
LA-UR-18-26586
Approved for public release; distribution is unlimited.

Title: SYMMETRY ANALYSIS USING SYMBOLIC COMPUTATION

Author(s): Albright, Eric Jason
McHardy, James David

Intended for: Report

Issued: 2018-07-17

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

SYMMETRY ANALYSIS USING SYMBOLIC COMPUTATION

E. JASON ALBRIGHT AND JAMES D. MCHARDY

Contents

1. Background 1
2. Symmetry analysis 2
3. Symbolic computation 3
4. Example 1 - The Ramsey equation 3
5. Example 2 - Inviscid Burgers’s equation 7
6. Example 3 - Viscous Burgers’s equation 9
7. Example 4 - The Euler equations of gas dynamics 11
8. Conclusions 16
References 16

Abstract. The symmetry group of a system of differential equations reveals basic invariant prop-
erties of the underlying model and its solutions. In many cases symmetry groups have simple
geometric interpretations that can be applied to simplify the model and determine certain classes
of solutions explicitly. The general procedure to compute the symmetry group of a given system
of differential equations follows a well-known algorithm. However, this procedure involves a large
number of laborious and usually error-prone calculations, especially in the case of higher-order sys-
tems. The purpose of this report is explain how to use an existing software program designed to
automate the major steps of this algorithm in order to calculate the symmetry group of any system
of differential equations more efficiently.

1. Background

The symmetry group of a system of differential equations has several important uses. These
include classification of different solutions, generation of new solutions from existing solutions,
and simplification of the original equations by the method of symmetry reduction. Additionally,
for systems of equations describing an underlying physical system that possess certain symmetry
properties, determination of the corresponding symmetry group can also be used as validation of a
given model.

Symmetry analysis of differential equations dates back to Lie [6] and has been developed exten-
sively by Ovsiannikov [8], Olver [7] and Bluman and Anco [4]. It is assumed that the reader is
already familiar with symmetry analysis and has a basic understanding of its underlying mathe-
matical justification. Otherwise, the reader may wish to consult [1] written in conjunction with the
current report as an introduction to symmetry analysis. The majority of the examples treated in
this report (using symbolic computation) are also worked out step-by-step in the aforementioned
primer for comparison between the theoretical and the automated computational procedure.

In principle, the algorithm to determine the symmetry group of any differential equation can
be carried out by hand. However, for larger systems of equations, especially involving higher
order equations, the algorithm involves a large number of tedious calculations. Consequently,
many computer algebra-assisted symmetry group software programs have been created to automate
certain parts of the procedure. A more complete review of existing symmetry method software
programs can be found in [2, Ch. 13]. Here, we will focus on an existing program called symmgrp

1

2 E.J. ALBRIGHT AND J.D. MCHARDY

originally developed by Champagne, Hereman, and Winternitz [5]. In particular, their program has
the advantage of extensive previous testing and has been widely cited in peer-reviewed literature.
It is also freely available and is based on the open-source computer algebra system, Maxima.
Additionally, its relative ease of use and overall flexibility were factors taken into consideration.
We recommend consulting the original documentation for symmgrp, available in the aforementioned
reference, in addition to this report. Here you will find a quick and updated demonstration of the
capabilities of the software illustrated by some new examples pertaining to fluid motion and related
applications.

2. Symmetry analysis

In this section, we briefly review the procedure to determine the symmetry group of any dif-
ferential equation in order to introduce the notation required in later sections to explain how to
use symmgrp. The symmetry group of any system of differential equations is the largest (local) Lie
group of transformations acting on the space of independent and dependent variables that leaves
the solutions to the system invariant. In other words, the symmetry group transforms solutions of
the system into other solutions.

In general, a system of K-th order differential equations is denoted

Fn(x, u, p
(1), p(2), . . . , p(K)) = 0, n = 1, 2, . . . , N, (1)

where Fn denotes a differential function of J independent and I dependent variables denoted

x = (x1, x2, . . . , xJ), u = (u1, u2, . . . , uI), (2)

and p(k) for k = 1, 2, . . . ,K denote vectors of all k-th order partial derivatives. The symmetry
group of system (1) is determined by smooth, parametrized transformations of the form

x̃ = α(x, u; ǫ), ũ = β(x, u; ǫ), (3)

such that the functions Fn are invariant with respect to α and β. The group of admitted transfor-
mations in (3) (parametrized by ǫ) is generated by an associated vector field of the form

V =
J
∑

j=0

ηj(x, u)
∂

∂xi
+

I
∑

i=1

φi(x, u)
∂

∂ui
(4)

where ηj and φi are called infinitesimals or coordinate functions, and correspond to the principal
linear terms of the infinitesimal transformations of the group,

x̃j = xj + ǫηj(x, u) +O(ǫ2), ũi = ui + ǫφi(x, u) +O(ǫ2). (5)

Therefore, the objective of the procedure is then to find ηj and φi, which determine V , and hence
generate the group defined by (3). The coordinate functions ηj and φi are determined by the
condition for infinitesimal invariance given by

pr(K)V Fn

∣

∣

∣

Fn=0
= 0, n = 1, 2, . . . , N, (6)

which forms a system of equations whose solution defines the symmetry group of the system (1).

The operator pr(k)V in (6) denotes the K-th prolongation of the vector field V . A more detailed
introduction to the general procedure, as well as the general formulas for the construction of the
K-th prolongation, can be found in[1], as well as [5].

Therefore, the two major steps of the procedure are to construct the determining equations (6)
and then to solve them for ηj and φi. In subsequent sections, we demonstrate how to automate
both of these steps using symbolic computation with symmgrp.

