"/*********************************************************/" "/* WELCOME TO THE MATHEMATICA PROGRAM HIROTA.M */" "/* BY WILLY HEREMAN AND WUNING ZHUANG */" "/* FOR THE CALCULATION OF SOLITONS */" "/* OF THE ""Ito-b6"" EQUATION */" "/* WITH HIROTA'S METHOD */" "/* Version 1.0 firts released on May 29, 1995 */" "/* Last updated on January 25, 2007 */" "/* Copyright 1995-2007 */" "/*********************************************************/" "The equation in f corresponding to the given bilinear operator is " Derivative[0, 0, 0, 1][f][x, y, z, t]^2 - f[x, y, z, t]*Derivative[0, 0, 0, 2][f][x, y, z, t] + Derivative[0, 1, 0, 0][f][x, y, z, t]^2 - f[x, y, z, t]*Derivative[0, 2, 0, 0][f][x, y, z, t] - 3*Derivative[1, 0, 0, 1][f][x, y, z, t]* Derivative[2, 0, 0, 0][f][x, y, z, t] + 3*Derivative[1, 0, 0, 0][f][x, y, z, t]* Derivative[2, 0, 0, 1][f][x, y, z, t] + Derivative[0, 0, 0, 1][f][x, y, z, t]* Derivative[3, 0, 0, 0][f][x, y, z, t] - f[x, y, z, t]*Derivative[3, 0, 0, 1][f][x, y, z, t]" = 0" "For this equation the polynomial P(K,-OMEGA,L)= "L^2 - K^3*OMEGA + OMEGA^2 "The equation has at least a one- and two-soliton solution." "For the ""Ito-b6"" equation, " "we use the dispersion relation: " " OMEGA[I] = "(K[I]^3 - Sqrt[K[I]^6 - 4*L[I]^2])/2 "In the Expansion of f we use THETA = K X - OMEGA T + L Y + CST." "Starting the random test(s) for the existence of a " 3" soliton solution." "Wavenumbers K[I] selected for the random number test(s): " "for this test K["1"] = "11 "for this test K["2"] = "17 "for this test K["3"] = "15 "Wavenumbers L[I] selected for the random number test(s): " "for this test L["1"] = "13 "for this test L["2"] = "9 "for this test L["3"] = "17 "The equation did not pass the random number test(s) for " "the existence of a "3" soliton solution." "The condition "(211770408960*(724825354023715646284102610035629840377291469\ 8079314476260834806490 + 16340278391279231149326177969864526048288601891942\ 752968917959434*Sqrt[196765] + 2147739665147855761193387802638133025983185117881331402176262410* Sqrt[11389469] + 14753312004055446010532060164928950036199826367406\ 16445606823829*Sqrt[24137245] + 16629745634682916305221401736832093238948907316295601413482900* Sqrt[189974600497] + 4841809664312671473689638407381519214193803805\ 852614860295938*Sqrt[2241048867785] + 437157353940672686718872042208863068544735567024262512640548* Sqrt[274910403672905] + 4927582088934391057090041734171810858573110898443538080125* Sqrt[2163709823147966093]))/ ((1331 + 3*Sqrt[196765])^6*(3375 + Sqrt[11389469])^6* (4913 + Sqrt[24137245])^6)" = 0 must be satisfied." "Starting the construction of the two-soliton solution." "The coefficient a[I,J] is calculated via the polynomial form." "The polynomial is P[K,-OMEGA,L] = "L^2 - K^3*OMEGA + OMEGA^2 "The coefficient a[I,J] = "(-3*K[I]^5*K[J] + 3*K[I]^4*K[J]^2 - K[I]^3*K[J]^3 + 3*K[I]^2*K[J]^4 - 3*K[I]*K[J]^5 + 3*K[I]^2*K[J]*Sqrt[K[I]^6 - 4*L[I]^2] - 3*K[I]*K[J]^2*Sqrt[K[I]^6 - 4*L[I]^2] + 4*L[I]*L[J] - 3*K[I]^2*K[J]*Sqrt[K[J]^6 - 4*L[J]^2] + 3*K[I]*K[J]^2*Sqrt[K[J]^6 - 4*L[J]^2] + Sqrt[K[I]^6 - 4*L[I]^2]*Sqrt[K[J]^6 - 4*L[J]^2])/ (-3*K[I]^5*K[J] - 3*K[I]^4*K[J]^2 - K[I]^3*K[J]^3 - 3*K[I]^2*K[J]^4 - 3*K[I]*K[J]^5 + 3*K[I]^2*K[J]*Sqrt[K[I]^6 - 4*L[I]^2] + 3*K[I]*K[J]^2*Sqrt[K[I]^6 - 4*L[I]^2] + 4*L[I]*L[J] + 3*K[I]^2*K[J]*Sqrt[K[J]^6 - 4*L[J]^2] + 3*K[I]*K[J]^2*Sqrt[K[J]^6 - 4*L[J]^2] + Sqrt[K[I]^6 - 4*L[I]^2]*Sqrt[K[J]^6 - 4*L[J]^2]) "The function f = "1 + E^THETA[1] + E^THETA[2] + E^(THETA[1] + THETA[2])*a[1, 2] "At the end of the computations the form of the function f" "and the coefficient a[1,2] are explicitly available." "The explicit forms of OMEGA[i] and THETA[i] are also available." "The Explicit form of f can be obtained by typing EXPRF."