.12) as a multiplication of two timeshifts, thus
2 L pL poo )
<(a) > = (euo)z/// / K(X,Z)K (X", Z')dXdZdx'dZ’
0 JO J—J—0

L poo L poo
(au0)2/0 [WK(%,Z)d%dZ/() [WK(%,i)d% dZ
— (ewl)?. (4.28)

because each scattering theoretical sensitivity kernel integrated over the 2-D volume be-
tween the source and receiver is equal to the source-receiver bftseshown in Eq.
(4.29) below. Hence

L oo d d V0+AV \/_ L 1
K(x,z)dzdx = +/u / v/ —_—
/o/_oo %2 0 0 /X(L—x)
o v T
x/ sm(vnuoL X=X +Z)dzdxd1
\/W/VO+AV /L 1
= \Y) —_—
Vo \/_ VX(L—x)
X/ (e(vrtuoL (I_ZZX)+ ) vl B |_ 5+ )dZdXd)
- \/W/vo-mv \/\_}/L 1
v \/x(L—x VUoL
vo+Av
_ / dv/ dx—L. (4.29)

Stationary phase theory (Bleistein, 1984) is applied to evaluate the integration of the vari-
ablezbetween-o andw. A similar derivation holds for 3-D scattering theory for a point
source and for the 2-D diffraction sensitivity kernel for a plane wave.

4.11 Appendix C: The converging of the MS-value of time
shift fluctuations towards zero when the correlation

length goes to zero
In this appendix, Eq. (4.18) is derived explicitly for 2-D scattering theory. A similar
derivation is valid for the scattering of waves propagating in 3-D. The following inte-

gration technique can also be found in Rethal. (1993) and in Spetzler and Snieder
(2001b). Let

f(r) =<du(xX,Z)du(x”,Z’) >, (4.30)
and
n(xX,x",Z,2'"y =K(X,Z)K(X",Z"). (4.31)
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The MS-value of timeshift fluctuations for scattering theory of 2-D propagating waves in
Eq. (4.12) is then written as

2 0 © L pL
<(3) > = / / / / F(HN(X,¥",Z,2')dXdZdx'dZ". (4.32)
—oJ—0JO JO
The distance = /12 + (Z — Z’)2 andl = |X —X"|. We split the integration of the variable

x"in Eq. (4.32) into two parts; one integration from zerotand another integration from
X to L. The MS-value of timeshift fluctuations is then written as

<(6t)2>(L) - [Zdi[idi’/oLd%
X [/OXJ F(ONK, X2, 2')dx"
+/,L f(n(x x',2,2)d¥]. (4.33)

Definel = X —x" andl = X" — X' for the first and second integration %f inside the
squared brackets, respectively. Making a change of variable, we obtain that

2 00 00 L
<(a) > = / dz’/ dz”/ dx
—o00 —o00 0
X
x[/ F(ONK,X —1,Z,2")dl
0
L—xX
+/ F(rne¢, X +1,7,2))dl]. (4.34)
0
As shown explicitly in appendix A of Spetzler and Snieder (2001b), we can change the
order of integration of the variabké andl in Eqg. (4.34). Moreover, the auto-correlation

function f(r) depends o and can be removed outside the squared brackets. The final
result of the MS-value of timeshift fluctuations for waves propagating in 2-D media is

written as
2 o ® L
<(3)>wm) = / dz‘/ dz"/ dif (\12+(z-2)?)
—o00 —o00 0
L
x[/ NX,X —1,2,2")dx
[
LI
+/ N0 K +1,2,2)dx], (4.35)
0
where we explicitly writer = /12+ (Z — Z’)? in the auto-correlation function. Finally,
we can investigate what happens to the scattering theoretical MS-value of timeshift fluc-

tuations in the limit that the correlation length goes to zero. In that particular case, the
auto-correlation function

2 __ A _
() {0 e
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We see that the auto-correlation function in Eq. (4.36) is only non-zero for the variable

| = 0. This means that the MS-value of timeshift fluctuations using 2-D scattering theory
converges towards zero in the limit that the correlation length goes to zero because the
integration of the variablkein Eq. (4.35) yields zero.
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The effect of scattering in surface
wave tomography

Abstract.

We present a new technique in surface wave tomography which takes the finite-
frequency of surface waves into account using first-order scattering theory in a SNREI
Earth. Physically, propagating surface waves with a finite-frequency are diffracted by
heterogeneity distributed on a sphere and then interfere at the receiver position. Para-
doxically, surface waves have the largest sensitivity to velocity anomalies off-path the
geometrical ray. The non-ray geometrical effect is increasingly important for increasing
period and distance. Therefore, it is expected that the violation of ray theory in surface
wave tomography is most significant for the longest periods.

We applied scattering theory to phaseshift measurements of Love waves between pe-
riods of 40 s and 150 s to obtain global phase velocity maps expanded in spherical har-
monics to angular degree and order 40. These models obtained with scattering theory
were compared with those constructed with ray theory. We observed that ray theory and
scattering theory predict the same structure in the phase velocity maps to degree and order
25-30 for Love waves at 40 s and to degree and order 12-15 for Love waves at 150 s. A
smoothness condition was included in the phaseshift inversion for phase velocity maps,
so we could not access the structure with smaller length-scale of velocity anomalies in the
obtained Earth models.

We carried out a synthetic experiment for phase and group velocity measurements to
investigate the limits of classical ray theory in surface wave tomography. In the synthetic
experiment, we computed, using the source-receiver paths in the surface wave dataset, the
discrepancy between ray theoretical and scattering theoretical phase velocity measure-
ments and group velocity measurements, respectively, for an input-model with slowness
heterogeneity for increasing angular degree. We found that classical ray theory in global
surface wave tomography is only applicable for structures with angular degrees smaller

This chapter has been submitted by J. Spetzler, J. Trampert and R. Sni€dspioys. J. Int 2001.
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than 30 (equivalent to 1300 km) and 20 (equivalent to 2000 km) for Love waves at 40 s
and 150 s, respectively. The synthetic experiment suggests that the ray theoretical great
circle approximation is appropriate to use in present-day global surface wave tomography.
On the other hand, in order to obtain reliable global models with a higher resolution we
must take the non-ray geometrical effect of surface waves into account.

5.1 Introduction

In surface wave tomography, global as well as regional models are obtained with increas-
ing resolution. This increase in spatial resolution allows a comparison between tomo-
graphic models and detailed tectonic features. Most techniques for surface wave tomog-
raphy are based on simplified versions of ray theory; see Backus (1964), Dziewonski
(1984), Woodhouse and Dziewonski (1984), Trampert and Woodhouse (1995), van der
Lee and Nolet (1997) and van Heijst and Woodhouse (1999) who all apply the great cir-
cle approximation to compute Earth models from surface wave data. However, ray theory
introduces an inconsistency from a methodological point of view. It is only valid if the
length-scale of velocity perturbations is larger than the wavelength and the width of the
Fresnel zone. This condition is often violated for high-resolution S-velocity models com-
piled with ray theory because the characteristic length of heterogeneity in present surface
wave models is comparable with the width of Fresnel zones (Passier and Snieder, 1995).

Several examples of scattering theory to explain wave propagation in heterogeneous
media are given in the literature. Yomogida and Aki (1987), Yomogida (1992), Woodward
(1992), Snieder and Lomax (1996) and Spetzler and Snieder (2001) use the Rytov approx-
imation to derive the frequency-depending timeshift. In Spetzler and Snieder (2001), it is
demonstrated explicitly that the timeshift can be computed as an integration of the slow-
ness perturbation field multiplied by a sensitivity kernel (also known as tbehEt ker-
nel). Furthermore, Spetzler and Snieder (2001) confirm through a numerical experiment
that the regime of scattering theory is important when the length-scale of inhomogeneity
is smaller than the width of the Fresnel zone. Woodhouse and Girnuis (1982) and Snieder
(1993) use normal mode theory to compute thechet kernel for degrdeand ordemin
surface wave tomography using spherical harmonics to expand the slowness perturbation
field. Marqueringet al. (1998), Tonget al. (1998), Marqueringt al. (1999), Dahleret
al. (2000), Hunget al. (2000) and Zhaet al. (2000) apply a cross-correlation function
to introduce the frequency-dependent timeshift in body wave tomography. It is shown in
several of these articles that the sensitivity kernel for 3-D wave propagation vanishes on
the geometrical ray and that the maximum sensitivity to slowness perturbations is off-path
the ray. However surface wave tomography is a 2-D problem and the scattering theoretical
sensitivity to slowness perturbations is non-zero on the ray path.

In this study, we develop a frequency-dependent scattering theory for minor and major
arc surface waves by using the first-order Rytov approximation. The theory is applicable
for unconverted surface waves in a SNREI Earth model. The scattering theory can be
applied to both phase and group velocity measurements. Given the same strength of
inhomogeneity, diffraction of surface waves becomes increasingly important when the



5.2 Theory 79

dominant period in the phaseshift dataset or the source-receiver distance increases. It is
shown how relative phaseshifts and timeshifts measured from surface waves are linearly
related to the coefficients of the spherical harmonics for relative phase and group velocity,
respectively. Relative phaseshift measurements for Love waves at 40 s and 150 s from
Trampert and Woodhouse (2001) are then inverted to obtain phase velocity maps using
scattering theory.

We show a synthetic experiment wherein given the source-receiver paths in the sur-
face wave data set the relative error introduced by ray theory is computed for slowness
heterogeneities with increasing angular degree. The synthetic experiment shows that the
diffraction of surface waves is dominant if the structure of the Earth exceeds the angular
degree 20 (corresponds to the length-scale of inhomogeneity of about 2000 km) for sur-
face waves at 150 s and angular degree 30 (the characteristic length of heterogeneity is
1300 km) for surface waves at 40 s. This is close to the current limit of resolution using
ray theory that we obtain in the phase velocity maps in this article.

In section 5.2, the width of the Fresnel zone for surface waves is derived, and it is
shown how to relate surface wave measurements (i.e. relative phaseshift and timeshift)
with relative phase and group velocity perturbations on a sphere using ray theory and scat-
tering theory. In addition, the properties of the obtainezthet kernels are discussed. In
section 5.3, the setup of the surface wave experiment using Love waves between periods
of 40 s and 150 s is explained. In section 5.4, the results of the inversion of relative phase-
shifts for Love and Rayleigh waves at 40 s and 150 s are given. In section 5.5, a discussion
of the small-scale structures of the Earth is given, and thereby the synthetic experiment is
shown. The conclusions are drawn in section 5.6.

5.2 Theory

5.2.1 The width of Fresnel zones on the sphere

Fresnel zones are defined in terms of the difference in propagation length of rays with
adjacent paths. The points inside the Fresnel zone are those points giving single-scattered
waves which have a detour smaller than a certain fraction of the wavelkrngtimpared

with the ballistic ray (e.g. Kravtsov, 1988). This fraction of the wavelength is denoted
A/n, where the numbar = 8/3 for waves propagating in two dimensions (Spetzler and
Snieder 2001). Physically, waves scattered by points inside the first Fresnel zone interfere
constructively at the receiver position. In the rest of this paper, the Fresnel zone refers
strictly speaking to the first Fresnel zone. It is shown in appendix A how to derive the
maximum width of Fresnel zones on the sphere. The epicentral distance between a given
source and receiver geometry is denaigg. The maximum widtH_g of Fresnel zones

in radians is then given by

Lr — 3—tan(ﬂ), (5.1)
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whereAqs € [0, 1] and the wavelength is in radians. The width of Fresnel zones increases
with increasing wavelength and epicentral distance. In the limit that the source-receiver
distance goes towards the Fresnel zone converges to the whole sphere. The formula
in Eq. (5.1) is derived using second order perturbation theory. Accordingly, the tangent
function goes to infinity for the source-receiver offgk going toTt (i.e. the approxima-

tion breaks down).

5.2.2 Phase and group velocity maps using ray theory

Trampert and Woodhouse (1995) apply the ray theoretical great circle approximation (e.g.
Backus, 1964; Jordan, 1978; Dahlen, 1979) to write the relative phasélii for

minor arcs (i.e. 0< Ao < T) and major arcs (i.ert < Aqr < 21) as the relative velocity
perturbatiordv/vp averaged over the ray path between the source and receiver, hence

% tor) =5 [ Vo gyar 52)

do Doft Jrs Vo

wheredr is in radians. The location of the source and receiver on the unit sphere is de-
notedrs andrg, respectively, and the epicentral distance between the source and receiver
is Aoii. In addition, Trampert and Woodhouse (1995) write the relative velocity perturba-
tion as a summation of spherical harmonics, thus

Imax |

ov m
HE0 =3 3 cMe.0). (5.3)

=0m=—I|

The upper limit in the spherical expansion of the relative velocity perturbation is denoted
Imax and the coefficient of spherical harmonics to angular ddgrad ordemfor relative
phase velocity is written a§™. The relative phaseshift is then expressed in spherical
harmonics by inserting Eqg. (5.3) in Eq. (5.2) which gives that

Imax - ra) h
Aoﬁ 23 CIK ™" (Do), (5.4)
with the ray theoretical sensitivity kernel for angular dedraad ordem equal to
ray,ph 1 R m
Kim™ (Boff) =—7— [ Y"(6,¢)dr. (5.5)
’ Dot rs

Similarly, group velocity maps are retrieved from time delays obtained by bandpass-
filtered surface waveforms in a frequency-bafd 2round the central frequenegy. In
terms for ray theory, the timeshilt (Aor) = 8¢ (Aorr )/ (2Tv) at offsetAqs is given by

Imax m=l

B(8or) = 5 3 UMK (), (5.6)
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where the coefficient of spherical harmonics to dedrard ordem for relative group
velocity is denoted)™, and the sensitivity kernel for relative group velocity is

Klraygr off ) = — ~ Y| 9 ¢ (5.7)
s
The reference velocity at the central frequency is dengtedndR is the radius of the
Earth.
Ray theory is valid when the characteristic lengtbf heterogeneity is much larger
than the wavelength and the width of Fresnel zonés. Hence in non-dimensional
numbers the condition for ray theory is written as;

A L
S<Ll and —F <1, (5.8)

see Menke and Abbot (1990).