SYMMETRY ANALYSIS USING SYMBOLIC COMPUTATION 3

3. Symbolic computation

One of the major advantages of symmgrp package is that it mirrors the procedure that would
otherwise be carried out by hand, however, without the large number of laborious algebraic simpli-
fications and substitutions, which are carried out automatically instead. Therefore, symmgrp can
also aid in learning the underlying theoretical procedure with much less effort. There are several
other advantages to using symmgrp (or any other automated procedure) to compute symmetries
that are worth stating early on. First, the software can be used simply to check that existing
calculations appearing in the literature for example, are in fact correct. Second, as described be-
low, the individual files generated during the operation of symmgrp provide documentation for each
successive step, which helps insure your work is reproducible and easy to return to later.

The program symmgrp is built upon the open-source computer algebra system, Maxima1. Like any
computer algebra system, Maxima can be used to manipulate symbolic and numerical expressions
including differentiation, integration, series expansion, systems of linear equations etc. In addition
to installing Maxima, you will need to obtain a copy of the symmgrp package, which has been made
publicly available and can be downloaded directly from the webpage of one of its developers hosted
by Colorado School of Mines2.

As mentioned previously, the operation of symmgrp follows the same two steps that make up
the general theoretical procedure. Namely, first constructing the determining equations and second
using a built-in feedback routine to solve them. Moreover, these two steps can be applied repeatedly
to reduce the system of determining equations by supplying additional information about the η’s and
φ’s into the program’s built-in feedback mechanism at the end of each successive step. At each stage,
the program automatically removes trivial factors, duplications, and differential redundancies from
the system of determining equations. During the final stage, the number of determining equations
is reduced to zero, which then verifies the solution (the η’s and φ’s). The program can also be
configured to operate on any given subset of the full system of equations to allow for the possibility
of treating arbitrarily large systems of any order.

In Sections 4–5 we demonstrate the basic operations of symmgrp in the case of two first-order
ordinary differential equation and a first-order partial differential equation respectively. The an-
alytic calculation of the symmetries admitted by both of these examples can be found in [1] for
comparison. In Section 6, we compute the symmetry group admitted by a second-order, nonlinear
partial differential equation to demonstrate the procedure for higher-order equations. Finally, in
Section 7, we illustrate the use symmgrp to compute the symmetries of a system of equations using
the Euler equations of gas dynamics. We show that symmgrp can be used to reproduce the full set
of equivalence transformations admitted by the Euler equations, which is a result originally due to
Ovsiannikov [8].

4. Example 1 - The Ramsey equation

For the first example we consider the following first-order, nonlinear ordinary differential equation

dy

dx
= e−xy2 + y + ex, (7)

widely known as the Ramsey equation. The symmetries admitted by (7) were determined analyti-
cally in [1, Ch. 3, Sec. 2]. This example will illustrate the basic operations required to use symmgrp
in the case of ordinary differential equations.

First we create a file that contains all of the problem specific inputs saved as ramsey ode run1.dat

with the .dat file extension. It contains the following

1Documentation for general Maxima usage and syntax can be found at
http://maxima.sourceforge.net/documentation.html

2The most recent symmgrp package is available here https://inside.mines.edu/~whereman/software/symmetry

http://maxima.sourceforge.net/documentation.html
https://inside.mines.edu/~whereman/software/symmetry

4 E.J. ALBRIGHT AND J.D. MCHARDY

1 p:1$

2 q:1$

3 m:1$

4 parameters :[]$

5 warnings:true$

6 sublisteqs :[all]$

7 info_given:false$

8 highest_derivatives :1$

9 e1:u[1,[1]]-exp(-x[1])*(u[1]^2) -u[1]-exp(x[1])$

10 v1: u[1 ,[1]]$

Line 1: p specifies the number of independent variables, which for (7) corresponds to x1 = x.

Line 2: q specifies the number of dependent variables, which in this example corre-
sponds to u1 = y.

Line 3: m specifies the number of equations in the system, which corresponds to (7).

Line 4: defines a list of any constant parameters that may appear in the equation.

Line 5: switches warnings messages on or off according to the values true or false respectively.

Line 6: specifies a list of equations in the form e1, e2, . . . , or all that will be in-
cluded in the calculation. In practice, this feature can be used to specify a special subset
of equations that belong to a larger system in order to decompose the problem into smaller
subsets. However, for modest systems of only a few equations this feature is rarely needed.

Line 7: specifies that feedback inputs are provided according to the values true or
false. We will explain how to use this feature in order to provide feedback for successive runs
in order to simplify and eventually solve the resulting system of determining equations. For
the initial run, its value is always set to false.

Line 8: specifies the the highest order derivatives k to be included in the prolongation
pr(k), such as k=1, k=2, . . . , or k=all. We set this to all by default in subsequent examples.

Line 9: specifies the equation that defines the system, the first equation is always la-
beled e1. Additional equations can be included to treat systems and are labeled e2, e3, etc.

The following describes the required syntax to specify equations. Independent variables are
accessed using x[j] where the index j specifies their position in the list of independent variables
x. All dependent variables are accessed in a similar way using u[i] where i is the list position
of the i-th dependent variable. Derivatives of the dependent variables are specified by including
additional arguments in nested brackets. For ordinary differential equations

du

dx
= u[1, [1]]. (8)

The integer value in brackets is also used to specify the order of the derivative.

d2u

dx21
= u[1, [2]]. (9)

SYMMETRY ANALYSIS USING SYMBOLIC COMPUTATION 5

Similarly, partial derivatives are indicated by using the position of the additional arguments to
specify different coordinate direction of the derivatives. For example,

∂u1

∂x2
= u[1, [0, 1]],

∂2u2

∂x21
= u[2, [2, 0]]. (10)

Line 10: specifies the free variables for the subsequent substitution steps that result from eval-
uating the determining equation under the provision that the differential equation is satisfied.
In the case of the Ramsey equation we select

dy

dx
= u[1, [1]], (11)

and consequently the substitution dy/dx = e−xy2 + y+ ex will be made during the automated
simplification steps in Maxima.

