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ABSTRACT

Granular solids such as natural rocks and concrete show nonlinear elasticity in response

to dynamic deformation with a large strain amplitude. Resonance experiments can measure

the nonlinear elasticity using resonance curves which show response amplitudes as a function

of driving (oscillation) frequencies. To analyze the nonlinear elasticity observed in resonance

experiments, I first simulate a nonlinear oscillation system (i.e., Du�ng equation) that in-

volves a cubic term in the equation of state. The simulation illustrates three critical factors,

i.e., driving frequency, driving amplitude, and the initial condition of the deformation; these

factors control the stable solution that is the sustained amplitude of the Du�ng oscillation.

I propose a thermodynamics-based model to reproduce the nonlinear resonance features

observed in laboratory experiments of rocks and concrete including (a) the log-time recovery

of the resonant frequency after the deformation ends (slow dynamics), (b) asymmetric reso-

nance curves in the direction of the driving frequency, (c) the di↵erence between resonance

curves when the driving frequency is swept upward and downward, and (d) the presence of

a “cli↵” segment to the left of the resonant peak under the condition that the nonlinearity

in the oscillation system is strong. This model provides a unified interpretation of nonlinear

elasticity. The asymmetry of the resonance curve is caused by softening, which is docu-

mented by a reduction of the resonant frequency during the deformation; the cli↵ segment

of the resonance curve is linked to a bifurcation that involves a steep change in the response

amplitude when the driving frequency is changed.

The simulated Du�ng oscillation system shows similar behavior as the resonance simula-

tions. The bifurcation originates from the strong nonlinearity in the oscillation system and is

present in both simulations. Extensions of the thermodynamics-based model could include

temperature, moisture (pore pressure), and confining pressure. This thesis could contribute

to geophysical applications such as monitoring of fracture healing after hydraulic fracturing
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in unconventional oil and gas reservoirs as well as in enhanced geothermal systems.
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CHAPTER 1

INTRODUCTION

Hooke’s law involves a linear relationship between strain and loading stress when the

strain is below the linear elastic threshold [6]. Continuum mechanics regards Hooke’s law as a

first-order linear approximation of the stress as a function of the strain [7]; the corresponding

first-order coe�cient, expressed as the ratio of the stress to the strain, is referred to as the

elastic modulus, which represents the rigidity or incompressibility of a material. Dynamic

deformation propagates in solids and forms elastic waves traveling with a wavespeed that

depends on the elastic moduli. When the deformation follows the Hooke’s law as the equation

of state (EOS) or constitutive equation, linear elastic waves can describe the propagation

of mechanical energy in solids; this linearity requires that the amplitude of the dynamic

deformation does not exceed the linear elastic threshold [8]. Both exploration and global

seismology typically use the linear EOS to account for wave propagation in the Earth [9],

but some work [e.g., 10] also involves nonlinear phenomena in wave propagation.

Linear elastic materials have a frequency response that is independent of the deformation

amplitude. In other words, two waves can linearly superimpose without distorting each other

when the waves come together. Studies [e.g., 11, 12] of wave theory often apply the linear

EOS in the equation of motion that physically describes elastic wave propagation in linear

elastic materials.

Granular solids display nonlinear elasticity with a deformation strain as low as 10�7 [13]. I

refer to granular solids as a general term including natural rocks, concrete, and damaged solid

materials. Together with Newton’s law, a nonlinear EOS governs the equation for “nonlinear

wave propagation” that refers to mechanical waves propagating in nonlinear elastic media

with a large wave amplitude [14]. Since the EOS involves a nonlinear relationship between

stress and strain, wave propagation shows a variety of nonlinear features such as stress-strain
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curves with a hysteretic area caused by both attenuation and nonlinearity [6, 15], resonance

curves with a shift in resonant frequency [5, 16, 17], nonlinear dissipation [18], and nonlinear

attenuation [19].

Nonlinear elasticity can be categorized based on the physical origins of nonlinearity.

Solid materials have the classical atomic nonlinear elasticity that originates from atomic and

molecular lattice anharmonicity (Landau’s theory); as a result, stress is a function of strain

with higher order terms in addition to the first order coe�cient [20]. The classical nonlinear

elasticity applies to solid materials when the strain is large; this type of nonlinear elasticity

is commonly weak due to strong intermolecular forces among molecules that compose a

solid. When the strain exceeds the elastic threshold, materials are broken with irreversible

permanent deformation [6].

Granular solids such as rocks intrinsically have another type of nonlinear elasticity that

originates from defects [14]. Natural rocks contain defects such as contacts between soft

composites and a hard matrix [21]; for example in sandstones, quartz acts as the hard

crystal element, and intergranular clay acts as the soft matrix element. Other defects in

rocks include lattice imperfections, bonds, and intergranular contacts. This thesis uses the

word “fractures” as a general term for all of these types of defects in granular solids including

natural rocks and concrete. Since the size of these defects is commonly at the nanoscale,

one refers to this elasticity as nonlinear mesoscopic elasticity (NME) [22]. Although the size

of natural fractures ranges from the nanoscale to millimeters, and even larger in the field

scale, a fracture at the macroscale (e.g., millimeters) could be regarded as a combination

of a massive number of mesoscopic elements such as nanoscale intergranular contacts and

bonds. The NME can be strong when a large mesoscopic fracture density exists in a solid.

These mesoscopic fractures including granular contacts and bonds are of much smaller sizes

compared to the macroscopically observable fracture sets [23]. Since fractures dominate the

NME, one can apply nonlinear elasticity to the damage assessment of building materials

(e.g., concrete) [24–27]. The construction industry assesses the quality of cemented concrete
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using nondestructive testing that measures the nonlinear elasticity of concrete [28].

This thesis provides insights into the nonlinear elasticity observed in granular solids.

I first introduce measurement techniques that quantitatively assess the nonlinear elastic-

ity (section 1.1). Section 1.2 introduces various observed nonlinear features in laboratory

measurements and the existing theoretical models, which aim to explain these features. Sec-

tion 1.3 shows the field-observed nonlinear features during strong ground shaking. Among

the various features observed in the laboratory and field, my thesis focuses on the simula-

tion of resonance experiments and reproduces the observed nonlinear features in resonance

curves. Chapter 2 introduces several nonlinear oscillators that are mathematical descrip-

tions of resonance experiments. Section 2.1 illustrates three important factors that control

the nonlinear oscillation system. Chapter 3 contains a thermodynamics-based model that

qualitatively simulates the observed nonlinear features in resonance curves; the simulation

provides a unified interpretation of the nonlinear elasticity observed in resonance experi-

ments. The thesis concludes with the limitations of the thermodynamics-based model and

an outlook related to laboratory and field measurements (Chapter 4).

1.1 Laboratory measurements

A variety of laboratory techniques have been carried out to measure the nonlinear elas-

ticity of granular solids such as rocks and concrete. Typical laboratory experiments involve

resonating a cylindrical solid sample (e.g., rocks) with a large deformation amplitude; strong

deformation further induces the nonlinearity of the dynamically deformed sample. Di↵erent

measurement techniques apply di↵erent methods to monitoring the variation of the elastic

modulus (seismic velocity) of the sample.

Nonlinear resonant ultrasound spectroscopy (NRUS) involves the measurement of the

resonant frequency with a periodic stress field loaded along the central axis of a cylindrical

sample. A vibrator loads one end of the sample and emits low-frequency, high-amplitude

pump waves that condition the sample into a new elastic state [5, 29, 30]. Pump waves

give a strong dynamic stress field that continuously shakes the sample, and “condition”
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refers to changing the elastic state (modulus) of a sample using dynamic deformation with

a large strain amplitude [31]. In response to the pump waves, the sample oscillates and

gradually reaches a steady state with a sustained oscillation amplitude. NRUS measures

stable oscillation amplitudes against di↵erent driving frequencies used in the stress field; the

driving frequency can be either continuously swept from a lower to a higher value (upward)

or from a higher to a lower value (downward). When the driving frequency approaches the

resonant frequency of the sample, response amplitude increases significantly and reaches a

peak that is called the resonant peak and indicates the resonant frequency. The change of

resonant frequency with dynamic deformation indicates the change of seismic velocity; the

resonant frequency often shifts towards a lower value in response to dynamic deformation,

and hence the sample softens, and the wave velocity is reduced. Thus, the resonant frequency

shift reveals the nonlinear elasticity of the sample. Torsional shear stress field can also excite

pump waves, which change the shear rigidity of a sample [32, 33]. Chapter 3 gives more

details of NRUS.

Dynamic acoustoelastic testing (DAET) is used to measure the variation of the seismic

velocity when a sample is conditioned by pump waves. Apart from low-frequency pump

waves, the experiment includes high-frequency probe waves orthogonal to the low-frequency

pump waves, as shown in Figure 1.1. The probe waves travel between the two ultrasound

transducers with a small wave amplitude, which avoids inducing nonlinearity in the sample.

Since probe waves are too weak to generate nonlinearity in the sample, the change of the

probe-wave traveltimes determines the variation of the seismic velocity; such a variation

reflects the nonlinearity induced by the pump waves. The probe waves have much higher

frequency than the pump waves; hence, probe waves can be launched successively with a

short time interval. A series of probe signals can cross-correlate with the reference signal

that is recorded when pump waves are not present; the crosscorrelations give the shifts of

the transmitted P phase (first arrival) and further give the relative velocity deviations �c/c0

from a static unstrained sample with seismic velocity c0 [30, 34–37]. In other words, one
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can monitor the variation of the seismic velocity during dynamic deformation. Apart from

concrete [25, 38] and rocks [39], DEAT also applies to assessing the damage in artificially

kinked nonlinear materials [40].

Figure 1.1: Experimental setup of DAET (adapted from Renaud et al. [1]).

Other techniques exist with a similar experimental setup to DAET. Gallot et al. [41]

measure the change of the P-wave arrival time due to S pump waves. Di↵use acoustic wave

spectroscopy [42] incorporates coda wave interferometry [43–47] to measure the shift of the

coda of probe signals; this calculation enhances the measurement accuracy of velocity vari-
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ations during dynamic deformation. Di↵use acoustic wave spectroscopy works best when a

sample is strongly inhomogeneous, and the wave propagation inside the sample has strong

multiple scattering [48]. In addition, the coda mainly contains S-wave energy that is more

sensitive to fractures in the sample than P waves (e.g., first arrival) [49, 50]. Laser inter-

ferometry performs a role in nondestructive testing without using contacting sensors [51];

the probe signals can be recorded by a laser sensor pointed at the surface of the sample.

Lobkis and Weaver [52] use a resonance technique (i.e., Larsen e↵ect) that applies an ultra-

sonic feedback circuit ring to monitoring the curing process of a cement paste sample after

a wooden ball drops onto the sample and causes a transient impact.

1.2 Nonlinear features

Dynamic deformation driven by pump waves show more nonlinear elastic features in

granular solids than static stress loading experiments [6]. Granular solids soften in response

to tension and harden in response to compression; this asymmetric response originates from

the Hertzian law that gives the EOS of intergranular contacts [20, 21]. The elasticity of these

contacts follows a nonlinear stress-strain (�-✏) relationship, � / ✏

3/2 in compression; tension

detaches the contacts and results in zero contact stress.

NRUS can be used to measure the resonant frequency shift in response to dynamic

deformation; the shift is commonly negative, indicating softening of a sample during the

dynamic deformation. The measured resonant frequency shift is proportional to the change

of Young’s modulus when the shift is small compared to the static resonant frequency [5].

The measured resonant frequency shifts against deformation amplitudes can be indicative

of the parameters in a nonlinear EOS [29] that includes higher order anharmonicities and

a hysteretic term (i.e., Hertzian factor) regarding the asymmetric response to tension and

compression (see Chapter 2 for more details). Johnson et al. [53] measure a nonlinear pa-

rameter that is the third order coe�cient of a nonlinear EOS using resonant frequency shifts

against deformation amplitudes. In addition, the scaling subtraction method can measure

other anharmonic coe�cients as well as the Hertzian factor [54]. The nonlinear elasticity of
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a granular sample becomes significant when the amplitude of the pump waves is beyond a

strain threshold ✏

M

; this threshold divides the deformation into two regimes [55, 56]. When

the deformation amplitude is below ✏

M

, the resonant frequency shift (nonlinearity) is small

and can be adequately described by the classical atomic nonlinear elasticity (i.e., Landau’s

theory) [20]. When the amplitude is beyond ✏

M

, the resonant frequency shifts significantly

to a lower value with an increase in amplitude; nonclassical nonlinear elasticity explains this

correlation between the deformation amplitude and resonant frequency shift [13, 57].