5.2.3 Phase and group velocity maps using to scattering theory

The theory of diffracted surface waves is developed for minor and major arc measure-
ments using the first-order Rytov approximation. First the relative phaseshift for minor
arcs is derived for a reference system using co-latitude coordinates with the source posi-
tion at (r/2, 0) and the receiver position at/2,Aqf). We derive the scattering sensitivity
kernels that relate the relative phaseshift and the time residual linearly with the relative
phase and group velocity, respectively, that are expanded in spherical harmonics. Then,
we show how surface wave measurements for major arcs using scattering theory are de-
rived from the developed theory for minor arcs. Finally, we show that phase and group
velocity measurements for any source-receiver configuration can be computed in a fast
way by rotating tabulated sensitivity kernels in the reference system.

Snieder and Nolet (1987) and Snieder and Romanowicz (1988) linearise the Lam”
coefficientsk andp and the densitp to write the Born vector wavefielgh (r;) as

ui(rr) = P(R6r,¢r)[P(R Bs,¢s)-F]

Noff [ TT

e Duray
Rsin(Az)

w%in(e)dedcp, (5.9)

sKRsin(A1)

which is derived for wave propagation on the sphere. The adiabatic assumption (i.e.

there is no mode conversion between different modes of Love and Rayleigh waves) is

applied in Eq. (5.9) so there is nho summation over modes and mode conversions are

absent. The polarisation vector at the soUiRes, ¢s) and at the receiveiR 6;,¢;) is

P, the wavenumber ik for surface waves, the epicentral distances between the source

and scatterer and between the scatterer and receiver are dAnatedA,, respectively,

the Fourier transform of the point source functionFsand the scattering coefficient



82 Chapter 5

is V. The expression in Eq. (5.9) then reads as follows; The polarised point source
P(R,6s,0s)-F excites the surface wave. The surface wave propagates to the scattering
point (R, 0,¢); the phaseshift and the geometrical factor are determined by the propa-
gating term exp(kRA1 + §)/+/3KRsin(A1). The wavefield is scattered with an ampli-
tude determined by the interaction tekfn The scattered wavefield propagates to the
receiver; the phaseshift and the geometrical factor are determined by the propagating
term exp (kRA2+ 7) /1 /SkRsin(Az). Finally the recorded signal is given by the polarisa-
tion P(R,8;,¢). Snieder (1986) shows that for unconverted surface waves the interaction
termV can be written as

2
V(R 8,0) = —k—6—V(R, 6,9), (5.10)

2 \p

where the reference phase velocity and the phase velocity perturbatipans dv, re-
spectively.

Given the measurement of tieomponent of the displacement, the phasesiift
(Dofr, V) of the surface waves is obtained from

30" (8or.v) = Im{ A0, (511)
o\'r

where the unperturbed vector wavefialglr,) is given by

expi(KRAoff + )

uo(rv) = P(R. 8, ¢r) TkRsin(Aofr)

[P(R,8s,9s)-F], (5.12)

for the epicentral distancl.s between the source and receiver (Snieder, 1986). The
expression in Eg. (5.11) generalises the Rytov approximation (e.g. Yomogida and Aki,
1987; Snieder and Lomax, 1996; Spetzler and Snieder, 2001) to elastic waves.

The detout); + Ay — Ao and the geometrical factors éiky ) and sifAz) in Eq. (5.9)
are perturbed to second and zeroth order in the path defletied]), respectively. For
a source-receiver geometry along the equator line, the detour is given by

(6—1)2 sin(Aoff )

D+ Dy — Dot = - - 5.13
1 B2 Bl T S ) sinlor — 9) (5.13)

and the geometrical factors are
sin(A7) ~ sin(¢), and sif{A) = sin(Aof — ¢), (5.14)

(see appendix A). The relative phasesbifit’ /do(Aorr,v) for theit" receiver is derived

by inserting Eqg. (5.9), (5.10) and (5.12) in Eq. (5.11), then dividing with the phase
kRAq# and finally using the Taylor approximation for the detour and for the geometrical
factors in Eq. (5.13) and (5.14), respectively, thus

3¢ [t v
W(Aoff,v)_/o /()K(R,e,q))v—o(R,e,d))deq), (5.15)
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where the wavenumbdr= 2rv/vp, and the sensitivity kerndd(R,0,¢) for the relative
velocity perturbation field is given by

(MR m2_ snben . m
sin(®) [VRsin(Aon) Sm( w ©2) S'”(¢>S'”‘A°”_¢)+4) (5.16)

K(R6,9) = Dot Vo \/Sil’l(d)) sin(Aoff — )

The relative velocity perturbatio{;‘g(R, 6,9) is written as an expansion of spherical
harmonics as shown in Eq. (5.3). The relative phaseshift in Eq. (5.15) is then given by

6¢(i) B Imax | m Dof fT0 "
o @orv) = 5y ¢ L W@k (R e.o)deds
Imax |
= I; ZlquﬁfnaWh(Aoﬁ,v). (5.17)

The right-hand side of the relative phaseshift due to scattering in Eq. (5.17) has the same
form as the ray theoretical phaseshiftin Eq. (5.4), but with the scattering sensitivity kernel
at frequency for minor arcs given by

Aoff Tt
Kot Borv) = [ [T¥7(0.0)K (R 0.9)d6dp. (5.18)

In order to obtain group velocity maps using scattering theory, the frequency-averaged,
timeshiftdt(V) (Ao ) in the frequency-range — Av andvg + Av is derived, hence

&00or) = 5 [

2Av Vvo—Av

Imax |

% S UMK (o), (5.19)
|=

=0 m=—I|

Vo+Av

5t (Doft,v)dv

where we use thait ") (A, v) = 501 (Aogr,v)/(21v), and the coefficients of the spher-
ical harmonics for relative group velocity are denotedl§§. The minor arc, scattering
theoretical sensitivity kernel for relative group velocity in Eq. (5.19) is given by

KSCat,gl' (Aoff)

I, m

AoR Yooy K Ao v
Do / I,m( off; V) (5.20)
\Y]

20V Jyg—av Vo(V)

In general, the reference velocity(v) depends upon the frequency in Eq. (5.20).

The relative phaseshift for major arcs is obtained using the scattering theory for minor
arcs. This is because major arc scattering sensitivity kernels can be constructed from
three scattering sensitivity kernels for minor arcs; one sensitivity kernel for the minor arc
between the sourags and the receiver anti-patka, between the receiver anti-pod and
the source anti-porka and between the source anti-pod and the recejaespectively.
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For major arcs, the scattering sensitivity kernel for relative phase velocity derived in the
reference system is

A hS—RA
K|S,rcnatp (Doft,V) = A_:t:ff ( (Doft — ) KIs,rcnatp 7 (Lot ~TLV)

+(2n— Aoﬁ)KlffnaLph’RA* SA2m— Do, V)

+(Bofr — KPR (g — n,v)) . (5.21)

WhereKlf%atph7%RA(Aoﬁ —TLV), Klsﬁ‘fnat’thAﬁ SA2m= Doft, V) andKlsfnat'ph’SAﬁ R(Dof —TLV)
are the relative phase velocity sensitivity kernels due to scattering for the minor arc be-
tween the source and receiver anti-pod, between the receiver anti-pod and the source
anti-pod and between the source anti-pod and receiver, respectively. Similarly, the major
arc sensitivity kernel for relative group velocity using scattering theory is given by

Kﬁﬁ]at’gr ( Aoﬁ) _ Klffnatgr7%RA( Dof — T[) + Klfﬁ]atgr,RMSA(ZH_ Aoff)

HKPROSAR (A — o). (5.22)

The expansions in Eqg. (5.21) and (5.22) are derived in appendix B.

Dziewonski (1984) and Dahlen and Tromp (1998) explain how to rotate the reference
system so that the source-receiver configuration, originally aligned along the equator, can
be anywhere on the sphere. In appendix C, the relative phaseshift related to relative phase
velocity for any minor arc, as well as, major arc with the source positipand the
receiver positiong is derived. The sensitivity kernel in the observed coordinate system
is given by

[
KeetP" (Do, v) = expim®) Y explin®) Q™" (@)K (Ao, v), (5.23)

n
n=—I

where®, W and® are the three Euler angleg;""(©) are the elements of the rotation ma-

trix and the sensitivity kerné(ﬁﬁa‘ph(Aoﬁ,v) is computed in the reference system where
the source and receiver lie on the equator. This result also holds for group velocity mea-
surements.

The regime of surface wave scattering theory is significant when the scale-length of
heterogeneity is smaller than the width of the Fresnel zone (e.g. the conditions for ray
theory are not satisfied). Let the characteristic length of inhomogeaeit®rt/| (in
radians) for the angular degrée By using the condition for scattering theory, we can
derive the limits of classical ray theory expressed in the angular degree of the spherical
harmonics. Hence, when

L
§F>1;»| > (5.24)

the regime of scattering theory is important.
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5.2.4 The properties of the scattering sensitivity kernels

If the reference velocity is constant, the frequency integration in the sensitivity kernel due
to scattering theory in Eq. (5.20) can be done analytically. The integration of the function
VvXsin(ax+T11/4) is

/\/isin(ax+ g)dx = %(sin(ax) —cos(ax))

+as—\//§2<0(\/zra[x)—5( 2—2)()) (5.25)

where the function€ andSare the Fresnel cosine integral and sine integral, respectively.
See Abramowitz and Stegun (1970) for a description of the Fresnel cosine and sine inte-
grals. This analytical result can be used to compute the scattering sensitivity kernels in
Eqg. (5.20) in an efficient and accurate manner. On the other hand if the reference velocity
is dispersive, the frequency integration must be carried out numerically.

It is instructive to look at the sensitivity to the relative phase and group velocity fluc-
tuations for a minor arc surface wave and a major arc surface wave as shown in Fig. 5.1A
and 5.1B. The source position is located at latitude (0), and the receiver position is
at (@, 70°), thus the epicentral distance for the minor arc i, ¥thile for the major arc
the source-receiver distance is 290 he reference velocityg = 4779 m/s which is the
PREM phase velocity for Love waves at 150 s. The radius of the sphere is set to 6371
km. The sensitivity to the relative phase velocity in Fig. 5.1A is computed with Eg.
(5.16). For group velocity measurements, the frequency-band is chosen proportional to
the central frequency so that an optimal fit of waveforms is obtained simultaneously in
the time and frequency domain. For example, surface waves at 40 s are bandpass-filtered
between 20 s and 60 s while at 150 s the periodband is 150 s. Therefore, the sensitivity
kernel using scattering theory for relative group velocity in Fig. 5.1B is frequency inte-
grated between 75 s and 225 s for Love waves at the central period equal to 150 s. The
sensitivity kernel for relative group velocity measurements in Fig. 5.1B is obtained by
using Eq. (5.16) multiplied bA.«R/vo(v) and then averaging over the frequency-band
vo — Av andvg + Av where the frequency-dependent PREM reference velocity is taken
into account. The black zones in the nearfield at the source, source anti-pod, receiver
anti-pod and receiver show the singularities in the geometrical factors of the scattering
sensitivity kernels for minor arcs and major arcs. The sensitivity to the relative phase
and group velocity resembles those of the form of Fresnel zones for point sources. The
sensitivity kernel for relative phase velocity clearly shows the first Fresnel zone, as well
as, higher order Fresnel zones. Notice that the sidelobes corresponding to higher order
Fresnel zones do not vanish if we take the frequency averaging, inherent to the measure-
ment, into account. In order to obtain the phase velocity measurements from Trampert
and Woodhouse (2001), the width of the bandpass-filter is 5 mHz. The form of the scat-
tering sensitivity kernels for phase velocity measurements is also shown by Woodhouse
and Girnuis (1982) and Snieder (1993) who apply normal mode theory to compute the
sensitivity to slowness perturbations due to scattering theory in surface wave tomography.
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Figure 5.1: The scattering sensitivity kernel for relative phase and group velocity per-
turbations computed point by point on the sphere. The epicentral distanceé ferabe

minor arc and 290 for the major arc. The source position is denoted by S, the receiver
anti-pode position is RA, the source anti-pode position is SA and the receiver position
is R. The sensitivity kernel due to scattering theory for the major arc surface wave is
constructed by three scattering sensitivity kernels for minor arc surface waves. A) The
sensitivity kernel for relative phase velocity perturbations is calculated for Love waves
with the single period at 150 s. The sensitivity kernel has sidelobes so that the first Fres-
nel zone and higher order Fresnel zones are visible. B) The sensitivity kernel for relative
group velocity fluctuations is computed between 75 s and 225 s taking the frequency-
dependence of the PREM phase velocity for Love waves into account. The sidelobes of
the sensitivity kernel at different frequencies interfer destructively. The relative phaseshift
is therefore only sensitive to relative group velocity inside the Fresnel zone.
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Notice that the sensitivity kernels in Woodhouse and Girnuis (1982) and Snieder (1993)
have oscillations along the great circle as a result of the interference of different surface
wave orbits. The scattering sensitivity kernel for relative group velocity in Fig. 5.1B only
shows the first Fresnel zone. This is because of the frequency integration that causes de-
structive interference of sidelobes at higher order Fresnel zones. According to ray theory,
the sensitivity kernel is only non-zero on the great circle passing through the source and
receiver at 0 latitude.