The next required file is a batch script, which calls the symmgrp Maxima script and the initial
inputs for the problem from ramsey ode run1.dat. This batch script is saved as ramsey run1.mac

in this example, and consists of

1 batchload ("∼/symmgrp.max");

2 writefile ("∼/RamseyODE_Maxima/ramsey_ode_run1 .412");

3 batch ("∼/RamseyODE_Maxima/ramsey_ode_run1 .dat");

4 symmetry (1,0,0);

5 printeqn(lode);

6 save ("∼/RamseyODE_Maxima/loderamseyode.lsp", lode);

7 closefile ();

8 quit();

Line 1: loads the Maxima symmgrp.max script into the Maxima session using the batchload
command under the provision of the script file path.

Line 2: specifies the path to the output .412 file that we have labelled ramsey ode run1.412.

Line 3: specifies the path to the .dat file ramsey ode run1.dat.

Line 4: specifies extra run mode options of the symmetry() function defined in symmgrp.max.
The first argument dictates whether to run in interactive or batch mode by 0 or 1 respectively.
The second argument dictates whether to clear the array of the coefficients of the prolongation
created on the initial run or to store and update the existing array when necessary by 0 or 1
respectively. The final argument suppresses or outputs a trace of the calculations performed
by 0 or 1 respectively.

Line 5: prints the list of differential equations called lode to the Maxima session.

Line 6: saves the session output to a newly created .lsp file.

Recall that in the case of a first-order differential equation, relabeling x1 = x and u1 = y, the
symmetries are determined by infinitesimal transformations of the form

x̃1 = x1 + ǫη1(x1, u
1) +O(ǫ2), ũ1 = u1 + ǫφ1(x1, u

1) +O(ǫ2). (12)

6 E.J. ALBRIGHT AND J.D. MCHARDY

Hence, our objective below is to determine η1 and φ1. This is always accomplished in two major
steps. First, we calculate the determining equations resulting from condition (6). Second, we apply
the feedback mechanism, which we will explain below, to simplify and reduce the determining
equations to find η1 and φ1 explicitly.

The output of the first run in ramsey ode run1.dat produces the determining equation for η1
and φ1 in (12), in the form

∂φ1

∂x1

[

e3x1 + e2x1(1 + 2u1) + ex1(u1)2
]

− e3x1η1 − e2x1φ1 + ex1

(

η1(u
1)2 − 2φ1u1

)

−
∂η1
∂x1

[

e4x1 + e3x1(1 + 2u1) + e2x1(u1 + 3(u1)2) + ex1((u1)2 + 2(u1)3)− (u1)4
]

= 0. (13)

As we observed in [1, Ch. 3, Sec. 2], first-order ordinary differential equations always admit
an infinite number of symmetries3. Therefore, below we will illustrates how to isolate particular
symmetries using the feedback mechanism in symmgrp.

We start with the following simplifying assumptions regarding η1

∂η1
∂x1

= 0,
∂η1
∂u1

= 0. (14)

In other words, η1 is an undetermined constant, which we will denote t. Additionally, we assume
that the infinitesimal φ1 is independent of the variable x1. This information can then supplied
as additional input for the next run, which will invoke the feedback mechanism to simplify the
determining equations mentioned previously.

The second run is comprised of new .mac and .dat files with the following additions to the pre-
vious run. In the .mac file, now labelled ramsey run2.mac, the file paths are changed appropriately
to ensure the updated calculation ramsey run2 is carried out

1 writefile ("∼/RamseyODE_Maxima/ramsey_run2 .412");

2 batch ("∼/RamseyODE_Maxima/ramsey_run2.dat");

Creating new files for each run ensures that at the end of the procedure you also have a step-by-step
record of the calculation leading to the final solution. In the ramsey run2.dat file the following
lines are added and info given: is set to true

9 depends(phi1 ,u[1])$

10 eta1:t$

The result is a much simpler determining equation
(

∂φ1

∂u1
− η1

)

e2x1 +

(

∂φ1

∂u1
u1 − φ1

)

ex1 +
∂φ1

∂u1
(u1)2 + η1(u

1)2 − 2φ1u1 = 0, (15)

which is a quadratic polynomial in ex. This equation is satisfied if and only if each of the coefficients
are zero. This yields three new equations

∂φ1

∂u1
− η1 = 0, (16)

∂φ1

∂u1
u1 − φ1 = 0, (17)

∂φ1

∂u1
(u1)2 + η1(u

1)2 − 2φ1u1 = 0. (18)

Substituting (16) into (18) yields

φ1 = u1η1, (19)

3A proof of this fact can be found in in [9, Chap. 4, p.27])

SYMMETRY ANALYSIS USING SYMBOLIC COMPUTATION 7

which satisfies the substitution of (16) into (17). One solution is therefore η1 = 1 and φ1 = u1.
The infinitesimal generator obtained in terms of x and y is therefore

V =
∂

∂x
+ y

∂

∂y
, (20)

which is a combination of a scaling and a translation transformation. In [1, Ch. 3, Sec. 2], we used
this symmetry to solve (7) by the method of symmetry reduction.