NRUS reveals the correlation between the microdamage density and nonlinear elasticity

(softening) in a sample; a higher degree of damage in the sample causes a larger shift of the

resonant frequency, indicating stronger softening [58]. Thus, the damage assessments using

NRUS have been applied to concrete for building construction [24, 27, 31] and to human

bones for medical diagnostics [26] where nonlinear acoustic imaging can be competitive to

CT scan imaging.

NRUS produces resonance curves where nonlinear elasticity leads to (a) steepening of

the curves at the left of the resonant peak and flattening at the right of the peak and (b)

the di↵erence of the curves when sweeping the driving frequency upward and downward.

Chapter 3 gives more details of these features.

Granular solids show anelasticity, i.e., a type of nonlinear elasticity that evolves with

time. During dynamic deformation, a sample commonly softens (with some exception de-

scribed in ref. [59]); after the deformation ends, the sample gradually recovers to the original

elastic state (modulus), as shown in Figure 1.2 where the decrease in the resonant frequency

indicates the softening, and the increase indicates the recovery. The recovery curve is linear

with the logarithm of time [2, 42, 52, 60–62], as shown in Figure 1.3. One refers to this

log-time recovery as slow dynamics. NRUS can be used to measure slow dynamics; the ex-

periment requires a weak driving stress field to avoid inducing nonlinearity in a cylindrical

sample during recovery; the weak stress field acts as the probe waves propagating along the

central axis of the bar (sample). These probe waves involve a fast frequency sweep for the
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instantaneous resonant frequency of the sample. Hence, one can record the time-varying

resonant frequency in the recovery process [63]. In addition, DAET can be used to measure

slow dynamics; the experiment maintains probe waves after pump waves stop. DAET can

also be used to measure fast dynamics that refers to the reduction of seismic velocity when

conditioning a sample using the dynamic deformation that is driven by the pump waves.

Also, coda wave interferometry can be used to measure the variation of the seismic velocity

during and after dynamic deformation [42, 43].

Figure 1.2: Variation of the resonant frequency with multiple relaxations and excitations
(conditioning). The graph is adapted from TenCate [2].

Anelasticity causes hysteresis that reflects the signature of the memory of the past defor-

mation. One can dynamically load a sample with a stress field and measure the instantaneous

response amplitude. The stress-strain curve features a hysteresis loop that involves di↵erent

curves (paths) depending on whether the strain is increasing or decreasing [3, 64]. Di↵erent
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Figure 1.3: Slow dynamics with the log-time recovery of the resonant frequencies for four
geomaterials. The graph is adapted from TenCate [2].
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paths exist for the stress-strain curve when the loading moves from tension to compression

and from compression to tension [32]. In this case, the sign of the strain rate ✏̇ a↵ects the in-

stantaneous elasticity [40]. A linear visco-elastic material shows hysteresis that is caused by

damping and attenuation [65, 66], as shown in Figure 1.4. Also, nonlinear elastic materials

such as granular solids show hysteresis that is caused by both the attenuation and nonlin-

earity regarding a nonlinear relationship between the stress and strain [13, 15, 21, 59]. The

hysteresis in granular solids shows complicated behavior such as various shapes of hysteresis

loops [e.g., 67, 68]. DAET is used to measure hysteresis in granular solids including rocks

and concrete; the experiment gives a hysteresis loop where the change of the elastic modulus

is recorded against the oscillating deformation strain, as shown in Figure 1.5. The elasticity-

strain curve shows complicated behavior [1, 30]; for example, the loop in the bottom-left of

Figure 1.5 displays a shape of “triple butterfly”. Rivière et al. [69] show that these hysteresis

loops could vanish when the stress field varies slowly. Also, Holcomb [6] points out that at

slow stress sweep rates, the hysteretic area of stress-strain curves decreases to zero. This

disappearance of hysteresis with slow-varying stress is reminiscent of slow dynamics, where

the e↵ect of the past deformation on the present elastic state dissipates with time (memory

e↵ect). Rivière et al. [30] classify rock types based on the observed nonlinear features in

NRUS and DAET.

For wave propagation in nonlinear elastic materials, wave modulation experiments show

that two collinear single-frequency continuous waves (one of higher frequency f1 and one of

lower frequency f2) generate side-band frequency components (i.e., combination frequency

f1 ± f2) in addition to harmonics [14, 70]. This generation of combination frequency is well-

known as the Luxemburgh-Gorky e↵ect observed in granular solids or a granular packing [71].

The amplitude of the generated combination frequency is indicative of the degree of damage

in a sample [72]. Nonlinear elastic wave spectroscopy, a technique to assess the damage in

nonlinear elastic materials, involves emitting two single-frequency waves that interfere in a

damaged sample and recording the amplitude of the received side-band frequency compo-
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Figure 1.4: (a) One cycle of the variable stress field with amplitudes A2 > A1. (b) Stress-
strain curves for two di↵erent amplitudes of the stress field. These stress-strain curves form
loops with average modulusK1 andK1; the shaded area denotes the energy dissipated during
the loading (A1). The graph is adapted from Meo et al. [3].

Figure 1.5: Variation of the elastic modulus of the Berea sandstone during a cycle of the
stress field. The graph is adapted from Renaud et al. [1].
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nents [41, 73]. Nonlinear elastic wave spectroscopy, used in nondestructive testing, has been

widely applied to aircraft foam sandwich [74], concrete cover [25], composite plates [75], and

a glass bead package [76] for crack detection.

Elastic waves with a wide frequency bandwidth experience nonlinear dissipation and

attenuation [19, 21, 77–79]. The generation of side-band frequency components increases

the high-frequency components of the waves; high-frequency energy attenuates faster than

low-frequency energy. Hence, the Luxemburgh-Gorky e↵ect intensifies attenuation of elastic

waves in a nonlinear elastic material [14, 80, 81].

Theoretical models can explain the above-mentioned nonlinear mesoscopic elasticity and

the observed features in laboratory measurements. These nonlinear features originate from

bond ruptures and reconstructions in mesoscopic fractures [82, 83]; these physical/chemical

processes occur at the nanoscale [84]. Barsoum et al. [85] show the interaction between

fractures such as crystal dislocations and granular microcontacts in solids and ultrasound

waves; their experiment shows the e↵ect of temperature on dislocation-based incipient kink

bonds. The higher temperature causes stronger nonlinearity with a larger resonant frequency

shift observed in resonance experiments.

For slow and fast dynamics, existing models incorporate thermodynamics, which involves

both activation and relaxation processes of the fractures to open and to be closed. Snieder

et al. [86] explain the log-time recovery using a multiscale relaxation scheme, which simulates

the process of fracture closure in a sample [87]. Vakhnenko et al. [88] simulate slow dynamics

with the connection and breaking of interlaminar cohesive bonds; a two-level energy system

is proposed for fractures with a bistable transition process that allows for cohesive and

repulsive forces among microcontacts at mesoscopic scales [21, 89]. With a thermodynamics-

based model, Zaitsev et al. [84] show the memory and aging e↵ects that are closely related

to slow dynamics. Li et al. [90] verify the contribution of bond breaking and linking to slow

dynamics by observing the reconstruction of the broken chemical bonds; the reconstruction

process is varying linearly with the logarithm of time.
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Preisach-Mayergoyz theory (PM model) [91, 92] can explain the hysteresis observed in

granular solids using “hysteretic mesoscopic units” that vary with scales. The PM model in-

corporates a multiscale superposition of the hysteretic mesoscopic units to simulate softening

and recovery of granular solids in response to dynamic deformation. In addition, a nonlinear

oscillator built based on the PM model can simulate resonance experiments [93, 94]. How-

ever, Claytor et al. [95] propose a limitation of the PM model; the model fails to reproduce

several stress-strain measurements at slow stress varying rates on various sedimentary rocks.

In other words, the PM model is not e↵ective in simulating the hysteresis of some rocks.

A nonlinear EOS with higher order coe�cients can simulate nonlinear wave modulation

with generated side-band frequency components [96, 97]. Abeele et al. [72] simulate nonlinear

wave modulation using both classical and nonclassical nonlinearity. Also, Blanloeuil et al.

[98] consider both the contact law and contact dynamics occurring at microcracks to simulate

nonlinear wave modulation.

None of the above-mentioned models are purely physical; these models are either phe-

nomenological or semi-phenomenological with some assumptions such as a nonlinear EOS,

which could be empirically summarized from these observed nonlinear features (e.g., hys-

teresis loop) in granular solids.

1.3 Field observations

Apart from rocks and concrete in laboratory experiments, unconsolidated soils in the

shallow Earth could also show nonlinear elasticity, i.e., a decrease of regional seismic ve-

locity after the passage of seismic waves originating from remote earthquakes with large

magnitudes; this near-surface velocity drop is observed during and after strong ground shak-

ing [99]. Figure 1.6 gives an example of variations in the near-surface seismic velocity in

Northern Chile [4]; abrupt changes in the velocity coincide with earthquakes as marked by

the vertical bars in the lower panel. Renaud et al. [100] and Johnson et al. [101] conduct

DAET-like field experiments on near-surface soils using active sources, i.e., vibrator truck;

these experiments verify that near-surface soils soften in response to ground shaking.
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Figure 1.6: Eight-year variation of the seismic velocity in northern Chile in response to
multiple ground shaking events. (a) Variation of the seismic velocity and the correlation
coe�cients denoted by the color bar. (b) Absolute ground acceleration recorded at a station.
The graph is adapted from Gassenmeier et al. [4], and one can find more details therein.
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Two main methods can be used to measure regional seismic velocity in the shallow Earth.

First, one can use the seismic signals generated from repeated remote microearthquakes with

close hypocenters in seismically active areas (e.g., volcanoes). The repeated microearthquakes

could come from aftershocks of a large seismic event. One can also use a repeatable active

source to generate the seismic signals [e.g., 101, 102]. Second, one can also use the noise

data recorded in a region of interest.

The phases of the recorded signals from repeated microearthquakes could show time

delays during strong ground shaking. S-wave traveltime delays indicate the velocity variation

in the shallow Earth. Rubinstein and Beroza [103] show fast excitation (velocity drop) and

slow log-time recovery (velocity increase) of a fault zone using the variation of S-wave delay

times (Loma Prieta Earthquake). Peng and Ben-Zion [104] show the seismic velocity drop

due to the strong ground shaking at the Karadere-Düzce Branch of the North Anatolian

Fault. Wu et al. [105] show the log-time recovery of the regional seismic velocity after the

ground shaking (i.e., Karadere-Düzce main shock) using a series of signals obtained from

microearthquakes. In addition, signals from repeated microearthquakes help monitor the

variation of the seismic velocity across the fault zone in the San Andreas fault [106, 107].

One can use deconvolution interferometry [108, 109] to compute the near-surface softening

during strong ground shaking with the data collected in a vertical array. Signals that are

deconvolved from the data recorded at the top and bottom of the array give the variation

of the seismic velocity in the shallow Earth. Nakata and Snieder [99] use deconvolution

interferometry to analyze the data collected from Japanese KiK-net stations during the

2011 Tohoku-Oki earthquake; the analysis shows the reduction of the near-surface seismic

velocity during the strong ground shaking and the recovery afterward. Other studies using

the data from KiK-net stations involve the 2000 Tottori earthquake [110] and the 1995 Kobe

earthquake [111].

Passive noise interferometry can be used to measure the average seismic velocity in the

nearby region of a seismological site; seismic velocity at shallow depths can be monitored
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using surface Rayleigh waves recorded as noise data. Hobiger et al. [112] measure the vari-

ation of the seismic velocity during and after the Iwate-Miyagi earthquake. Wegler et al.