In Fig. 5.2, the cross sections of the scattering sensitivity kernels in Fig. 5.1A and
5.1B are plotted for different periods and epicentral offsets. The sensitivity kernels for
relative phase and group velocity are calculated at the half epicentral offset where the
width of the Fresnel zone is maximum. In Fig. 5.2A, the sensitivity kernels for relative
phase velocity are estimated for the period at 40 s (solid line), 100 s (dotted line) and
150 s (dashed line) using the PREM model for the reference velocity, and the epicentral
distance is set to 160In Fig. 5.2B, the sensitivity kernels for relative group velocity are
computed with numerical frequency integration taking account of the PREM model for
the central periods at 40 s (solid line), 100 s (dotted line) and 150 s (dashed line) with the
periodbands set equal to the central period. The source-receiver distance is fixetl to 160
for the curves in Fig. 5.2B. Notice that computing the scattering sensitivity kernel using
the complete PREM model in the range of frequency integration yields nearly the same
result as using the PREM phase velocity at central period as constant reference velocity in
the frequency-range. We do not show any scattering sensitivity kernels for group velocity
measurements calculated with a constant reference velocity over the frequency range of
integration because they are almost indistinguishable from the scattering sensitivity ker-
nels for group velocity measurements taking the PREM phase velocity into account. The
sensitivity kernels in Fig. 5.2C and 5.2D are computed with the period fixed to 150 s, and
the epicentral distance is 6(solid line), 110 (dotted line) and 160(dashed line). For
Fig. 5.2D, the periodband of the frequency integration is equal to the central period. In
brief, Fig. 5.2 shows that the width of the central lobe of the scattering sensitivity ker-
nel increases for increasing period and source-receiver distance. In terms of ray theory,
the sensitivity to relative phase and group velocity perturbations is only non-zefo at 0
latitude for the given source-receiver configuration in Fig. 5.2.

Ray theory and scattering theory predict the same relative phaseshift when the length-
scale of heterogeneity is larger than the width of the Fresnel zone (i.e the condition for
the regime of ray theory) since it follows from expression (5.16) that

Doft [ TT Sv 1 Doff v
L7 K(R.0,0) " (R.0,0)d6dp ~ —5— L e (5.26)

A Vo

when the characteristic length of the relative phase velocity is larger than the width of the
Fresnel zone.

The maximum widthwW of the central lobe of the scattering sensitivity kernel is com-



88 Chapter 5

A) Relative phase velocity, epi. off. = 160 degrees B) Relative group velocity, epi. off. = 160 degrees
g 2 . . . @ 6000
3 40 sec —
° 15t 100 sec - 1 S L
> 150 sec - - - - - 8 4000
@ 1 g
s 2 2000 r )
= 05 | 3 A
E B a 0 enFonmAn o] N
g o ©
= o -2000
S 05¢ s
£ e . E
z al s 4000
2 2
5 A L 2 6000 f ‘ ‘ ‘
n
-80 -60 -40 -20 O 20 40 60 80 é -60 -40 -20 0 20 40 60

Latitude (deg) Latitude (deg)

Relative phase velocity, T =150 s
8

Relative group velocity, T =150 s

8000 .
60 deg
6000 - 110 deg - E

4000 |- 160 deg -----
2000 | A
|5 ihiraiise
PV

0
-2000
-4000
-6000
-8000 ) ) ) )

-60 -40 -20 0 20 40 60

S A M O N B~ O
— —

Sensitivity to the rel. phase velocity O

-80 -60 -40 -20 O 20 40 60 80
Latitude (deg) Latitude (deg)

Sensitivity to the rel. group velocity (s) S

Figure 5.2:Cross sections of the scattering sensitivity kernels for relative phase and group
velocity perturbations computed at the half epicental distance. A) The epicentral distance
is 160 for the three curves. The cross section of the sensitivity kernel for relative phase
velocity fluctuations is computed at 40 s (solid line), 100 s (dotted line) and 150 s (dashed
line). B) The epicentral distance is 16fdr the curves. The cross section of the sensitivity
kernel for relative group velocity perturbations is computed in the periodband with the
central period § = 40 s and the half periodbariT = 20 s (solid line), §= 100 s and

AT = 50 s (dotted line) andgl= 150 s andAT = 75 s (dashed line). C) Sensitivity
kernels at 150 s for relative phase velocity fluctuations. The epicentral distance for the
cross section of the scattering sensitivity kernel is @olid line), 110 (dotted line) and

160 (dashed line). D) The cross section of three sensitivity kernels for relative group
velocity fluctuations with the epicentral distance af §8olid line), 110 (dotted line)

and 160 (dashed line). The sensitivity kernels for relative group velocity fluctuations
are integrated between 75 s and 225 s including the frequency-dependence of the PREM
phase velocity.
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puted by setting the sine function in Eq. (5.16) equal to zero, hence

. /TVR T sin(Aof T
0 = S'”(v—o(e_ E)Zsin(q))si&\(aof)f YR )=
(e— E)Z _ 3Asin(9)sin(Aot — 9)
2 4 sin(Aof) ’
whereA = vp/(VR) is the central wavelength in radians. The maximum widitk- 2|6 —
11/2| of the central lobe is obtained by settihg= Aosr /2 in Eq. (5.27) which gives that

(5.27)

W=1/—tan| —
2 2

By comparing the maximum width of the central lobe in Eq. (5.28) with the wigth
of Fresnel zones on the sphere in Eq. (5.38), the numlieast defines the width of the
Fresnel zone is given by

3 (A"“). (5.28)

8
n==. (5.29)

This result is also derived in Spetzler and Snieder (2001) in a 2-D, Cartesian coordinate
system. Additionally, we identify the central lobe of the scattering sensitivity kernel as
the Fresnel zone on the sphere.

According to Eq. (5.24), scattering theory is significant when the width of the Fres-
nel zone is larger than the length-scale of heterogeneity. We see in Fig. 5.2 that the
Fresnel zone of surface waves enlarges for increasing period and epicentral offset. There-
fore given the same strength of heterogeneity, scattering theory is most important for the
longest period surface waves and if there are many long epicentral offsets in a given sur-
face wave data set.

5.3 Setup of the surface wave experiment

The dataset of observed relative phaseshifts is from Trampert and Woodhouse (2001), who
calculate global phase velocity maps of Love and Rayleigh waves for periods between
40 s and 150 s using the great circle approximation. The source and receiver positions
corresponding to the measured phaseshifts are corrected for the ellipticity of the Earth.
We use the observed relative phaseshifts to compute new phase velocity maps at 40 s and
at 150 s, but using the scattering theory for fundamental-mode Love waves.

The maximum degree of the spherical expansion of the phase velocity maps is 40,
thus the number of unknown model parameters to be inverted is 1681. In addition, we
use the same inversion procedure as Trampert and Woodhouse (1995); an a priori Lapla-
cian smoothness condition is implemented so that truncation problems are avoided. In
this manner, using the same data set and inversion method as Trampert and Woodhouse
(2001), it is possible to make a direct comparison between global phase velocity maps
between periods at 40 s and 150 s inferred from ray theory and scattering theory, respec-
tively. In Table 5.1, the a priori reference PREM velocity for Love waves at 40 s and 150
s and the number of observed relative phaseshifts are given.
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Love waves
PREM velocity at 40 s (m/s) 4440
PREM velocity at 150 s (m/s) 4779
Number of obs. rel. phaseshifts 41016

Table 5.1:The PREM reference velocity at 40 s and 150 s and the number of observed
relative phaseshift measurements for Love waves.

5.4 Results

In this section, we present the phase velocity maps that are obtained with ray theory and
scattering theory using Love wave phase measurements between periods of 40 s and 150
s. We do not show any results retrieved from Rayleigh waves which lead to the same
conclusions that we draw from the Love wave phase velocity maps. We hardly find any
discrepancy between the phase velocity maps for Love waves at either 40 s and 150 s
obtained from ray theory and scattering theory. The difference between the phase velocity
maps compiled with scattering theory and the ones computed using ray theory are shown
in Fig. 5.3A and 5.3B for the global Love wave experiment at 40 s and 150 s, respectively.

The powerspectra of the phase velocity maps in Fig. 5.4 confirm the qualitative ob-
servation that ray theory and scattering theory produce the same models. For Love waves
at 40 s, the Laplacian smoothness fagter 1 x 10~4, while for the surface wave study
at 150 s,y = 1 x 102, Phase measurements for Love waves at 150 s are quite noisy
which cause unrealistic small-scale structure in the phase velocity maps using too small
a value for the smoothness factor. As a result of the values of the Laplacian smoothness
parameter, small-scale structures for angular degrees higher than 20-25 and 10-15 (e.g.
heterogeneity with a characteristic length of 1600-2000 km and 2700-4000 km, respec-
tively) are strongly suppressed in the phase velocity maps for Love waves at 40 s and 150
s, respectively. On the other hand, the Fresnel zone for Love waves at 40 s and at 150 s
with the characteristic epicentral distance equal to°1ts a maximum width of about
1400 km (angular degree 28) and 2800 km (angular degreel4), respectively. Hence
according to the condition for the regime of ray theory in Eq. (5.8), it is approximately
correct to apply ray theory for the obtained phase velocity maps (not shown in the paper).

The smoothness parameters for the scattering theoretical inversion of Love waves at
40 s and 150 s are determined in the following way; the derivation m@t(see Menke,
1989) built from the kernelk n, is not necessarily the same for ray theory and scattering
theory. Thus, the two theories will in general not resolve models identically for a given
smoothness parameter. We require for Love waves at a given period that the trace of the
resolution matrix for ray theory closely resembles to that for scattering theory. Then we
can compare models built for the same number of parameters.
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Rel. phase velocity perturbations (%)
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Figure 5.3: The difference between the phase velocity maps obtained using scattering
theory and ray theory for Love wave at 40 s and 150 s. The difference in relative phase
velocity are given in percent on a scale betwee@ %. Plate boundaries and hotspots

are drawn with white lines and circles, respectively. The coastlines are marked with black
lines on the difference between the phase velocity maps compiled using scattering theory
and ray theory. A) Love wave at 40 s. The smoothness fgetdrx 10~%. B) Love waves

at 150 s. The smoothness facjor 1 x 1072,
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Figure 5.4: The power spectra of the estimated phase velocity maps for Love waves at
40 s and 150 s using ray theory and scattering theory. The degree of the coefficients of
spherical harmonics is shown on the abscissa, while the magnitude of the powerspectra
is plotted on the ordinate. It is observed that the phase velocity models for Love waves
at 40 s and 150 s have the same large-scale structure when using scattering theory and
ray theory. However, it is not possible to obtain reliable smaller scale structures in the
obtained phase velocity maps because the observed relative phaseshifts requires a rather
large Laplacian smoothness factor for Love waves at 150 s. The smoothness factors
applied in the inversion of phase velocity measurements for Love waves at 40 s and 150 s
are the numbers in the brackets.

5.5 Discussion

In the inversion of phaseshift data for Love waves between periods at 40 s and 150 s, ray
theory and scattering theory compile the same large-scale structure as shown in Fig. 5.3.
Because of the large value of the smoothness parameter, it is not possible to comment on
the presence of smaller scaled structures of the Earth. In order to examine the discrepancy
between ray theory and scattering theory in surface wave tomography, synthetic tests
should be carried out using an input-model with heterogeneity which is much smaller in
size than the width of the Fresnel zone.

Spetzler and Snieder (2001) and Spet#enl. (2001) show that scattering theory
is very accurate in the prediction of timeshifts obtained from a finite-difference solution
of the acoustic wave equation and from a laboratory ultrasonic wave experiment, respec-
tively, wherein the length-scale of heterogeneity is smaller than the width of the Fresnel
zone. We believe that the same holds for surface wave tomography.