5. Example 2 - Inviscid Burgers’s equation

The next example illustrates how to compute and solve the determining equations of the sym-
metry group corresponding to a first-order, nonlinear partial differential equation. In contrast to
the previous example, this example only admits a finite number of symmetries, and hence we will
compute its entire symmetry group.

We consider the inviscid Burgers’s equation in the form

∂u

∂t
+ u

∂u

∂x
= 0. (21)

We determined the symmetry group for inviscid Burgers’s equation in [1, Ch. 4, Sec. 1], which
the reader may wish to consult for a step-by-step comparison against the approach with symmgrp

below. Similarly to the previous example, recall the symmetries are determined by infinitesimal
transformations of the form

x̃1 = x1 + ǫη1(x, y) +O(ǫ2), x̃2 = x2 + ǫη2(x, y), ũ1 = u1 + ǫφ1(x, y) +O(ǫ2), (22)

where x1 = t, x2 = x, and u1 = u. Hence, our objective below is again to determine the η’s and
φ’s from the determining equations resulting from the condition for infinitesimal invariance (6).

As in the previous section, we start by constructing the file inviscid burgers run1.mac con-
taining

1 batchload ("∼/symmgrp.max");

2 writefile ("∼/Inviscid_Burgers_Eqn /inviscid_burgers_run1 .412");

3 batch ("∼/Inviscid_Burgers_Eqn /inviscid_burgers_run1 .dat");

4 symmetry (1,0,0);

5 printeqn(lode);

6 save ("∼/Inviscid_Burgers_Eqn /lodeburgers.lsp", lode);

7 closefile ();

8 quit();

and the input file inviscid burgers run1.dat consisting of

1 p:2$

2 q:1$

3 m:1$

4 parameters :[]$

5 warnings:true$

6 sublisteqs :[all]$

7 info_given:false$

8 highest_derivatives:all$

9 e1:u[1 ,[1 ,0]]+u[1]*u[1,[0,1]]$

10 v1: u[1,[1,0]]$

8 E.J. ALBRIGHT AND J.D. MCHARDY

From the first run, we then obtain the determining equations for the symmetries of the inviscid
Burgers’s equation (21) given by

∂φ1

∂x1
+ (u1)

∂φ1

∂x2
= 0, (23)

φ1 + (u1)2
∂η1
∂x2

+ u1
(

∂η2
∂x2

−
∂η1
∂x1

)

−
∂η2
∂x1

= 0. (24)

Note this set of equations is identical to those obtained analytically in [1, Ch. 4, Sec. 1]. From
(24), we infer that φ1 is at most a quadratic polynomial in terms of u1 provided we additionally
assume that its coefficients have no dependence on u1. Therefore, we include

η1 := η1(x1, x2), η2 := η2(x1, x2), (25)

and express φ1 as

φ1 = −(u1)2
∂η1
∂x2

+ u1
(

∂η2
∂x2

−
∂η1
∂x1

)

+
∂η2
∂x1

, (26)

in the inviscid burgers run2.dat file.

7 info_given:true$

8 highest_derivatives:all$

9 depends(eta1 ,[x[1],x[2]])

10 depends(eta2 ,[x[1],x[2]])$

11 phi1:-u[1]^2* diff(eta1 ,x[2])+u[1]*(diff(eta2 ,x[2])-diff(eta1 ,x[1]))+

diff(eta2 ,x[1])$

The second run reduces the set of determining equations (23)–(24) to

(u1)2
(

∂2η2
∂x22

)

+
∂2η2
∂x21

+2u1
(

∂2η2
∂x1∂x2

)

−(u1)3
(

∂2η1
∂x22

)

−u1
(

∂2η1
∂x21

)

−2(u1)2
(

∂2η1
∂x1∂x2

)

= 0. (27)

Due to the previous assumptions in (25) on η1 and η2, the left-hand side of the previous equation
is again just a polynomial in terms of u1. Hence, for the previous equation to be satisfied for all
smooth solutions u1 of the original equation (21), the coefficients of the terms on the left-hand side
must be identically zero. This conclusion yields the following reduced system of equations from
(27)

∂2η1
∂x22

= 0, (28)

∂2η2
∂x21

= 0, (29)

∂2η2
∂x22

− 2
∂2η1

∂x1∂x2
= 0, (30)

∂2η1
∂x21

− 2
∂2η2

∂x1∂x2
= 0, (31)

which defines an overdetermined system of linear equations for the remaining inifinitesimals η1 and
η2. We solved this system previously in [1, Ch. 4, Sec. 1], we state the result below

η1 =(a1x1 + a2)x2 + a3x
2
1 + a4x1 + a5, (32)

η2 =(a3x2 + a6)x1 + a1x
2
2 + a7x2 + a8, (33)

where a1, a2, . . . , a8 are arbitrary constants.