[113] show an abrupt decrease in the seismic velocity after the 2005 mid-Niigata earthquake.

Gassenmeier et al. [4] show the temporal variation of the seismic velocity during and after

multiple earthquakes in Chile for about eight years (see Figure 1.6). Ugalde et al. [114]

apply noise interferometry to monitoring the seismic velocity at Colorado Paradox valley

regarding the e↵ect of temperature and the change of underground water level. Lieou et al.

[115] and Gassenmeier et al. [116] attempt to simulate the variation of near-surface seismic

velocity due to multiple events of ground shaking and match the simulated variation with

the measured velocity variation. Chaves and Schwartz [117] identify pressurized fluids in

subduction zones using the transient change of the seismic velocity at a depth below 5 km

in response to the passage of seismic waves with a large wave amplitude.

Rubinstein and Beroza [118] show that pre-existing damage increases susceptibility to fur-

ther damage (velocity drop) during strong ground shaking. In summary, nonlinear elasticity

(softening) depends on the degree of damage in a solid sample in laboratory measurements

and the damage of near-surface layers in field measurements.
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CHAPTER 2

NONLINEAR OSCILLATORS

Resonance experiments can measure the nonlinear elasticity of granular solids including

rocks and concrete [2, 60, 87]. The experiments typically involve a normal or torsional stress

field that is applied to a cylindrical sample [30, 62]. The stress field drives a forced oscilla-

tion where di↵erent driving (stress) frequencies give di↵erent response amplitudes. Such an

oscillation features a stable (strain) amplitude when the oscillation is sustained for a long

time. Resonance experiments produce resonance curves where the response amplitudes are

plotted against a range of driving frequencies, which commonly cover the resonant frequency

of the sample. When the driving frequency is equal to the resonant frequency, the response

amplitude reaches a maximum that is referred to as the resonant peak of the resonance curve.

Resonance experiments measure resonant frequency, which reveals the elastic property of

a sample. The experiments have a mathematical equivalence, i.e., damped elastic oscillation.

In this chapter, I introduce several mathematical nonlinear oscillators and their imprints on

physical resonance experiments.

A damped nonlinear elastic oscillator can describe the dynamic deformation of a solid

sample that is conditioned by a stress field. The following di↵erential equation describes

such an oscillator:

@

2
x

@t

2
+ �

@x

@t

+ �(x) = F

d

(t), (2.1)

where x is the dimensionless strain amplitude, � is the damping factor (unit s

�1) of the

sample, �(x) is a nonlinear EOS as a function of the strain x, and F

d

(t) is a driving field

with unit s�2. The driving field consists of sinusoidal input pump waves F
d

(t) = A

r

sin(!t)

where A

r

is the driving amplitude, and ! is the driving angular frequency; the driving

amplitude is related to the driving force F

r

using A

r

= F

r

/ML0 where M is the mass and

L0 is the length of the bar (i.e., sample). Such sinusoidal pump waves have been used
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in laboratory measurements [33]. The amplitude of pump waves is the main factor that

determines the intensity of the dynamic deformation [14, 15, 30, 31, 63]. When the stress

is a linear function of the strain, namely �(x) = kx where k is the linear elastic coe�cient

(unit s�2), equation 2.1 becomes a linear oscillator that follows a linear EOS (Hooke’s law);

this linear EOS applies to elastic materials such as springs and plastics. For granular solids

including natural rocks and concrete, the stress �(x) is a nonlinear function of the strain x,

especially when the strain x is large, and a strong deformation exists.

A nonlinear EOS can phenomenologically include linear elasticity, classical atomic non-

linear elasticity, and nonlinear mesoscopic elasticity; hence, several schemes of the nonlinear

EOS as a function of the strain x have been formulated. Pasqualini et al. [13] apply a non-

linear EOS that is e↵ective for a small strain amplitude with the weak nonlinearity; the EOS

follows

�(x) = kx+ �x

3
, (2.2)

where � is the cubic anharmonic coe�cient, and k is the linear elastic coe�cient. Merging

equations 2.2 and 2.1 gives the Du�ng equation [119, 120], which includes the atomic an-

harmonicity in a low strain regime [57]. In addition, one can describe the anharmonicities

with higher order terms for a one-dimensional lumped element (spring-mass) system using

�(x) = K(x+ �x

2 + �x

3 + ...), (2.3)

whereK is an elastic factor, and both � and � are classical nonlinear coe�cients that describe

anharmonicities in the classical nonlinear elasticity [20, 121–123]. Gallot et al. [41] and Lott

et al. [33] extend equation 2.3 into a three-dimensional case where a sti↵ness tensor describes

the nonlinear elasticity in di↵erent directions of the deformation.

Ostrovsky and Johnson [14] further consider the hysteresis observed in stress-strain curves

and include the strain rate ẋ = @x/@t in a nonlinear EOS:

�(x, ẋ) = K(x+ �x

2 + �x

3 + ...) + S(x, ẋ), (2.4)
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where S is a function that phenomenologically describes the hysteresis loop with the non-

linear mesoscopic elasticity and attenuation (creep). The overdot denotes a time derivative.

The expression of S(x, ẋ) takes the topology of hysteresis loops into account. The topology

of the loop could be a butterfly, starting from the zero point on the �-✏ plane, and could

involve periodic motions surrounding the zero point [for more detail, see refs. 14, 124]. A

general form of the function S originates from the PM space approximation [53]; this func-

tion describes the shape of the hysteretic stress-strain loop [67]. For a one-dimensional EOS,

S could be in the form

S(x, ẋ) = ↵(�x+ x⇥ sign(ẋ) + ...), (2.5)

where �x is the strain amplitude calculated from the previous period of strain oscillation,

�x = (x
max

�x

min

)/2, and ↵ is a hysteretic nonlinear parameter [121, 122, 125, 126]. Haupert

et al. [29] further incorporate a cross term x⇥�x and a second-order term sign(ẋ)[(�x)2�x

2]

into the function S. Apart from the sign of the strain rate, Pecorari [39] further considers

a term containing the value of the strain rate ẋ for material creep (attenuation). Brunet

et al. [55] interpret the nonlinear features observed in a glass bead pack using the concept

of Hertzian microcontacts and simplify the function S into

S = ⌘ẋ, (2.6)

where ⌘ is a loss term for internal dissipation in the sample. Lyakhovsky et al. [127] follow

both the linear continuum damage model [128] and Kelvin-Voigt rheology model incorporated

with the material creep and attenuation to build a one-dimensional bilinear nonlinear EOS:

�(x) = E0[(1�
�

2
)x� �

2
|x|+ ⌘ẋ], (2.7)

where E0 is the elastic modulus of an damaged (unstrained) sample, � is a damage state

variable (0  �  1), and ⌘ is a loss term (i.e., viscosity). The damage state � increases with

the number of oscillation cycles, and the increase rate can be constrained by the laboratory

measurements where the sample is dynamically loaded under di↵erent conditions (e.g., stress

varying rate) [129, 130]. When one extends the sample with a positive strain, i.e., x > 0,
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equation 2.7 becomes

�(x) = E0[(1� �)x+ ⌘ẋ], (2.8)

where the term (1 � �)x describes the softening of the damaged sample in response to

extension. When one compresses the sample, i.e., x < 0, equation 2.7 becomes

�(x) = E0[x+ ⌘ẋ], (2.9)

where the damage variable � vanishes. In other words, compression does not a↵ect the elastic

modulus while extension softens the sample. Equation 2.7 is reminiscent of fracture contact

models such as Hertzian microcontacts [20, 21] where the deformation is not symmetric for

compression and extension. The detachment of fracture contacts softens the sample while

the attachment does not change the elastic modulus.

The above-mentioned EOSs are explicit functions where stress � can be expressed as a

function of strain ✏ using one equation. An implicit EOS can also build a nonlinear oscillator

that incorporates a strain-dependent time-evolved elastic modulus.

Delsanto and Scalerandi [93] apply a PM-based model that accounts for the concept of

hysteretic mesoscopic units in a granular solid (sample); each unit has two states and allows

for thermally induced transitions between states [22]. A driving stress field can change these

bistable states, and the change of states feeds back into the elasticity of the sample. A

granular solid contains both hard elements such as mineral grains and soft elements that

can be represented by the hysteretic mesoscopic units. Averaging elastic moduli of the hard

and soft elements gives the elasticity of the sample [21]. Gliozzi et al. [94] further apply the

concept of linear and damaged elements (i.e., hysteretic mesoscopic units) for the hard and

soft parts in rocks.

Vakhnenko et al. [88] consider broken intergrain and interlaminar cohesive bonds as the

soft elements in rocks; the equilibrium concentration of the soft elements (e.g., open fractures)

in a sample depends on the stress in a thermodynamics scheme:

c

�

= c0 exp
v�/k

B

T

, (2.10)
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where c

�

is the fracture concentration, c0 is the fracture concentration of an unstrained bar

(sample), k
B

is the Boltzmann constant, T is the temperature of the sample, and v is a

constant. The fracture concentration in the sample changes the elastic modulus; Vakhnenko

et al. [83] assume a linear decrease of Young’s modulus with the concentration of fractures.

Guyer et al. [131] show an oscillation equation that incorporates cubic and quartic an-

harmonicities as well as hysteresis that accounts for di↵erent elastic moduli in compression

and extension. Also, the oscillation equation incorporates time-evolved elastic modulus that

can change over time during and after dynamic deformation. However, such a theoretical

model does not account for slow dynamics with the log-time recovery.

On top of these implicit nonlinear oscillators, Chapter 3 contains a simple thermodynamics-

based model to simulate resonance experiments for all the observed experimental features.

The model follows Vakhnenko et al. [88], which includes (a) a linear decrease of Young’s

modulus with fracture density and (b) a thermodynamics-based theory for the time-evolved

elastic modulus.

2.1 Numerical solution

I show a simple example of the nonlinear oscillation using equation 2.2 where the cubic

anharmonicity is used to produce the Du�ng equation. The solution of the Du�ng equation

can be indicative of the nonlinear features observed in resonance experiments.

Merging equations 2.1 and 2.2 gives the Du�ng equation with the following form

@

2
x

@t

2
+ �

@x

@t

+ kx+ �x

3 = A

r

sin(!t). (2.11)

Although the harmonic balance method can solve the above equation using perturbation

theory [13, 132, 133], I solve the equation using the finite di↵erence method, which could

display the stain oscillation at the beginning of the dynamic deformation.

I use the values of the Du�ng parameters, as shown in Table 2.1 for the following simula-

tions unless indicated otherwise. These parameter values involve a static resonant frequency

3900 Hz of an unstrained sample and significant softening of the sample when |x| is of the

21



order 10�6. This behavior of softening in both compression and extension is di↵erent from

the case where granular solids such as rocks soften in compression and harden in extension.

Table 2.1: Numerical values of the parameters used in equation 2.11.

Definition value
� Damping factor 180 s�1

k Linear elastic coe�cient 4⇡2 ⇥ 39002 s�2

� Cubic aharmonic coe�cient �9⇥ 1017 s�2

t

s

Numerical time step 10�5
s

I solve the Du�ng equation using the driving amplitude A

r

= 13.2/s2, the initial con-

dition of the strain x(0) = 0 and the strain rate ẋ(0) = 0, and the driving frequency

f

d

= 3880 Hz. Figure 2.1 shows the numerical solution of the time-evolved strain in response

to the driving stress. The forced oscillation includes an early transient state during which

the deformation amplitude varies with time. After a time duration of about 0.05 s, the

oscillation stabilizes; such the sustained oscillation amplitude is the measured quantity in

resonance experiments.

(a) (b)

Figure 2.1: Numerical solution of the Du�ng equation for the temporal variation of the
strain x in response to the driving field F

d

(t). (a) The appearance of the curve as a thick line
results from the high-frequency fluctuation that is not resolved in the graph. (b) A zoom-in
of the high-frequency oscillation.
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For di↵erent driving frequencies, one can get di↵erent response amplitudes that are ob-

tained at the end of the oscillations with a steady state. Figure 2.2 shows the “Du�ng

resonance curve” obtained from the solution of the Du�ng equation. A resonant frequency

shift occurs when the resonant peak deviates from the static resonant frequency 3900 Hz to

the left along the frequency axis.

