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Abstract
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Introduction

This paper reviews a treatment of differential equations using methods from
Lie group theory. Symmetry group methods are amongst the most pow-
erful universal tools for the study of differential equations. There has been
rapid progress on these methods over the last few decades. Methods and algo-
rithms for classifying subalgebras of Lie algebras, new results on the structure
and classification of abstract finite and infinite dimensional Lie algebras [48]
and methods for solving group classification problems for differential equa-
tions greatly facilitated to systematically obtain exact analytic solutions by
quadratures to ordinary differential equations and group-invariant solutions
to partial differential equations and to identify equivalent equations. The
application of Lie groups to differential equations has a long history. In the
second half of the nineteenth century, Norwegian mathematician Sophus Lie
(1842-1899) introduced continuous groups of transformations [26, 28] to give
a unified and systematic theory for the study of properties of solutions of
differential equations just like Evariste Galois’s (1811-1831) dream to solve
algebraic equations by radicals, which led to the theory of Galois. In his
memoir of 1831, he considered the group of admissible permutations. The
theory of Lie groups and algebras originated precisely in the context of dif-
ferential equations. Over the years, these transformations evolved into the
modern theory of abstract Lie groups and algebras.

As far as differential equations are concerned, the main observation was
that much of the known solutions methods were actually specific cases of
a general solution (general or particular solution) method based on the in-
variance of a system of differential equations under a continuous group of
transformations (called symmetry group of the system).

Symmetry group of a partial differential equation (PDE) can be used
to reduce the number of independent variables, to transform known simple
solutions to new solutions. For an ordinary differential equation (ODE),
even reduction in order can be made. Under some special structure of the
symmetry group, reduction can even go all the way down to an algebraic
equation, from which general solution can be obtained.

The computation of the symmetry group of a system of differential equa-
tions can be computationally complicated, but nevertheless completely algo-
rithmic. Computer algebra systems can automate most of the steps of the
Lie symmetry algorithm.

It should be emphasized that applications of Lie group methods using
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classical group of point transformations are not only restricted to differen-
tial equations. They, and when applicable, their generalizations to higher
order symmetries can also be carried over to conservation laws, Hamiltonian
systems, difference and differential-difference equations, integro-differential
equations, delay differential equations, fractional differential equations.

Basic ideas, definitions, theorems and results needed to be able to apply
Lie group methods for solving differential equations are presented. Many
examples with mathematical and physical applications are considered to il-
lustrate applications to integration of ODEs by the method of reduction of
order, construction of group-invariant solutions to PDEs, identification of
equivalent equations based on the existence of isomorphic symmetry groups,
generating new solutions from known ones, group-classification problem and
construction of invariant differential equations.

There exists a vast literature on the methods and applications of Lie
groups and algebras to differential equations and other fields of mathematics
and physics. For more detailed treatments of the subject, the readers are
referred to the books [35, 38, 19, 4, 18, 36, 51, 40, 17] and the handbooks
[20, 21, 22]. A basic knowledge of Lie groups and algebras will be assumed.
The reader is directed to, for example, a recent book [48] for a good account
of basic definitions, theorems and applications of Lie algebras.

1 Vector fields and integral curves

We begin with a brief review of some essential objects that will be employed
throughout. Let M be a differentiable manifold of dimension n. A curve γ
at a point x of M is a differentiable map γ : I →M , where I is a subinterval
of R, such that γ(0) = x, 0 ∈ I.

A vector field v of the manifold M is a C∞-section of TM , in other words
a C∞ mapping from M to TM that assigns to each point x of M a vector
in TxM . In the local coordinate system x = (x1, . . . , xn) ∈ M , v can be
expressed as

v|x =
n∑
i=1

ξi(x)∂xi , (1)

where ξi(x) ∈ C∞(M), i = 1, . . . , n.
An integral curve of the vector field at the point x is the curve γ at x

whose tangent vector γ̇(t) coincides with v at the point x = γ(t) such that
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γ̇(t) = v|γ(t) for each t ∈ I. In the local representation of the curve γ it
amounts to saying that the curve satisfies an autonomous system of first
order ordinary differential equations

dγi(t)

dt
= ξi(γ(t)), i = 1, . . . , n. (2)

The existence and uniqueness theorem for systems of ODES ensures that
there is a unique solution to the system with the initial data γ(0) = x0

(the Cauchy problem). This gives rise to the existence of a unique maximal
integral curve γ(t) passing through the point x0 = γ(0) ∈ M . We call such
a maximal integral curve the flow of v at x = γ(t) and denote Φ(t, x) with
the basic properties

Φ(0, x) = x, Φ(s,Φ(t, x)) = Φ(t+ s, x),
d

dt
Φ(t, x) = v

∣∣
Φ(t,x)

, x ∈M,

(3)
for all sufficiently small t, s ∈ R. A more suggestive notation for the flow
is Φ(t, x) = exp (tv)x. The reason is simply that it satisfies the ordinary
exponential rules. The second property implies that Φ(−t, x) = Φ−1(t, x) or
exp (tv)−1x = exp (−tv)x. One can infinitesimally express the flow

exp (tv)x = x+ tv|x +O(t2). (4)

The flow exp (tv)x generated by the vector field v is sometimes called a one-
parameter group of transformations as it arises as the action of the Lie group
R on the manifold M .

Conversely, given a flow with the first two properties of (3), we can re-
construct its generating vector field v by differentiating the flow:

v|x =
d

dt
exp (tv)x

∣∣
t=0
, x ∈M.

The inverse process of constructing the flow is usually called exponentiation
(or integration) of v.

Rectification of a vector field v in a neighborhood of a regular point (a
point x at which v|x does not vanish) is always possible.

Theorem 1.1. If x0 is a regular point of v, then there exist local rectifying
(or straightening out) coordinates y = (y1, . . . , yn) near x0 such that y = ∂y1
generates the translational flow exp (tv)y = (y1 + t, y2, . . . , yn).
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Let v be a vector field in the local coordinates

v =
n∑
i=1

ξi(x)∂xi . (5)

Application of a vector field v to a smooth function f : M → R, also referred
to the Lie derivative of f with respect to the vector field, determines the
infinitesimal rate of change in f as the parameter t of the induced flow
exp (tv)x of v varies:

v(f(x)) =
n∑
i=1

ξi(x)
∂f

∂xi
=

d

dt

∣∣∣
t=0
f(exp (tv)x). (6)

It is observed that vector fields act on functions as derivations in the sense
that they are linear and satisfy the Leibnitz rule

v(f + g) = v(f) + v(g), v(fg) = fv(g) + gv(f). (7)

The action of the flow generated by v on a function can be obtained from
the following Lie series (assuming its convergence)

f(exp (tv)x) =
∞∑
j=0

εj

j!
vj(f(x)). (8)

The Lie series is derived by expanding f(exp (tv)x) into the Taylor’s series
in ε. For the special choice f(x) = x, we recover the flow (4).

If y = ψ(x) is a change of coordinates, then by the chain rule, the vector
field (5) in the new coordinates y is expressed as

v =
n∑
j=1

n∑
i=1

ξi(ψ
−1(y))

∂ψj
∂xi

(ψ−1(y))
∂

∂yj
=

n∑
j=1

v(ψj(x))
∣∣
x=ψ−1(y)

∂

∂yj
. (9)

The commutator or Lie bracket of two vector fields v and w is defined as
the unique vector field satisfying

[v,w]f = v(w(f))−w(v(f)) (10)

for all smooth functions f : M → R. If, in local coordinates,

v =
n∑
i=1

ξi(x)∂xi , w =
n∑
i=1

ηi(x)∂xi ,
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then

[v,w] =
n∑
i=1

{v(ηi)−w(ξi)} ∂xi .

The coefficients v(ηi) and w(ξi) are the actions of the vector fields v and w
as derivations on the functions ηi and ξi, respectively as defined in (6).

2 Differential equations and their symmetry

group

We consider a system of n-th order differential equations E

E : Eν(x, u
(n)) = Eν(x, u, u

(1), . . . , u(n)) = 0, ν = 1, 2, . . . , N, (11)

where x = (x1, . . . , xp) ∈ Rp, u = (u1, . . . , uq) ∈ Rq (p, q ∈ Z+) are the
independent and dependent variables, which form local coordinates on the
space of independent and dependent variables E = X × U ' Rp × Rq. The
derivatives of u are denoted by uα,J = ∂Juα/∂xJ , where J = (j1, . . . , jk),
1 ≤ jν ≤ p, k = j1 + . . . + jk, is a symmetric multi-index of order k = #J .
u(k) denotes all partial derivatives of order ≤ k of the components uα of u,
which provide coordinates on the jet space Jn(x, u(n)) = JnE . If there is a
single independent and dependent variable, namely p = 1 and q = 1, then
the system becomes a scalar ordinary differential equation. In that case, we
simply write

E(x, u, u1, u2, . . . , un) = 0,

where u1 = ux, u2 = uxx, . . ., un = u(n).
The system Eν = 0 defined by a collection of smooth functions E =

(E1, . . . ,EN) can be identified with a variety SE =
{

(x, u(n)) : E = 0
}

con-

tained in the n-th order jet space Jn with local coordinates (x, u(n)).
The functions Eν(x, u

(n)) will be assumed to be regular, meaning that
the Jacobian matrix of Eν with respect to the jet coordinates (x, u(n)) has
maximal rank

rank

(
∂Eν
∂xi

,
∂Eν
∂uα,J

)
= N,

at each (x, u(n)) satisfying the system.
A classical symmetry group of (11) is a local group G of point trans-

formations Φ : E → E, a locally defined invertible map on the space of
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independent and dependent variables, mapping solutions of the system to
solutions

Φ : (x̃, ũ) = g.(x, u) = (Φ1(x, u),Φ2(x, u).

Such transformations act on solutions u = f(x) by mapping pointwise their
graphs. More precisely, if Γf = {(x, f(x)} is the graph of f(x), then the
mapped graph will have the graph Γf̃ = {(x̃, f̃(x̃)} = g.Γf ≡ {g.(x, f(x))}.