SYMMETRY ANALYSIS USING SYMBOLIC COMPUTATION 9

Now that we have determined η1 and η2, we can evaluate the remaining infinitesimal φ1 in the
form of (26), which yields

φ1 = −(a1x1 + a2)(u
1)2 + (a1x2 − a3x1 + a7 − a4)u

1 + a3x2 + a6. (34)

As a final step, we can utilize symgrp to verify the solution in (32)–(34). We include the following
in the .dat file for the third and final run

8 highest_derivatives:all$

9 eta1:(a1*x[1]+a2)*x[2]+a3*x[1]^2+ a4*x[1]+ a5$

10 eta2:(a3*x[2]+a6)*x[1]+a1*x[2]^2+ a7*x[2]+ a8$

11 phi1:-(a1*x[1]+a2)*u[1]^2+(a1*x[2]-a3*x[1]+a7-a4)*u[1]+a3*x[2]+ a6$

The result produced by this run states there are zero remaining determining equations, from which
we can conclude that the infinitesimals (32)–(34) are admitted by inviscid Burgers’s equation.
In terms of the original variables, t, x, and u, the corresponding infinitesimal generator of the
corresponding eight-parameter Lie group is given by

V =
[

(a1t+ a2)x+ a3t
2 + a4t+ a5

] ∂

∂t

+
[

(a3x+ a6) t+ a1x
2 + a7x+ a8

] ∂

∂x

+
[

−(a1t+ a2)u
2 + (a1x− a3t+ a7 − a4)u+ a3x+ a6

] ∂

∂u
, (35)

which matches the result determined completely analytically in [1, Ch. 4, Sec. 1].

6. Example 3 - Viscous Burgers’s equation

In this example we compute the symmetries of a second-order, nonlinear partial differential
equation to illustrate the treatment of higher-order equations. Namely, we find the symmetry
group for the viscous Burgers’s equation in the form

∂u

∂t
+ u

∂u

∂x
−

∂2u

∂x2
= 0, (36)

which includes an additional second-order dissipative term in relation to the previous equation.
However, we proceed analogously to inviscid Burgers’s equation. Namely, we first determine an
expression for φ1 that we use to simplify the remaining determining equations down to an overde-
termined system for η1 and η2.

The .mac file for the initial run contains

1 batchload ("∼/symmgrp.max");

2 writefile ("∼/Viscous_Burgers_Eqn_Maxima/viscous_burgers_run1 .412");

3 batch ("∼/Viscous_Burgers_Eqn_Maxima/viscous_burgers_run1 .dat");

4 symmetry (1,0,0);

5 printeqn(lode);

6 save ("∼/Viscous_Burgers_Eqn_Maxima/lodeburgers.lsp", lode);

7 closefile ();

8 quit();

10 E.J. ALBRIGHT AND J.D. MCHARDY

and the .dat file with the initial inputs contains

1 p:2$

2 q:1$

3 m:1$

4 parameters :[]$

5 warnings:true$

6 sublisteqs :[all]$

7 info_given:false$

8 highest_derivatives:all$

9 e1:u[1 ,[1 ,0]]+u[1]*u[1,[0,1]]-u[1,[0,2]]$

10 v1: u[1,[1,0]]$

The output from the initial run includes the full system of determining equations, including the
the following

∂η1
∂u1

= 0,
∂η1
∂x2

= 0,
∂η2
∂u1

= 0, (37)

from which we infer
η1 := η1(x1), η2 := η2(x1, x2). (38)

The system of determining equations also include the following

∂2φ1

∂(u1)2
= 0, (39)

2

(

∂η2
∂x2

)

−
∂η1
∂x1

= 0. (40)

As we will see below, (39) implies that φ1 is at most linear in u1 and the Maxima gradient command
gradef() can used to encode equation (40) into the next run.

The second run then consists of

7 info_given:true$

8 highest_derivatives:all$

9 depends(eta1 ,x[1])$

10 depends(eta2 ,[x[1],x[2]])$

11 gradef(eta1 ,x[1],2* diff(eta2 ,x[2]))$

From the second run, we obtain the following new output

φ1 = −
∂η2
∂x2

u1 −
∂2η2
∂x22

+
∂η2
∂x1

, (41)

which confirms the previous observation from (39) that φ1 is at most linear in u1. Now that we
have an expression for φ1, we can again utilize it in subsequent runs in order to determine the
remaining expressions for η1 and η2. To that end, we include the expression for φ1 in the next run
as

12 phi1:-diff(eta2 ,x[2])*u[1]-diff(eta2 ,x[2],2)+diff(eta2 ,x[1])$

from which we then obtain the following output

∂2η2
∂x21

= 0,
∂2η2
∂x22

= 0. (42)

Together the previous two equations imply that η2 is at most bilinear in x1 and x2, which gives

η2 = (ax1 + b)x2 + cx1 + d. (43)

SYMMETRY ANALYSIS USING SYMBOLIC COMPUTATION 11

Then going back to equation equation (40), from the previous expression (43) for η2 we also deter-
mine that

η1 = ax21 + bx1 + e. (44)

Finally, from (41) for φ1, we obtain that

φ1 = −(ax1 + b)u1 + ax2 + c, (45)

where a, b, c, d, and e are arbitrary constants.
In terms of the original variables the corresponding infinitesimal generator is then

V =
(

at2 + bt+ e
) ∂

∂t
+ ((at+ b)x+ ct+ d)

∂

∂x
+ (−(at+ b)u+ ax+ c)

∂

∂u
, (46)

which generates the five-parameter symmetry group admitted by viscous Burgers’s equation. More-
over, note that this is a subgroup of the eight-parameter group we obtained in the previous example
for inviscid Burgers’s equation where

a = a3, b = a4, c = a6, d = a8, e = a5. (47)

7. Example 4 - The Euler equations of gas dynamics

To illustrate the analogous procedure in symmgrp for systems of equations, we analyze the sym-
metries of the Euler equations of gas dynamics. As we will see below, this example also illustrates
how to apply symmgrp to compute the symmetries of differential equations containing undeter-
mined constitutive functions, which in turn produce constraints on their admissible functional form
as discussed for this example in [1, Ch. 4, Sec. 3].