Figure 2.2: Du�ng resonance curve obtained from the solutions of the Du�ng equation.
The graph shows the solutions of stable amplitudes for di↵erent driving frequencies. The
driving amplitude is A

r

= 13.2/s2 and the anharmonic coe�cient is � = �9⇥ 1017.

Three important factors determine the solution of the Du�ng equation: the driving

amplitude, the driving frequency, and the initial condition of the strain x(0). These factors

a↵ect the shape of the resonance curves produced by the solution of the Du�ng equation. I

apply the same initial condition of the strain rate ẋ(0) = 0 to all the following simulations.
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The increase in nonlinearity changes the shape of the resonance curve. Two ways exist to

increase the nonlinearity of the oscillation system. One can increase the driving amplitude

A

r

or increase the absolute value of the anharmonic coe�cient �. The former is equal

to increasing the intensity of the driving stress field in resonance experiments, and the

latter involves the intrinsic nonlinear elasticity that is related to the degree of damage (i.e.,

fracture concentration) in granular solids including rocks and concrete. I increase the driving

amplitude A

r

from 13.2/s2 (used in Figure 2.2) to 35.2/s2. Consequently, Figure 2.3 shows

a resonance curve with a “cli↵” that indicates an abrupt change of the response amplitude

when the driving frequency is changed. Also, Figure 2.4 shows the resonance curve with

the cli↵ when the driving amplitude is still A
r

= 13.2/s2 but the value of |�| increases to

� = �15⇥ 1017.

Figure 2.3: Du�ng resonance curve with the driving amplitude A

r

= 35.2/s2.
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Figure 2.4: Du�ng resonance curve with the anharmonic coe�cient � = �15⇥ 1017.
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Figure 2.3 and Figure 2.4 both display a cli↵ in the resonance curves. With the increase in

nonlinearity, the Du�ng resonance curve features the presence of the cli↵ which is indicative

of the level of nonlinearity in the oscillation system.

When the cli↵ is present in Du�ng resonance curves, the initial condition of the strain

x(0) influences the shape of the curves. In this case, the initial condition x(0) could a↵ect the

solution of the Du�ng equation, i.e., stable amplitude. Figure 2.5 shows the time-evolved

deformation with low (x(0) = 0) and high (x(0) = 4 ⇥ 10�6) initial strains. The black

areas indicate the high-frequency oscillations and denote envelopes that reflect the temporal

variations of the deformation amplitudes. Two di↵erent initial conditions of the strain result

in two di↵erent stable response amplitudes.

(a) (b)

Figure 2.5: Numerical solutions of the Du�ng equation for the temporal variations of the
strain x with di↵erent initial conditions: (a) initial strain x(0) = 0 and (b) x(0) = 4⇥ 10�6.
The driving frequency is f

d

= 3850 Hz and the driving amplitude is A
r

= 35.2/s2.

I further produce the Du�ng resonance curves using (a) the two initial conditions of

strain x(0) = 0 and x(0) = 4 ⇥ 10�6 for all the driving frequencies and (b) the driving

amplitude A

r

= 35.2/s2, as shown in Figure 2.6. A di↵erence between the two Du�ng

resonance curves exists at the left of the resonant peak (on the green line); such a di↵erence

highlights the e↵ect of the initial condition in the solution of the Du�ng equation. However,

when the nonlinearity is weak, the di↵erence between the Du�ng resonance curves vanish,
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as shown in Figure 2.7 where the driving amplitude is A
r

= 13.2/s2. Thus, I conclude that

such a curve di↵erence can only exist when the nonlinearity is strong with a cli↵ present in

resonance curves.

Figure 2.6: Du�ng resonance curves with two initial conditions, i.e., (a) initial strain x(0) =
0 and (b) x(0) = 4⇥ 10�6. The driving amplitude is A

r

= 35.2/s2.

The curve di↵erence, resulted from the strong nonlinearity, refers to a bifurcation [120],

as shown in Figure 2.8. When one reduces the driving frequency at point d, the solution of

the Du�ng equation jumps abruptly to point a; when one increases the driving frequency

at point b, the solution jumps to point c. The increase in nonlinearity causes these jumps

that represent the bifurcation and are a distinctive feature described by catastrophe theory

[134, 135]. The bifurcation occurring in the oscillation system indicates that two stable am-

plitudes may exist for an oscillation with a driving frequency; the choice of the oscillation
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Figure 2.7: Du�ng resonance curves with two initial conditions, i.e., (a) initial strain x(0) =
0 and (b) x(0) = 4⇥ 10�6. The driving amplitude is A

r

= 13.2/s2.
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amplitude (solution) depends on the initial condition of the strain, either a low initial value

for the unstrained sample or a high value for the conditioned sample. The presence of the

bifurcation requires (1) strong nonlinearity induced by a large driving amplitude or defor-

mation amplitude, and/or (2) relevant driving frequencies corresponding to the di↵erence

area (see Figure 2.6).

Figure 2.8: Schematic graph of the bifurcation.

In summary, three factors count in the solution of the Du�ng equation. The extrinsic

driving amplitude and intrinsic anharmonic coe�cient control the degree of nonlinearity in

an oscillation system. When the nonlinearity is strong, a bifurcation is present with a cli↵

in the resonance curve, and a di↵erence exists between the resonance curves produced with

two di↵erent initial conditions of the strain. The presence of the cli↵ in resonance curves is

indicative of the bifurcation and hence the degree of the nonlinearity.
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One should be aware of the di↵erence between mathematical nonlinear oscillators such as

the Du�ng equation and physical laboratory resonance experiments. Nonlinear oscillators

such as the Du�ng oscillator usually do not account for slow dynamics, and thus do not

depend on the time-scales inherent in the relaxation and activation processes. Thus, these

nonlinear oscillators cannot simulate slow dynamics. The simulations based on these explicit

nonlinear EOSs cannot reproduce the recovery process after dynamic deformation ends. Such

a limitation indicates that these nonlinear oscillators cannot directly simulate the resonance

experiments where samples are granular solids with mesoscopic nonlinear elasticity. Several

studies apply an implicit nonlinear EOS incorporated with a time-evolved variable that

allows the elastic modulus to be conditioned and to recover [e.g., 131]. Also, the above-

mentioned nonlinear oscillation systems do not include the measurement protocol used in

resonance experiments [5, 30]. In laboratory experiments, the driving frequency changes by

some value after a certain time duration, which enables the oscillation to stably stay with

an amplitude. When solving the Du�ng equation, one computes response amplitudes for

driving frequencies using the same initial condition. However, in laboratory measurements,

the initial condition of each oscillation with a driving frequency depends on the elastic state

at the end of the oscillation with the last driving frequency.

The simulations and solutions of the Du�ng equation are indicative of the observed

nonlinear features in laboratory experiments. Chapter 3 contains the simulation of resonance

experiments using a simple thermodynamics-based model that accounts for slow dynamics

in an implicit nonlinear oscillator; the simulation also includes the laboratory measurement

protocol (see Appendix A). Hence, the solutions of the Du�ng equation help build a unified

interpretation of the nonlinear elasticity observed in resonance experiments.
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CHAPTER 3

NONLINEAR ELASTICITY IN RESONANCE EXPERIMENTS

A paper accepted at Physical Review B

Xun Li12, Christoph Sens-Schönfelder3, Roel Snieder2

Resonant bar experiments have revealed that dynamic deformation induces nonlinearity

in rocks. These experiments produce resonance curves that represent the response amplitude

as a function of the driving frequency. We propose a model to reproduce the resonance curves

with observed features that include (a) the log-time recovery of the resonant frequency after

the deformation ends (slow dynamics), (b) the asymmetry in the direction of the driving

frequency, (c) the di↵erence between resonance curves with the driving frequency that is

swept upward and downward, and (d) the presence of a “cli↵” segment to the left of the

resonant peak under the condition of strong nonlinearity. The model is based on a feedback

cycle where the e↵ect of softening (nonlinearity) feeds back to the deformation. This model

provides a unified interpretation of both the nonlinearity and slow dynamics in resonance

experiments. We further show that the asymmetry of the resonance curve is caused by

the softening, which is documented by the decrease of the resonant frequency during the

deformation; the cli↵ segment of the resonance curve is linked to a bifurcation that involves

a steep change of the response amplitude when the driving frequency is changed. With weak

nonlinearity, the di↵erence between the upward- and downward-sweeping curves depends

on slow dynamics; a su�ciently slow frequency sweep eliminates this up-down di↵erence.

With strong nonlinearity, the up-down di↵erence results from both the slow dynamics and

bifurcation; however, the presence of the bifurcation maintains the respective part of the

up-down di↵erence, regardless of the sweep rate.
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3.1 Introduction

Resonant bar experiments can be used to measure the nonlinear elasticity of natural rocks

or concrete and further monitor small changes of elasticity (velocity) with high accuracy [2,

60, 87]. In resonance experiments, a dynamic normal force imposes cyclic compressions and

extensions on a cylindrical rod with a driving frequency that can be changed, continuously

sweeping towards higher or lower values [30, 62, 136]. For each driving frequency, the dynamic

deformation of the rod gradually reaches a state where the oscillation has a stable amplitude;

such an amplitude defines the measured response for the corresponding driving frequency

[5, 30, 137]. The dependence of the response amplitude on the driving frequency generates

a resonance curve that can be used to characterize the elastic property of rocks [60].

Laboratory measurements produce resonance curves with the following features [2, 5, 30,

60, 87, 137]. The resonant peak shifts towards lower frequency for an increasing driving

force and shifts back towards higher frequency in the recovery process [21]. The resonant

frequency recovers with the logarithm of time after the deformation ends (slow dynamics)

[87]. Resonance curves are asymmetric along the frequency axis around their peak frequency

as soon as the driving force is strong enough to induce softening [2]. With an increase in the

driving force, the resonance curve steepens to the left of the resonant peak and flattens to

the right of the peak. Ten Cate and Shankland [60] show that a di↵erence exists between the

upward and downward resonance curves, produced by sweeping the driving frequency upward

and downward, respectively. This up-down di↵erence is most pronounced to the left of the

resonance. TenCate [2] finds that a slow sweep of the driving frequency can eliminate the

up-down di↵erence and produce the same resonance curves, regardless of the sweep direction.

Johnson et al. [5] show that strong nonlinearity in rocks induces a vertical segment of the

resonance curve to the left of the resonant peak. This vertical segment, which we refer to

as the “cli↵,” involves a large abrupt change of the response amplitude when the driving

frequency is increased/decreased. The response amplitude changes upward/downward along

the cli↵ as the driving frequency passes the resonant peak. We present a theory for the above-
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mentioned experimental features of resonance curves using a simple thermodynamics-based

model.

In this paper, section 3.2 starts from a feedback cycle as the framework of our thermodynamics-

based model; we then propose the relationship between dynamic deformation and thermal

activations/relaxations of fractures. Taking the feedback of the fracture behavior on Young’s

modulus into account, we conduct the simulation of resonance experiments following the pro-

tocol used in the laboratory (Section 3.3). Section 3.4 shows that our model can reproduce

resonance curves with the observed features, including (a) the slow dynamics with log-time

recovery, (b) the asymmetry of resonance curves, (c) the disappearance of the up-down dif-

ference at a slow sweep rate of the driving frequency, and (d) the presence of the cli↵ in the

resonance curve when the nonlinearity is strong. Additionally, our model predicts that the

steep cli↵ with strong nonlinearity is related to a permanent up-down di↵erence that does

not vanish for a slow sweep rate. This has not been observed experimentally, yet. Finally,

in section 3.5, we propose a unified interpretation of all these observed features; this inter-

pretation enhances the understanding of both the nonlinear elasticity and slow dynamics in

resonance experiments.

