! ********************************************************************* ! * * ! * subroutine sim2sd * ! * * ! ********************************************************************* ! Single Precision Version 1.4 ! Written by Gordon A. Fenton, DalTech, Nov 17, 1999 ! Latest Update: Oct 18, 2002 ! ! PURPOSE simulates soil property fields for RSLOPE2D ! ! DESCRIPTION ! This routine simulates up to 6 soil property fields (cohesion, friction ! angle, dilation angle, unit weight, elastic modulus, and Poisson's ratio ! which are possibly intercorrelated. Individual fields are generated as ! standard Gaussian random fields using the 2-D Local Average Subdivision ! (LAS) algorithm. These fields are then combined to produce correlated ! standard Gaussian fields using the Covariance Matrix Decomposition ! approach. Finally the individual fields are transformed so that they ! have the desired marginal distributions. These transformations are as ! follows; ! ! P(x,y) = mean + sd*G(x,y) if normally distributed ! ! P(x,y) = exp{ log-mean + log-sd*G(x,y) }if lognormally distributed ! ! P(x,y) = a + 0.5*(b-a)*[ 1 + tanh((m + s*G(x,y))/2*pi) ] ! if bounded ! ! where P(x,y) is the desired random field (one of the soil properties) ! G(x,y) is one of the standard correlated Gaussian fields, and (mean,sd) ! and (a,b,m,s) are parameters of the distributions. ! ! If the property is deterministic, the entire field is simply set to the ! mean. ! ! ARGUMENTS ! ! istat unit number connected to a file to which the input data is to ! echoed if echo is true. (input) ! ! iterm unit number connected to the screen. If verbos is true, then ! error and warning messages are also sent to the screen. (input) ! ! verbos logical flag which is true if error, warning, and progress ! messages are allowed to be sent to the screen. (input) ! ! cfld real array of size at least (nrfx x nrfy) which will contain ! the (optionally) random (locally averaged) cohesion field. ! (output) ! ! phifld real array of size at least (nrfx x nrfy) which will contain ! the (optionally) random (locally averaged) friction angle ! field. Note that phifld may optionally contain the tan(phi) ! field, as specified in the data file read by readsd. (output) ! ! psifld real array of size at least (nrfx x nrfy) which will contain ! the (optionally) random (locally averaged) dilation angle ! field. (output) ! ! gamfld real array of size at least (nrfx x nrfy) which will contain ! the (optionally) random (locally averaged) unit weight field. ! (output) ! ! efld real array of size at least (nrfx x nrfy) which will contain ! the (optionally) random (locally averaged) elastic modulus ! field. (output) ! ! vfld real array of size at least (nrfx x nrfy) which will contain ! the (optionally) random (locally averaged) poisson's ratio ! field. (output) ! ! c real vector of length at least 7 containing the parameters of ! the soil cohesion. Notably, ! c(1) = mean cohesion, ! c(2) = cohesion standard deviation, ! c(3) = cohesion distribution type; ! = 0.0 if cohesion is deterministic (at mean value) ! = 1.0 if cohesion is normally distributed ! = 2.0 if cohesion is lognormally distributed (logn) ! = 3.0 if cohesion is bounded ! c(4) = lower bound (bounded), or mean of log-cohesion (logn) ! c(5) = upper bound (bounded), or sd of log-cohesion (logn) ! c(6) = m parameter (if bounded) ! c(7) = s