We consider the Euler equations, expressed in terms of the isentropic bulk modulus in the form

∂ρ

∂t
+ v

∂ρ

∂r
+ ρ

(

∂v

∂r
+

(n− 1)v

r

)

= 0, (48)

∂v

∂t
+ v

∂v

∂r
+

∂P

∂r
= 0, (49)

∂P

∂t
+ v

∂P

∂r
+A(P, ρ)

(

∂v

∂r
+

(n− 1)v

r

)

= 0, (50)

where v denotes the velocity and the parameter n = 1, 2, 3 specifies 1D planar, cylindrical or spher-
ical symmetry respectively. The isentropic bulk modulus is assumed to be an arbitrary function of
pressure and density, A := A(P, ρ). The symmetries of the Euler equations written in terms of A
have been obtained previously by Ovsiannikov [8] and Axford [3].

It is worth mentioning before proceeding that calculating and solving the determining equations
of the symmetry group admitted by the above system of equations (48)–(50) mirrors the approach
applied in the two previous examples. However, due to the presence of the unspecified constitu-
tive information introduced through the bulk modulus A, in addition to the η’s and φ’s, we will
also obtain an additional partial differential equation from the system of determining equations
constraining the class of isentropic bulk moduli admitted by the symmetry group for the Euler
equations.

As before, to calculate the determining equations, we first construct an Eulers run1.mac file
containing

12 E.J. ALBRIGHT AND J.D. MCHARDY

1 batchload ("∼/Desktop/symmgrp.max");

2 writefile ("∼/Desktop/Eulers_Eqns/Eulers_run1 .412");

3 batch ("∼/Desktop/Eulers_Eqns/Eulers_run1.dat");

4 symmetry (1,0,0);

5 printeqn(lode);

6 save ("∼/Desktop/Eulers_Eqns/lodeeulers.lsp", lode);

7 closefile ();

8 quit();

and a Eulers run1.dat data file with the initial inputs, which consists of

1 p:2$

2 q:3$

3 m:3$

4 parameters :[]$

5 warnings:true$

6 sublisteqs :[all]$

7 info_given:true$

8 highest_derivatives:all$

9 depends(A,[u[2],u[3]])$

10 depends ([eta1 ,eta2 ,phi1 ,phi2 ,phi3],[x[1],x[2],u[1],u[2],u[3]])$

11 e1:u[3 ,[1 ,0]]+u[1]*u[3 ,[0 ,1]]+u[3]*(u[1 ,[0 ,1]]+((n-1)*u[1])/(x[2]))$

12 e2:u[3]*(u[1 ,[1 ,0]]+u[1]*u[1 ,[0 ,1]])+u[2,[0,1]]$

13 e3:u[2 ,[1 ,0]]+u[1]*u[2,[0,1]]-A*((u[3 ,[1 ,0]]+u[1]*u[3 ,[0 ,1]])/(u[3])

)$

14 v1:u[3,[1,0]]$

15 v2:u[1,[1,0]]$

16 v3:u[2,[1,0]]$

where u[1] = v, u[2] = P , and u[3] = ρ.
Note that for systems of equations each equation is entered on a new line, as illustrated in lines

11 to 13. Moreover, for each equation, we must specify the variable to be used in subsequent
automatic substitution steps. This enforces the determining equations to be evaluated under the
constraint that ensures the system in (48)– (50) is satisfied. In this example, we assign the time
derivative in each equation for this pupose, which is a general strategy that can be applied to any
evolutionary system in mechanics of the form (48)–(50). As final note, equation (48) has been
substituted into (50) to obtain the form of conservation of energy entered in line 13.

The initial run results in a system of 18 determining equations. The first seven of which are

∂η1
∂u1

=0,
∂η1
∂u2

= 0,
∂η1
∂u3

= 0,
∂η2
∂u1

= 0,

∂η2
∂u2

= 0,
∂η2
∂u3

= 0,
∂φ2

∂u3
= 0.

(51)

These equations imply that the infinitesimals η1 and η2 are independent of the dependent variables,
and likewise that φ2 is independent of u3. Assuming the isentropic bulk modulus is not identically
zero, we rearrange the ninth equation to obtain the following expression for φ1

φ1 = −u21
∂η1
∂x2

+ u1

(

∂η2
∂x2

−
∂η1
∂x1

)

+
∂η2
∂x1

. (52)

SYMMETRY ANALYSIS USING SYMBOLIC COMPUTATION 13

We also obtain an expression for φ3

φ3 = u3
(

2u1
∂η1
∂x2

+
∂φ2

∂u2
−

∂φ1

∂u1
−

∂η2
∂x2

+
∂η1
∂x1

)

. (53)

This information is fed into the second run in the form

9 depends(A,[u[2],u[3]])$

10 depends(eta1 ,[x[1],x[2]])$

11 depends(eta2 ,[x[1],x[2]])$

12 depends(phi2 ,[x[1],x[2],u[1],u[2]])$

13 phi1:-u[1]^2* diff(eta1 ,x[2])+u[1]*(diff(eta2 ,x[2])-diff(eta1 ,x[1]))+

diff(eta2 ,x[1])$

14 phi3:u[3]*(2*u[1]* diff(eta1 ,x[2])+diff(phi2 ,u[2])-diff(phi1 ,u[1])-

diff(eta2 ,x[2])+diff(eta1 ,x[1]))$

The output from the new run consists of the following

∂2φ2

∂(u2)2
= 0, (54)

∂η1
∂x2

A+
∂φ2

∂u1
= 0, (55)

which we apply to determine φ2.
The first of these equations implies φ2 is at most linear in u2. From the second equation, since

the first term does not depend on u1, we conclude that φ2 is at most linear in u1. Therefore

φ2 = (au1 + b)u2 + cu2 + d, (56)

where a, b, c and d are arbitrary functions of x1 and x2. Now that we have obtained general
expressions for φ1, φ2, and φ3, we will use this information to determine η1 and η2 from the
remaining determining equations.