3.2 Model

Di↵erent micromodels can simulate resonance experiments where dynamic deformation

leads to a reduction of resonant frequency (Young’s modulus); this reduction reflects the

softening of rocks [5, 13, 57, 131, 138]. We propose a simple thermodynamics-based model,

following ref. [83, 84, 92, 127] that is based on (a) bond rupture/healing and (b) an oscillation

equation, to simulate both slow dynamics and resonance curves. Our model can include the

concept of “e↵ective” granular temperature for the vibration energy [55, 139, 140]. However,

our model does not involve a detailed upscaling generalization from microscale to macroscale

and does not rely on a complicated description of physics mechanisms as in earlier work

[21, 89, 90].

33



3.2.1 Feedback cycle

Figure 3.1: Feedback cycle for nonlinear material properties.

We use a feedback cycle for the material response shown in Figure 3.1 that is akin to a

theory for liquefaction [141]. The feedback cycle is the base of the thermodynamics-based

parametrization in our model. Link 1 in the cycle accounts for the change of fracture system

due to dynamic deformation, while link 2 describes the change in the elasticity (softening)

due to the opening of fractures. The change of the elasticity feeds back to the deformation

amplitude (link 3). We use “fractures” as a general term for cracks, contacts, bonds, and

microcontacts. A solid sample contains fractures with scales ranging from microscopic dis-

location defects in crystals to mesoscopic granular contacts and to macroscopically visible

cracks [22].
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3.2.2 Thermodynamics-based parametrization

We consider a bistable model where a fracture can be in one of two configurations: open

or closed, with associated energy levels E

o

and E

c

, respectively, as shown in Figure 3.2.

We assume that an energy barrier E

b

needs to be overcome for the fracture to change the

configuration. This bistable model follows earlier energy models for the fracture contact

[21, 84, 89, 142].

Figure 3.2: bistable energy model for a fracture. For a barrier energy E

b

, ⌧
c

and ⌧

o

indicate
the transition times to open and close the fracture, respectively.

We further consider that due to the thermal energy k

B

T , a fracture can spontaneously

change its configuration with characteristic transition times ⌧
o

to close a fracture and ⌧

c

to

open a fracture, following Arrhenius law [143, 144]:

⌧

o

= Ae

(E
b

�E

o

)/k
B

T

, ⌧

c

= Ae

(E
b

�E

c

)/k
B

T

. (3.1)
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E

o

and E

c

are the energies of open and closed fractures, respectively. E
b

is the barrier energy,

k

B

is the Boltzmann constant, T is the temperature, and A is a time constant. The bistable

dynamic equation for a group of fractures with the same barrier energy is

dn

o

dt

= �n

o

⌧

o

+
1� n

o

⌧

c

, (3.2)

where n

o

is the fraction of open fractures for a given barrier energy, and n

c

= 1� n

o

is the

fraction of closed fractures. In equation 3.2, the first term on the right-hand side indicates

the rate at which fractures close while the second term indicates the rate at which fractures

open. In equilibrium dn

o

/dt = 0, and thus the corresponding fraction n

eq

of open fractures

is

n

eq

=
1

1 + exp
�
(E

o

� E

c

)/k
B

T

�
, (3.3)

and hence n

eq

is independent of the barrier energy. For E
o

� E

c

, most fractures are closed

while with E

c

� E

o

, most fractures are open.

We assume that the barrier energies that correspond to fractures with di↵erent sizes

are distributed uniformly in an interval [E
bmin

, E

bmax

]. The aggregate fracture system that

includes fractures with di↵erent barrier energies has an average fraction of open fractures

N

o

(t) =
R

E

bmax

E

bmin

n

o

(E
b

, t)dE
b

/(E
bmax

� E

bmin

).

The fracture system a↵ects the elasticity of the material [77, 145]; the opening of fractures

lowers Young’s modulus. For the link 2 in Figure 3.1, we linearize the relationship between

Young’s modulus Y and the fracture system N

o

using

Y = Y0 � C0(No

�N

ori

). (3.4)

N

ori

is the equilibrium fraction of open fractures with zero strain (✏ = 0), C0 is the frac-

ture modulus, and Y0 is the static Young’s modulus of the unperturbed sample. Link 3 in

Figure 3.1 indicates the feedback of the softening (reduction of Young’s modulus) on the

deformation amplitude; the feedback is introduced as a dependence of the energies E
c

and

E

o

on the externally applied stain.
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Figure 3.3: Energy levels of open and closed fractures as a function of the dynamic nor-
mal strain. Positive strain corresponds to extension, and negative strain corresponds to
compression.
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We propose a dependency of the energies of open and closed fractures as shown in Fig-

ure 3.3; this dependency is parameterized by the sigmoid functions:

E

o

(✏) = B0 �
A1

1 + exp
�
�(✏� µ)/�

c

� (3.5)

and

E

c

(✏) = A0 +
A1

1 + exp
�
�(✏� µ)/�

c

�
, (3.6)

where A0, A1, B0, µ, and �

c

are constants, and ✏ is dynamic strain. This relationship is

based on the premise that the deformation strain is the main factor a↵ecting the nonlinear

elasticity of rocks [63]. The nonlinearity of rocks becomes significant when the strain is of

the order of a microstrain (10�6) [13, 53, 63]. Thus, we prescribe a fracture energy that

changes significantly once the strain is above 10�6. For the strain range shown in Figure 3.3,

the fracture energy implies (a) that extension opens fractures (softening) while compression

closes fractures (hardening), and (b) that the response to deformation is not symmetric for

the positive and negative strain. The asymmetry reflects that the elastic response is more

sensitive to extension (positive strain) than to compression (negative strain) [6, 20]. However,

the choice of the sigmoid function is quite arbitrary; it provides a smooth transition from a

region that favors closed fractures to a region that favors open fractures. Figure 3.3 and the

bistable model in Figure 3.2 act as the link 1 in Figure 3.1. We summarize the parameters

used and their numerical values in Table 3.1.

For a temperature T = 300 K, the thermal energy is k

B

T = 0.026 eV. The energy

di↵erence between open and closed fracture in Figure 3.3, together with equation 3.3, implies

that for large positive strain (" & 7 ⇥ 10�6) the system favors open fractures, while for

compression and small positive strain (" . 10�6) the system favors closed fractures. This

description of fracture behavior is not necessarily accurate in its details and so should be seen

as a plausible parametrization of fracture behavior. For some aspects of nonlinear material

properties, the model may need to be extended to include the strain rate "̇ as well as shear

deformation [69, 146].
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Table 3.1: Numerical values of the parameters used.

Definition value
A Time constant 1.0 s
T Temperature 300.0 K
E

bmin

Minimum barrier energy 0.223 eV
E

bmax

Maximum barrier energy 0.401 eV

A0 Constant 0.038 eV
A1 Constant 0.080 eV
B0 Constant 0.112 eV
µ Constant 3.5 ⇥10�6

�

c

Constant 2.0 ⇥10�6

L0 Length of sample 0.3 m
⇢ Density of sample 2200 kg/m3

Y0 Static Young’s modulus 12.05 GPa
C0 Fracture modulus 1.853 GPa
f0 Static resonant frequency 3900 Hz
� Damping factor 90.0 rad/s

t0 Numerical time step 5 µs
⌧

max

Maximum relaxation time 500 ms
�t Sweep time interval 5 ms
�f Sweep frequency interval 1 Hz
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3.3 Resonance simulation

We describe the deformation in the resonant bar experiment by

@

2
R

A

@t

2
+ 2�

@R

A

@t

+ ⌦2
R

A

= A

r

e

�i!t

, (3.7)

where R
A

is the dimensionless strain amplitude (i.e., ✏ in equations 3.5 and 3.6) in response

to the driving field A

r

e

�i!t, � is the damping factor, ! is the driving angular frequency,

and ⌦ is the resonant angular frequency. The driving amplitude A
r

is related to the driving

force F

r

using A

r

= F

r

/ML0, where M is the mass and L0 is the length of the sample. In

equation 3.7, the resonant angular frequency incorporates the softening because it depends

on Young’s modulus: ⌦ = ⇡

p
Y/⇢/L0, where ⇢ is density [5]. To first order, the resonant

angular frequency shift relates to the reduction of Young’s modulus by �⌦/⌦0 = �Y/2Y0,

where ⌦0 corresponds to the static Young’s modulus Y0 since�⌦ and�Y are small compared

to ⌦0 and Y0. Solving equation 3.7 for a solution R

A

e

�i!t yields for the absolute value of the

response

|R
A

| = |A
r

|p
(!2 � ⌦2)2 + 4�2

!

2
. (3.8)

We numerically simulate the measurement protocol (see Appendix A) used in the experiments

[e.g. 5, 30]. The recorded quantity for the response is the acceleration amplitude !

2
R

A

L0.

3.4 Numerical simulations

We show in this section with our thermodynamics-based model that we can simulate

important features (mentioned in section 3.1) of resonance curves produced in the laboratory

[2, 5, 60, 87].

3.4.1 Recovery of resonant frequency

We simulate slow dynamics after the dynamic deformation ends. Figure 3.4 shows the

recovery of the resonant frequency after long-time deformation (106 time steps or 5 ms) as a

function of the logarithm of time. We use di↵erent amplitudes at the same driving frequency
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3900 Hz. The log-time recovery produced by our model is (almost) identical to the laboratory

measurements in Fig. 5 of TenCate et al. [87] that shows the observed logarithmic recovery

of the resonant frequency.

Figure 3.4: Recovery of the resonant frequency after dynamic deformations with di↵erent
strain amplitudes, where t0 = 5 µs is time step in the numerical model. The vertical dashed
line denotes ⌧

max

.

To illustrate the e↵ect of the superimposed time scales, we can also apply the model

without integrating over the barrier energy and show an example for a single barrier energy,

E

b

= 0.38 eV, in Figure 3.5. In this case, the recovery does not vary with the logarithm of

time. This highlights the importance of the summation of multiscale relaxation processes for

the log-time recovery. Snieder et al. [86] propose ⌧
max

, a metric to characterize the maximum

relaxation time among multiscale relaxation processes:

1

⌧

max

=

✓
1

⌧

o

+
1

⌧

c

◆

E

b

=E

bmax

, (3.9)
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where ⌧

o

and ⌧

c

are given in equation 3.1. We denote ⌧

max

in Figure 3.4 with a dashed line,

which agrees well with the time needed for the relaxation.

Figure 3.5: Recovery of the resonant frequency for a single barrier energy.

3.4.2 Asymmetric resonance curves

We show the response amplitude against the driving frequency in Figure 3.6 for both the

upward and downward sweeps and di↵erent driving amplitudes. We record the response as

the acceleration given by !

2
R

A

L0 and change the driving frequency by �f = 1 Hz after

a time interval �t = 5 ms (0.01⌧
max

); the frequency sweep covers the resonant frequency

f0 = 3900 Hz of the unperturbed sample. Here we define�t as the sweep time interval, which

reflects the sweep rate of the driving frequency. One can regard �t as the time duration

between two consecutive driving frequencies. The total sweep time of the driving frequency

results from the multiplication of �t and the number of sampled driving frequencies.
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Figure 3.6 shows that with increasing driving amplitude A

r

, the peak value of the res-

onance curve increases and the resonant frequency decreases. An increase in the driving

amplitude A

r

gives an increase in the response amplitude (see equation 3.8) and creates

more open fractures than a low driving amplitude; the associated softening reduces the res-

onant frequency. The di↵erence between the upward and downward resonance curves is

reproduced by the model in all details and is most pronounced to the left of the resonant

peak. Figure 3.6 can be qualitatively compared to the laboratory measurements in Ten

Cate and Shankland [60], especially for the asymmetric resonance curves when the driving

amplitude is large.

The asymmetry in the direction of the driving frequency can be explained as follows.

Suppose one sweeps downward in frequency. When the frequency is higher than the resonant

frequency (! > ⌦) and one approaches the resonant peak, the deformation increases and

the sample softens. This reduces the resonant frequency ⌦, hence the resonant peak “moves

away” from the current driving frequency !, and as a result the response curve flattens to the

right of the peak. But when the driving frequency is reduced further, the driving frequency !

is less than the resonant frequency ⌦. Now the deformation decreases as the driving frequency

is reduced further, which makes the sample sti↵er. This increases the resonant frequency ⌦,

which moves the response peak towards higher frequency, away from the current frequency,

which further decreases the deformation. Thus, this increasing resonant frequency leads to

a steepening of the resonance curve to the left of the peak. A similar reasoning applies when

one increases the driving frequency ! starting at values less than the resonant frequency

⌦. Approaching the resonant peak from the left, the peak of the curve comes closer when

the amplitude increases; consequently it steepens on the left and it flattens on the right.