parameter (if bounded) ! If c is bounded, then c(1) and c(2) are ignored and the ! parameters c(4) through c(7) completely describe the ! distribution. (input) ! ! phi real vector of length at least 7 containing the parameters of ! soil friction angle. See `c' for what the various elements of ! phi contain. (input) ! ! psi real vector of length at least 7 containing the parameters of ! soil dilation angle. See `c' for what the various elements of ! psi contain. (input) ! ! gam real vector of length at least 7 containing the parameters of ! soil unit weight. See `c' for what the various elements of ! gam contain. (input) ! ! e real vector of length at least 7 containing the parameters of ! soil elastic modulus. See `c' for what the various elements of ! e contain. (input) ! ! v real vector of length at least 7 containing the parameters of ! soil Poisson ratio. See `c' for what the various elements of ! v contain. (input) ! ! R real array of size at least 6 x 6 which, on output, will ! contain the correlation matrix between the 6 (possibly) ! random soil properties. Indexing into R is as follows; ! 1 = cohesion ! 2 = friction angle ! 3 = dilation angle ! 4 = unit weight ! 5 = elastic modulus ! 6 = Poisson's ratio ! (input) ! ! lxfld logical flag which is true if more than one soil property ! are cross-correlated. That is, if all soil properties are ! independent, then lxfld is false. (input) ! ! thx real value giving the x-direction scale of fluctuation ! (or, at least, this is a parameter of the covariance function). ! (input) ! ! thy real value giving the y-direction scale of fluctuation ! (or, at least, this is another parameter of the covariance ! function). (input) ! ! nrfx integer giving the number of elements describing the soil ! mass in the x-direction (horizontally). (input) ! ! nrfy integer giving the number of elements describing the soil ! mass in the y-direction (vertically). (input) ! ! dx real value giving the physical size of an element in the ! x-direction. (input) ! ! dy real value giving the physical size of an element in the ! y-direction. (input) ! ! dmpfld logical flag which is true if a random field is to be ! plotted to *.fld. (input) ! ! nfld integer giving the realization number of the random field ! which is to be plotted to *.fld. (input) ! ! jfld integer denoting which random field is to be plotted; ! = 1 for the cohesion (c) field, ! = 2 for the friction angle (phi) field, ! = 3 for the dilation angle (psi) field, ! = 4 for the unit weight (gam) field, ! = 5 for the elastic modulus (psi) field, ! = 6 for the poisson ratio (psi) field, ! (input) ! ! ifld unit number connected to the file to which the random field ! plot is to be written in the event that dmpfld is true. ! (input) ! ! job character string containing the main title of the run. ! (input) ! ! sub1 character string, which on output will contain the first ! subtitle for this run. (output) ! ! sub2 character string, which on output will contain the second ! subtitle for this run. (output) ! ! varfnc character string containing the name of the covariance ! function controlling the random fields. Possible covariance ! functions are ! `dlavx2' - 2-D exponentially decaying (Markov) model ! requires X- and Y-direction scales of fluctuation ! `dlafr2' - 2-D isotropic fractional Gaussian noise model ! requires (H,delta) as parameters. In this case, ! thx is H, and delta is the minimum element ! dimension. ! `dlsep2' - 2-D separable (1D x 1D) Markov model ! requires X- and Y-direction scales of fluctuation ! `dlsfr2' - 2-D separable fractional Gaussian noise model ! requires (H_x,H_y,delta) as parameters. In this ! case, thx is H_x, thy is H_y, and delta is the ! minimum element dimension. ! `dlspx2' - 2-D separable Gaussian decaying model ! requires X- and Y-direction scales of fluctuation ! (input) ! ! kseed integer giving the seed to be used to initialize the ! pseudo-random number generator. Subsequent runs using ! the same seed will result in the same sequence of random ! numbers. (input) ! ! debug logical flag which is true if debug information is to be ! sent to the *.stt file. (input) ! ! ltanfi logical flag which is true if the phifld array contains the ! tan(phi) field, rather than the phi field, where phi is the ! friction angle. (input) ! ! REVISION HISTORY: ! 1.1 the LAS generator now integrates the covariance function directly, ! rather than using the variance function, see lvarfn (May 26/00) ! 1.2 eliminated lvarfn from common /dparam/ (May 26/01) ! 1.21 fixed truncated documentation above (Mar 1/02) ! 1.3 added ltanfi flag (used for title to pltfld) (Jun 13/02) ! 1.31 output error message if covariance function is unknown (Sep 9/02) ! 1.4 added data definition for twopi! (Oct 18/02) !----------------------------------------------------------------------- subroutine sim2sd2(istat,iterm,verbos,cfld,phifld,psifld,gamfld, & efld,vfld,c,phi,psi,gam,e,v,R,lxfld,thx,thy, & nrfx,nrfy,dx,dy,dmpfld,nfld,jfld,ifld,job,sub1, & sub2,varfnc,kseed,debug,ltanfi) real cfld(nrfx,*), phifld(nrfx,*), psifld(nrfx,*) real gamfld(nrfx,*), efld(nrfx,*), vfld(nrfx,*) real c(*), phi(*), psi(*), gam(*), e(*), v(*), R(6,*), thx, thy integer nrfx, nrfy, nfld, ifld character*(*) job, sub1, sub2, varfnc logical verbos, dmpfld, debug, liid2, shofld, lxfld, ltanfi real*8 dvar, dpb, dthx, dthy, dthz, ddx, ddy real*8 dlavx2, dlsep2, dlspx2, dlafr2, dlsfr2 real*8 dmin1, dble save XL2, YL2, ienter2, liid2 external dlavx2, dlsep2, dlspx2, dlafr2, dlsfr2 common/dparam/ dvar, dpb, dthx, dthy, dthz data zero/0.0/, half/0.5/, one/1.0/, onept5/1.5/, twopt5/2.5/ data twopi/6.2831853071795864769/ data ienter/0/ 1 format(a,a) !-------------------------------------- initialize --------------------- ! compute required field size (once) ienter2 = ienter2 + 1 if( ienter2 .eq. 1 ) then liid2 = ((thx .eq. zero) .and. (thy .eq. zero)) XL2 = float(nrfx)*dx YL2 = float(nrfy)*dy if( debug ) write(istat,1)'SIM2SD: setting field parameters...' if( .not. liid2 ) then ! set variance fnc parameters dvar = 1.d0 dthx = thx dthy = thy if( varfnc .eq. 'dlafr2' .or. varfnc .eq. 'dlsfr2' ) then dpb = dx if( dy .lt. dx ) dpb = dy endif ! initialize LAS2G if( varfnc .eq. 'dlavx2' ) then call las2g2(cfld,nrfx,nrfy,XL2,YL2,dlavx2,kseed,-1,istat) elseif( varfnc .eq. 'dlsep2' ) then call las2g2(cfld,nrfx,nrfy,XL2,YL2,dlsep2,kseed,-1,istat) elseif( varfnc .eq. 'dlspx2' ) then call las2g2(cfld,nrfx,nrfy,XL2,YL2,dlspx2,kseed,-1,istat) elseif( varfnc .eq. 'dlafr2' ) then call las2g2(cfld,nrfx,nrfy,XL2,YL2,dlafr2,kseed,-1,istat) elseif( varfnc .eq. 