We use the previous equation as input for the next run

12 depends(a,[x[1],x[2]])$

13 depends(b,[x[1],x[2]])$

14 depends(c,[x[1],x[2]])$

15 depends(d,[x[1],x[2]])$

16 phi1:-u[1]^2* diff(eta1 ,x[2])+u[1]*(diff(eta2 ,x[2])-diff(eta1 ,x[1]))+

diff(eta2 ,x[1])$

17 phi2:(a*u[1]+b)*u[2]+c*u[1]+d$

18 phi3:u[3]*(2*u[1]* diff(eta1 ,x[2])+diff(phi2 ,u[2])-diff(phi1 ,u[1])-

diff(eta2 ,x[2])+diff(eta1 ,x[1]))$

From the first three equations of the new output

3
∂η1
∂x2

+ a = 0, (57)

∂η1
∂x2

A+ c+ u2a = 0, (58)

4
∂η1
∂x2

A+ aA− c− u2a = 0, (59)

we find that

a = 0, c = 0,
∂η1
∂x2

= 0. (60)

14 E.J. ALBRIGHT AND J.D. MCHARDY

The last equality implies that η1 is independent of x2. The next run consists of the following.

10 depends(eta1 ,x[1])$

11 depends(eta2 ,[x[1],x[2]])$

12 depends(b,[x[1],x[2]])$

13 depends(d,[x[1],x[2]])$

14 phi1:u[1]*(diff(eta2 ,x[2])-diff(eta1 ,x[1]))+diff(eta2 ,x[1])$

15 phi2:b*u[2]+d$

16 phi3:u[3]*(diff(phi2 ,u[2])-diff(phi1 ,u[1])-diff(eta2 ,x[2])+diff(eta1

,x[1]))$

Then we obtain the equation

∂2η2
∂x22

(u1)2u3 +

[

2
∂2η2

∂x1∂x2
−

∂2η1
∂x21

]

u1u3 +
∂2η2
∂x21

u3 +
∂b

∂x2
u2 +

∂d

∂x2
= 0. (61)

Treating the left-hand side of the previous as a polynomial in u1, u2, and u3, the previous equation
is satisfied for all solutions u1, u2 and u3 provided the coefficients are identically zero. Therefore,
we obtain the following system of equations

∂2η2
∂x22

= 0,
∂2η2
∂x21

= 0, (62)

∂b

∂x2
= 0,

∂d

∂x2
= 0. (63)

The first two equations imply that η2 is bilinear in x1 and x2,

η2 = (e+ fx1)x2 + gx1 + h. (64)

The next two equations dictate that b and d are only functions of x1. We also obtain the equation

2
∂2η2

∂x1∂x2
−

∂2η1
∂x21

= 0, (65)

from which, we infer

η1 = fx21 + kx1 + l. (66)

The next run contains the previous information

10 depends(b,x[1])$

11 depends(d,x[1])$

12 eta1:f*x[1]^2+k*x[1]+l$

13 eta2:(e+f*x[1])*x[2]+g*x[1]+h$

The output of the above contains the following equation

−

(

∂b

∂x1
+ (n+ 2)f

)

x22 − g(n− 1)x2 + u1(n− 1)(h− x1g) = 0. (67)

The left-hand side is a polynomial in x2, from which we can obtain

∂b

∂x1
+ f(n+ 2) =0, (68)

g(n− 1) =0, (69)

(n− 1)(h− x1g) =0. (70)

Integrating the first equation with respect to x1,

b = −f(n+ 2)x1 +m, (71)

SYMMETRY ANALYSIS USING SYMBOLIC COMPUTATION 15

where m is a constant. The remaining pair of equations imply that h and g must be zero, for n > 1.
We use the expression for b as the new input in the next run

10 depends(d,x[1])$

11 eta1:f*x[1]^2+k*x[1]+l$

12 eta2:(e+f*x[1])*x[2]+g*x[1]+h$

13 phi1:u[1]*(diff(eta2 ,x[2])-diff(eta1 ,x[1]))+diff(eta2 ,x[1])$

14 phi2:(-f*(n+2)*x[1]+m)*u[2]+d$

We can treat the third equation obtained from the output again as a polynomial in x2, and therefore
in order to satisfy the equation, the following coefficient must be zero

∂d

∂x1
+ f

(

nA− (n+ 2)u2
)

= 0. (72)

Recognizing that d is a function of only x1, the second term must be independent of u2, which
requires either

f = 0, or A =
n+ 2

n
u2. (73)

In either case,
∂d

∂x1
= 0, (74)

in other words d is constant. We have now explicitly determined the infinitesimals η1 and η2, which
then fully determine φ1, φ2, and φ3. The complete expressions are

η1 =fx21 + kx1 + l, (75)

η2 =(e+ fx1)x2 + gx1 + h, (76)

φ1 =g + (e− k)u1 + f
(

x2 − x1u
1
)

, (77)

φ2 =(−fx1(n+ 2) +m)u2 + d, (78)

φ3 =[m+ 2(k − e)]u3 − fnx1u
3. (79)

Relabeling the free constants in terms of ai(i = 1, 2, . . . 8)

a1 =l, a2 = e, a3 = h, a4 = g, (80)

a5 =k − e, a6 = m, a7 = d, a8 = f, (81)

the infinitesimals determined above are given by

η1 = a1 + (a2 + a5)t+ a8t
2, (82)