The asymmetry of the resonance curve thus follows from the nonlinearity that causes the

sample to soften as the deformation increases. In our model, the nonlinearity is implicit

in the used parametrization of the fracture behavior and its imprint on Young’s modulus,

but a nonlinear model based on anharmonicities gives the same shape of resonance curves
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[131]. In other words, softening (nonlinearity) steepens the left part of the resonance curve

and flattens the right part, which is equivalent to the mechanism that the feedback of the

nonlinearity on deformation causes the shift of the resonant frequency.

Figure 3.6: Resonance curves for the upward (solid lines) and downward (dashed lines)
sweeps with di↵erent driving amplitudes A

r

= 8.8, 13.2, 17.6/s2.

We can apply the model without integrating over the barrier energy and show an example

for a single barrier energy E

b

= 0.30 eV. Figure 3.7 shows the resonance curves for this case.

The resonance curves in Figure 3.7 have (almost) the same shapes as those in Figure 3.6. We

have shown that the multiscale relaxation mechanism is essential to the log-time recovery in

section 3.4.1. However, comparing Figure 3.6 and Figure 3.7, we conclude that the multiscale

relaxation mechanism is not essential for the shape of resonance curves.
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Figure 3.7: Resonance curves as in Figure 3.6, but for a single barrier energy.
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3.4.3 Up-down di↵erence and slow dynamics

Ten Cate and Shankland [60] speculate that for a slow sweep rate, i.e., large �t of the

driving frequency, the up-down di↵erence disappears. For a slow sweep rate, the activation is

e↵ectively stationary in time, and one would expect that the sample reaches an equilibrium

that is the same, regardless of whether one sweeps up or down. TenCate [2] confirms the

speculation that the up-down di↵erence can vanish at a slow sweep rate in the laboratory

measurements.

Figure 3.8 shows the up-down di↵erence at di↵erent sweep rates with a driving amplitude

A

r

= 17.6/s2 corresponding to the uppermost pairs of the resonance curves in Figure 3.6.

The simulation in this figure confirms the speculation in ref. [60] and echoes the laboratory

measurements [2] in which a slow sweep rate eliminates the up-down di↵erence [see Fig-

ure 3.8(c)]. We compare the sweep rate (sweep time interval �t) to the maximum relaxation

time ⌧

max

in our model. For the used sweep frequency interval �f = 1 Hz, we refer the

fast sweep to the case �t ⌧ ⌧

max

while the slow sweep means �t � ⌧

max

. We attribute

the up-down di↵erence to slow dynamics when the sweep is fast [e.g., Figure 3.8(a)]. That

a driving frequency gives di↵erent response amplitudes for di↵erent sweep directions reflects

that the fracture system memorizes the past deformation (slow dynamics). However, as the

sweep rate decreases, this “memory e↵ect” disappears and the driving force conditions the

sample to the same response amplitude regardless of the sweep direction.

3.4.4 Cli↵ in resonance curves

We further increase the nonlinearity in the simulation by increasing the value of the

fracture modulus C0. Figure 3.9 shows the dependence of the up-down di↵erence on the

sweep rate. Comparison of Figure 3.8 and Figure 3.9 indicates that nonlinearity enhances

the up-down di↵erence. Strong nonlinearity and a slow sweep rate can produce a “cli↵”

(vertical segment) in resonance curves [e.g., Figure 3.9(c)]. The cli↵ represents a large

abrupt change of the response amplitude when the driving frequency is changed. The up-
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Figure 3.8: Sweep-rate dependence of the up-down di↵erence of the resonance curves at the
left side of the resonant peak. Solid lines denote the upward sweep, while dashed lines denote
the downward sweep. The sweep time interval between sampled driving frequencies is (a) 5
ms (0.01⌧

max

), (b) 500 ms (⌧
max

), and (c) 5 s (10⌧
max

).
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down di↵erence right at the cli↵ does not disappear for slow sweep rates, even though it

vanishes away from the cli↵ [Figure 3.9(c)]. This appears very similar to the measurements

by Johnson et al. [5], who show resonance measurements in Lavoux sandstone that exhibit

a cli↵ with a pronounced di↵erence between upward and downward sweeps.

Figure 3.9: Sweep rate dependence of the up-down di↵erence. The fracture modulus is
C0 = 3.088 GPa, with stronger nonlinearity than that in Figure 3.8. The sweep-time interval
between sampled driving frequencies is (a) 5 ms (0.01⌧

max

), (b) 500 ms (⌧
max

), and (c) 5 s

(10⌧
max

), following Figure 3.8.

To explain the up-down di↵erence that is most pronounced in Figure 3.9(c) at the cli↵

even when the sweep rate is slow, we refer to the bifurcation that originates from the solution

of the Du�ng equation for nonlinear systems [119, 120, 147]. We consider the steady-

state solution of our model without incorporating the temporal evolution of the fracture

system, i.e., the fraction of open fractures N
o

in stable equilibrium where N

o

represents the

damage of the sample. We then solve for the damage N

o

from di↵erent initial damage N

oi
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at each fixed frequency (for more details, see Appendix B). Figure 3.10(a) and (b) show

the stable equilibrium damage state for every frequency (i.e., dashed black and solid green

curves) for two di↵erent driving amplitudes; the colors indicate that for each frequency

and initial value N

oi

the final fraction of open fractures N

o

to which the system converges

(see Appendix B). Figure 3.10(a) shows the situation for moderate nonlinearity caused by a

driving amplitude of 0.6/s2. In this case the stable equilibrium damage stateN
o

is determined

only by frequency. Independently of the initial damage state, the system converges to the

same stable equilibrium indicated by the overlapping lines. The situation is di↵erent for

stronger nonlinearity, as shown in Figure 3.10(b), where there is a range of frequencies in

which the stable equilibrium damage state to which the system converges also depends on the

initial damage state. Figure 3.10(b) shows a bifurcation of the stable equilibrium solution

N

o

; for a range of driving frequencies around the cli↵ of the resonance curve, there are

two possible solutions of N
o

for the same driving frequency. When one reduces the driving

frequency ! at point d in Figure 3.10(b), the system can only jump to point a. This leads to

the vertical slope of the dashed line in Figure 3.9(c). A similar reasoning applies to sweeping

upward in frequency. When sweeping upward, one arrives at point b of the resonance curve.

When sweeping further upward in frequency, the system jumps to point c on the resonance

curve, and this jump results in a vertical segment of the resonance curve at a higher frequency.

The steady-state solution can be indicative of the simulated resonance experiment. We

argued above that the nonlinear material response causes the response curve to steepen to

the left of the resonant peak. The feedback of the deformation on the response can be

so strong that the resonance curve folds over on itself, as shown in Figure 3.10(b); this

folding happens when the nonlinearity caused by a large driving force is su�ciently strong.

When the nonlinearity is further increased, a bifurcation occurs [Figure 3.10(b)]. Thus,

this phenomenon of vertical jumps in the resonance curves corresponds to a bifurcation

caused by the nonlinearity in the underlying equations with time evolution. A prototype

of this bifurcation is described for the Du�ng equation [120], which can be solved using
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the harmonic balance method [119]. The stable equilibrium solution is a simplified solution

corresponding to the approximation that one can omit the details of the averaged fracture

system during an oscillation cycle. Note that along segment db in Figure 3.10(b), there is an

abrupt change in color. For initial values just above the segment the damage will increase

and the system converges to a higher equilibrium value along segment cd while for initial

values below segment db the system relaxes to a lower equilibrium value along segment ab.

This means that just as with the Du�ng equation [120], segment db corresponds to unstable

equilibrium values.

(a) (b)

Figure 3.10: Steady-state solution of our model with (a) A
r

= 0.6/s2 and (b) A
r

= 1.0/s2.
The color scale indicates for each frequency and original value N

oi

the equilibrium fraction
N

o

to which the solution converges.

The stable equilibrium solution further indicates that the key factor for the system to

lock in to a solution depends on the current value of N

o

when the driving frequency is

changed. Changing the sweep direction results in a di↵erent initial damage with which a

certain frequency is approached, and in the case of strong nonlinearity, a di↵erent sweep

direction might lead to di↵erent stable equilibrium to which the system converges. However,

the bifurcation is only present when the nonlinearity is su�ciently strong to cause a vertical

cli↵. The nonlinearity (bifurcation) can originate from both (a) large driving amplitudes

and (b) material properties (e.g., the opening and closing of fractures with strain, and the
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influence of fractures on the modulus).

An alternative to the stable equilibrium solution that is indicative of the “true” oscillation

is to directly simulate the oscillation with an initial condition N

oi

for all the energy barriers

and a fixed driving frequency. Figure 3.11 shows the stable averaged damage N
o

over the last

cycle of the oscillations; this graph again echoes the implementation of the stable equilibrium

solution and the presence of the bifurcation when the nonlinearity in the system is strong.

However, the implementation of a “true” solution is much more computationally expensive

than that of the stable equilibrium solution.

(a) (b)

Figure 3.11: Solution of the thermodynamics-based oscillation model with (a) C0 =
1.853 GPa and (b) C0 = 3.088 GPa. The color scale indicates for each frequency and
original value N

oi

the equilibrium fraction N

o

to which the true solution converges.

Since di↵erent nonlinear models to lowest order reduce to a cubic term (Du�ng equation)

in the equation of motion, this catastrophic behavior (vertical cli↵ with a strong response

to a tiny change in frequency) is displayed by di↵erent models for nonlinear rock physics

[5, 93, 131]. However, these models do not explicitly explain the cli↵ in the resonance curve

by the bifurcation. In contrast to earlier work [83, 127], our model is significantly simpler

and is based on a relation between the (micro)fracture energy and strain; this relation is

another form of thermodynamics-based parametrization. Vakhnenko et al. [83] relate the up-

down di↵erence to the end-point memory (slow dynamics) but do not show this catastrophic
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behavior (cli↵) in resonance curves. Regarding slow dynamics, Figure 3.4 gives a better

straight-line region than Fig.11 in Vakhnenko et al. [83]. Lyakhovsky et al. [127] show

the cli↵ in the simulated resonance curve but do not relate the cli↵ with the bifurcation.

Our theory qualitatively reproduces both the slow dynamics and bifurcation observed in

laboratory experiments [5, 60].

3.5 Discussion

The resonance curves in Figure 3.6 show two conspicuous features: they are asymmetric,

and they are di↵erent depending on whether one sweeps upward or downward in frequency

(up-down di↵erence). We explain the asymmetry of resonance curves by softening (nonlin-

earity) and the up-down di↵erence by both the slow dynamics and bifurcation. It is the

nonlinearity that produces the bifurcation. The bifurcation occurs only when the nonlinear-

ity is su�ciently strong. The bifurcation causes a cli↵ in resonance curves [119]; otherwise, in

the absence of a bifurcation (for weaker nonlinearity) slow dynamics dominates the up-down

di↵erence, and this di↵erence disappears for slow sweep rates. The reports of the coincidence

of the resonance curves [e.g., 2, 60] are for cases where slow dynamics dominates the up-down

di↵erence. The nonlinearity of rocks in these experiments [2, 60] is not strong enough to

cause a bifurcation. Johnson et al. [5] show the experimental resonance curves with cli↵

segments that result from the strong nonlinearity in rocks. Our model also reproduces this

cli↵ behavior (Figure 3.9) when the nonlinearity is significantly strong. Even stronger non-

linearity causes the system to display chaotic behavior [148] where the response amplitude

jumps up and down.