Contact or generalized transformations where Φ depends on higher order
derivatives will not be treated here.

Definition 2.1. A local Lie group of point transformations G is called a
symmetry group of the system of partial differential equations (11) if f̃ = g.f
is a solution whenever f is.

To find the symmetry group, the prolonged transformation pr(n)Φ : Jn →
Jn is required to preserve the differential structure of the equation manifold
SE. In order to find the symmetry group Lie’s infinitesimal approach will
be used. We need to use the prolongation tool for the group transformation
and the vector field generating it. Let Φε = exp(εv) be a one-parameter
subgroup of the connected group G and let

v =

p∑
i=1

ξi(x, u)∂xi +

q∑
α=1

ϕα(x, u)∂uα (12)

be the infinitesimal generator of Φε. The infinitesimal generator of the pro-
longed one-parameter subgroup pr(n)Φε is defined to be the prolongation of
the vector field v.

Definition 2.2. The n-th prolongation pr(n)v of v is a vector field on the
n-th jet space Jn defined by

pr(n)v
∣∣
(x,u(n))

=
d

dε

∣∣∣
ε=0

pr(n)Φε(x, u
(n)) (13)

for every (x, u(n)) ∈ Jn.

If we integrate pr(n)v we find the prolongation of the group action pr(n)Φε

on the space Jn. The prolonged vector field pr(n)v has the form

pr(n)v =

p∑
i=1

ξi∂xi +

q∑
α=1

∑
#J≤n

ϕJα∂uα,J , (14)
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where the coefficients ϕJα are given by the formula

ϕJα = DJ

(
ϕα −

p∑
i=1

ξiuα,i

)
+

p∑
i=1

ξiuα,J,i, (15)

where uα,i = ∂uα/∂xi, uα,J,i = ∂uα,J/∂xi and DJ = Dj1 . . . Djk , 1 ≤ jν ≤ p
is the J-th total derivative operator [35]. Here Di is the total differentiation
operator defined by

Di =
∂

∂xi
+

q∑
α=1

∑
J

uα,J,i
∂

∂uα,J
.

Di involves infinite summation, but its application to a particular differential
function will only require finitely many terms of order 0 ≤ #J ≤ n, where n
is the highest order derivative in the differential function on which Di acts.

There is a useful recursive formula for the coefficients of the prolonged
vector field in (14)

ϕJ,iα = Diϕ
J
α −

p∑
k=1

(Diξk)uα,J,k. (16)

If n-th prolongation is known, the (n+1)-th prolongation can be calculated by
the formula (16). In particular, the coefficients of the first order derivatives
uxj in (14) are then given by

ϕjα = Djϕα −
p∑

k=1

(Djξk)uα,k. (17)

In the special case p = q = 1, the recursion formula (16) simplifies to

ϕj = Dxϕ
j−1 − (Dxξ)u

(j), j = 1, 2, . . . . (18)

The coefficients of the second prolongation of the vector field v = ξ(x, u)∂x+
ϕ(x, u)∂u corresponds to j = 1, 2 with the convention ϕ0 = ϕ

ϕx = Dxϕ− (Dxξ)ux, ϕxx = Dxϕ
x − (Dxξ)uxx, Q = ϕ− ξux.

The prolongations of vector fields satisfy the linearity

pr(n)(av + bw) = a pr(n)v + b pr(n)w, (19)
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for constants a, b and the Lie algebra property

pr(n)[v,w] = [pr(n)v, pr(n)w]. (20)

Hence, the prolongation process defines a Lie algebra homomorphism from
the space of vector fields on J0 to the space of vector fields on Jn. If the vector
fields v form a Lie algebra, then their prolongations realize an isomorphic
Lie algebra of vector fields on Jn.

Example 2.3. Let us consider the smooth projective vector field

v = x2∂x + xu∂u (21)

generating the one-parameter local projective group

Φε(x, u) : x̃(x, u; ε) =
x

1− εx
, ũ(x, u; ε) =

u

1− εx
,

whenever 1− εx 6= 0. The vector field v can be recovered by differentiating
Φε(x, u) at ε = 0.

The first and second prolonged group transformations are derived by the
usual chain rule for the ordinary derivatives:

pr(1)Φε(x, u, u1) = (x̃, ũ, ũ1), ũ1 = u1 + ε(u− xu1),

and
pr(2)Φε(x, u, u1, u2) =

(
x̃, ũ, u1 + ε(u− xu1), (1− εx)3u2

)
.

Applying definition 2.2 we find the prolonged vector fields

pr(1)v = v + (u− xu1)∂u1 , pr(2)v = v + (u− xu1)∂u1 − 3xu2∂u2 . (22)

The following theorem determines the Lie algebra of the symmetry group
G and known as the infinitesimal criterion of invariance of (11).

Theorem 2.4. A connected local group of transformations G is a symmetry
group of the system E of (11) if and only if the n-th prolongation pr(n)v
annihilates the system on solutions, namely

pr(n)v(Eν) = 0, ν = 1, 2, . . . , N, (23)

whenever u = f(x) is a solution to the system (11) for every infinitesimal
generator v of G.
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Eqs. (23) are known as the determining equations of the symmetry group
for the system. They form a large over-determining linear system of partial
differential equations for the coefficients ξi and ϕα of v. This criterion has
been applied to many differential equations arising in different branches of
mathematics, physics and engineering to compute symmetry groups. The
computation of symmetry group using the infinitesimal approach (Theorem
(2.4)) have been implemented in several computer algebra systems, such
as MATHEMATICA, MAPLE, REDUCE, MACSYMA (or freely available
MAXIMA) [6, 16]. There are packages dedicated to the symmetry group
calculations which make considerably easy the routine steps of finding the
determining system and partial integration of them. Some packages are ca-
pable of triangularize the overdetermined system using differential Gröbner
basis method. Packages equipped with automatic integrators can usually fail
to provide the general solution of the determining system depending on the
complexity of the system. We refer to [50] for the symbolic calculation of
symmetries of differential equations.

There is an alternative formulation of the prolongation formula, which
is useful in prolongation computations. This requires the formalism of the
evolutionary vector fields. Given the vector field v as in (1), we define the
q-tuple Q(x, u(1)) = (Q1, . . . , Qq) defined by

Qα(x, u(1)) = ϕα(x, u)−
p∑
i=1

ξi(x, u)uα,i α = 1, 2, . . . , q.

The functions Qα are called the characteristics of the vector field v. Then,
we have

ϕJα = DJQα +

p∑
i=1

ξiuα,J,i, DJ = Dj1 . . . Djk , 1 ≤ jν ≤ p (24)

and the n-th prolongation of v can be expressed as

pr(n)v = pr(n)vQ +

p∑
i=1

ξiDi,

where

vQ =

q∑
α=1

Qα(x, u(1))∂uα , pr(n)vQ =

q∑
α=1

∑
J

DJQα∂uα,J .
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Obviously, vQ and their prolongations do not act on the independent
variables xi. In terms of characteristics Qα, the infinitesimal transformations
can be written as

x̃i = xi, ũα = uα + εQα +O(ε2).

Since DiEν = 0 on solutions, we can replace the infinitesimal symmetry
condition (23) by the simpler formula

pr(n)vQ

∣∣∣
Eν=0

= 0. (25)

Example 2.5. We show that the Laplace equation ∆u(x, y) = uxx+uyy = 0
in the plane is invariant under the symmetry group generated by the vector
field

v = ξ(x, y)∂x + η(x, y)∂y, (26)

where ξ and η satisfy the Cauchy–Riemann equations ξx = ηy , ξy = −ηx, in
other words ξ, η are harmonic functions and therefore v generates an infinite-
dimensional symmetry group of the two-dimensional Laplace equation. We
recall that the general solution can be expressed in terms of two arbitrary
analytic functions.

The second prolongation of v is

pr(2)v = v + ϕx∂ux + ϕy∂uy + ϕxx∂uxx + ϕxy∂uxy + ϕyy∂uyy .

The coefficients ϕxx, ϕyy are calculated from the general prolongation formu-
las (14)-(15)

ϕxx = −(2ηxuxy + 2ξxuxx + ηxxuy + ξxxux),

ϕyy = −(2ξyuxy + 2ηyuyy + ηyyuy + ξyyux).

So from the Cauchy–Riemann equations we find that the infinitesimal crite-
rion of invariance (23) is satisfied

pr(2)v(∆u) = ϕxx + ϕyy = −2ξx∆u = 0

on the solution surface. The linearity of the equation implies that it also
admits the additional trivial symmetries u∂u and ρ(x, y)∂u with ∆ρ = 0 (one
can multiply solutions by constants and add them). The symmetry condition
then becomes pr(2)(u∂u)(∆u) = ∆u = 0 and pr(2)(ρ∂u)(∆u) = ∆ρ = 0 on
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solutions. Obviously, the second one is satisfied if ρ is an arbitrary harmonic
function.

The special choice (ξ, η) = (x2 − y2, 2xy) leads to the conformal invari-
ance of the Laplace equation. The one-parameter conformal symmetry group
corresponding to the vector field cx = (x2 − y2)∂x + 2xy∂y is easily obtained
solving the following complex initial value problem for z̃(x, y; ε) (more pre-
cisely, integrating the analytic vector field z2∂z)

dz̃

dε
= z̃2 = (x̃2 − ỹ2) + 2ix̃ỹ

with the condition z̃(x, y; 0) = z(x, y) = x+ iy. The flow is given by

z̃ =
z

1− εz
=

z − ε|z|2

(1− εz)(1− εz̄)
.