In Fig. 5.5, we show with a synthetic surface wave experiment that the discrepancy
between ray theory and diffraction theory in global surface wave tomography is impor-
tant for heterogeneity with the angular degree larger than30 andl = 20 for Love
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waves at 40 s and 150 s, respectively. Using the results from Spetzler and Snieder (2001)
and Spetzleet al. (2001), we assume that surface wave scattering theory for phase and
group velocity measurements is correct to use in models with any scale-length of velocity
anomalies. We calculate in Fig. 5.5 the relative error in percent introduced by ray theory
using the source and receiver positions in the dataset for Love waves, hence

dray dscat

. 100 % N
relative error= N Z

el (5.30)

whereN is the number of source-receiver geometries dfid andd*°*® are the surface
wave data due to ray theory and scattering theory, respectively. To avoid numerical insta-
bility, source-receiver pairs witf>¥| < 1 x 10~3 for phase velocity measurements and
|dS°@ < 1 s for group velocity measurements have not been included in Eq. (5.30). The
velocity perturbation is set to 10 % and the angular ordés fixed to zero, while the
angular degree goes from 1 to 40 corresponding to the size of velocity heterogeneity be-
tween 40000 km and 1000 km in the synthetic experiment. The ray theoretical approach
based on the great circle approximation and the first order scattering theory are both lin-
ear theories, so the amplitude of the velocity perturbation does not influence the relative
error in Eq. (5.30). Thus, for realistic Earth models with either a white or a red spec-
trum, the synthetic experiment presented in this paper indicates to which extent the ray
theoretical great circle approximation differs from a more exact scattering theory. In Fig.
5.5A, the relative error due to ray theory in surface wave tomography for phase velocity
measurements is calculated using the sensitivity kernel for ray theory in Eq. (5.5) and the
sensitivity kernel due to diffraction theory in Eqg. (5.18). In Fig. 5.5B, we show the rela-
tive error introduced by ray theory in tomographic surface wave experiments with group
velocity measurements for which we have applied Eq. (5.7) for the ray theoretical sensi-
tivity kernel and Eq. (5.20) for the scattering theoretical sensitivity kernel. The relative
error due to the great circle approximation should not exceed the observational relative er-
ror in the data. The phase velocity measurements from Trampert and Woodhouse (2001)
have a relative error of about 20 % for Love waves at 40 s and a relative error of 40 %
for Love waves at 150 s. Using the results in Fig. 5.5, we see that ray theoretical surface
wave tomography is limited to angular degrees smaller thar80 andl = 20 for Love

waves at 40 s and 150 s, respectively. However, if we proceed to slightly higher angular
degrees we must certainly take the non-ray geometrical effect of surface waves into ac-
count. Otherwise, we may obtain inaccurate surface wave Earth models because of the
inappropriate use of ray theory.

In Fig. 5.6A to 5.6F, we present plots of the scattering theoretical phaseshift versus
the ray theoretical phaseshift for Love waves at 150 s. Fig. 5.6 is similar to the plots that
are found in Baiget al. (2000). The source-receiver positions in the surface wave dataset
from Trampert and Woodhouse (2001) are applied. Spherical harmonics input models
with the length-scale of inhomogeneity related to the angular ddgaee used in Fig.
5.6A(1=1),5.6B(=5),5.6C(=15),5.6D (= 20),5.6E (= 30) and 5.6FI(= 40).

We have chosen to plot the normalised phaseshifts calculated with scattering theory and
ray theory. The solid lines indicate the error in the Love waves dataset at 150 s. We see
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A) Phase velocity measurements
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B) Group velocity measurements
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Figure 5.5: The synthetic experiment showing that the relative error introduced by ray
theory increases for decreasing characteristic length of velocity anomalies in a global
surface wave experiment with Love waves between 40 s and 150 s. The length-scale of
heterogeneity is expressed in angular degree ranging between 1 and 40. The relative
error between surface wave data due to ray theory and scattering is calculated using the
source-receiver positions in the Love wave dataset. A) The synthetic experiment for phase
velocity measurements. B) The synthetic experiment for group velocity measurements.
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Figure 5.6:Plots of the scattering theoretical phaseshift versus the ray theoretical phase-
shift for spherical harmonic models with the characteristic length of heterogeneity ex-
pressed written as angular degree |. The case of Love waves at 150 s is considered, and
the source-receiver positions for the computation of the phaseshifts due to ray theory and
scattering theory come from Trampert and Woodhouse (2001). The two solid lines indi-
cate the error in the surface wave dataset for Love waves at 150 s=A) B) | = 5, B)

| =15, B) =20, B) I= 30, B) = 40.
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in Fig. 5.6A and 5.6B that there is a one-to-one correspondence between the scattering
theoretical phaseshifts and the ray theoretical phaseshifts. In Fig. I56CH) and 5.7D

(I = 20) where the angular degree of inhomogeneity is at the limit of the regime of the
great circle approximation for Love waves at 150 s, it is noticed that several poi#&'of
versusd'® are outside the observed relative error in the dataset. It is as well seen in Fig.
5.6C and 5.6D that the points in the plot are slightly rotated anti-clockwise compared
to the dashed line with slope one through origo. There is therefore a tendency for a
bias towards smaller values of the scattering theoretical relative phaseshifts compared to
the ray theoretical ones (see Spetzler and Snieder, 2001; Spatzier 2001 for other
examples of this trend). However in Fig. 5.6E and 5.6F, the picture is a bit different
than in the previous plots of Fig. 5.6. The pointsdf® versusd™ are spread more
homogeneously around in the two plots, but there is still a tendency of an anti-clockwise
rotation of the best-fitting line (not shown) through the poinf$g, d'®). In Fig. 5.6F,

the best-fitting line of the pointslfc®, d'®) is rather that positive scattering theoretical
phaseshift correspond to negative ray theoretical phaseshift and vice versa. It means that
using Love waves at 150 s to estimate small-scale structurestQ in Fig. 5.6F) the
application of the ray theoretical great circle approximation produces global maps with
the wrong sign of the estimated velocity field.

In terms of wavefront healing, Nolet and Dahlen (2000) discuss scattering theory in
surface wave tomography. They explain using the Gaussian beam solution to the parabolic
approximation of the scalar Helmholtz equation that an inversion of phase velocity mea-
surements is better behaved than the one using group velocity measurements. Their argu-
ment is that surface wave group velocity delays have large sidelopes compared to surface
wave phase delays when the diameter of heterogeneity is of the same order of magni-
tude as the wavelength. The large sidelopes of the surface wave group velocity delay
may therefore introduce considerable noise into the data according to Nolet and Dahlen
(2000). Based on the sensitivity kernels for phase and group velocity in this paper, we
rather find that the inversions of phase and group velocity measurements are both equally
behaved. It is not difficult to compute the forward problem either applying the sensitivity
kernel for relative phase or group velocity. The developed scattering approach for surface
waves is just as easy to use as the ray theoretical great circle approximation. On a 250
MHz ultra-sparc machine, it takes 1 day, 5 days and 15 days cpu-time to compute the
tabulated scattering sensitivity kernels for the analytical frequency-integration for rela-
tive group velocity, for single-frequency relative phase velocity and for the numerically
frequency-integrated PREM model for relative group velocity, respectively, and to carry
out the inversion of 42000 surface wave phaseshifts for a phase or group velocity map to
angular degree and order 40.

5.6 Conclusions
We have investigated the non-ray geometrical effect in global surface wave tomography.

The first-order Rytov approximation was used to derive a linear relationship between sur-
face wave phase and group velocity measurements and relative phase and group velocity
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perturbations, respectively. The diffraction theoretical approach takes the finite-frequency
effect of surface waves into account which is not possible with conventional ray theory in
surface wave tomography. For finite-frequency surface waves, the sensitivity to relative
phase and group velocity is maximum in magnitude off-path the ray trace. In addition,
the scattering sensitivity kernel for relative phase velocity has sidelobes outside the Fres-
nel zone, while the sensitivity kernel for relative group velocity is only dominant over
the Fresnel zone. In contrast to this, ray theory predicts that the sensitivity to relative
velocity perturbations is only non-zero on the great circle path connecting the source and
receiver. Given the same strength of heterogeneity, scattering of surface waves becomes
increasingly important for increasing period and epicentral distance.

We applied phaseshift measurements for Love waves between periods at 40 s and
150 s from Trampert and Woodhouse (2001) to compile global phase velocity maps to
angular degree and order 40 using scattering theory. These models for diffraction theory
were matched with those computed with ray theory. We applied an a priori Laplacian
smoothness condition in the inversion procedure resulting that only structures to angular
degree 20-25 for Love waves at 40 s and to angular degree 10-15 for Love waves at 150 s
are present in the phase velocity maps which is close to the limit of resolution in current
global surface wave tomography. We saw that ray theory and scattering theory produce
the same tomographic models in that regime for which the conditions for ray theory are
satisfied.

We showed with a synthetic experiment where the relative error between surface wave
data using ray theory and scattering theory was computed for velocity inhomogeneity with
increasing angular degree that the scattering of surface waves is dominant at angular de-
grees larger thah= 20 andl = 30 for surface wave at 150 s and 40 s, respectively. The
regime of surface wave scattering theory corresponds to the limits of present-day resolu-
tion in surface wave tomography. Consequently, in order to obtain detailed higher degree
surface wave models using long-period surface waves or dataset with many long source-
receiver distances we must take the finite-period effect of surface waves into account.

In the USArray project, the United States will be covered with a dense array of 2000
seismographs having an uniform station spacing during the next ten years (see Levander
et al., 1999). The purpose of the USArray is to increase the resolution of tomographic
images of the North American shield. However, it is not enough to increase the data
coverage of the area of interest, but it is as well important to improve the tomographic
imaging methodology that is to be applied in inversions of data from the USArray project.
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5.7 Appendix A: Perturbation theory of the propagation
length of scattered ray paths, the width of the Fresnel
zone and the geometrical factor

According to Fig. 5.7 the epicentral distance between the source and receiver is denoted
by Ao, and the epicentral distance between the source and scatterer point and the scatterer
point and receiver are marked@&sandA;, respectively. The perpendicular distance from

the source-receiver geometry to the scatterer at the d@ffisg — 11/2|. Using the law of
cosines on a sphere to rel#@tewith |8 — 1t/2| and¢, we obtain

cogdy) = cos|B- 5 )cosd)+sin(|8— 5])sin(9)cos 7)
- cos(|e—g|)cos(¢). (5.31)
IsolatingA; from Eqg. (5.31) and assuming that the ray deflect®n 11/2| is small gives
N = arccos(cos(|e— 1—2T|)cos(¢))
arccos(cos(d)) — %(6 — g)zcos(cb))

Q

(0-3)?
¢+ 2tar(2¢) ) (5.32)
Similarly, we have for\, that
(8-
Do = (Dot — ) + (5.33)

2tanDof — ) .
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Figure 5.7: Explanation of the variables applied in the derivation of the propagation
length of a scattered ray path, the width of the Fresnel zone on the sphere and the geo-
metrical factor using second order perturbation theory.

The detour (i.eA1 + Az — Aof) is then given by

6-3)?%, 1 1
6-3) ( N )
tan(9) * tanAof — 9)
(6-1)2 sin(Aoff)
2 sin(¢)sin(Bor —§)°
The condition for Fresnel zones on a sphere that the detour is less than the wavelength
divided by a numben is given by

A +Do—DNosp =

(5.34)

A
A1+ Dy — Doft < = (5.35)

whereA is the wavelength measured in radians. The sign of equality in Eq. (5.35) is
used to calculate the Fresnel zone boundary. By inserting the detour in Eqg. (5.34) in the
Fresnel zone condition in Eq. (5.35), the half widéh- 7) of Fresnel zones is derived,
hence

T [2\sin(d)sin(Ao — 6)
0-3)= \/ nsin(Aof) ’ (539

which has the largest value for= Aq/2. For that case, the half width of the Fresnel
zone is given by

A Dot

Tt
(8-3) =/ ~tan =), (5.37)
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The maximum width_r of Fresnel zones on the sphere is twice the half with 7) in
Eq. (5.37), thus

Aot

7y
Le =/ = tan(=30), (5.38)

whereLg andA are measured in radians.
The geometrical factors gifd1) and sirf{A,) are derived to zeroth order approximation
using Eqg. (5.32) and Eq. (5.33), thus

sin(A1) = sin(¢) and sif{fAy) = sin(Aor — ), (5.39)
where itis assumed théd —11/2)?/(2tan(¢)) < 1 and(8—11/2)?/(2tan Aot — ¢)) < 1.

5.8 Appendix B: The scattering sensitivity kernel for ma-
jor arcs

The scattering sensitivity kernel to compute phase velocity maps for major arcs ée.g.

Aot < 211) can be constructed by three scattering sensitivity kernels for minor arcs. Letthe
scattering sensitivity kernels for the minor arcs between the source (S) and the receiver
anti-pod (RA), between the receiver anti-pod and the source anti-pod (SA) and between
the source anti-pod and receiver (R) be given by

Doff—TU T
Ko FA gy —mw) = [ [[¥m(@.0)KS *AR8.0)d0dp,  (5.40)

Tt Tt

KPR dor,v) = [ [T\m(6.0)KRASAR 8,0)d0dp.  (5.41)
’ Do —T1/0

and

A
scatph,SA-R off
K (Aoff—mv):/
' T

/O "m0, 6)KSAR(R 6, $)d6dd, (5.42)

where the sensitivity kernel&S~RAR,6,¢), KRASAR 8,¢) and KSA"R(R,0,¢) are
equivalent to the sensitivity kernel in Eq. (5.16) but having the epicentral distance substi-
tuted withAqs — 11, 21— Agr andAggr — TT, respectively. In order to derive the sensitivity
kerneIKlffnatph(Aoﬁ,v) due to scattering theory for major arcs, the integration along the
source-receiver line is split up into the three minor arc integrations. Hence,

h h
KIS,;:na';p (Aoff,V) = A_:ctff ( (Aoff - TT) Kls,;:natp 7S_>RA(A0ff - H’V)
+(21— Doff) KIS:rCnaL ph’RA_)SA(ZT[ — Do, V)

+ (Dot — TKZCAPRSARA n,v)) . (5.43)
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which is the formula in Eq. (5.21). Similarly by dividing the major arc into three minor
arcs, the formula in Eq. (5.22) for the scattering sensitivity kernel for group velocity
measurements can be derived.