In summary, up-down resonance curves can be coincident at a slow sweep rate, but

only if the nonlinearity is weak. When the cli↵ is observed in resonance curves, our model

predicts that no matter how slowly one sweeps the driving frequency, the up-down resonance

curves cannot be coincident because of the presence of a bifurcation. Figure 3.9 confirms

our conclusion that the up-down di↵erence for slow sweep rates does not vanish when the

system is bifurcated.
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Slow dynamics is caused by the nonlinear rock properties. Such nonlinearity can be

caused by (a) classical anharmonicity from Landau’s theory [20] or (b) nonclassical an-

harmonicity from Hertz-Mindlin contacts [21]. In addition, slow dynamics depends on a

dependence of the nonlinearity on past deformation. When the sweep rate is not slow com-

pared to the minimum relaxation time [Figure 3.9(a)], the current response depends on the

past deformation. This e↵ectively smears out the cli↵ in the resonance curve.

3.6 Conclusion

A simple thermodynamics-based model can explain observed resonance curves. But this

model does not provide a unique description of the microscopic behavior of fractures as in

studies for a physical origin of rate and state friction [149, 150]. The theory can be treated

as a phenomenological parametrization of the imprint of damage on crack properties. We

prescribe the fracture energy in Figure 3.3 in a heuristic fashion for compressive waves. In

real rocks, shear motion occurs near fractures, even when the sample is under a compressive

uniaxial load. In addition, the fracture behavior likely depends on the strain rate "̇ as

well [69, 146]. Fractures have a range of orientations with respect to the principal stress

components, and the fracture behavior depends on a range of physical and chemical processes

that are influenced by the presence of fluids (notably, water). Our model should be seen as

a thermodynamics-based parametrization of nonlinear fracture behavior. But this simplified

model can reproduce the experimental features of the observed resonance curves.

Our model o↵ers a unified interpretation of both the nonlinearity and slow dynamics in

resonance experiments. When the nonlinearity of the vibration system is weak, the up-down

di↵erence is indicative of slow dynamics. Thus, the up-down di↵erence can be used to study

the slow dynamics. When the nonlinearity is strong, the up-down di↵erence depends on

both the bifurcation and slow dynamics. In this case the up-down di↵erence does not vanish

around the cli↵, no matter how slowly one sweeps the driving frequency in the resonance

experiments. We suggest that one test the presence of the bifurcation in an experiment that

is performed at a constant frequency within the relevant frequency range. When starting
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with a fully relaxed sample, the resulting stable equilibrium will be on the lower branch of

the bifurcation. When starting with a sample that has been damaged by a sustained large

driving amplitude, the sample will reach a stable equilibrium at the upper branch of the

bifurcation.
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CHAPTER 4

OUTLOOK

Chapters 2 and 3 describe di↵erent types of nonlinear elasticity. Although a di↵erence ex-

ists between mathematical nonlinear oscillation systems (e.g., Du�ng equation) and physical

resonance experiments conducted in the laboratory, the analysis of the nonlinear elasticity

in the Du�ng equation (Chapters 2) helps interpret the simulations of laboratory resonance

experiments (Chapter 3). The EOS can have a variety of expressions regarding phenomeno-

logical or semi-phenomenological models. Since these nonlinear models to their lowest order

reduce to a cubic anharmonic term that accounts for the nonlinearity in the Du�ng equa-

tion, these models can produce a bifurcation when the nonlinearity of oscillation systems is

strong. In this case, a cli↵ is present in the resonance curve. The initial condition of the

deformation strain (see section 2.1) is indicative of the initial damage N

oi

(see Figure 3.10

and Figure 3.11) in the simulated resonance experiments (see section 3.4.4). Since the strain

determines softening, the initial condition of the strain is equivalent to the initial elastic

state of a sample. The initial damage N
oi

correlates with the initial elastic state, mentioned

in physical resonance experiments; hence, the mathematical concept, the initial strain de-

fined in Chapter 2, can be comparable to the initial damage that is defined in a physical

sense (Chapter 3). In summary, this thesis provides a unified interpretation of the observed

nonlinear elasticity measured by resonance experiments.

4.1 Limitations

The thermodynamics-based model used in Chapter 3 is based on the Arrhenius law [86,

144] and acts as an implicit nonlinear EOS. I apply the measurement protocol to simulating

the resonance experiments; the protocol measures the average damage that is calculated

from the variable damage (N
o

) over the last cycle of the oscillation. However, the simple

thermodynamics-based model may not be e↵ective in the simulation of all other nonlinear
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features introduced in Chapter 1. In this thesis, I do not include the simulations of stress-

strain or elasticity-strain hysteresis [124], the observed resonant frequency shift against the

strain amplitude [63], and the combination frequency in nonlinear wave modulation [71]

using the thermodynamics-based model used in Chapter 3.

The “triple butterfly” observed in the hysteresis loop produced by DAET [30, 34] chal-

lenges the existing hysteretic simulations such as those using the PM-based model [93].

Such the triple butterfly (see Figure 1.5) may result from both the attenuation (i.e., damped

oscillator) and nonlinear mesoscopic elasticity. For this aspect of the nonlinear EOS, the

thermodynamics-based model used in Chapter 3 may need to be extended to include the

strain rate ✏̇ for attenuation as well as shear motions for a complete description of dynamic

features (e.g., open and close) in fractures [146].

The thermodynamics-based model provides a limited physical description for a simple

simulation of resonance experiments. For example, my model does not provide a detailed

upscaling method to connect the microscopic or mesoscopic fracture density (concentration)

to macroscopic elastic constants (e.g., Young modulus). I assume a simple linear correla-

tion between Young’s modulus and fracture density; however, a correlation between elastic

moduli and fractures could further account for complicated issues such as fracture orienta-

tions, fracture surface energy, and distribution of fractures in granular solids. One should

take a nonlinear sti↵ness tensor into account when anisotropy is also induced by fractures

[151, 152]. Figure 3.5 illustrates the contribution of the multiscale relaxation scheme to slow

dynamics with log-time recovery. However, the underlying reason why log-time recovery is a

universal feature observed in rocks remains an open question; no physical explanation exists

for the even distribution of barrier energy. Li et al. [90] explain the log-time recovery of

frictional contacts that statically adhere to each other; the recovery involves re-establishing

bonds/links between contact surfaces. The observation of this chemical-physical process pro-

vides a physical interpretation of the observed log-time recovery in granular solids including

rocks and concrete. However, one still needs a physical understanding of upscaling, which
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should be a universal scheme for all nonlinear elastic materials.

As far as I know, no unified physical model presently exists to explain the observed non-

linear elasticity. Some EOSs are built based on microcontact models [21, 89] but assume

a contact shape/geometry, which cannot universally apply to various soft elements includ-

ing pores, microcontacts, and microfractures in rocks and concrete. Also, a di�culty exists

for numerical simulations when one incorporates too many physics details with a signifi-

cant increase in the number of parameters [e.g., 83, 89]. For example, reproducing slow

dynamics with the log-time recovery is di�cult if one does not assume a phenomenological

distribution of the energy or sizes of fractures. A parametrization with a massive amount of

variables complicates the simulation and one will find it di�cult to reproduce the nonlinear

features observed in laboratory measurements. Numerical simulations aim to reproduce ob-

served nonlinear features. Consequently, an increase in the complexity of the parametriza-

tion results in the “curse of dimensionality” [see ref. 153] where one needs to undergo a

complicated process of choosing reasonable values for the parameters. In other words, the

models mentioned in section 1.2 can only be phenomenological or semi-phenomenological

to achieve a trade-o↵ between physical descriptions in models and simulated results that

explain laboratory measurements. Thus I propose a short-cut in Chapter 3 to maintain a

simple thermodynamics-based model.

Most experiments measure the nonlinear elasticity of dry samples (e.g., rocks and con-

crete) at room temperature [e.g., 30]; dry samples commonly refer to samples with water

saturation at atmospheric pressure. Zinszner et al. [16] conduct an experiment that includes

the e↵ect of pressure and water saturation on nonlinear elasticity. The interaction between

the pore fluid and soft elements in granular solids complicates the observed nonlinear fea-

tures [154]. Van Den Abeele et al. [155] qualitatively explain the increase and decrease in

the softening e↵ect using the intergranular moisture-induced microforces that form capillary

bridges [156]. This relationship can be complicated, depending on rock types. An increase

in confining pressure weakens nonlinear elasticity due to the reduction of soft elements in

57



granular solids. Regarding temperature, Zaitsev et al. [142] show an increase in nonlinear

elasticity when increasing the temperature of a sample. Models cannot easily be built to

explain these observed lithology-dependent features that are related to factors other than

the amplitude of the pump waves. Quantitative models incorporated with factors such as

temperature, water saturation, and pressure could be promising future work in nonlinear

acoustics.

4.2 Future work in geophysics

Future laboratory experiments could confirm the bifurcation that is present in the sim-

ulated resonance curves (section 3.6). One can fix the driving frequency and measure the

time-varying response amplitude with two di↵erent initial conditions; one involves a fully

relaxed sample, and the other a fully excited sample, which has been conditioned using a

strong driving stress field for enough time to reach an equilibrium elastic state. For the fully

conditioned sample, one needs to condition the sample with a large driving amplitude and

then conduct the resonance experiment using a smaller driving amplitude, which is the same

amplitude used for the fully relaxed sample.

A similar experiment has been conducted in ref. [60], which shows the temporal variation

of the deformation amplitude at a fixed driving frequency when the sweep of the driving

frequency stops. However for a newly-designed experiment, one needs to apply a large

driving amplitude to the sample to create strong nonlinearity in the resonance system. One

technique that can identify the “strong nonlinearity” involves observing the presence of a

bifurcation, which results in a cli↵ in resonance curves.

In the future experiment, one could observe two stable elastic states that correspond to

oscillations with di↵erent initial damages (conditions). With an even stronger nonlinearity,

the measurement could show the chaotic jump-up-and-down of the response amplitudes in

resonance curves, as shown in Figure 4.1 where water-saturated chalk has unusual instability

on its resonance curves.
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Figure 4.1: Resonance curves for upward and downward sweeps for partially saturated chalk.
The inset shows a low-drive resonance curve where unusual instability does not exist. The
graph is adapted from Johnson et al. [5].

59



Nonlinear elasticity is observable in field measurements of seismic velocity, especially in

the shallow Earth that contains unconsolidated soils; this lithology is free of significant con-

fining pressure given by the overlying strata. Regarding potential applications in geophysics,

my thesis could further contribute to two aspects of exploration geophysics. Chaves and

Schwartz [117] observe a transient velocity change at a depth below 5 km in a subduction

zone; the velocity change is related to the presence of pressurized pore fluids, which has also

been proposed for volcanoes [157]. Such an observation indicates a possible application of

nonlinear acoustic imaging on oil and gas reservoirs; nonlinear elasticity has been observed

in oil and gas reservoirs [158].

Multi-level cross-well active source monitoring [102, 159–161] could potentially help ob-

serve nonlinear features (e.g., combination frequency in wave modulation) in reservoirs using

controlled active sources. Although rocks impose significant confining pressure that sup-

presses the nonlinear elasticity in a reservoir, the pore pressure induced by the presence of

oil and gas in the reservoir increases the nonlinear elasticity [16]. Thus, the observed non-

linear features could act as a monitoring tool for the stress change in the reservoir due to

the extraction of oil and gas.

The technique used to monitor reservoirs could apply to monitoring the stress change at

fault zones [162]. The stress change induces the change of the fracture system and further

correlates with the nonlinear elasticity in the reservoir. Some numerical models have explored

the e↵ect of the stress change on seismic imaging using a model based on a three-dimensional

classical nonlinear EOS, i.e., sti↵ness tensor [163–165]. I consider nonlinear elasticity as

promising attributes in reservoir surveillance, which can be applied to unconventional oil and

gas explorations as well as the development of enhanced geothermal systems. The recovery

of fractures/contacts in nonlinear elastic materials could be comparable to fracture healing

after hydraulic fracturing. The healing of stress-induced fractures harms the productivity of

unconventional oil and gas reservoirs and, hence, is of interest to the oil industry [166, 167].

The fracture theory developed for slow dynamics could also be extended to fracture healing
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in reservoirs since both healing processes occur at a nanoscale [168].
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at a single crack-like defect : observation and modeling. Forum Acusticum, pages
1379–1384, 2005.