We separate the real and complex parts of z̃ to obtain the following (not
necessarily globally-defined) symmetry group exp(εcx)(x, y)

x̃ =
x− ε(x2 + y2)

1− 2εx+ ε2(x2 + y2)
, ỹ =

y

1− 2εx+ ε2(x2 + y2)
, (27)

possessing the invariant function ζ(x, y) = y(x2+y2)−1, satisfying the relation
ζ(x̃, ỹ) = ζ(x, y) on R2 \ (0, 0). ζ(x, y) is readily obtained by eliminating the
group parameter ε in (27) (See the next Section for a more precise definition
and infinitesimal derivation of invariant function of a symmetry group).

It is a well-know fact that the inversion map I(x, y) = (x2 + y2)−2(x, y),
(x, y) 6= 0 (an involution: I−1 = I) is a discrete (not connected) symmetry,
i.e. if f(x, y) satisfies the Laplace equation, so does f((x2 + y2)−2x, (x2 +
y2)−2y). We observe that the map (x̂, ŷ) = I(x, y) also provides the coordi-
nates rectifying cx to −∂x̂.

Conjugating any symmetry of the equation by I will produce a new sym-
metry (a conformal mapping here). Indeed, the pushforward I∗ of the vector
field −∂x through I is I∗(−∂x) = c̃x̃, where tilde means that the vector field
is written in the new coordinates. So exp(εcx)(x, y) can be recovered by
conjugating the translational group along the x-axis: x→ x− ε by I

exp {εcx} (x, y) = I(x, y) ◦ exp {−ε∂x} ◦ I(x, y).

Similarly, since I∗(−∂y) = c̃ỹ = 2x̃ỹ∂x̃ + (ỹ2 − x̃2)∂ỹ, conjugating −∂y by I,

exp {εcy} (x, y) = I(x, y) ◦ exp {−ε∂y} ◦ I(x, y).
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generates another conformal transformation

x̃ =
x

1− 2εy + ε2(x2 + y2)
, ỹ =

y − ε(x2 + y2)

1− 2εy + ε2(x2 + y2)
. (28)

The one-parameter group transformations generated by the elements of the
abelian subalgebra {cx, cy} are conformal because they leave form invariant
the planar metric:

dx̃2 + dỹ2 = λ(x, y; ε)(dx2 + dy2),

for some function λ (conformal factor). For cx, λ = (1− 2εx+ ε2(x2 + y2))
−2

.
Note that the inversion itself is also a conformal mapping with λ = (x2 +
y2)−2. The full (special) conformal transformations are given by the transla-
tion group conjugation I ◦ exp{ε1∂x + ε2∂y} ◦ I(x, y) in the form

x̃ = (x̃, ỹ) =
x− ε(x2 + y2)

1− 2ε · x + ε2(x2 + y2)
, ε = (ε1, ε2), x = (x, y). (29)

Note that this transformation is not globally defined because the conformal
factor λ(x, y; ε1, ε2) = 1− 2ε · x + ε2(x2 + y2) = 0 at the point x = ε/ε2.

We conclude that action of this group on solutions states that u = f(x̃, ỹ)
is also a solution, whenever f(x, y) is solution to the Laplace equation. For
example, with the help of the invariant ζ, the radial solution f(x, y) =
log(x2 + y2) or the angular solution f(x, y) = arctan(y/x), among many
others (homogeneous harmonics) can be mapped to produce the new solu-
tions

u = log
x2 + y2

1− 2εx+ ε2(x2 + y2)
, u = arctan

y

x− ε(x2 + y2)
.

Adding to cx and cy the subalgebras obtained by other choices (ξ, η) =
(1, 0), (0, 1), (ξ, η) = (−y, x) and, (ξ, η) = (x, y) leading to the translational,
rotational and dilatational invariance, in terms of vector fields, px = ∂x, py =
∂y, j = −y∂x +x∂y, d = x∂x + y∂y, respectively, we obtain the 6-dimensional
Lie algebra of the conformal group Conf(R2) of the Euclidean plane R2,
isomorphic to SO(3, 1), the Lorentz group of four-dimensional Minkowski
space [11]. Obviously, the subalgebra spanned by {px,d, cx} is sl(2,R). This
symmetry group is the two-dimensional analogue of the full conformal group
in dimensions n ≥ 3. Note that the full conformal group in the plane R2 ∼= C
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is infinite-dimensional, with the Lie group SO(3, 1) as its maximal finite-
dimensional subgroup, because any analytic function f : C → C leads to a
conformal transformation (In our case f(z) = z, iz, z2). We have excluded
the trivial symmetry algebra stemming from the linearity of the PDE. Their
non-zero commutators satisfy

[px,y,d] = px,y, [j,px] = −py, [j,py] = px, [p1, cx] = [p2, cy] = 2d,

[px, cy] = −[py, cx] = −2j, [d, cx,y] = cx,y, [j, cx] = −cy, [j, cy] = cx.

A nonlinear variant of the Laplace equation, known as the conformal
scalar curvature equation, or the elliptic Liouville’s equation, occurs in the
study of isothermal coordinates in differential geometry and has the form

uxx + uyy = Keu, (30)

where K is constant (Gaussian curvature).
The conformal symmetry structure of this equation on the (x, y)-plane is

preserved. The vector field generating the symmetry group G of the equation
is given by

v = ξ∂x + η∂y − 2ξx∂u,

where ξ(x, y), η(x, y) satisfy the Cauchy–Riemann equations. For (ξ, η) =
(x2−y2, 2xy), v = (x2−y2)∂x+2xy∂y−4x∂u. We solve the initial value prob-
lem dũ/dε = −4x̃, ũ(x, y; 0) = u(x, y) using (27) and find the transformation
of u under the group action:

ũ(x, y; ε) = 2 lnσ(x, y; ε) +u(x, y), σ(x, y; ε) = 1− 2εx+ ε2(x2 + y2). (31)

We note that

σ(x, y; ε) = σ(x̃, ỹ;−ε)−1 = 1 + 2εx̃+ ε2(x̃2 + ỹ2).

Application of the one-parameter transformation group defined by (27) and
(31) to a solution f(x, y), where the coordinates (x, y) are written in terms
of (x̃, ỹ) leads to the transformed new solution uε(x, y) (after the tildes are
removed)

uε(x, y) = −2 lnσ(x, y;−ε) + f(x̃, ỹ),

where

x̃ =
x+ ε(x2 + y2)

1 + 2εx+ ε2(x2 + y2)
, ỹ =

y

1 + 2εx+ ε2(x2 + y2)
.
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Remark 2.6. The Laplace equation in Rn with n ≥ 3 is invariant only
under a finite dimensional conformal Lie symmetry group of Rn with di-
mension

(
n+2

2

)
= (n + 1)(n + 2)/2, consisting of the groups of translations,

rotations, dilation and conformal transformations (obtained by conjugating
the n-components of the translational group via inversion I(x) = |x|−2x) on
Rn \ {0}.

The symmetry algebra of the Laplace equation (See [46] for its derivation)

∆nu(x) = 0, x = (x1, x2, . . . , xn) ∈ Rn

is spanned by

pi = ∂xi , d =
n∑
j=1

xj∂xj , jij = xi∂xj − xj∂xi , i 6= j,

ci = 2xid− r2∂xi + (2− n)xiu∂u, r2 =
n∑
j=1

x2
j ,

m = u∂u, v(ρ) = ρ(x)∂u, ∆nρ = 0,

(32)

where i, j = 1, 2, . . . , n. The (n + 1)(n + 2)/2-dimensional Lie algebra
{pi,d, jij, ci} generates the conformal group Conf(Rn) of the Euclidean plane
Rn.

We note that the conformal transformations of Rn are generated by the
conformal vector fields v =

∑n
i=1 ξi(x)∂xi , where the coefficients ξi satisfy

the conformal Killing equations

∂ξi
∂xj

+
∂ξj
∂xi

= λ(x)δij, i, j = 1, 2, . . . , n

for some undetermined function λ (the conformal factor).
The linear wave equation utt = ∆u, u = u(t, x), (t, x) ∈ Rn+1 is invariant

under a Lie point symmetry algebra isomorphic to the Lorentz group SO(n+
1, 2), of dimension

(
n+3

2

)
= (n + 2)(n + 3)/2, n ≥ 2 in a Minkowski space

with an indefinite underlying metric ds2 = dt2 − dx2
1 − · · · − dx2

n.
The nonlinear wave (or Klein–Gordon) equation utt − uxx = F (u) is in-

variant under the Poincaré group P(1, 1) of 1 + 1-dimensional Minkowski
plane for any F (u) with F ′′ 6= 0. Its Lie symmetry algebra is generated by
the translational vector fields and Lorenz boost

v1 = ∂t, v2 = ∂x, v3 = t∂x + x∂t.
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For two specific forms of F (u), the symmetry algebra is larger (See Section
4.1 for the group classification problem). The additional vector field for
F (u) = F0u

k is v4 = t∂t + x∂x + 2
1−ku∂u, and v4 = t∂t + x∂x − 2

λ
∂u for

F (u) = F0e
λu.

The second special case is known as the hyperbolic Liouville equation,
which in the light-cone (characteristic) coordinates r = t + x, s = t− x has
the form

urs = aeu. (33)

This equation is invariant under the infinite-dimensional symmetry algebra
generated by the vector field

v = ξ(r)∂r + η(s)∂s − (ξ′(r) + η′(s))∂u, (34)

where ξ(r) and η(s) are arbitrary functions. This is true for any a because

pr(2)v(urs − aeu) = −(urs − aeu)(ξ′(r) + η′(s)).

v generates the infinite dimensional symmetry group depending on two ar-
bitrary functions

r̃ = f(r), s̃ = g(s), ũ = u− ln(f ′(r)g′(s)), f ′g′ 6= 0. (35)

The group action implies that if F (r, s) is a solution, so is the function
u = F (r̃, s̃) + ln(f ′g′). The general solution of (33) for a 6= 0 can be found
by acting on a particular solution of the form

u = F (r + s) = ln
2

a(r + s)2

as

u = F (r̃ + s̃) + ln(f ′g′) = ln

(
2

a

f ′(r)g′(s)

(f(r) + g(s))2

)
. (36)

So the general solution of
utt − uxx = aeu

can be expressed in terms of two arbitrary functions as

u = ln

(
8

a

f ′(t+ x)g′(t− x)

(f(t+ x) + g(t− x))2

)
.