5.9 Appendix C: Rotation of scattering sensitivity ker-
nels

Dziewonski (1984) and Dahlen and Tromp (1998) show that the transformation of the
spherical harmonics of angular degtesnd ordem from a reference coordinate system
to a new coordinate system is given by

|
Y™(8,4) = exp(imd) Z exp(in®)Q""(O)Y"(8',¢), (5.44)

n=-—I

with the three Euler angles denoteddyW¥ and®, and the elements of the rotation ma-

trix artem’”(e). The sensitivity kernel for minor arcs in Eq. (5.18) depends linearly on
the spherical harmonics. This means that the sensitivity kernel for relative phase veloc-
ity using scattering theory can be transformed from the reference coordinate system to
the observed coordinate system by using the relation for the transformation of spherical
harmonics in Eq. (5.44). Le*(R,08,¢) denote the sensitivity kernel in the observed
coordinate system which is equivalent to the sensitivity kei{&,6,¢) in Eqg. (5.16) in

the reference coordinate system. The formula in Eq. (5.44) is inserted in the scattering
sensitivity kernel in Eq. (5.18). The sensitivity kernquna‘ph(Aoﬁ) for the epicentral
offsetAq in the new coordinate system is then

Kﬁfnat’ph(AoffN) _ //r;RYlm(&(b)K*(R, 6,$)dodd
|

exp(im®) Y exp(inW)Q™"(©)

n=—I

AOﬁ n n / ! / ! / A/
R GCRITCERSET
|

expim®) ¥ exp(in®) Q" (@)K TP (Rof,v),  (5.45)

n=-—I

with the scattering sensitivity kernel for relative phase velocity given by

Ao T
KPP Ao, v) = /0 " /0 Y@, 0")K (R, 6, ¢')de'dd), (5.46)

at offsetAq computed in the reference coordinate system.
The scattering sensitivity kernels in Eq. (5.21) and (5.22) for major arcs are composed
by three scattering sensitivity kernels for minor arcs. It is therefore possible to apply the
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transformation of spherical harmonics in Eq. (5.44) on each scattering sensitivity kernel
for minor arcs in order to obtain the same result as in Eq. (5.45) but with the scattering
kernel for major arcs computed in the reference coordinate system. In addition, the result
in Eq. (5.45) is valid for major arc sensitivity kernels using scattering theory to compute
group velocity maps.



Chapter 6

The practical implementation of
spectral leakage theory in global
surface wave tomography

Abstract.

We investigate the effect of uneven ray path coverage in global surface wave tomogra-
phy. An inhomogeneous distribution of seismicity may bias tomographic models because
certain areas are better sampled than others. It is possible to suppress the bias due to the
inhomogeneous ray path coverage by using a linear inversion technique known as spec-
tral leakage theory that differs only from the general least squares solution in the way that
data are weighted. In spectral leakage theory, the data weighting matrix is the summation
of the data covariance matrix and a matrix that accounts for the simulation of even ray
path coverage. Spectral leakage theory is applied together with surface wave scattering
theory in an inversion of phase velocity measurements for Love waves between 40 s and
150 s. Surface wave scattering theory has a larger validity in media with small-scale het-
erogeneity for which the conditions for the ray theoretical great circle approximation are
not satisfied. Phase velocity maps for Love waves at 40 s and 150 s from the undamped
spectral leakage inversion are compared with those from the least squares inversion with-
out any regularisation condition in use. It is concluded from the comparison of surface
wave models from these two linear inversions that the simulation of homogeneous ray
path coverage in the global surface wave tomographic experiment improves the phase
velocity maps that correlate better with tectonic features.

6.1 Introduction

High-resolution tomographic surface wave models of the Earth may contain significant
errors because of the limitations of the methodology in surface wave tomography; First,

105
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most surface wave tomographic experiments are based on the ray theoretical great circle
theorem (Jordan, 1978; Trampert and Woodhouse, 1995; van der Lee and Nolet, 1997;
Curtiset al., 1998) which is only valid in smooth media. However, present-day surface
wave models show characteristic length-scales of heterogeneity that are at the limits to
justify the use of the great circle approximation in global and regional, high-resolution
surface wave models (Passier and Snieder, 1995; Spetz#dr 2001). It is therefore
important to take the scattering of surface waves into account in order to obtain surface
wave Earth models with a higher resolution than is currently possible. Second, due to the
practical limitations of inversion techniques in surface wave tomography, it is common
to truncate the series of basis functions that is used to model the structure of the Earth to
a certain (arbitrary) level. The truncation of the expansion of basis functions may lead
to spectral leakage which means that the contribution of small-scale structures of hetero-
geneity that is not accounted for in the inversion may leak into the inverted tomographic
model of inhomogeneity (Trampert and Snieder, 1996). The spectral leakage problem is
related to the uneven ray path coverage in surface wave tomography on the globe (Gud-
mundssoret al., 1990; Sniedeet al., 1991; lyer and Hirahara, 1993). This in its turn is

due to the nature of global tomographic wave experiments where earthquakes are used as
the source of waves to probe the interior of the Earth.

The main focus in this article is on the spectral leakage problem in a global surface
wave tomographic experiment using phase velocity measurements for Love waves be-
tween 40 s and 150 s. The surface wave data are from Trampert and Woodhouse (2001).
Instead of making use of the great circle approximation, we benefit from the methodolog-
ical improvements in surface wave scattering theory of Speg¢tlat. (2001). The em-
ployed scattering theory of surface waves is a linear theory where the relative phaseshift is
expressed as a volume integration of the relative velocity perturbation field multiplied by
the FEchet kernel. The reader is referred to Spetztaal. (2001) for more information
about surface wave scattering theory.

In order to compensate for the uneven distribution of earthquake and receiver positions
in global surface wave tomography, we make use of the work of Trampert and Snieder
(1996) who develop a least-squares technique to suppress the artifacts due to spectral
leakage. The difference between the least squares solution taking account of the spectral
leakage problem and the general least squares inversion (Tarantola, 1987; Menke, 1989) is
the way that data are weighted. In Trampert and Snieder (1996), the data weighting matrix
is the sum of the data covariance matrix and another matrix that is used to suppress the
effects of spectral leakage.

The elements of the matrix that accounts for the effects of spectral leakage in the
spectral leakage inversion is only defined for scattering theory and not for ray theory. This
is because these matrix elements correspond to the volume integration over the sphere of
the FEchet kernels due to the source-receiver configurations under consideration. For ray
theory, the Fechet kernel is the delta-function, and the integration of two delta-functions
is not defined matematically.

The spectral leakage problem is considered by others in geophysics. For instance,
Dziewonski and Anderson (1981) eliminate the bias introduced by unequally distributed
seismicity in lateral structures by taking the average of body wave traveltime curves for
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Earth sections with equal area in order to obtain the one dimensional PREM model.
Sniederet al. (1991) set up a synthetic experiment using an artificial set of evenly dis-
tributed source-receiver pairs and a realistic set of inhomogeneous ray path coverage. In
this way, they show that the spectral leakage problem originates from unevenly distributed
source-receiver pairs. The spectral leakage problem is not only applicable to a truncation
of the series of basis functions as it is the case in surface wave tomography (Trampert and
Woodhouse, 1995; Trampert and Woodhouse, 2001; Spetz#r2001). Arkani-Hamed

et al. (1994) who work with the Earth’s magnetic field, expand the perturbation field of a
magnetic anomaly map into spherical harmonics with angular degrees from 15 to 60. In
that case, the effect of spectral leakage may be relevant for the lower and upper truncation
of the series of the spherical harmonics.

In section 6.2, the theory correcting for the spectral leakage problem as found in Tram-
pert and Snieder (1996) is briefly reviewed. It is explained in section 6.3, how the least
squares solution from spectral leakage theory is combined with surface wave scattering
theory in global surface wave tomography. The surface wave tomographic models ob-
tained in the spectral leakage inversion of phase velocity measurements for Love waves at
40 s and 150 s are discussed in section 6.4, while a discussion and conclusions are given
in section 6.5.

6.2 Theory

In this section, we explain the basic principles behind spectral leakage theory which is
described in detail by Trampert and Snieder (1996) and Snieder and Trampert (1999). In
general, the model parametafx) at pointx containing the complete set of basis functions
Bj(x) with the coefficientsn; can be decomposed into the paxt(x) which is the basis
function expansion until the (arbitrary) truncation leleland the parin.(x) that is the
infinite series of the remaining basis functions, thus

m(x) = ilmj Bj(X) = m_(X) +Mw(X), (6.1)
=
with
L w
m_(X) = JZlmj Bj(x), and mw(X) = j=Z+lmj Bj(x). (6.2)

Following the notation of Menke (1989), the datwnin continuous inverse theory is
given by

d = /Gi (X)MX)dx+ e, 6.3)

whereG;(x) is the continuous data kernel agds the error of datund;. By inserting the
series of basis functions in Eq. (6.1) for the model paranra(gy in the datum in Eqg.
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(6.3), the data can be related to the infinitely dimensional discrete model vector with the
coefficientam;. Hence,

diZZAijmj—l—a, (6.4)
=1
where the modeling matrix elements

Aj = /Gi (X)Bj (x)dx, (6.5)

are the projection of the data ker@&{x) on the basis functiorB;(x) (Snieder and Tram-
pert, 1999). In more general terms, the discrete forward problem in eq. (6.4) is written
as

d=Am+e (6.6)

which is the well-known linear forward problem in vector form (Tarantola, 1987; Menke,
1989). Given the truncation levk] the least squares solution to the linear problem in Eq.
(6.6) is given by

mL =A%, (6.7)

with the inverse of the modeling matrix_ in the least squares sense given by
- 1 1\t 1
A= (ALCs'AL+Cht) ALCE: (6.8)

The modeling matrixA | is constructed for the model parameters until the (arbitrary)
truncation level, and the covariance matrix for the truncated prior model veotoand
the observed data is denoted byCr andCy, respectively. (Tarantola, 1987; Menke,
1989)

The observed data in the general linear problem in Eq. (6.6) are affected by both
vectorsm_ andm,, of the coefficientsn;, hence

whereA. is the modeling matrix for the infinitely-dimensional vectog. The expres-

sion for the observed data in Eq. (6.9) is inserted in the least squares solution in Eq. (6.7),
thereby enabling us to show the effect of spectral leakage. According to Snieder and
Trampert (1999), the truncated vectoy of the estimated model vector to the truncation
levelL is given by

= m -+ (ALSAL—1)mL+A Asme +A e (6.10)
The last three terms in Eq. (6.10) are responsible for the discrepancy in the estimated

model from the true modeh,_. The second term and the last term account for the limita-
tions in finite-resolution within the subspace for the vectprof the model coefficients,
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and the effects of the observational data ereor§he remaining tern “A.m., is the
projection of the data contribution from the vectos, of model coefficients onto the
truncated vectom; of model coefficients. This term describes spectral leakage.

The cure for spectral leakage is given in Trampert and Snieder (1996) and Snieder and
Trampert (1999). In the least squares sense, they show how the solution for the truncated
model vector including the spectral leakage correction is derived. In this paper, only
the simplest case that the covariance matrix for the Gate= 31, and for the model
vectorsCmy = 02, | and Ce = 02,1, is considered. Trampert and Snieder (1996)
definea? = 03/0%,| andB? = 03/04,... The least squares solutidnt with the spectral
leakage correction is given by

-1
_ (A WA, + (BZ) > Alwd, (6.11)
with the anti-leakage matrix
-1
W= (AWA;, + le> . (6.12)

The anti-leakage matrix in Eq. (6.12) is the inverse of the sum of the miati, that is
used to suppress the spectral leakage effect and the diagonal gthtiivat includes the
variance of the data and the infinitely dimensional model vattor

6.3 Spectral leakage theory in global surface wave to-
mography

In this section, it is explained how the inverse problem with the spectral leakage correc-
tion is set up in global surface wave tomography using phase velocity measurements. The
relative phaseshiftisco; due to the scattering of surface waves is calculated as a summa-
tion of the spherical harmonics coefficie@® multiplied by the Fechet kerneK? 52" for
angular degrekand ordem using diffraction theory. Scattering theory for unconverted
surface waves is derived in Spetzétral. (2001). The relative phaseshift is given by

|ma>(

Oscat= Z) Z qu|S,(-:nat, (6.13)

with the maximum angular degree of the spherical harmonic expansion dendigg,by
which is a finite number in practical applications. The¢tét kerneKScat for angular
degreel and ordem is the integration of the sensitivity functldﬁscat(R 6,4) due to
the scattering of surface waves and the spherical harn¥¥(@,¢) over the sphere.
Hence,

KEat — / KSR, 8, §)Y™(6, ¢)d6d. (6.14)
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The reader is referred to Fig. 1 in Spetzétral. (2001) for examples of the sensitivity
functionKS*(R 6, ¢). By comparing the expression for the modeling matrix in Eq. (6.5)
with the FEchet kernel in eq. (6.14), we identify that the data ke@€k) corresponds

to KS*(R 6,¢) and the basis functiorj(x) are the spherical harmoni¥§(8, ). It is
shown on p. 154 in Snieder and Trampert (1999) that the matrix praduét, in Eq.
(6.12) using the notation for surface wave scattering theory can be written as

{AaALYj = [ KE(R0.0)KF (R 8.0)d8dd — {ALAL}j, (6.15)

where the subindex in the sensitivity functions indicate the source-receiver aits
j.- In terms of surface wave scattering theory, it makes sense to evaluate the integration
of the two weighting functions in Eq. (6.15), because they are defined everywhere over
the sphere. In contrast, the integration part (known as the Gram matrix, Trampert and
Snieder, 1996) in Eq. (6.15) is not defined for ray theory; the data ketfi4R, 0, )
due to ray theory on the sphere is a delta-function depending on the spherical coordinates.
The integration of the product of two delta-functions on the sphere yields zero, so the
Gram matrix is not defined in terms of ray theory. In addition, the application of the
ray-theoretical great circle approximation in global surface wave tomography is limited
to structures with angular degrees of the spherical harmonics smalldrti&hfor Love
waves at 40 s anld= 20 for Love waves at 150 s (Spetzhdral., 2001).