'dlsfr2' ) then call las2g2(cfld,nrfx,nrfy,XL2,YL2,dlsfr2,kseed,-1,istat) else if( verbos ) then write(iterm,1) & '*** Error: unknown variance function name: ', varfnc endif write(istat,1) & '*** Error: unknown variance function name: ', varfnc stop endif endif endif ! are we going to plot anything? shofld = dmpfld .and. (nfld .eq. ienter) ! now produce 5 standard normal fields ! for cohesion... if( c(3) .lt. half ) then ! cohesion is deterministic do 10 j = 1, nrfy do 10 i = 1, nrfx cfld(i,j) = zero ! we'll add mean back on later 10 continue elseif( liid2 ) then ! white noise field do 20 j = 1, nrfy do 20 i = 1, nrfx cfld(i,j) = gausv2(one) 20 continue else ! generate standard normal RF if( varfnc .eq. 'dlavx2' ) then call las2g2(cfld,nrfx,nrfy,XL2,YL2,dlavx2,kseed,0,istat) elseif( varfnc .eq. 'dlsep2' ) then call las2g2(cfld,nrfx,nrfy,XL2,YL2,dlsep2,kseed,0,istat) elseif( varfnc .eq. 'dlspx2' ) then call las2g2(cfld,nrfx,nrfy,XL2,YL2,dlspx2,kseed,0,istat) elseif( varfnc .eq. 'dlafr2' ) then call las2g2(cfld,nrfx,nrfy,XL2,YL2,dlafr2,kseed,0,istat) elseif( varfnc .eq. 'dlsfr2' ) then call las2g2(cfld,nrfx,nrfy,XL2,YL2,dlsfr2,kseed,0,istat) endif endif ! for friction angle... if( phi(3) .lt. half ) then ! friction is deterministic do 30 j = 1, nrfy do 30 i = 1, nrfx phifld(i,j) = zero ! we'll add mean back on later 30 continue elseif( liid2 ) then ! white noise field do 40 j = 1, nrfy do 40 i = 1, nrfx phifld(i,j) = gausv2(one) 40 continue else ! generate standard normal RF if( varfnc .eq. 'dlavx2' ) then call las2g2(phifld,nrfx,nrfy,XL2,YL2,dlavx2,kseed,0,istat) elseif( varfnc .eq. 'dlsep2' ) then call las2g2(phifld,nrfx,nrfy,XL2,YL2,dlsep2,kseed,0,istat) elseif( varfnc .eq. 'dlspx2' ) then call las2g2(phifld,nrfx,nrfy,XL2,YL2,dlspx2,kseed,0,istat) elseif( varfnc .eq. 'dlafr2' ) then call las2g2(phifld,nrfx,nrfy,XL2,YL2,dlafr2,kseed,0,istat) elseif( varfnc .eq. 'dlsfr2' ) then call las2g2(phifld,nrfx,nrfy,XL2,YL2,dlsfr2,kseed,0,istat) endif endif ! for dilation angle... if( psi(3) .lt. half ) then ! dilation is deterministic do 50 j = 1, nrfy do 50 i = 1, nrfx psifld(i,j) = zero ! we'll add mean back on later 50 continue elseif( liid2 ) then ! white noise field do 60 j = 1, nrfy do 60 i = 1, nrfx psifld(i,j) = gausv2(one) 60 continue else ! generate standard normal RF if( varfnc .eq. 'dlavx2' ) then call las2g2(psifld,nrfx,nrfy,XL2,YL2,dlavx2,kseed,0,istat) elseif( varfnc .eq. 'dlsep2' ) then call las2g2(psifld,nrfx,nrfy,XL2,YL2,dlsep2,kseed,0,istat) elseif( varfnc .eq. 'dlspx2' ) then call las2g2(psifld,nrfx,nrfy,XL2,YL2,dlspx2,kseed,0,istat) elseif( varfnc .eq. 'dlafr2' ) then call las2g2(psifld,nrfx,nrfy,XL2,YL2,dlafr2,kseed,0,istat) elseif( varfnc .eq. 'dlsfr2' ) then call las2g2(psifld,nrfx,nrfy,XL2,YL2,dlsfr2,kseed,0,istat) endif endif ! for unit weight... if( gam(3) .lt. half ) then ! unit weight is deterministic do 62 j = 1, nrfy do 62 i = 1, nrfx gamfld(i,j) = zero ! we'll add mean back on later 62 continue elseif( liid2 ) then ! white noise field do 64 j = 1, nrfy do 64 i = 1, nrfx gamfld(i,j) = gausv2(one) 64 continue else ! generate standard normal RF if( varfnc .eq. 'dlavx2' ) then call las2g2(gamfld,nrfx,nrfy,XL2,YL2,dlavx2,kseed,0,istat) elseif( varfnc .eq. 'dlsep2' ) then call las2g2(gamfld,nrfx,nrfy,XL2,YL2,dlsep2,kseed,0,istat) elseif( varfnc .eq. 'dlspx2' ) then call las2g2(gamfld,nrfx,nrfy,XL2,YL2,dlspx2,kseed,0,istat) elseif( varfnc .eq. 'dlafr2' ) then call las2g2(gamfld,nrfx,nrfy,XL2,YL2,dlafr2,kseed,0,istat) elseif( varfnc .eq. 