This solution was obtained by Liouville as early as 1853.
The linear case F ′′ = 0 is quite different, the symmetry group is the

infinite-dimensional conformal group.
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3 Differential invariants

Given a Lie algebra g, characterization of all invariant equations, equations
that remain invariant under the symmetry group G of g requires the notion
of differential invariants, which are functions unaffected by the action of G on
some manifold M . An ordinary invariant is a C∞(J(x, u)) function I(x, u)
on J(x, u) ⊂ M , which satisfies I(g.(x, u)) = I(x, u) for all group elements
g ∈ G and coordinates (x, u).

Definition 3.1. A differential invariant of order n of a connected transfor-
mation group G is a differential function I(x, u(n)) on the jet space Jn if
I(g(n).(x, u(n))) = I(x, u(n)) for all g ∈ G and (x, u(n)) ∈ Jn.

An ordinary invariant is a differential invariant of order 0. The following
infinitesimal invariance criterion for differential invariants serves to determine
differential invariants of a given connected group of transformations in a
simple manner by just solving a system of linear first order PDEs.

Proposition 3.2. A function I is a differential function for a connected
group G if and only if it is annihilated by all the prolonged vector fields
(infinitesimal generators)

v(n)(I) ≡ pr(n)v(I) = 0 (37)

for all v ∈ g.

An function I is an ordinary invariant if and only if v(I) = 0. For a
general vector field

v =
n∑
i=1

ξi(x)∂xi ,

the coordinates y = η(x) rectifying v = ∂y1 are found by solving the first
order partial differential equations v(η1) = 1, v(ηi) = 0, i > 1. So the
new coordinates yi(x) are the functionally independent invariants of the one-
parameter group generated by v.

Remark 3.3. The dimension of the space Jn is dim Jn = p + q
(
p+n
n

)
. The

number of derivative coordinates of order exactly n is given by qn = dim Jn−
dim Jn−1 = q

(
p+n−1
n

)
.
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The number of functionally independent differential invariants of order n
is equal to

k = dim Jn − (dimG− dimG0), (38)

where G0 is the stabilizer subgroup (also called the isotropy group) of a
generic point on Jn. d = dimG− dimG0 is the dimension of the orbit of G
at a generic point. An equivalent formula for kn is

kn = dim Jn − rankZ ≥ 0,

where Z is the matrix of size r×dim Jn formed by the coefficients of the n-th
prolongations pr(n)(vν), ν = 1, 2, . . . , r of the basis vector fields v1, . . . ,vr of
the Lie algebra g of the group G as rows

vν =

p∑
i=1

ξi,ν(x, u)∂xi +

q∑
α=1

ϕα,ν(x, u)∂uα , ν = 1, 2, . . . , r.

The rank m of Z is calculated at a generic point of Jn. For the special
case of one independent and one dependent variable p = q = 1 we have
dim Jn = n + 2 and the number of functionally independent invariants is
kn = n+ 2−m.

The set of n-th order differential invariants I1, I2, . . . , Ik of g will be de-
noted by In(g). This set is an R-algebra. This means that In(g) is a vector
space over the field R and satisfies the property that any arbitrary smooth
function H(I1, . . . , Ik) of the set of differential invariants I1, I2, . . . , Ik is also a
differential invariant, i.e. if I1, I2, . . . , Ik ∈ In(g), then H(I1, . . . , Ik) ∈ In(g).
They also satisfy the inclusions

I0(g) ⊂ I1(g) ⊂ . . . In(g) ⊂ . . .

The algebra
⋃∞
n=0 In(g) is called the algebra of differential invariants.

3.1 Invariant differentiation

Lie [28, 27, 29] and Tresse [52] introduced the notion of ”invariant” differ-
ential operators to obtain (n + 1)-st order differential invariants from n-th
order ones. This enables one to produce all the higher order functionally
independent differential invariants by successive application of the invariant
operators to lower order invariants. The situation is easier when there is only
one dependent variable. Let the group G with Lie algebra g act on the basic
space E = J0(R,Rn) ' X × U .
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Proposition 3.4. Suppose that I(x, u(n)) and J(x, u(n)) are functionally in-
dependent invariants, at least one of which has order exactly n. Then the
ratio DxJ/DxI (the Tresse derivative) is an (n + 1)-st order differential in-
variant.

If I(x, u(n)) is any given differential invariant, then D = (DxI)−1Dx is
an invariant differential operator so that iterating on D one can generate an
hierarchy DkJ , k = 0, 1, 2, . . . , of higher order differential invariants.

If z = I(x, u) and w = J(x, u, u1) are a complete set of functionally
independent invariants of the first prolongation pr(1)g, i.e. they form the
basis of I1(g), then I, J together with the derivatives DkJ = dkw/dzk, k =
1, 2, . . . , n− 1 generate a complete set of functionally independent invariants
for the prolonged algebra pr(n)g for n ≥ 1. They all satisfy the infinitesimal
invariant condition pr(n)v(DkJ) = 0 for a vector field v ∈ g.

Example 3.5. We know from Example 2.3 that the algebra of vector fields
v = x2∂x+xu∂u on J0(R,R) has the first order differential invariants I = u/x,
J = xu1 − u, which satisfy v(I) = 0, pr(1)v(J) = 0. The Tresse derivative
DJ/DI = J−1(x3u2) gives the second order differential invariant. We can
take it as J2 = JDJ/DI = x3u2 as it is needed only up to functional indepen-
dence. Iterating the Tresse derivatives and multiplying by J we obtain the
sequence of all other differential invariants as Jk = x2DxJk−1, k = 3, 4, . . ..

Determination of a complete set of functionally independent differential
invariants (the basis In(g)) allows us to construct classes of differential equa-
tions with a prescribed symmetry algebra g.

Theorem 3.6. If the differential functions

I1(x, u(n)), I2(x, u(n)), . . . , Ik(x, u
(n)) ∈ In(g) ⊂ Jn

form a set of functionally independent n-th order differential invariants of
G, then a system of n-th order differential equations are invariant under G
if and only if it can be written in terms of the differential invariants:

Eν(x, u
(n)) = Hν(I1, I2, . . . , Ik) = 0, ν = 1, 2, . . . , N. (39)

Invariant equations obtained in this way are called strongly invariant
(pr(n)Hν(I1, . . . , Ik) = 0 is satisfied everywhere).
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Example 3.7. We find all second order equations invariant under the abelian
subgroup of the projective group SL(3,R) generated by

v1 = x2∂x + xy∂y, v2 = xy∂x + y2∂y.

From Example 3.5 we know the following set of second order differential
invariants

I1 =
y

x
, I2 = y − xy1, I3 = x3y2.

The second prolongation of v2 is

pr(2)v2 = v2 + y1(y − xy1)∂y1 − 3xy1y2∂y2 .

Imposing the condition pr(2)v2(H) = 0 and changing to the invariants as new
coordinates we find that H(I1, I2, I3) satisfies

I2
2

∂H

∂I2

+ 3I2I3
∂H

∂I3

= 0.

Solving this PDE by the method of characteristics, it follows that there are
two independent invariants I = I1 = y/x and J = I3I

−3
2 = x3(y − xy1)−3y2.

The most general equation can now be written as

y2 = x−3(y − xy1)3G
(y
x

)
, (40)

where G is an arbitrary function.
The rectifying coordinates for v1 to ṽ1 = ∂s are r = y/x (an invariant)

and s = −1/x. In terms of r, s, v2 gets transformed to ṽ2 = r∂s. The
invariant equation corresponding to the abelian algebra {∂s, r∂s} (compare
with the canonical realization A2,2 of (63)) is a linear one d2s/dr2 = G(r).
We conclude that the same transformation linearizes Eq. (40).

If we replace v2 by v2 = x∂x + ky∂y, this time H(I1, I2, I3) has to satisfy
the zero-degree quasi-homogeneous function PDE

(k − 1)I1
∂H

∂I1

+ kI2
∂H

∂I2

+ (k + 1)I3
∂H

∂I3

= 0.

Integrating the characteristic equations of this PDE we obtain the invariants
I = I

k/(1−k)
1 I2, J = I

(k+1)/(1−k)
1 I3, k 6= 1, while for k = 1, we have I = I1
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and J = I3I
−2
2 . In the former case, the invariant equation will have the form

J = G(I), or

y2 = x−(n+3)ynG(I), I =
(y
x

)−(n+1)/2

(y − xy1), k =
n+ 1

n− 1
.

In this case, the algebra belongs to the nonabelain realization A2,3 of (64).
For the specific choice of G = K = const. it reduces to the celebrated Emden–
Fowler equation (See also (90)).

In the latter case, we have the nonabelian algebra of linearly connected
(or rank-one) vector fields with v1 = x(x∂x + y∂y) = xv2, which is the A2,4

(64) canonical form {∂s, s∂s}, up to change of coordinates r = y/x, s = −1/x.
The corresponding invariant equation is

y2 = (y − xy1)2F
(y
x

)
.

Changing to new coordinates (r, s) linearizes this equation to

d2s

dr2
+ F (r)

ds

dr
= 0.

Example 3.8. We construct all third order ODEs invariant under the solv-
able group E(2) of rigid motions in the plane (isometries of the Euclidean
space R2) of the e(2) algebra of symmetries composed of translations along
x and y axes and the planar rotations

v1 = ∂x, v2 = ∂y, v3 = −y∂x + x∂y (41)

with non-zero commutators

[v1,v3] = v2, [v2,v3] = −v1.

Prolongations of v1 and v2 do not alter their local form, but the third order
prolongation of v3 is given by

pr(3)v3 = v3 + (1 + y2
1)∂y1 + 3y1y2∂y2 + (4y1y3 + 3y2

2)∂y3 .