The anti-leakage matri®/ in Eq. (6.12) has the number of rows and columns equal
to the number of data applied in the inverse problem. If many data are used in the tomo-
graphic experiment, the matri%/ is large which may cause problems when storing it in
the computer memory (or even on the hard-disc). In the global surface wave tomographic
experiment using phase velocity measurements, the elements of the Aaiixin the
anti-leakage matri¥V are calculated from the matrix product

(o]

{AOOAEo}ij = {Aoo}is{Azo}sj, (6.16)
s

instead of using the expression fag,Al, in Eq. (6.15) for which the evaluation of the
integral is numerically demanding. In practice, the summation evereq. (6.16) is
limited to a certain maximum angular degiggy of the spherical harmonics expansion
much higher than the truncation le\el

The off-diagonal elements of the anti-leakage matrix in Eq. (6.12) are significant if
different source-receiver pairs are parallel and close to each other or if different source-
receiver minor arcs or major arcs cross at an oblique angle so that their Fresnel zones
overlap. In general, the anti-leakage matfikis symmetric, and it is found tha¥ is
sparse as well for the Love wave dataset between 40 s and 150 s from Trampert and
Woodhouse (2001). The sparsenes$\btomes from the fact that many of the source-
receiver pairs do not have overlapping Fresnel zones. However for Love waves at both 40 s
and 150 s, several of the off-diagonal elements of the anti-leakage matrix are comparable
with the diagonal elements 8/ because the respective source-receiver pairs are close
to each other. The matriw/ must therefore be inverted by brute force (such as Gaus-
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Figure 6.1:The ray coverage density for the dataset of the 10000 relative phaseshifts for
Love waves between 40 s and 150 s. The grey colour scale shows the logarithmic value
of the ray path coverage density.

Jordan elimination, see Presisal., 1986) as the form of the sparse anti-leakage matrix is
irregular.

In the inversion of phase velocity measurements for Love waves between 40 s and
150 s using spectral leakage theory, we apply 10000 surface wave data from Trampert
and Woodhouse (2001). Note that all the global surface wave Earth models presented
here are estimated from the same 10000 phase velocity measurements for Love waves
between 40 s and 150 s. The ray density for the Love wave dataset of 10000 relative
phaseshift measurements is shown in Fig. 6.1. Notice that the ray density is shown on a
logarithmic-scale. It is clearly seen that the phase velocity models presented later in this
paper are sampled with an uneven path distribution. We find the highest ray path coverage
on the Pacific plate, in Eurasia and in North America while the poorest sampling rate is
found on the Southern hemisphere with an emphasis on the Southpole.

The value ofu in Eq. (6.11) is set to zero, which corresponds to an inversion without
any damping. The value @fin Eq. (6.12) is chosen by trial and error using the conditions
that the phase velocity maps from the spectral leakage inversion are stable. We found that
the lowest value off which isf3 = 0.5, satisfies this condition.

According to Eq. (6.10) the estimated modfal differs from the true modein,
because of the three distinct contributions that @e-1)m_ (resolution limitation),

Al 9A.mM., (spectral leakage effect) amg. Ye (data error propagation). The resolution
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matrix is given byR = A[gAL (Tarantola, 1987; Menke, 1989). Firstly, because there

is no need for a regularisation condition in the spectral leakage invemsien(), the
resolution matrixR = | (see appendix A). Secondly, we use spectral leakage theory in
the global phase velocity experiment, so the leakage #grf\.m., = 0. The estimated
surface wave models using spectral leakage theory are therefore only affected by the un-
certainty from the data error propagation. Hence,

mL=m_+A % (6.17)

The truncation level i = 20 andL = 10 for Love waves at 40 s and 150 s, respec-
tively, which assures stable surface wave models when applying spectral leakage theory.
It is shown in Fig. 5 of Trampert and Snieder (1996) that mostly the lower degree basis
functions,Y| m, just above the truncation level bias the highest degree spherical harmonics
below the truncation level. The maximum angular degree and order ofélcb&irkernels
that is used to compute the elements of the anti-leakage matrix in Eq. (6.12) i$ &gt to
= 40, because it is unlikely that higher degree spherical harmonics largelithan40
leak into the spherical harmonics with angular degrees smaller than the truncation level at
angular degrek = 20 andL = 10 for Love waves at 40 s and 150 s, respectively.

6.4 Phase velocity maps from the spectral leakage inver-
sion of relative phaseshifts

The relative phase velocity maps for Love waves at 40 s and 150 s corrected for the
spectral leakage effect are shown in Fig. 6.2A and 6.3A, respectively. The surface wave
models from the spectral leakage inversion are compared with those for Love waves at
40 s (Fig. 6.2B) and 150 s (Fig. 6.3B) which are retrieved in a common least squares
estimation (see Eq. (6.8)) without any regularisation in @?1(: I, andC;]l,_ =0). The

reader is referred to appendix A for a discussion about the fairness of the comparison of
the phase velocity models from the undamped spectral leakage inversion and the com-
mon least squares inversion without applying a regularisation condition. The grey-scale
colour for the relative phase velocity perturbations in Fig. 6.2 and 6.3 is betivée¥
compared to the PREM-model for Love waves at the respective periods in order to show
detailed structures of all the phase velocity models presented here. However, the relative
phase velocity perturbations in the inversion of the relative phaseshifts for Love waves
at 40 s are between -15 % and 17 %, and for Love waves at 150 s the minimum pertur-
bation is - 7 % and the maximum phase velocity perturbation is 9 %. The surface wave
models for Love waves at 40 s may seem identical which is an artifact due to the applied
grey-scale colours ranging betwegrb % for the relative velocity perturbations that are
between -15 % and 17 %.

The difference between the phase velocity maps obtained in the two separate inver-
sions are plotted in Fig. 6.4A for Love waves at 40 s and in Fig. 6.4B for Love waves
at 150 s. The abbrevation ‘usli’ stands for the undamped spectral leakage inversion, and
‘cls’ refers to the common least squares inversion without applying any regularisation
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condition. Unfortunately, the difference in relative phase velocity between the surface
wave models from the undamped spectral leakage inversion and the common undamped
least squares inversion is not entirely due to the effect of spectral leakage. There might be
some contribution of data error propagation in the differences of relative phase velocity in
Fig. 6.4A and 6.4B, because the inverse of the modeling mafrtxis not the same in the
spectral leakage inversion and in the common least squares inversion. A scale analysis of
the difference between the inverse of the modeling mmﬁﬁ in the spectral leakage es-
timation and in the least squares inversion that is compared to the inverse of the modeling
matrix in the spectral leakage inversion has been carried out. This scale analysis reveals
that the difference between the inverse of the modeling matrix in the spectral leakage in-
version and in the least squares inversion is not negligible. On the other hand, the global
surface wave experiment is well-constrained because we use many data and because we
do not need to apply any damping in the inversion of phase velocity measurements using
spectral leakage theory or the least squares estimation (see appendix A for a discussion
of the comparison of the relative phase velocity models from the two separate linear in-
versions). We therefore believe that the contribution of data error is not significant in the
global surface wave experiment. It is seen in Fig. 6.4 that the effect of the anti-leakage
matrix is significant as there are large differences in the small-scale structures of the sur-
face wave models obtained in the two kind of inversions. The characteristic wavelength
of the differences in the small-scale relative phase velocity structure is comparable to the
truncation level of the series of the spherical harmonics. Thus for the inversion of Love
waves at 40 s the length-scale of differences of relative phase velocity islab@@ (or
corresponding to 2000 km), and for the experiment with Love waves at 150 s the differ-
ence in structure has a characteristic length~efL0 (or corresponding to 4000 km). This
observation shows that the effect of spectral leakage is most important at the truncation
level, which is as well shown by in Fig. 5 of Trampert and Snieder (1996).

Qualitatively, the phase velocity maps for Love waves at 40 s and 150 s from the
undamped spectral leakage inversion correlate better with tectonic features than those
from the common least squares inversion without applying a regularisation condition. For
instant look at Fig. 6.5 where two sections of the Love wave model at 40 s from the two
separate inversions are presented. The section for Fig. 6.5A and 6.5B contains the area
with Africa, Tibet and the Carlsberg ridge, while the section for Fig. 6.5C and 6.5D is the
region with South America, the East Pacific rise and the Chile rise. These two sections are
the most clear examples for the Love wave models at 40 s. Itis clearly seen from Fig. 6.3
that the phase velocity maps for Love wave at 150 s using the undamped spectral leakage
solution have a better correlation with tectonic boundaries than the surface wave models
obtained in the common least squares estimation without any regularisation condition in
use. For examples in Fig. 6.3, we stress out the Carlsberg ridge, the South-West Indian
ridge, the Hunter ridge and the Chile rise.

In Fig. 6.6, the unexplained variance that is a measure of how well the Love wave
phase velocity maps explain the observed data, is plotted for values/®f? ranging
from zero to 30. In general, the unexplained variance increases for increasing values of
(a/B)?%. Nevertheless, it is shown most clearly in the spectral leakage inversion for Love
waves at 150 s that the value @fgiving the minimum unexplained variance is not for



114 Chapter 6
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Figure 6.2:Global phase velocity Earth models for Love waves at 40 s. The white circles
are hotspots, the white lines show the boundaries between tectonic plates and coastlines
are drawn with the thick black lines. The variations in the relative phase velocity pertur-
bations are given in percent on a scateb % with respect to the constant PREM model

for Love waves at 40 s. The series of the spherical harmonics is truncated at the angular
degree L= 20. A) The phase velocity map that is obtained in the inversion accounting for
the spectral leakage problem. The parameters0 and 3 = 0.5. B) The phase velocity

map that comes from the common least squares inversion without using any damping.



6.4 Phase velocity maps from the spectral leakage inversion of relative phaseshifts 115

A) Spectral leakage inversion: Love 150 sec
K=t
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B) Least squares inversion: Love 150 sec
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Figure 6.3:As in Fig. 6.2, but for this figure Love waves at 150 s are used in the two
separate linear inversions without applying any damping. The series of the spherical
harmonics is truncated at the angular degree-110. The variations in the relative phase
velocity perturbations are given in percent on a sc&l® % with respect to the constant
PREM model for Love waves at 150 s. A) The phase velocity map obtained in the inversion
that suppresses the spectral leakage effect. The valaésotero and3 is set to 0.5. B)

The phase velocity map that is retrieved from the common least squares inversion without
using any regularisation condition.
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A) usli - cls: Love 40 sec

Rel. phase velocity perturbations (%)

-5 0 5

B) usli - cls: Love 150 sec
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Figure 6.4: The difference between the phase velocity maps obtained in the undamped
spectral leakage inversion (usli) without any damping and the common least squares
(cls) inversion with no regularisation condition in use. The convention for hotspots, plate

boundaries and coast lines is the same as in Fig. 6.2. A) The inversion of relative phase-
shifts for Love waves at 40 s. B) The inversion of the phase velocity measurements for

Love waves at 150 s.
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Love waves at 40 s

A) Spectral leakage B) Least squares
inversion inversion

C) Spectral leakage D) Least squares
inversion inversion

-135° -90° -45° 0O°

Rel. phase velocity perturbations (%)

L N Y
-5 0 5

Figure 6.5:Selected sections of the phase velocity maps for Love wave at 40 s and 150
s that are shown in Fig. 6.2. The colour convention for hotspots, plate boundaries and
coast lines is unchanged from Fig. 6.2. For A) and B), the section includes Africa, Tibet
and the Carlsberg ridge. For C) and D), the section is the region with the east Pacific rise,
the Chile rise and South America.
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Figure 6.6:The unexplained variance in percent for different valuggigf)? in the spec-

tral leakage inversion of phase velocity measurements for Love waves at 40 s and 150 s,
respectively. Ifa/B)? is equal to zero, this corresponds to an inversion with no regular-
isation. The estimated phase velocity maps for Love waves at 40 s and 150 s converge
towards the homogeneous PREM reference model as the valag®f increases.

a = 0 but fora ~ 2. When(a/B)? is large in the spectral leakage inversion, the estimated
phase velocity models for Love waves at 40 s and 150 s are close to the homogeneous
PREM reference model because a large valu@gp)? corresponds to an inversion with

a restrictive regularisation condition.