η2 = a3 + a2r + a4t+ a8tr, (83)

φ1 = a4 − a5v + a8(r − vt), (84)

φ2 = a7 + a6p− a8(n+ 2)pt, (85)

φ3 = (2a5 + a6)ρ− a8nρt. (86)

In terms of the original variables, the corresponding eight-parameter symmetry group of the
Euler equations is generated by the vector field

V =
[

a1 + (a2 + a5)t+ a8t
2
] ∂

∂t
+ (a3 + a2r + a4t+ a8tr)

∂

∂r
(87)

+ [a4 − a5u+ a8(r − vt)]
∂

∂v
+ [a7 + a6p− a8(n+ 2)pt]

∂

∂P
(88)

+ [(2a5 + a6)ρ− a8nρt]
∂

∂ρ
, (89)

16 E.J. ALBRIGHT AND J.D. MCHARDY

with the additional restrictions on a3, a4, a8 and A imposed by (69), (70) and (73).
In the final run, we consider the special case where A 6= (n + 2)/n, and therefore a8 = 0. The

data file for the final consists of the following

10 eta1:a1+(a2+a5)*x[1]$

11 eta2:a3+a2*x[2]+a4*x[1]$

12 phi1:a4-a5*u[1]$

13 phi2:a7+a6*u[2]$

14 phi3 :(2*a5+a6)*u[3]$

In conclusion, the remaining determining equation yields a partial differential equation

a6A−
∂A

∂P
(a6P + a7)−

∂A

∂ρ
(a6 + 2a5)ρ = 0, (90)

defining the admissible functional forms of the isentropic bulk modulus, as we mentioned previously.
In terms of φ2 and φ3 from (82)–(86), the previous equation can be written

A
∂φ2

∂P
−

∂A

∂P
φ2 −

∂A

∂ρ
φ3 = 0. (91)

Equation (91) is identical to the original result obtained by Ovsiannikov [8, p.131]. Moreover,
equation (91) imposes a constraint on the maximum number of symmetries admitted by the Euler
equations based on the particular functional form of the isentropic bulk modulus. To illustrate
further, if the bulk modulus corresponds to an ideal gas, in other words,

A = γP, (92)

where γ is the ratio of specific heat capacities, equation is (91) is only satisfied provided a7 = 0.
Thus, in the case of ideal gases, the corresponding symmetry group admitted by the Euler equations
is is a reduced six-parameter group for planar symmetry, and likewise a reduced four-parameter
group for the cylindrical (n = 2) and spherical (n = 3) cases, which is a result originally due to
Axford [3, p.5-6].

8. Conclusions

The purpose of this report was to illustrate how to find the symmetry group of a system of
differential equations more efficiently using symbolic computation. To illustrate, we used symmgrp

to compute the symmetry group admitted by several example problems including, an ordinary
differential equation, first-order and second-order partial differential equations, and a system of
partial differential equations. For comparison with the analytic procedure, complete step-by-step
calculations for two of the examples treated here are presented in the accompanying primer [1].
Finally, although we illustrated how to use the Maxima-based symmgrp program, the strategy and
analysis we described here are applicable with only minor modification to most other existing
symmetry analysis software programs.

References

[1] E. Jason Albright, James D. McHardy, Scott D. Ramsey, and Joseph H. Schmidt, Symmetry analysis of differential

equations: A primer, Los Alamos National Laboratory, 2018.
[2] R. L. Anderson, V. A. Baikov, R. K. Gazizov, W. Hereman, N. H. Ibragimov, F. M. Mahomed, S. V. Meleshko,

M. C. Nucci, P. J. Olver, M. B. Sheftel′, A. V. Turbiner, and E. M. Vorob′ ev, CRC handbook of Lie group analysis

of differential equations. Vol. 3, CRC Press, Boca Raton, FL, 1996. New trends in theoretical developments and
computational methods.

[3] Roy Axford, Solutions of the Noh problem for various equations of state using lie grous, Los Alamos National
Laboratory, 1998.

[4] George W. Bluman and Stephen C. Anco, Symmetry and integration methods for differential equations, Applied
Mathematical Sciences, vol. 154, Springer-Verlag, New York, 2002.

SYMMETRY ANALYSIS USING SYMBOLIC COMPUTATION 17

[5] B. Champagne, W. Hereman, and P. Winternitz, The computer calculation of Lie point symmetries of large

systems of differential equations, Comput. Phys. Comm. 66 (1991), no. 2-3, 319–340.
[6] Sophus Lie, Zur allgemeinen theorie der partiellen differentialgleichungen beliebiger ordnung, Leipzig Bereich. 1

(1895), 53–128.
[7] Peter J. Olver, Applications of Lie groups to differential equations, Second, Graduate Texts in Mathematics,

vol. 107, Springer-Verlag, New York, 1993.
[8] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, Inc.,New York-London, 1982. Trans-

lated from the Russian by Y. Chapovsky, Translation edited by William F. Ames.
[9] Hans Stephani, Differential equations: Their solution using symmetries, Cambridge University Press, Cambridge,

1989.

E-mail address: ejalbright@lanl.gov

X-Theoretical Design Division, Los Alamos National Laboratory, Los Alamos, NM, USA

	1. Background
	2. Symmetry analysis
	3. Symbolic computation
	4. Example 1 - The Ramsey equation
	5. Example 2 - Inviscid Burgers's equation
	6. Example 3 - Viscous Burgers's equation
	7. Example 4 - The Euler equations of gas dynamics
	8. Conclusions
	References