We note that the Euclidean group E(2) has no ordinary invariants on the
space (x, y) (k = n + 2 − m = 2 − 2 = 0), nor differential invariant of
the first order (k = 1 + 2 − 3 = 0) because the group acts transitively
on (x, y) and (x, y, y1), but there are differential invariants of order ≥ 2.
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We can not use invariant differentiation process to find higher order ones.
If I(x, y, y1, y2, y3) is a differential invariant of order three of e(2), then
pr(3)v1(I) = 0, pr(3)v2(I) = 0, pr(3)v3(I) = 0. From the first two equa-
tions, I must be independent of x and y coordinates, namely I(y1, y2, y3).
We solve the characteristic system to find the two independent differential
invariants, satisfying pr(3)v3(I) = 0. The characteristic system is given by

dy1

1 + y2
1

=
dy2

3y1y2

=
dy3

4y1y3 + 3y2
2

. (42)

From the first characteristic equation, a second order invariant is κ = (1 +
y2

1)−3/2y2 (the curvature). The other one is obtained by replacing y2 by
κ(1 + y2

1)3/2, with κ treated constant, in the last term and then integrating
the first order linear ODE

dy3

dy1

− 4y1

1 + y2
1

y3 = 3κ2(1 + y2
1)2.

This provides us the differential invariant

ζ(y1, y2, y3) = κ−2y3(1 + y2
1)−2 − 3y1 = (1 + y2

1)y−2
2 y3 − 3y1

so that κ and ζ form a basis of third order invariants of e(2) (a set of func-
tionally independent invariants). The invariant equation now can be written
as

(1 + y2
1)y3 − 3y1y

2
2 = y2

2H(κ), (43)

where H is any smooth function of the curvature.
In view of proposition 3.4, higher order differential invariants and invari-

ant ODEs can be constructed using the Tresse derivatives of κ and ζ. For
instance, the ratio Dxζ/Dxκ gives a fourth order invariant.

Third order ordinary differential equations invariant under three-dimensional
solvable algebras can be constructed in a similar manner. All such algebras
with a two-dimensional abelian ideal of rank-two will be realized by the vector
fields

v1 = ∂x, v1 = ∂y, v3 = (ax+ cy)∂x + (bx+ dy)∂y, (44)

satisfying the commutation relations

[v1,v2] = 0, [v1,v3] = av1 + bv2, [v2,v3] = cv1 + dv2, (45)
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where the matrix

A =

(
a b
c d

)
can be transformed into one of the following Jordan canonical forms(

1 0
0 p

)
, −1 ≤ p ≤ 1,

(
0 0
1 0

)
,

(
q −1
1 q

)
q ≥ 0.

A different algebra is obtained for each canonical form. For example, the
third canonical form for q = 0 (a = d = 0, b = −c = 1) corresponds to the
algebra e(2) as discussed in the above example. The differential invariants
of order three, I(y1, y2, y3), can be found from the condition pr(3)v3(I) = 0,
namely from integrating the first order homogeneous PDE

[b+(d−a)y1−cy2
1]Iy1 +(d−2a−3cy1)y2Iy2 +[−3cy2

2 +(d−3a−4cy1)y3]Iy3 = 0.
(46)

The second canonical form (a = b = d = 0, c = 1) is the nilpotent
algebra with the center {v1}. This means that we are dealing with the
solvable algebra

v3 = ∂x, v2 = ∂y, v3 = y∂x.

Calculating differential invariants from

[y2
1∂y1 + 3y1y2∂y2 + (3y2

2 + 4y1y3)∂y3 ]I = 0

we find the third order invariant equation

y1y3 = 3y2
2 + y5

1H(τ), τ = y2y
−3
1 ,

where H is an arbitrary function of its argument.
This equation and other third order invariant equations can be integrated

using three consecutive quadratures (See Example 4.14 for the integration
procedure).

4 Reduction of order for ordinary differential

equations

Theorem 4.1. Let the scalar ODE

E(x, y(n)) = E(x, y, y1, . . . , yn) = 0,
∂E

∂yn
6= 0
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admit a one-parameter symmetry group G generated by v ∈ g. All nontan-
gential solutions (v ∈ g is nowhere tangent to the graph of the solution) can
be found by quadrature from the solutions to a reduced ODE (E/G)(x, y(n−1)).

Proof. If we introduce rectifying (canonical or normal) coordinates r = r(x, y)
and s = s(x, y) in which v generates a group of translation r → r, s→ s+ ε
with the corresponding normal form v̂ = ∂s. Its prolongation pr(n)v̂ = ∂s
and therefore the derivatives in the new coordinates remain unchanged so
that from the invariance condition (23) it follows that the equation in nor-
mal form should be independent of the variable s, but can depend on the
derivatives. Therefore we have reduced our equation to one of order n − 1,
(E/G)(r, s′, . . . , s(n−1)) for the derivative z = ϑ(r) = ds/dr = s′(r). Once we
know the solution of the reduced equation, the solution to the original one
is obtained by a quadrature s =

∫
ϑ(r)dr.

The rectifying coordinates r, s are constructed as solutions of the partial
differential equations v(r) = 0, v(s) = 1. Note that the coordinate r is an
invariant of v(r) and r, s can be replaced by any arbitrary functions of r and
s. For a first order equation y′ = F (x, y) admitting the symmetry generated
by v = ξ(x, y)∂x + η(x, y)∂y, the determining equation is

ξFx + ηFy = (ηy − ξx)F − ξyF 2 + ηx. (47)

This equation admits the solution η = Fξ. But the corresponding vector
fields v = ξ(x, y)(∂x + F (x, y)∂y) are everywhere tangential to solutions and
do not serve our purpose for reduction because finding canonical coordinates
equally require integrating the equation itself. Other than these trivial sym-
metries, the above determining equation can allow particular solutions for
given F leading to one-parameter symmetry groups. Transforming to canon-
ical coordinates reduces the equation to quadrature. It is quite straightfor-
ward to see that, if η − Fξ 6= 0, the infinitesimal symmetry condition (47)
can be re-expressed as

µx + (µF )y = 0, µ(x, y) = (η − Fξ)−1,

implies the existence of an integrating factor µ(x, y) of the equation.
In practise it is more feasible to solve the inverse problem of constructing

the most general first order ODEs admitting a given group as a symmetry
group. The same problem for higher order equations are equally useful.
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Example 4.2. We consider the following one-parameter local group of trans-
formation (a special form of the so-called fiber-preserving transformation in
which the changes in x are not affected by the dependent variable y)

Φε(x, y) : x̃ = X(x; ε), ỹ = Y (x; ε)y (48)

with the infinitesimal generator

v = ξ(x)∂x + η(x)y∂y, (49)

and its prolongation

pr(1)v = v + [η′y + (η − ξ′)y′]∂y′ .

Solving the characteristic equations of the first order PDE pr(1)v(I) = 0

dx

ξ(x)
=

dy

η(x)y
=

dy′

η′y + (η − ξ′)y′

we find the first order fundamental invariants

r(x, y) = ν(x)y, w(x, y, y′) = ν(x)(ξy′−ηy), ν(x) = exp

{
−
∫ x η(t)

ξ(t)
dt

}
.

(50)
From Theorem 3.6, the corresponding ODE can be expressed in terms of
invariants in the form F (r, w) = 0 or w = H(r), more precisely

y′ − η(x)

ξ(x)
y =

H(ν(x)y)

ν(x)ξ(x)
, (51)

where F and H are arbitrary functions of a single argument. In terms of
canonical coordinates it has the form, which is independent of s (invariant
under the translations s→ s+ ε),

dr

ds
= H(r), w =

dr

ds
, s =

∫ x dt

ξ(t)
. (52)

This means that Eq. (52) can be integrated by quadrature (separation of vari-
ables). This equation involves interesting types of ODEs like Abel’s equation
of second type or Riccati equation.
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For example, if we choose ξ arbitrary, η = −1 and H(τ) = A+Bτ−1 + τ ,
A,B 6= 0 we have

yy′ =
A

ξν
y +

B

ξν2
(53)

with the one-parameter symmetry group generated by v = ξ(x)∂x − y∂y. In
terms of r, s, its general solution in implicit form is given by the quadrature∫

rdr

r2 + Ar +B
= s+ c, (54)

where c is an integration constant. If ∆ = A2 − 4B < 0, it is useful to use∫
rdr

r2 + Ar +B
=

1

2
ln(r2 + Ar +B)− A

2

∫
dr

r2 + Ar +B

together with the formula (58) for the integral on the right side.
For the choice ξ(x) = x, A = 1, B = −2 (∆ = 9 > 0), Eq. (53) specializes

to

yy′ =
1

x2
y − 2

x3

with solution
(xy + 2)2(xy − 1) = kx3.

The choice H(τ) = Aτ 2 +Bτ + C leads to a Riccati equation depending
on two arbitrary functions and three parameters

y′ = a(x)y2 + b(x)y + c(x), (55)

where

a(x) =
Aν

ξ
, b(x) =

η +B

ξ
, c(x) =

C

νξ
. (56)

This equation is invariant under the symmetry (49). Conversely, one can
show that the most general Riccati equation of the form (55) invariant under
the group (48) should have the coefficients given by (56).

From its separable form in coordinates r, s (namely, Eq. (52)), it follows
the following solution ∫

dr

Ar2 +Br + C
= s+ c. (57)
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The integral on the left side depends on the discriminant ∆ = B2 − 4AC
−2√

∆
arctanh 2Ar+B√

∆
, ∆ > 0,

−2
2Ar+B

, ∆ = 0,
2√
−∆

arctan 2Ar+B√
−∆

, ∆ < 0.