6.5 Discussion and conclusions

The presented Love wave phase velocity models from the spectral leakage inversion are
obtained without using any damping & 0). This means that only the effects of data
error propagation contribute to the surface wave models for Love waves at 40 s and 150
s which are estimated in the inversion of phase velocity measurements using spectral
leakage theory.

The phase velocity maps for Love waves at 40 s and 150 s obtained in the spectral
leakage inversion without any damping are compared with those that are estimated in
a common least squares inversion without using any regularisation condition. Among
these two linear inversion approaches, the surface wave models from the spectral leakage
inversion correlate better with many tectonic features such as ridges (e.g. the Carlsberg
ridge, the South-West Indian ridge, the Hunter ridge and the southern part of the Mid-
Atlantic ridge) and rises (i.e. the East Pacific rise and the Chile rise).
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Spectral leakage theory is numerically rather demanding, because the anti-leakage
matrix must be inverted by brute force. Every time the number of data doubles it takes
8 times more processor time to invert the anti-leakage matrix (Rtesls, 1986). This
problem imposes a limitation on the number of surface wave data that is feasible to invert
for in a reasonable amount of time. For instance, the spectral leakage inversion of 10000
Love wave relative phaseshifts takes 2 day on a 250 MHz ultra-sparc machine, so an
inversion of 20000 surface wave data takes 16 days. It would therefore be rewarding to
find a way to invert the anti-leakage matrix much faster by exploiting the symmetric and
sparse property of the anti-leakage matrix.
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6.6 Appendix A: The comparison of the phase velocity
maps from the undamped spectral leakage inversion
and the common undamped least squares inversion

According to Eq. (6.8), the inverse of the modeling ma#tjxin the least squares solution
usingCy4* =1 andC} = 0is given by

A9 = (A}_AL)_lA}_. (6.18)

By using spectral leakage theory in Eq. (6.11), the inverse of the modeling matoixfor
0 (no damping) is simplified to

-1
A9 = (A‘LWAL) AL, (6.19)
The only difference between the inverted modeling ma&r[>9 in eq. (6.18) and Eq.

(6.19) is the anti-leakage matri%/, which is applied to suppress the effects of spectral
leakage.
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Next according to Tarantola (1987) and Menke (1989), the model resolution Ratrix
is given by

R=A_%A.. (6.20)

The inverse of the modeling matrix from the common least squares solution without us-
ing any regularisation condition in Eq. (6.18) and from the undamped spectral leakage
estimation in Eq. (6.19) are inserted in the expression for the model resolution matrix
in Eq. (6.20). Hence for the common least squares inversion without any regularisation
condition in use, we get that

-1
R— (A‘LAL) ALA =1, (6.21)
and for the undamped spectral leakage inversion, the model resolution matrix is
t 1t
R— (A,_WAL> ALWA | =, (6.22)

which is always the case for a well-conditioned overdetermined inverse problem (p. 67 in
Menke, 1989).

In order to verify if the global surface wave experiment for Love waves at 40 s and 150
s is a well-posed inverse problem, the trace of the model resolution matrix is calculated
in the spectral leakage inversion without any damping and the common least squares
solution without any regularisation condition in use. For both separate inversions, we find
that the trace of the resolution matrix for the model parameters is equal to the nhumber
of model parameters used in the inversions. The positive result of the calculation of the
trace of the model resolution matrix indicates that the model resolution matrices in the
two kind of undamped inversions have no zero-eigenvalues. The global surface wave
experiment for Love waves between 40 s and 150 s is therefore well-conditioned either
using spectral leakage theory with= 0 or using the common least squares estimation
without any regularisation condition. The comparison of the phase velocity maps from
the two separate inversions is therefore considered to be fair.
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Summary and conclusions

In this thesis, the theories for wavefield-modeling and inverse problems in seismic tomog-
raphy are improved. Seismic tomographic experiments are based mostly on ray theory
which is valid for the description of wave propagation in media where velocity anomalies
are larger in size than the wavelength and the Fresnel zone (see Fig. 1.1 in the introduction
of the thesis, chapter one, for an explanation of the physical parameters). Nonetheless,
the newest surface wave models of the Earth have characteristic lengths of inhomogeneity
of approximately the same order as the wavelength and the Fresnel zone. This observa-
tion poses a problem from a methodological point of view, as it is inappropriate to use
an approximative theory (namely ray theory) that is only valid under conditions that are
not satisfied in the final result (e.g. the tomographic model). Instead, it is necessary to
take the scattering of waves into account in the theory for wave propagation so that in-
homogeneities with length-scales comparable with or smaller than the Fresnel zone are
modeled correctly. Second, a common problem in the inversion of seismic data is that het-
erogeneities smaller than a certain (arbitrary) length scale are neglected due to practical
reasons. However, the truncation of the allowed length-scale in surface wave tomographic
experiments may introduce a systematic error in the surface wave models of the Earth.

It is shown that the timeshift can be expressed as a volume integration of the slowness
perturbation field multiplied by the Echet kernel due to the scattering of waves. The
Fréchet kernel is an analytical function in wave experiments where the straight ray ap-
proach holds. The developed scattering theory is therefore just as easy to apply as the ray
theoretical approach using the great circle approximation in surface wave tomographic
experiments. The Echet kernel depends on the experimental parameters, such as the
distance between the source and receiver, the reference slowness field and the frequency
content of the measured wavefield. It is shown in chapters three through five that the
Fréchet kernel for finite-frequency waves has the maximum sensitivity to slowness per-
turbations off-path from the geometrical ray. For waves propagating in three dimensions,
the sensitivity to slowness perturbations vanishes on the ray path (see Fig. 4.1B in chapter
four). This is a counter-intuitive result compared with ray theory which predicts non-zero
sensitivity to slowness perturbations only on the geometrical ray.

The formation of caustics is significant in small-scale structured media with strong
slowness perturbations (chapter two). However, multiple arrivals associated with caustics
arrive after the ballistic wavefield due to causality. It is appropriate to use the theory for
the scattering of waves even though triplications form in the propagating wavefield.
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The developed scattering theory is a generalisation of ray theory. One obtains the same
result using either ray theory or diffraction theory in the parameter regime where ray the-
ory is valid. In contrast, only the theory for finite-frequency waves predicts the timeshifts
retrieved from a finite-difference 2-D modeling wave experiment (chapter three and four)
and from a physical 3-D experiment with ultrasonic waves propagating in samples of
granite (chapter four) for which scattering effects are important.

The theory for the scattering of waves is applied in global surface wave tomography
for Love waves between 40 s and 150 s (chapter five). In the global surface wave exper-
iment, it is found through a synthetic experiment that present-day global high-resolution
surface wave tomographic models are at the limits of the application of the ray theoretical
great circle approximation. The great circle approximation is valid in surface wave tomog-
raphy as long as the characteristic length of slowness anomalies is larger than 1300 km
and 2000 km for Love waves with the periods of 40 s and 150 s, respectively. Phaseshift
measurements for Love waves between 40 s and 150 s are applied in separate inversions
using ray theory and scattering theory. The estimated tomographic surface wave models
derived from ray theory and scattering theory are similar, because a restrictive regularisa-
tion condition is incorporated in the inversion so that structures with length-scales smaller
than the Fresnel zone are mostly suppressed. However, it is important in future global sur-
face wave tomographic experiments to apply surface wave scattering theory instead of ray
theory in order to obtain higher resolution models of the Earth than is presently possible.

Surface wave scattering theory is applied together with spectral leakage theory in an
inversion of phase velocity measurements for Love waves between 40 s and 150 s (chapter
six). The phase velocity models from the spectral leakage inversion are obtained without
any damping in use, and they are therefore compared most correctly to the surface wave
models from a common least squares solution without applying any regularisation condi-
tion. Itis found that the estimated surface wave models for Love waves between 40 s and
150 s from the undamped spectral leakage solution correlate better with tectonic features
such as plate boundaries, ridges and trenches than the phase velocity models retrieved
from the common least squares solution without using any regularisation condition.

The conclusions above do not contradict the application of ray theory in tomographic
wave experiments, but this thesis demonstrates examples that ray theory is not always
appropriate for the description of propagating waves in media with small-scale hetero-
geneity. When imaging techniques are based on ray theory in a given tomographic wave
experiment, it should be verified in the inverted model that the conditions for ray theory
are satisfied. For complex media where the conditions for ray theory are not valid, the
modeling of wave propagation should be based on scattering theory instead of ray theory.

There are several natural extensions of this thesis research. First, the scattering theo-
retical approach in chapter three is made as general as possible, thereby making it feasible
to incorporate the non-ray geometrical effectin global body wave tomography, in regional
surface wave tomography, in seismic exploration (e.g. crosswell tomography, vertical
seismic profiling, reflection seismic experiments and migration theory), in medical imag-
ing and in ocean acoustics. Second, the scattering theory in the thesis is limited to the
case of isotropic, homogeneous reference media. It would be of interest to generalise the
developed diffraction theory to include heterogeneity and anisotropy in the background
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medium as well. Third, the Rytov approximation is here applied on the acoustic wave
equation. In the case of surface wave scattering theory in chapter five, it is appropri-
ate to use the Rytov approximation on surface waves because the approach is limited to
transmitted and unconverted surface waves. It should be investigated how to generalise
the Rytov approximation to elastic wavefields, so that mode conversion between surface
waves or P-to-S wave conversion and vice versa can be taken into account in future to-
mographic wave experiments. Fourth, it is observed in synthetic aperture radar (SAR)
experiments that it is possible to obtain high-resolution images of the Earth’s surface with
length-scales of heterogeneity that are much smaller than the width of the Fresnel zone
of radar waves. The theory of the scattering of waves presented in this thesis is related
to the concept of Fresnel zones, because the finite-frequency of waves is taken into ac-
count. It would be interesting to construct synthetic experiments which are identical to the
SAR-experiment or to high-resolution seismic exploration experiments so that the limits
of resolution in tomographic wave experiments can be investigated analytically. Lastly,
the work about scattering theory by Dahkral. (2000) and Hungt al. (2000) indicates

that non-linear effects are important (see the introduction in chapter one for references).
In contrast, the scattering theory based on the Rytov approximation as found in this thesis
is linearised. It is important to investigate the role of non-linearity on the propagation of
waves in media where scattering effects are important.
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In dit proefschrift wordt de theorie op het gebied van golfveld-modellering en inverse
problemen in seismologische tomografische experimenten verbeterd. Het probleem is
dat de meeste golfveld-modelleringsstechniekenin globale seismologie gebaseerd zijn op
eenvoudige versies van stralentheorie. Stralentheorie geeft de oplossing van de akoestis-
che golfvergelijking in de hoge frequentie limiet, en daarom worden de voorwaarden
voor stralentheorie alleen vervuld in gladde media waar de snelheid langzaam verandert
over een lengteschaal die groot is vergeleken met de golflengte en de dikte van de Fres-
nel zone (zie figuur 1.1 in de introductie van dit proefschift voor een verklaring van de
natuurkundige grootheden). Het laatste decennium is er een tendens in de globale seis-
mologie om te proberen de resolutie van snelheids-strukturen in tomografische, regionale
en globale snelheidsmodellen van de aarde te verbeteren door meer rekenkracht en betere
datasets. De huidige snelheidsmodellen van de aarde in de globale seismologie laten
zien dat de meest voorkomende lengte van heterogeniteiten dezelfde orde van grootte
heeft als de golflengte en de Fresnel zone van het gemeten golfveld. Dit betekent dat
de voorwaarden voor stralentheorie in het algemeen niet worden vervuld bij de huidige
snelheidsmodellen van de aarde. Daarom moet verstrooiingstheorie worden gebruikt om
te beschrijven hoe golven zich voortplanten in media waar de voorwaarden voor stralen-
theorie niet langer geldig zijn. Verstrooiingstheorie kan worden gebruikt voor media waar
snelheidsvariaties dezelfde orde van grootte hebben als de golflengte en de Fresnel zone
van het gemeten golfveld.

Storingstheorie voor de faseverstoring van doorgelaten golven (om precies te zijn
de Rytov benadering) wordt gebruikt voor het afleiden van de tijdsverschuiving m.b.t.
traagheidsstoringen, die eindige frequentie-effecten bevatten. De wiskundige uitdrukking
voor de tijdsverschuiving van doorgelaten golven is een integratie van het traagheidsstor-
ingsveld vermenigvuldigd met de éghet afgeleide over het volume tussen bron en ont-
vanger. De Fechet afgeleide hangt af van de frequentie-inhoud van het gemeten golfveld,
en zij geeft aan wat de gevoeligheid voor traagheidsstoring is van elk punt in het volume
tussen bron en ontvanger. In de hoofdstukken drie tot vijf wordt uitgelegd, daedbdir”
funktie door de eindige frequentie-effecten van golven de eigenschap heeft, dat de max-
imale gevoeligheid voor traagheidsstoringen afwijkt van de baan van de geometrische
straal. Met betrekking tot golven die zich in drie dimensies uitbreiden vindt men, in
tegenstelling tot wat men zou verwachten op grond van stralentheorie, dat de gevoeligheid
m.b.t. traagheidsstoringen op de geometrische straal nul is. De wiskundige uitdrukking
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voor de tijdsverschuiving, die afgeleid is van de verstrooiingstheorie, is een generaliser-
ing van de tijdsverschuiving uit stralentheorie. Zo wordt bijvoorbeeld in hoofdstuk drie
tot vijf bewezen, dat stralentheorie en verstrooiingstheorie tot hetzelfde resultaat leiden
wanneer golven zich voortplanten in snelheidsmedia die voldoen aan de voorwaarden van
stralentheorie. In complexe snelheidsmedia, waar niet aan de voorwaarden voor stralen-
theorie voldaan wordt, geeft alleen verstrooiingstheorie een correct resultaat.