'dlsfr2' ) then call las2g2(gamfld,nrfx,nrfy,XL2,YL2,dlsfr2,kseed,0,istat) endif endif ! for elastic modulus... if( e(3) .lt. half ) then ! modulus is deterministic do 70 j = 1, nrfy do 70 i = 1, nrfx efld(i,j) = zero ! we'll add mean back on later 70 continue elseif( liid2 ) then ! white noise field do 80 j = 1, nrfy do 80 i = 1, nrfx efld(i,j) = gausv2(one) 80 continue else ! generate standard normal RF if( varfnc .eq. 'dlavx2' ) then call las2g2(efld,nrfx,nrfy,XL2,YL2,dlavx2,kseed,0,istat) elseif( varfnc .eq. 'dlsep2' ) then call las2g2(efld,nrfx,nrfy,XL2,YL2,dlsep2,kseed,0,istat) elseif( varfnc .eq. 'dlspx2' ) then call las2g2(efld,nrfx,nrfy,XL2,YL2,dlspx2,kseed,0,istat) elseif( varfnc .eq. 'dlafr2' ) then call las2g2(efld,nrfx,nrfy,XL2,YL2,dlafr2,kseed,0,istat) elseif( varfnc .eq. 'dlsfr2' ) then call las2g2(efld,nrfx,nrfy,XL2,YL2,dlsfr2,kseed,0,istat) endif endif ! for Poisson's ratio... if( v(3) .lt. half ) then ! ratio is deterministic do 90 j = 1, nrfy do 90 i = 1, nrfx vfld(i,j) = zero ! we'll add mean back on later 90 continue elseif( liid2 ) then ! white noise field do 100 j = 1, nrfy do 100 i = 1, nrfx vfld(i,j) = gausv2(one) 100 continue else ! generate standard normal RF if( varfnc .eq. 'dlavx2' ) then call las2g2(vfld,nrfx,nrfy,XL2,YL2,dlavx2,kseed,0,istat) elseif( varfnc .eq. 'dlsep2' ) then call las2g2(vfld,nrfx,nrfy,XL2,YL2,dlsep2,kseed,0,istat) elseif( varfnc .eq. 'dlspx2' ) then call las2g2(vfld,nrfx,nrfy,XL2,YL2,dlspx2,kseed,0,istat) elseif( varfnc .eq. 'dlafr2' ) then call las2g2(vfld,nrfx,nrfy,XL2,YL2,dlafr2,kseed,0,istat) elseif( varfnc .eq. 'dlsfr2' ) then call las2g2(vfld,nrfx,nrfy,XL2,YL2,dlsfr2,kseed,0,istat) endif endif ! combine for correlated fields... if( lxfld ) then do 110 j = 1, nrfy do 110 i = 1, nrfx vfld(i,j) = R(1,6)*cfld(i,j) + R(2,6)*phifld(i,j) & + R(3,6)*psifld(i,j) + R(4,6)*gamfld(i,j) & + R(5,6)*efld(i,j) + R(6,6)*vfld(i,j) efld(i,j) = R(1,5)*cfld(i,j) + R(2,5)*phifld(i,j) & + R(3,5)*psifld(i,j) + R(4,5)*gamfld(i,j) & + R(5,5)*efld(i,j) gamfld(i,j) = R(1,4)*cfld(i,j) + R(2,4)*phifld(i,j) & + R(3,4)*psifld(i,j) + R(4,4)*gamfld(i,j) psifld(i,j) = R(1,3)*cfld(i,j) + R(2,3)*phifld(i,j) & + R(3,3)*psifld(i,j) phifld(i,j) = R(1,2)*cfld(i,j) + R(2,2)*phifld(i,j) 110 continue endif ! plot the random field? if( shofld ) then if( jfld .eq. 1 ) then call pltfld( job, sub1, sub2, cfld, nrfx,nrfx,nrfy,XL,YL, & '(Underlying) Cohesion Field', ifld ) elseif( jfld .eq. 2 ) then if( ltanfi ) then call pltfld( job,sub1,sub2,phifld,nrfx,nrfx,nrfy,XL,YL, & '(Underlying) Friction Angle Field', ifld ) else call pltfld( job,sub1,sub2,phifld,nrfx,nrfx,nrfy,XL,YL, & '(Underlying) tan(Friction Angle) Field',ifld) endif elseif( jfld .eq. 3 ) then call pltfld( job, sub1, sub2, psifld,nrfx,nrfx,nrfy,XL,YL, & '(Underlying) Dilation Angle Field', ifld ) elseif( jfld .eq. 4 ) then call pltfld( job, sub1, sub2, gamfld,nrfx,nrfx,nrfy,XL,YL, & '(Underlying) Unit Weight Field', ifld ) elseif( jfld .eq. 5 ) then call pltfld( job, sub1, sub2, efld,nrfx,nrfx,nrfy,XL,YL, & '(Underlying) Elastic Modulus Field', ifld ) elseif( jfld .eq. 6 ) then call pltfld( job, sub1, sub2, vfld,nrfx,nrfx,nrfy,XL,YL, & '(Underlying) Poisson''s Ratio Field', ifld ) endif endif ! convert to final fields ! for cohesion... if( c(3) .lt. half ) then ! deterministic do 120 j = 