(58)

The particular choice ξ = 1, η = α = const. (ν = e−αx) leads to the Riccati
equation

y′ = Ae−αxy2 + (B + α)y + Ceαx (59)

admitting the symmetry group (x, y) → (x + ε, eαεy) generated by v =
∂x + αy∂y. This equation can be replaced by

y′ = Ae−αxy2 +By + Ceαx (60)

by redefining the parameter B as B − α.
The other choice ξ = x2, η = x (ν = 1/x) gives the Riccati equation

y′ =
A

x3
y2 +

B + x

x2
y +

C

x
(61)

invariant under the projective symmetry group generated by v = x2∂x+xy∂y
(see Example 2.3).

In the case ∆ < 0, the general solution of (55) from (57) has the explicit
form

y =
1

2Aν

{√
−∆ tan

[√
−∆

2
(s+ c)

]
−B

}
,

in the case ∆ = 0

y = −B(s+ c) + 2

2Aν(s+ c)
.

Remark 4.3. Lie showed that the Lie symmetry algebra of a second order
ODE can be of dimension dim g = 0, 1, 2, 3, 8. The maximum dimension is
attained if and only if and only if it can be mapped by a point transfor-
mation to the canonical linear equation y′′ = 0, which admits a symmetry
group isomorphic to the SL(3,R) group, acting as the group of projective
transformations of the Euclidean plane with coordinates (x, y). Moreover,
he classified equations with point symmetries into equivalence classes under
the action of the infinite dimensional group Diff(2,C) of all local diffeomor-
phisms of a complex plane C.
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Remark 4.4. There are two isomorphism classes of two-dimensional Lie
algebras exist (over R and over C): abelian and nonabelian

[v1,v2] = 0, [v1,v2] = v1. (62)

Their realizations in the plane are summarized as

A2,1 : v1 = ∂x, v2 = ∂y, A2,2 : v1 = ∂y, v2 = x∂y, (63)

A2,3 : v1 = ∂y, v2 = x∂x + y∂y, A2,4 : v1 = ∂y, v2 = y∂y. (64)

They can be obtained by the following argument.
Abelian case: We first assume the algebra g = {v1,v2} has rank 1. We

start by assuming that v1 is in some canonical form, say v1 = ∂y and v2 in
its generic form

v2 = ξ(x, y)∂x + η(x, y)∂y.

Then from the first commutation relation of (62) we have v2 = η(x)∂y. The
transformation preserving v1, but changing v2 (equivalence group) is given
by

x̃ = f(x), ỹ = y + g(x), f ′ 6= 0. (65)

Under such a transformation, we find ṽ2 = η(x)∂ỹ. We simply choose f(x) =
η(x) and obtain the A2,2 algebra.

Now assume that the rank of g is 2. Then we must have

v2 = ξ(x)∂x + η(x)∂y, ξ(x) 6= 0.

Then v2 is transformed to

ṽ2 = ξf ′∂x̃ + (ξg′ + η)∂ỹ.

We choose ξf ′ = 1 and ξg′+ η = 0 so that we have ṽ2 = ∂x̃, which gives A2,1

(in the reverse order).
Non-abelian case: First, rank g = 1 realization. In this case, from the

second commutation relation we find v2 = (y+ η(x))∂y. The transformation
(65) takes v2 to ṽ2 = (ỹ + η − g)∂ỹ. The choice g = η(x) leads to the A2,4

realization of the algebra.
Finally, we consider the rank g = 2 realization. In this case, we find

v2 = ξ(x)∂x + (y + η(x))∂y, ξ(x) 6= 0.
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Again, using (65) with f and g satisfying

ξf ′ = f, ξg′ − g + η = 0

we arrive at A2,3.
In the terminology of Lie, for the realizations A2,2, A2,4, the vector fields

v1 and v2 are called linearly connected, for A2,1, A2,3, linearly unconnected.
The corresponding canonical invariant equations are

y′′ = F (y′), y′′ = F (x) (66)

for A2,1, and A2,2, and

xy′′ = F (y′), y′′ = F (x)y′ (67)

for A2,3, and A2,4, respectively.
Any second order ODE with a symmetry group G of dimension ≥ 2

(a nonlinear second order ODE can be invariant at most under a three-
dimensional Lie group) can be integrated by two quadratures except for the
rotation group SO(3,R) when dimG = 3, which has no two-dimensional
subgroup. In the latter case, there is a method based on first integrals to
find the general solution without integration, namely by purely algebraic
manipulations (See [18, 51]).

Example 4.5. We construct the most general second order ODE invari-
ant under the rotation group SO(3,R). The Lie algebra so(3,R) acting on
the surface of the unit sphere S2 = {(x, y) : x ∈ [0, 2π), y ∈ (0, π)} ⊂ R3 is
realized by the vector fields

v1 = ∂x,

v2 = cosx cot y∂x + sinx∂y,

v3 = − sinx cot y∂x + cosx∂y

(68)

with the commutation relations

[v1,v2] = v3, [v2,v3] = v1, [v3,v1] = v2. (69)

Obviously, invariant function will be of the form I(y, y1, y2) because of

pr(2)v1(I) = v1(I) = 0.
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We solve the PDE pr(2)v2(I) = 0. Splitting it with respect to the set
{cosx, sinx} we find

tan yIy + y1Iy1 − (tan y + 2 sec y csc yy2
1 − y2)Iy2 = 0,

(1 + csc2 y)Iy1 + y1(cot y − 2 cot y csc2 yy2
1 + 3 csc2 y2)Iy2 = 0.

(70)

A first integral is immediately obtained as τ = csc yy1. The second indepen-
dent integral is found by integrating the linear ODE

dy2

dy
− 2 cot yy2 = −(1 + 2τ 2)

as
ω = csc2 yy2 − (1 + 2τ 2) cot y.

Expressing the second PDE of (70) in terms of τ, ω gives

(1 + τ 2)Iτ + 3τωIω = 0

possessing the single first integral ζ = ω(1+τ 2)−3/2. The condition pr(2)v3(ζ) =
0 is automatically satisfied because

pr(2)v3 = pr(2)[v1,v2] = [pr(2)v1, pr(2)v2].

Finally, a single invariant equation depending on an arbitrary parameter ν is
found from the relation ζ(y, y1, y2) = ν = constant. In terms of the spherical
variables (x, y) it can be written in the form

y2 − 2(cot y)y2
1 − sin y cos y = ν sin2 y(1 + csc2 y)3/2. (71)

The special case ν = 0 is the equation of the geodesics on the unit sphere

y2 − 2(cot y)y2
1 − sin y cos y = 0. (72)

In order to solve this equation, we can use the algorithmic method of first
integrals based on symmetries suggested in [18]. We first need the character-
istic functions of the vector fields v1,v2,v3

Q1 = −y1, Q2 = sinx− cosx(cot y)y1,

Q3 = cosx+ sinx(cot y)y1.
(73)
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We next compute the quantities

W12 = Q1D̂xQ2 −Q2D̂xQ1,

W13 = Q1D̂xQ3 −Q3D̂xQ1,

W23 = Q2D̂xQ3 −Q3D̂xQ2,

(74)

where D̂x is the total derivative operator restricted to the geodesic equation
y2 = F (y, y1) = 2(cot y)y2

1 + sin y cos y

D̂x = ∂x + y1∂y + F∂y2 .

They are explicitly given by

W12 = −(cosx csc2 y)y3
1 + (sinx cot y)y2

1 − cosxy1 + sinx sin y cos y,

W13 = (sinx csc2 y)y3
1 + (cosx cot y)y2

1 + sinxy1 + cosx sin y cos y,

W23 =
1

2
(1− cos 2y + 2y2

1).

(75)

The two nonconstant functionally independent first integrals then arise as
the ratios

W12

W23

= c1,
W13

W23

= c1 (76)

because by construction

D̂x

(
W12

W23

)
= 0, D̂x

(
W13

W23

)
= 0.

Eqs. (76) define the solution parametrically. It is possible to eliminate the
parameter y1 between them as

c1 sinx+ c2 cosx+ cot y = 0.

On the other hand, if ν 6= 0, then the solution can only be obtained in
parametric form.

We note that the geodesic equation (72) is the Euler-Lagrange equation
of the (first-order) arc-length functional on S2

J [y] =

∫ x2

x1

L(y, y1)dx (77)
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with Lagrangian

L(y, y1) =
√
y2

1 + sin2 y.

It is easy to verify that the vector fields defined by (68) are also variational
symmetries of the functional (77). This is indeed the case because infinitesi-
mal invariance condition

pr(1)vi(L) +Dx(ξi)L = 0, i = 1, 2, 3 (78)

is satisfied for each vector field vi with ξi being the x-coefficients of the vector
fields. The Noether theorem then can be used to find three first integrals
I1, I2, I3 as

Ii = ξiL+Qi
∂L

∂y1

= ci.

For an excellent discussion of this theorem with interesting applications the
reader can consult the book [35]. A simple computation gives the first inte-
grals

I1 = L−1 sin2 y, I2 = L−1(sinxy1 + cosx sin y cos y),

I3 = L−1(cosxy1 − sinx sin y cos y).
(79)

The first one is the conservation of energy in which I1 = H = L − y1Ly1 is
the Hamiltonian. Of course, only two of them are functionally independent.
Indeed, we have the relation

c2 cosx− c3 sinx− c1 cot y = 0, (80)

which is in fact the (general) solution with the parameter y1 eliminated. We
can put c1 = 1 by dividing by c1 and redefining c2 and c3.

Remark 4.6. The algebra spanned by (68) is the two dimensional rank-two
realization of so(3,R) that can be obtained by the following procedure. We
may start with the locally smooth canonical form v1 = ∂x. Then with v2, v3

in the generic form

v2 = a(x, y)∂x + b(x, y)∂y, v2 = A(x, y)∂x +B(x, y)∂y

the commutation relations (69) give

ax = A, bx = B, a = −Ax, b = −Bx
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with solutions

a = α(y) cos(x+ δ(y)), b = β(y) sin(x+ λ(y)),

A = −α(y) sin(x+ δ(y)), B = β(y) cos(x+ λ(y)).