De hier ontwikkelde theorie, die rekening houdt met de geometrische effecten die niet
van stralen komen, is getest op een 2-dimensionaal numeriek experiment (hoofdstukken
drie en vier) en op een 3-dimensionaal ultrasoon experiment (hoofdstuk vier). In deze
twee experimenten voor doorgelaten golven worden snelheidsmodellen gebruikt die aan
de voorwaarden voor verstrooiingstheorie voldoen. Het 2-dimensionale numerieke ex-
periment en het drie-dimensionale ultrasone experiment laten duidelijk zien dat de the-
orie voor golven met eindige frequenties, de geobserveerde tijdsverschuivingen beter
kan voorspellen dan stralentheorie. Vooral in het ultrasone experiment wordt duidelijk
getoond dat stralentheorie de geobserveerde tijdsverschuivingen overschat in experimenten
waarin verstrooiingseffekten een rol spelen. De resultaten van het 2-dimensionale nu-
merieke experiment en het echte 3-dimensionale ultrasone experiment geven aan, dat het
niet juist is om stralentheorie te gebruiken in tomografische experimenten in de globale
seismologie, die snelheidsstrukturen tonen met dezelfde lengteschaal als de golflengte en
de Fresnel zone van de gemeten golven.

De vorming van triplicaties (gerelateerd aan “caustics”) geeft aanleiding tot meer-
voudige golfvelden waarbij de amplitude van de eerst aankomende golf veel kleiner kan
zijn dan van de latere. Daarom is het moeilijk om de golf die het eerst aankomt te ont-
dekken als er triplicaties worden gevormd. Triplicaties worden gevormd, als een golfveld
zich uitbreidt in een medium met focuseringseffecten. In deze studie (hoofdstuk twee)
wordt laten zien in een numeriek experiment dat “caustics” verlaat zijn in verhouding tot
de eerste aankomst. Het is correct om de ontwikkelde verstrooiingstheorie te gebruiken
voor de golfveld van eerst aankomsttijden, ook al is de vorming van triplicaties dominant
in het gemeten golfveld.

De theorie voor golven met eindige frequentie effecten wordt gebruikt in een globaal
oppervlaktegolf experiment waarin de geobserveerde data de faseverschuivingen zijn van
Love golven tussen 40 s and 150 s (hoofdstuk vijf). Oppervlaktegolven zijn, zoals het
woord al aangeeft, golven die zich langs het oppervilak van de aarde uitbreiden. Love
golven zijn een speciaal soort oppervlaktegolven die worden gekarakteriseerd door hun
transversale en horizontale deeltjes beweging. De berekende fasesnelheidsmodellen van
een inversie van Love golf faseverschuivingen met gebruik van verstrooiingstheorie wordt
vergeleken met de corresponderende fasesnelheidsmodellen, die gebaseerd zijn op stra-
lentheorie (preciezer gezegd: de verstrooiingstheoretische grote cirkel die de lijn is die
een bron en ontvanger verbindt over een bolvormig oppervlak). Er bestaat geen noe-
menswaardig verschil tussen de fasesnelheidsmodellen die berekend zijn met stralenthe-
orie en zij die berekend zijn met verstrooiingstheorie. De rede hiervoor is, dat er in het
oppervlaktegolf inversie experiment een strenge regulariseringsvoorwaarde is gebruikt.
Deze regulariseringsregel onderdrukt het effect van heterogeniteiten met lengteschalen
die kleiner zijn dan de Fresnel zone. Op deze manier zijn de voorwaarden voor stralen-
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heorie vervuld in de berekende fasesnelheidsmodellen. Een synthetisch experiment is
geconstrueerd om de grenzen van stralentheorie in de tomografie van oppervlaktegolven
te bepalen. Hieruit is gebleken, dat voor experimenten op het gebied van oppervlaktegol-
ven de stralentheoretische grote cirkel benadering beperkt is tot snelheidsstrukturen met
karakteristieke lengtes groter dan 1300 km en 2000 km voor Love golven met periodes

van respectievelijk 40 s en 150 s.

Ten slotte wordt het gebruik van een speciale inversietechniek onderzocht in globale
tomografie van oppervlaktegolven die “spectral leakage” theorie wordt genoemd (hoofd-
stuk zes). De “spectral leakage” theorie stelt dat geobserveerde datdobd kunnen
worden door snelheidsstrukturen met lengteschalen waarmee in een inversie experiment
geen rekening kan worden gehouden. Als de geobserveerde data niet wordt gecorrigeerd
voor het “spectral leakage” probleem, is het mogelijk dat hetgeteerde model een
systematische fout bevat. Verstrooiingstheorie van oppervlaktegolven in combinatie met
“spectral leakage” theorie wordt gebruikt bij een inversie van Love golf faseverschuivin-
gen tussen 40 s en 150 s. Damyesrteerde opperviaktegolf modellen van de “spectral
leakage” inversie zijn berekend zonder regulariseringsvoorwaarde, maar toch tonen zij
een goed verband met tektonische strukturen en grenzen tussen tektonische platen.
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| dette phd-studium bliver teorien for bglgefelt-modellering og inverse problemer i seis-
misk tomografiske bglge eksperimenter forbedret. Problemet er, at de fleste bglgefelt-
modellingsteknikker i global seismologi er baserat $imple versioner af stéteori.
Strdleteori er en hgj-frekvens tilnaermelsea, Isétingelserne for sttéteori er kun op-
fyldt i glatte medier, hvor hastighedsanomalier aendrer sig langsomt over store laengde-
skalar sammenlignet med bglgeleengden og vidden af Fresnel zonen af det registrerede
bglgefelt. (Se Fig. 1.1 i introduktionen til denne afhandling for en forklaring af de fysiske
variable). Dog er tendensen i global seismologi at forsgge at forbedre oplgsningen af
hastighedsstrukturer i regionale og globale hastighedsmodeller af Jorden p.g.a. den starre
computerkraft og forbedrede dataseet der eksisterer idag. Aktuelle hastighedsmodeller af
Jorden i global seismologi viser karakteristiske laeengder af inhomogeniteter med samme
stgrrelsesorden som bglgelaengden og Fresnel zonen abttetomligefelt. Det betyder,
at betingelserne for stléteori generelt ikke er opfyldt i de nyeste hastighedsmodeller af
Jorden. Det er istedet ngdvendigt at indfgre diffraktionsteori for at beskrive, hvordan
balger udbreder sig i medier, hvor betingelserne falsteori ikke leengere er gyldige.
Diffraktionsteori er relevant at anvende i medier, hvor hastighedsvariationer er af samme
starrelsesorden som bglgelaengden og Fresnel zonen af det registrerede bglgefelt.
Perturbationsteori for fase transmitterede bglger (mere praecist Rytov approksimatio-
nen, der er en faseskiftstiinaermelse) bruges til at udlede tidsskiftet mht. slowness pertur-
bationer, der indeholder endelige frekvenseffekter. Udtrykket for tidsskiftet af transmit-
terede bglger er et integral af slowness perturbationsfeltet veegtet et fanktionen
over volumet, der er imellem bglgekilden og modtagereacket funktionen er afhaengig
af frekvensindholdet af det registrerede bglgefelt, og den angiver sensitiviteten til slow-
ness perturbationer for hvert punkt i volumet mellem kilde og modtager. Det er vist i
kapitel tre til fem, at Fechet funktionen p.g.a. endelige frekvenseffekter af bglger, har
egenskaben, at den maximale sensitivitet mht. slowness perturbationer afviger fra banen
af den geometriske stié. For balger, der udbreder sig i tre dimensioner, finder man det
kontraintuitive resultat sammenlignet medastt&orien, at sensitiviteten mht. slowness
perturbationer er nulgpten geometriske sti€. Udtrykket for tidsskiftet, der er udledt
ved diffraktionsteori, er en generalisation af deaktéoretiske tidsskift. For eksempel
er det bevist matematisk i kapitel tre til fem, at man apdét identiske resultat ved at
bruge enten sadeteori eller diffraktionsteori for transmitterede bglger i hastighedsme-
dier, hvor betingelserne for siéteori er gyldige. | mere komplicerede hastighedsmedier,
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hvor betingelserne for siléteori ikke er opfyldt, er det kun korrekt at anvende diffrak-
tionsteori.

Den udviklede teori, der tager geometriske effekter ikke hidrgrende fteistrbe-
tragtning, er testet i et 2-dimensionalt numerisk bglge eksperiment (kapitel tre og fire) og
i et 3-dimensionalt ultrasonisk bglge eksperiment (kapitel fire). | disse to bglge eksper-
imenter for transmitterede bglger anvendes hastighedsmodeller for hvilke betingelserne
for diffraktionsteori er gyldige. Det er tydeligt vist i det 2-dimensionale numeriske bglge
eksperiment og i det 3-dimensionale ultrasoniske bglge eksperiment, at teorien for bglger
med endelige frekvenser er bedre endlst€ori til at forudsige de observerede tidsskift.

Det er iseer tydeligt dokumenteret i det ultrasoniske bglge eksperiment akstesbri
overestimerer de observerede tidsskift i bglge eksperimenter, hvor diffraktionseffekter
er relevante. Resultaterne fra det 2-dimensionale numeriske bglge eksperiment og det 3-
dimensionale ultrasoniske bglge eksperiment indikerer, at det ikke er korrekt at benytte
strdleteori i tomografiske hgj-oplgsnings balge eksperimenter i global seismologi, der
viser hastighedsstrukturer med samme laengde-skala som bglgeleengden og Fresnel zonen
af de ndlte bglger.

Triplikationer (relateret til kaustiks) er bglgefelter med flere ankomststider. Am-
plituden af det farst ankommende bglgefelt er ofte lille i forhold til amplituden af de
balgefelterne, som kommer derefter. Det er derfor sveert at detektere den fagrst ankom-
mende bglge, a’triplikationer er tilstede i det aife bglgefelt. Triplikationer bliver ud-
viklet, ndr et balgefelt udbreder sig i et medium med fokuseringseffekter. Det er vist i
dette studium (kapitel 2), at kaustiks er forsinkede i forhold til det ballistiske bglgefelt
p.g.a. kausalitet. Den udviklede diffraktionsteori for farst ankommende bglger er stadig
korrekt at benytte, selvom tilstedeveerelsen af triplikationer er dominerende i det registr-
erede bglgefelt.

Teorien for bglger med endelige frekvenseffekter er brugt i et globalt overfladebglge
eksperiment, hvor de observerede data er faseskift for Love bglger mellem 40 s og 150
s (kapitel 5). Overfladebglger er, som ordet indikerer, bglger, der udbreder sig langs Jor-
dens overflade, og Love bglger er en special type af overfladebglger karakteriseret ved
dets amplitude, der er transversal og horisontal. De beregnede fasehastighedsmodeller fra
inversionen af Love bglge faseskift ved brug af diffraktionsteori er sammenlignet med de
tilsvarerende fasehastighedsmodeller, som er basedspStaleteoretiske storcirkel ap-
proksimation. Der er ikke nogen naevneveerdig forskel mellem fasehastighedsmodellerne
beregnet med siféteori eller diffraktionsteori, hvilket skyldes at der i inversionsprob-
lemet er inkluderet en streng regulariseringsbetingelse. Den restriktive regulariserings-
betingelse undertrykker effekten af heterogeniteter med laengde-skalaer mindre end Fres-
nel zonen, a°betingelserne for stéteori er opfyldt i de beregnede fasehastighedsmod-
eller. Et syntetisk eksperiment er konstrueret for at bestemme begraensningale i
i overfladebglge tomografi. For globale overfladebglge eksperimenter er det derved fun-
det, at den stieteoretiske storcirkel approksimation er indskraenket til hastighedsstruk-
turer med karakteristike laengder stgrre end 1300 km og 2000 km for Love bglger med de
respektive perioderapa0 s og 150 s.

Til sidst bliver anvendelsen af en seerlig inversionsteknik, kaldet spektral laekage teori,

i global overfladebglge tomografi undersagt (kapitel seks). Spektral laekage teori handler
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om, at observerede data kan veeagifKet af hastighedsstrukturer med en leengde-skala,
der ikke er taget hgjde for i en given inversion. Hvis de observerede data ikke bliver
korrigeret for det spektrale laekage problem, er det muligt, at den inverterede model inde-
holder en systematisk fejl, da effekten af inhomogeniteter, der ikke er medtaget i inversio-
nen, kan leekke ind i den estimerede model. Overfladebglge diffraktionsteori kombineret
med spektral laekage teori er anvendt i en inversion af Love bglge faseskift mellem 40 s
og 150 s. De inverterede overfladebglge modeller med den spektrale leekage korrektion af
faseskift er beregnet uden brug af en regulariseringsbetignelse, og viser en god korrelation
med tektoniske plade graenser og strukturer.
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