[80] P. A. Johnson, T. M. Hopson, and T. J. Shankland. Frequency-domain travel time
(FDTT) measurement of ultrasonic waves by use of linear and nonlinear sources. The
Journal of the Acoustical Society of America, 92(5):2842–2850, 1992.

[81] V. Y. Zaitsev, V. E. Nazarov, and A. B. Kolpakov. Detection of acoustic pulses in
river sand: Experiment. Acoustical Physics, 45:235–241, 1999.

68



[82] V. Aleshin and K. Van Den Abeele. Microcontact-based theory for acoustics in micro-
damaged materials. Journal of the Mechanics and Physics of Solids, 55(2):366–390,
2007.

[83] O. O. Vakhnenko, V. O. Vakhnenko, and T. J. Shankland. Soft-ratchet modeling of
end-point memory in the nonlinear resonant response of sedimentary rocks. Physical
Review B, 71:174103, 2005.

[84] V. Y. Zaitsev, V. E. Gusev, V. Tournat, and P. Richard. Slow Relaxation and Aging
Phenomena at the Nanoscale in Granular Materials. Physical Review Letters, 112:
108302, 2014.

[85] M. W. Barsoum, M. Radovic, T. Zhen, P. Finkel, and S. R. Kalidindi. Dynamic Elastic
Hysteretic Solids and Dislocations. Physical Review Letters, 94:085501, 2005.

[86] R. Snieder, C. Sens-Schönfelder, and R. Wu. The time dependence of rock healing as
a universal relaxation process, a tutorial. Geophysical Journal International, 208(1):
1–9, 2017.

[87] J. A. TenCate, E. Smith, and R. A. Guyer. Universal slow dynamics in granular solids.
Physical Review Letters, 85(5):1020–1023, 2000.

[88] O. O. Vakhnenko, V. O. Vakhnenko, T. J. Shankland, and J. A. Ten Cate. Strain-
induced kinetics of intergrain defects as the mechanism of slow dynamics in the non-
linear resonant response of humid sandstone bars. Physical review E, 70:015602, 2004.

[89] A. V. Lebedev and L. A. Ostrovsky. A Unified Model of Hysteresis and Long Time
Relaxation in Heterogeneous Materials. Acoustical Physics, 60(5):555–561, 2014.

[90] Q. Li, T. E. Tullis, D. Goldsby, and R. W. Carpick. Frictional ageing from interfacial
bonding and the origins of rate and state friction. Nature (London), 480(7376):233–236,
2011.

[91] I. D. Mayergoyz. Hysteresis models from the mathematical and control theory points
of view. Journal of Applied Physics, 57(8):3803–3805, 1985.

[92] V. Gusev and V. Tournat. Amplitude- and frequency-dependent nonlinearities in the
presence of thermally-induced transitions in the Preisach model of acoustic hysteresis.
Physical Review B, 72:054104, 2005.

[93] P. P. Delsanto and M. Scalerandi. Modeling nonclassical nonlinearity, conditioning,
and slow dynamics e↵ects in mesoscopic elastic materials. Physical Review B, 68(6):
064107, 2003.

69



[94] A. Gliozzi, M. Nobili, and M. Scalerandi. Modelling localized nonlinear damage and
analysis of its influence on resonance frequencies. Journal of Physics D: Applied
Physics, 39:3895, 2006.

[95] K. E. Claytor, J. R. Koby, and J. A. TenCate. Limitations of Preisach Theory: Elastic
aftere↵ect, congruence, and end point memory. Geophysical Research Letters, 36(6):
L06304, 2009.

[96] G. Consolo, V. Puliafito, G. Finocchio, L. Lopez-Diaz, R. Zivieri, L. Giovannini, F. Niz-
zoli, G. Valenti, and B. Azzerboni. Combined Frequency-Amplitude Nonlinear Modu-
lation: Theory and Applications. IEEE Transactions on Magnetics, 46(9):3629–3634,
2010.

[97] A. K. Singh, B. Chen, V. B. C. Tan, T. E. Tay, and H. P. Lee. A theoretical and
numerical study on the mechanics of vibro-acoustic modulation. The Journal of the
Acoustical Society of America, 141(4):2821–2831, 2017.

[98] P. Blanloeuil, L. R. F. Rose, C. H. Wang, and M. Veidt. E�cient Simulations of the
Nonlinear Wave Modulation Induced by a Closed Crack Using Local Contact Mod-
elling. Procedia Engineering, 188:201 – 208, 2017.

[99] N. Nakata and R. Snieder. Near-surface weakening in Japan after the 2011 Tohoku-Oki
earthquake. Geophysical Research Letters, 38(17):L17302, 2011.

[100] G. Renaud, J. Rivière, C. Larmat, J. T. Rutledge, R. C. Lee, R. A. Guyer, K. Stokoe,
and P. A. Johnson. In situ characterization of shallow elastic nonlinear parameters
with Dynamic Acoustoelastic Testing. Journal of Geophysical Research: Solid Earth,
119(9):6907–6923, 2014.

[101] P. A. Johnson, P. Bodin, J. Gomberg, F. Pearce, Z. Lawrence, and F. Menq. Inducing
in situ, nonlinear soil response applying an active source. Journal of Geophysical
Research: Solid Earth, 114(B5):B05304, 2009.

[102] T. M. Daley, R. D. Solbau, J. Ajo-Franklin, and S. M. Benson. Continuous active-
source seismic monitoring of CO2 injection in a brine aquifer. Geophysics, 72(5):
A57–A61, 2007.

[103] J. L. Rubinstein and G. C. Beroza. Evidence for Widespread Nonlinear Strong Ground
Motion in the M

W

6.9 Loma Prieta Earthquake. Bulletin of the Seismological Society
of America, 94(5):1595–1608, 2004.

[104] Z. Peng and Y. Ben-Zion. Temporal Changes of Shallow Seismic Velocity Around the
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APPENDIX A

MEASUREMENT PROTOCOL

We numerically simulate the measurement protocol used in the laboratory experiments

[e.g. 5, 30]:

1. At a time t = t1, we apply a dynamic force field to the sample with driving frequency

f

d

= !/2⇡ and driving amplitude A

r

that is kept fixed. We calculate the oscilla-

tion (response) strain amplitude R

A

(t1) using equation 3.8, where the softening of the

material (�⌦/⌦ = �Y/2Y ) at t = t1 is taken into account.

2. For a duration �t = 5 ms (0.01⌧
max

) the driving frequency is kept fixed, as the sample

oscillates with the dynamic strain ✏(t) = R

A

(t) sin[!(t� t1)] until the time t = t1+�t.

Following the fracture energy in Figure 3.3, we convert the dynamic strain ✏ to energy

variations E
o

(t) and E

c

(t). Equation 3.1 then provides time-dependent transition times

⌧

o

(t) and ⌧

c

(t), which we use to integrate the RHS in equation 3.2 and solve the fraction

of open fractures n
o

(E
b

, t) for a given barrier energy E

b

. We average n
o

(E
b

, t) over the

barrier energy interval [E
bmin

, E

bmax

] and obtain the temporal variation of N
o

(t) during

the oscillation. N
o

is the fraction of open fractures in the sample averaged over barrier

energies. N
o

(t) leads to the softening �Y = Y � Y0 through equation 3.4. We average

N

o

(t) over the past cycle of strain oscillation (with time duration 1/f
d

); from this

averaged value, we calculate the dynamic Young’s modulus Y using equation 3.4. We

further calculate the resonant angular frequency ⌦ using �⌦/⌦0 = �Y/2Y0. With

the calculation of the resonant angular frequency shift �⌦ from dynamic strain, we

update the strain amplitude R

A

for the next cycle of the strain oscillation; we update

R

A

whenever the phase !(t� t1) = 0 (link 3 in Figure 3.1).
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3. We average N
o

(t) over the last cycle of the strain oscillation (with time duration 1/f
d

)

during the sweep interval time �t; from this averaged value, we calculate the resonant

angular frequency ⌦ using the method mentioned in step 2.

4. At the time t = t1 + �t, we increase/decrease the driving frequency f

d

by �f . We

calculate the oscillation strain amplitude R
A

(t1+�t) using equation 3.8 for the driving

frequency f

d

± �f at t = t1 + �t; the recorded quantity for the response is the

acceleration amplitude !

2
R

A

L0.

5. We repeat steps 1, 2, 3, and 4 for each sampled driving frequency in the sweep and

record the corresponding response. Figure A.1 shows the time line of recursive steps

1, 2, 3, and 4 in the frequency sweep.

Figure A.1: Time line of the measurement protocol.

For a known dynamic strain, we solve equation 3.2 using the transition times ⌧

o

and

⌧

c

from equation 3.1 with energies E

o

and E

c

from the relationship in Figure 3.3. We

integrate the solution of equation 3.2 over barrier energy and obtain the softening �Y from

equation 3.4. The softening updates the response amplitude using equation 3.8 and the

above-mentioned protocol.
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APPENDIX B

STEADY STATE SOLUTION

We can solve the equations listed for our model without considering the temporal evolu-

tion of the damage state N

o

. Instead, we solve for the stable equilibrium value of N
o

from

the following set of equations:

|R
A

| = |A
r

|p
(!2 � ⌦2)2 + 4�2

!

2
(B.1)

and

N

o

=
1

1 + exp
�
(E

o

� E

c

)/k
B

T

�
. (B.2)

Equation B.1 is same as equations 3.8, and B.2 follows from the stable equilibrium solution

in equation 3.3. The equilibrium fraction of open fractures n
eq

is independent of the barrier

energy, and hence N

o

is equal to n

eq

. The relations among other parameters are

E

o

= B0 �
A1

1 + exp
�
�(|R

A

|� µ)/�
c

� (B.3)

and

E

c

= A0 +
A1

1 + exp
�
�(|R

A

|� µ)/�
c

�
, (B.4)

where the same sigmoid functions for the fracture energies are used (see Table 3.1 for used

values of A0, A1, B0, µ, and �

c

), and

Y = Y0 � C0(No

�N

ori

) (B.5)

and

⌦ = ⇡

p
Y/⇢/L0, (B.6)

where the feedback from damage N
o

to the resonant frequency is taken into account. Equa-

tion B.5 is the same as equation 3.4, and equation B.6 is the equation used to convert Young’s

modulus Y into the resonant frequency.
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Since |R
A

| influences E
o

and E

c

through equations B.3 and B.4, and N

o

feeds back to ⌦

through equations B.5 and B.6, one can jointly solve equations B.1 and B.2 together using

an iterative adaption method [169], given the driving amplitude A

r

and driving angular

frequency ! = 2⇡f
d

. With an initial damage N

oi

, one can solve for the stable equilibrium

damage N
o

. Since there is no dynamics in this approach, the solution corresponds to a stable

equilibrium solution to which the nonlinear model will converge. There may be unstable

equilibrium solutions, but the lack of stability precludes these solutions to be reached in the

iterative process.
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APPENDIX C

PERMISSION OF COPYRIGHT

This appendix includes the permission from the co-author to use the submitted manuscript

in the Chapter 3 and the permissions of the reused graphs from other scientific publishers.

C.1 Permission of accepted paper

Chapter 3 is a paper accepted at Physical Review B. The screenshot (Figure C.1) below

shows the permission of using the accepted manuscript in my thesis.

Figure C.1: Copyright permission of reusing my accepted paper into the thesis
(https://journals.aps.org/copyrightFAQ.html).

C.2 Permission from coauthor

Figure C.2 shows the permission from the coauthor of the accepted paper at Physical

Review B; the paper is used as Chapter 3 in this thesis.

C.3 Permission of reused graphs

Chapter 1 reuses the graphs from ref. [1] with the permission granted by AGU. The

screenshot (Figure C.3) below shows the copyright permission from AUG of reusing graphs

in publications for academic purposes.

Chapter 1 reuses the graphs from ref. [4] with the permission granted by Oxford Aca-

demic. The screenshot (Figure C.4) below shows the copyright permission from Oxford

Academic of reusing graphs in publications for academic purposes.

81



Figure C.2: Copyright permission from the coauthor of Chapter 3.
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