We must have a, b, A,B 6= 0 for a rank-two realization because all wedge
products (bivectors) v1 ∧ v2, v1 ∧ v3, v2 ∧ v3 must be nonzero. Now the
invertible transformation preserving the canonical form v1 is x̃ = x + X(y),
ỹ = Y (y), Y ′ 6= 0 and maps v2 to

ṽ2 = [α cos(x̃−X + δ) + βX ′ sin(x̃−X + λ)]∂x̃ + βY ′ sin(x̃−X + λ)∂ỹ.

We choose X and Y so that βY ′ = 1 and X = λ. We may write ṽ2 (without
tildes) as

v2 = γ(y) cos(x+ σ(y))∂x + sinx∂y, γ 6= 0,

where γ(y) and σ(y) are new arbitrary smooth functions. Then we have

v3 = −γ(y) sin(x+ σ(y))∂x + cosx∂y.

The commutation relation [v2,v3] = v1 then gives

γ(sinσ) = 0, −1− γ2 − γ′(cosσ) + γ′σ′(sinσ) = 0.

So we have sinσ = 0 or cosσ = ±1. For cosσ = 1, γ′ = −(1 + γ2) with
solution γ = cot(y+χ) and cos(x+σ(y)) = cos x. The translation ỹ = y+χ
removes χ in γ and consequently we find

v2 = cot y cosx∂x + sinx∂y, v3 = − cot y sinx∂x + cosx∂y.

For cosσ = −1, we have γ′ = (1 + γ2) with solution γ = − cot(y + χ) and
cos(x+ σ(y)) = − cosx leading to the earlier realization. This concludes the
rank-two realization of so(3,R).

We observe that the vector fields v1,v2,v3 are invariant under the trans-
formation x̃ = x+ 2nπ, ỹ = y+nπ, n ∈ Z so we can restrict the coordinates
(x, y) onto the unit sphere.

We comment that there is no rank-one realization of so(3,R) on the (x, y)-
space. If it were true, then there would exist real smooth functions f(x, y)
and g(x, y) such that v1 = w, v2 = fw, v3 = gw, where w is a smooth
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vector field. From the commutation relations we find that f and g must
satisfy

f = −w(g), g = w(f), fw(g)− gw(f) = 1.

They imply the relation f 2 + g2 + 1 = 0, which has no solution for real
functions f, g.

Remark 4.7. All locally primitive Lie algebras of vector fields in R2 isomor-
phic to are equivalent to the Lie algebra spanned by the vector fields

v1 = −y∂x + x∂y,

v2 = (1 + x2 − y2)∂x + 2xy∂y,

v3 = 2xy∂x + (1 + y2 − x2)∂y

(81)

under a local change of coordinates [11]. They satisfy the commutation
relations

[v1,v2] = −v3, [v2,v3] = −4v1, [v3,v1] = −v2.

The scaled vector fields

ṽ1 = −v1, ṽ2 =
1

2
v2, ṽ3 =

1

2
v3

satisfy the standard so(3,R) algebra commutation relations (69). The Lie
algebra so(3,R) acts on the unit sphere by infinitesimal rotations

w1 = x∂y − y∂x, w2 = z∂x − x∂z, w3 = y∂z − z∂y. (82)

The vector fields v1,v2,v3 are just the images of w1,w2,w3 under the stan-
dard stereographic projection from the north pole (0, 0, 1) of the unit sphere
x2 + y2 + z2 = 1 on the (X, Y )-plane

π : (X, Y ) =

(
x

1− z
,

y

1− z

)
(83)

with inverse

π−1 : (x, y, z) =

(
2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
,
X2 + Y 2 − 1

1 +X2 + Y 2

)
. (84)

This is seen easily forming the following images and using the inverse trans-
formation (84)

X∗(w1) = −Y, Y∗(w1) = X,
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X∗(w2) = −x
2 + z(z − 1)

(1− z)2
= −1

2
(1+X2−Y 2), Y∗(w2) = − xy

(1− z)2
= −XY,

X∗(w3) = XY, Y∗(w3) =
y2 + z(z − 1)

(1− z)2
=

1

2
(1−X2 + Y 2).

One can of course construct a second order differential equation invariant
under the algebra (81) whose solution can be found using the method of
Example 4.5. Second order elementary invariants of the rotational vector
field v1 (so(2,R)-invariants) are known as

J1 = x2 + y2, J2 =
xy1 − y
x+ yy1

, J3 = κ = (1 + y2
1)−3/2y2.

All invariants of the whole algebra should be functions of these three invari-
ants. It is more convenient to switch to a new basis of invariants

I1 = J1, I2 = I−1
1 (1 + J−2

2 ) = (xy1 − y)−2(1 + y2
1), I3 = J3(1 + I1).

Then we can write the second PDE pr(2)v2(I) = 0 in terms of I2 and I3

2y1(y − xy1)−1(1 + I1)[I2∂I2 + I
−1/2
2 ∂I3 ]I = 0.

So we find a family of invariant equations I4 = I3 + 2I
−1/2
2 = c, depending

on single parameter, or in terms of (x, y) coordinates

y2 = (1 + y2
1)(1 + x2 + y2)−1[2(xy1 − y) + c(1 + y2

1)1/2]. (85)

Note that pr(2)v3(I4) = 0 is again satisfied automatically. See [18] for a
derivation of its general solution in non-parametric form when c = 0 as the
family of circles

(x− c1)2 + (y − c2)2 = 1 + c2
1 + c2

2.

The following Theorem will be useful when performing reductions.

Theorem 4.8 ([36]). Suppose E(x, y(n)) = 0 is an n-th order ODE with a
symmetry group G. Let H be a one-parameter subgroup of G. Then the
ODE reduced by H, E/H, admits the quotient group NorG(H)/H, where
NorG(H) = {g ∈ G : g.H.g−1 ⊂ H} is the normalizer subgroup of H in G,
as a symmetry group (often called inherited symmetry group of E/H).
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The normalizer algebra in g of the subalgebra h ⊂ g is the maximal
subalgebra satisfying

norg h = {v ∈ g : [v, h] ⊂ h} . (86)

Remark 4.9. The normalizer of a subalgebra h ⊂ g in the Lie algebra
g of dim g = r with a basis {v1, . . . ,vr} is easily obtained by solving a
linear algebra problem. Let the subalgebra h of dim h = k be spanned by
{v1, . . .vk}. Now for v =

∑r
j=1 ajvj, aj ∈ R and vα ∈ h, 1 ≤ α ≤ k, we

impose the requirement (86)

[v,vα] = [
r∑
j=1

ajvj,vα] =
r∑
j=1

[vj,vα]aj

=
r∑
i=1

r∑
j=1

Ci
jαajvi =

k∑
i=1

λα,ivi

for some constants λα,i. Here Ci
jα are the structure constants of g. This

implies that the following set of linear algebraic equations need to be solved
for the coefficients aj, 1 ≤ j ≤ r

r∑
j=1

Ci
jαaj = λα,i, i = 1, . . . , k, α = 1, . . . , k,

r∑
j=1

Ci
jαaj = 0, i = k + 1, . . . , r.

Remark 4.10. If h is already an ideal of g, then norg h = g. If norg h = h,
then h is called self-normalizing.

Theorem 4.8 infinitesimally states that if the Lie symmetry algebra g of
G has a basis v1, . . . ,vr. Then the ODE reduced by v1 can be reduced one
more if v̂2 = span {v2, . . . ,vr} is chosen to satisfy [v̂2,v1] = kv1 for some
real constant k, meaning that v1 is an ideal (normal subalgebra) of v̂2. One
can reiterate this process to achieve a full reduction.

Theorem 4.8 applied to a two-parameter symmetry group with the Lie
algebra g being one of the isomorphy classes of Remark 4.3 and satisfying the
commutation relation [v1,v2] = kv1 ensures that given a second order ODE
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invariant under g, reducing its order by one by the ideal (normal subalgebra)
v1 in g will lead to a first order ODE inheriting the one-parameter subgroup
generated by v2 as a symmetry group. Note that the normalizer of {v1} is
{v1,v2} and v2 belongs to norg h/h. This reduction procedure makes possible
the integration of the ODE by two successive quadratures.

If the reduction is performed in the reverse order, the reduced ODE will
in general not inherit the symmetry of the original equation, so we may not
be able to complete the full integration.

Example 4.11. The second order invariant equation with the same symme-
try v1 = ξ∂x + ηy∂y of the previous example can be expressed in terms of
the second order invariants; r, w as defined in (50) and

ζ(x, y, y′, y′′) = ν(x)[ξ2y′′ + ξ(ξ′ − 2η)y′ + (η2 − ξη′)y] (87)

as

y′′ + p(x)y′ + q(x)y =
H(r, w)

νξ2
, (88)

where
p(x) = ξ−1(ξ′ − 2η), q(x) = ξ−2(η2 − ξη′), ξ 6= 0.

Elimination of η gives the relation

1

4
(2ξξ′′ − ξ′2) + ξ2I(x) = 0, I(x) = q(x)− 1

2
p′(x)− 1

4
p(x)2. (89)

If ξ = x2 and η = x are chosen, v1 generates an inversional group and this
equation simplifies to

y′′ = x−3H(r, w), r =
y

x
, w = xy′ − y.

If we additionally ask the equation to be invariant under the scaling (x, y)→
(λx, λαy), λ > 0 generated by v2 = x∂x + αy∂y, the following condition on
H should be imposed

(α− 1)rHr + αwHw = (α + 1)H.

Thus, if α 6= 1, H is restricted to

H = r(α+1)/(α−1)Ĥ(σ), σ = rα/(1−α)w,
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and to H = w2Ĥ(r) if α = 1 (See also Example 3.7).
Choosing Ĥ = K = const., α = (n + 1)/(n − 1), n 6= 1 we obtain the

special form of the famous Emden–Fowler equation

y′′ = Kx−(n+3)yn, n 6= 0, 1, K 6= 0 (90)

with a two-parameter symmetry group generated by the two-dimensional Lie
algebra g of type A2,3

v1 = x2∂x + xy∂y, v2 = x∂x +
n+ 1

n− 1
y∂y, [v1,v2] = −v1.