1, nrfy do 120 i = 1, nrfx cfld(i,j) = c(1) 120 continue elseif( c(3) .lt. onept5 ) then ! normal do 130 j = 1, nrfy do 130 i = 1, nrfx cfld(i,j) = c(1) + c(2)*cfld(i,j) 130 continue elseif( c(3) .lt. twopt5 ) then ! lognormal do 140 j = 1, nrfy do 140 i = 1, nrfx cfld(i,j) = exp( c(4) + c(5)*cfld(i,j) ) 140 continue else ! bounded do 150 j = 1, nrfy do 150 i = 1, nrfx cfld(i,j) = c(4) + half*(c(5)-c(4)) & *( one + tanh((c(6)+c(7)*cfld(i,j))/twopi) ) 150 continue endif ! for friction angle... if( phi(3) .lt. half ) then ! deterministic do 160 j = 1, nrfy do 160 i = 1, nrfx phifld(i,j) = phi(1) 160 continue elseif( phi(3) .lt. onept5 ) then ! normal do 170 j = 1, nrfy do 170 i = 1, nrfx phifld(i,j) = phi(1) + phi(2)*phifld(i,j) 170 continue elseif( phi(3) .lt. twopt5 ) then ! lognormal do 180 j = 1, nrfy do 180 i = 1, nrfx phifld(i,j) = exp( phi(4) + phi(5)*phifld(i,j) ) 180 continue else ! bounded do 190 j = 1, nrfy do 190 i = 1, nrfx phifld(i,j) = phi(4) + half*(phi(5)-phi(4)) & *( one + tanh((phi(6)+phi(7)*phifld(i,j))/twopi) ) 190 continue endif ! for dilation angle... if( psi(3) .lt. half ) then ! deterministic do 200 j = 1, nrfy do 200 i = 1, nrfx psifld(i,j) = psi(1) 200 continue elseif( psi(3) .lt. onept5 ) then ! normal do 210 j = 1, nrfy do 210 i = 1, nrfx psifld(i,j) = psi(1) + psi(2)*psifld(i,j) 210 continue elseif( psi(3) .lt. twopt5 ) then ! lognormal do 220 j = 1, nrfy do 220 i = 1, nrfx psifld(i,j) = exp( psi(4) + psi(5)*psifld(i,j) ) 220 continue else ! bounded do 230 j = 1, nrfy do 230 i = 1, nrfx psifld(i,j) = psi(4) + half*(psi(5)-psi(4)) & *( one + tanh((psi(6)+psi(7)*psifld(i,j))/twopi) ) 230 continue endif ! for unit weight... if( gam(3) .lt. half ) then ! deterministic do 232 j = 1, nrfy do 232 i = 1, nrfx gamfld(i,j) = gam(1) 232 continue elseif( gam(3) .lt. onept5 ) then ! normal do 234 j = 1, nrfy do 234 i = 1, nrfx gamfld(i,j) = gam(1) + gam(2)*gamfld(i,j) 234 continue elseif( gam(3) .lt. twopt5 ) then ! lognormal do 236 j = 1, nrfy do 236 i = 1, nrfx gamfld(i,j) = exp( gam(4) + gam(5)*gamfld(i,j) ) 236 continue else ! bounded do 238 j = 1, nrfy do 238 i = 1, nrfx gamfld(i,j) = gam(4) + half*(gam(5)-gam(4)) & *( one + tanh((gam(6)+gam(7)*gamfld(i,j))/twopi) ) 238 continue endif ! for elastic modulus... if( e(3) .lt. half ) then ! deterministic do 240 j = 1, nrfy do 240 i = 1, nrfx efld(i,j) = e(1) 240 continue elseif( e(3) .lt. onept5 ) then ! normal do 250 j = 1, nrfy do 250 i = 1, nrfx efld(i,j) = e(1) + e(2)*efld(i,j) 250 continue elseif( e(3) .lt. twopt5 ) then ! lognormal do 260 j = 1, nrfy do 260 i = 1, nrfx efld(i,j) = exp( e(4) + e(5)*efld(i,j) ) 260 continue else ! bounded do 270 j = 1, nrfy do 270 i = 1, nrfx efld(i,j) = e(4) + half*(e(5)-e(4)) & *( one + tanh((e(6)+e(7)*efld(i,j))/twopi) ) 270 continue endif ! for Poisson's ratio... if( v(3) .lt. half ) then ! deterministic do 280 j = 1, nrfy do 280 i = 1, nrfx vfld(i,j) = v(1) 280 continue elseif( v(3) .lt. onept5 ) then ! normal do 290 j = 1, nrfy do 290 i = 1, nrfx vfld(i,j) = v(1) + v(2)*vfld(i,j) 290 continue elseif( v(3) .lt. twopt5 ) then ! lognormal do 300 j = 1, nrfy do 300 i = 1, nrfx vfld(i,j) = exp( v(4) + v(5)*vfld(i,j) ) 300 continue else ! bounded do 310 j = 1, nrfy do 310 i = 1, nrfx vfld(i,j) = v(4) + half*(v(5)-v(4)) & *( one + tanh((v(6)+v(7)*vfld(i,j))/twopi) ) 310 continue endif return end