Advanced Soil Mechanics–CEEN 410/510

Instructor: D.V. Griffiths
Coolbaugh Hall: CO252, Tel: 273 3669, d.v.griffiths@Mines.EDU
Web: www.mines.edu/~vgriffit

Advanced soil mechanics concepts and theories as applied to analysis and design in geotechnical engineering. The course has an emphasis on numerical and analytical methods.

Course Outline:

a Seepage: Review; Principle of effective stress; Confined flow; Flow nets; Method of Fragments; Introduction to finite difference and finite element solutions to steady seepage problems.

b Settlement and Consolidation: Review; Amount and rate of settlement; Boundary/initial conditions; Finite difference and finite element solutions; Sand drains.

c Slope Stability Analysis: Review of shear strength; Analytical Methods; Charts; Methods of Slices; Finite element slope stability software.

d Introduction to Limit Analysis: Review of limit theorems; Upper and lower bound solutions; Finite Element Limit Analysis (FELA).

e Failure Criteria for Soil: A discussion of 3D stress states, principal stress space and stress invariants. Several failure criteria for soil are introduced including Tresca, Mohr-Coulomb and Drucker-Prager type models.
Advanced Soil Mechanics–CEEN 410/510

Instructor: D.V. Griffiths
CO 252, Tel: 273 3669, d.v.griffiths@Mines.EDU
Web: www.mines.edu/~vgriffit

Prerequisite: A first course in Soil Mechanics.

Additional reading:

Assessment:

Exam 1	0.35
Exam 2	0.35
Coursework	0.3

Grading:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 90%</td>
<td>≥ 80%</td>
<td>≥ 70%</td>
<td>≥ 60%</td>
<td>< 60%</td>
</tr>
</tbody>
</table>

Exam dates:

- Mid-semester: TBA
- End-semester: TBA

Students enrolled at the 500-level will receive one additional homework assignment.

Practice questions will be handed out throughout the course but will not be graded.