Theorem 4.8 guarantees that integration is completed using two quadratures
by reductions in the order of v1 (an ideal of g) first and then v2. We remark
that apart from the special case y′′ = Kx−5y2, which is obtained for n = 2
from (90), there are only two other values of the exponent m in the equation
y′′ = Kxmy2 for which the symmetry algebra is a two-dimensional (rank-
two) non-abelian one. They are m = −15/7 and m = −20/7 (See [51] for
classification details). For all values m with m /∈ {−5,−15/7,−20/7}, the
symmetry algebra is one-dimensional and generated by the scaling symmetry
v = x∂x − (m+ 2)y∂y.

The case n = −3 gives the Ermakov–Pinney equation y′′ = Ky−3 with
solution y = ±

√
A+ 2Bx+ Cx2, AC − B2 = K, which arises in many

applications. This equation admits the sl(2,R) algebra as the symmetry
algebra with the basis

w1 = ∂x, w2 = x∂x +
1

2
y∂y, w3 = x2∂x + xy∂y.

Just as in the previous case, the choice ξ = x2−k, η = (1 − k)x1−k in v1

of (88), combined with the scaling group generated by

v2 = x∂x +
δ + 2

1−m
y∂y, m 6= 1

can be shown to produce the following integrable variant of the generalized
Lane–Emden–Fowler equation

y′′ +
k

x
y′ = Kxδym, m 6= 0, 1, K 6= 0, (91)

if the condition 3 + δ + m − k(m + 1) = 0 is satisfied. The case when
δ = 0 (m = (k − 3)/(1 − k)) appeared in [12] as one of the reductions of a
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radially symmetric nonlinear porous-medium equation. A suitable basis of
the algebra in the case k 6= 1, 2 is

ṽ1 = (1− k)v1, ṽ2 = (1− k)−2v2 =
1

k − 1
x∂x +

1

k − 2
y∂y,

with commutation relation [ṽ1, ṽ2] = ṽ1 (type A2,3). In terms of canonical
(or normal) coordinates

r =
xk−2y(k−2)/(k−1)

k − 1
, s =

xk−1

k − 1
,

we find the standard form of the corresponding equation

rs′′(r) = −K(k − 2)s′(r)3 + (k − 1)3s′(r),

being invariant under the algebra {∂s, r∂r + s∂s}. On solving by two quadra-
tures, implicit solution of the original equation is obtained.

Another particular case where m = −3 and δ = −2k leads to an sl(2,R)
invariant equation. Symmetry vector fields for k 6= 1 are

v1 = x2−k∂x + (1− k)x1−ky∂y, v2 = x∂x +
1− k

2
y∂y, v3 = xk∂x,

and otherwise

v1 = 2x lnx∂x + y∂y, v2 = x(lnx)2∂x + y lnx∂y, v3 = x∂x.

This equation reduces to the standard Ermakov–Pinney equation y′′(t) =
Ky−3(t) by change of the independent variable, t = x1−k/(1− k), k 6= 1, and
t = lnx for k = 1.

We can extract a similar integrable class from (88) by imposing invariance
under a two-parameter symmetry group extended by v2 = ∂x. To do this
we require that the commutation relation [v2,v1] = µv1 be satisfied , which
implies that ξ = eµx, η = αeµx for some constant α and that Eq. (88) is
autonomous. For this choice of ξ, η the right hand side of (88) is independent
of x. The left hand side is also true if µ = α(1−m)/2 and H = Krm, m 6= 1
(µ 6= 0), K = constant. The condition (89) is automatically satisfied. This
gives us the integrable equation (a type of Emden–Fowler equation known as
force-free generalized Duffing oscillator)

y′′ + py′ + qy = Kym, p = −α(m+ 3)

2
, q =

α2(m+ 1)

2
(92)
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with symmetry algebra generated by

v1 = eµx(∂x + αy∂y), v2 = ∂x, α =
2µ

1−m
. (93)

If α is eliminated between the coefficients p and q we find the integrability
condition

q =
2(m+ 1)

(m+ 3)2
p2, m 6= −3. (94)

Under this condition, (92) passes the Painlevé test.
In terms of the canonical coordinates of v1

x̃ = µ−1e−µx, ỹ = ye−αx, µ =
m− 1

m+ 3
p, α = − 2p

m+ 3
,

Eq. (92) is reduced to d2ỹ/dx̃2 = Kỹm, which is invariant under the sym-
metry group generated by

ṽ1 = ∂x̃, ṽ2 = x̃∂x̃ +
2

1−m
ỹ∂ỹ,

and can be integrated by two quadratures.
The travelling wave solutions of Fisher’s (also called Kolmogorov– Petrovsky–

Piscunov) equation satisfy the ODE [1]

y′′ + cy′ + y(1− y) = 0. (95)

If we identify (95) with (92) we find p = c, q = 1 and m = 2 and the
integrability condition imposes the constraint on the wave speed: c = ±5/

√
6.

The same type of solutions for the Newell–Whitehead–Segel equation sat-
isfy

y′′ + cy′ + y(1− y2) = 0. (96)

The integrability condition (94) for p = c, q = 1 and m = 3 then requires
c = ±3/

√
2. Solutions are found in terms of Jacobi elliptic functions.

Surprisingly, the special case m = 3 of (92) turns up in seeking localized
stationary solutions of the form u(x, t) = e−iλtu(x) of the one-dimensional
nonlinear Schrödinger equation with inhomogeneous nonlinearity

iut + uxx = V (x)u+ g(x)|u|2u, x ∈ R,
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where V (x) is an external potential and g(x) describes the spatial modulation
of the nonlinearity (See for example [3]). For some special choice of pairs
(V, g), dictated by the presence of a Lie point symmetry, u(x) satisfies

u′′ + 2Cu′ + Eu = g0u
3.

This equation is integrable if E = (8/9)C2.
In Eqs. (95) and (96), there is no loss of generality in assuming c > 0,

because using discrete transformation x→ −x, we can put c→ −c.
The case m = 3 (µ = −α 6= 0 arbitrary) of (92) is also known as the usual

Duffing oscillator and under the condition q = (2/9)p2 its exact solutions
can be found in terms of Jacobi elliptic functions from integrating the first
integral (energy)

I =
1

2
ỹ′2 − K

4
ỹ4 =

1

4
e−4αx

[
2y′2 − 4αyy′ + 2α2y2 −Ky4

]
.

On the other hand, the case m = −3 (p = 0, q = −α2, µ = 2α) is
recognized to be the celebrated Ermakov-Pinney equation

y′′ − α2y = Ky−3, α 6= 0. (97)

Its symmetry algebra (93) is extended by one additional element

v3 = e−2αx(∂x − αy∂y),

or in coordinates (x̃, ỹ) (up to multiple of −4α2) by the projective element

ṽ3 = x̃2∂x̃ + x̃ỹ∂ỹ.

It is isomorphic to the sl(2,R) algebra. The general solution depending on
two independent arbitrary constants is given by

y2 = Ae2αx +B + Ce−2αx, (4AC −B2)α2 = K.

Remark 4.12. We comment that as we mentioned above, differential equa-
tions may remain invariant under discrete symmetry groups. For example,
the special Ermakov equation y2 = Ky−3 is invariant under the discrete
transformation

x̃ =
1

x
, ỹ =

y

x
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since

ỹ2 =
d2ỹ

dx̃2
= x3y2 = Kx3y−3 = Kỹ−3.

More trivial ones are

(x, y) 7→ (−x, y), (x, y) 7→ (x,−y), (x, y) 7→ (−x,−y).

This type of symmetries can’t be obtained from the local Lie symmetry alge-
bra so they can’t be characterized as a one-parameter group transformation.

In order to obtain another interesting subclass integrable by quadratures,
we now let Eq. (88) be invariant under the scaling transformation generated
by v2 = y∂y, equivalently choosing H(r, w) = Aw + Br, where A,B are
arbitrary constants, then we obtain the variable coefficient linear invariant
equation

y′′ + p̂(x)y′ + q̂(x)y = 0, (98)

p̂(x) = ξ−1(ξ′ − 2η − A), q̂(x) = ξ−2(η2 − ξη′ + Aη −B). (99)

Eliminating η results in the relation

(2ξξ′′ − ξ′2) + 4ξ2I(x) = −(A2 + 4B) ≡ −D2, (100)

where I(x) is the (semi)-invariant of (98), namely

I(x) = q̂(x)− 1

2
p̂′(x)− 1

4
p̂(x)2. (101)

Eq. (100) is related to the Ermakov–Pinney equation

χ′′ + I(x)χ = −D
2

4
χ−3 (102)

by the transformation ξ = χ2 and to the linear equation

ξ′′′ + 4Iξ′ + 2I ′ξ = 0 (103)

by differentiation. The remarkable properties of (103) can be found in [5].
Eq. (98) admits a symmetry group isomorphic to the SL(3,R) group

(the projective group of the plane (x, y), preserving the straight lines in the
(x, y)-plane) as the symmetry group and can be integrated by quadratures
using the two-parameter abelian subgroup generated by {v1,v2}. Passing to
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the canonical coordinates r and s (as defined in Example 4.2) reduces (98)
to the constant coefficient linear equation

r′′(s)− Ar′(s)−Br(s) = 0, (104)

preserving the homogeneity property in r (invariance under the scaling r∂r).
In the special case of the inversional group (ξ = x2, η = x), the corre-

sponding invariant ODE becomes

y′′ − A

x2
y′ +

Ax−B
x4

y = 0. (105)

Its normal form is easy to obtain from the relation (100) as

v′′ + I(x)v = 0, I(x) = −D
2

4x4
, y = exp

{
− A

2x

}
v. (106)

Then, we have r = y/x, s = −1/x, and we can easily solve (104) to find the
general solution of (105)

y(x) = x

[
c1 exp

(
−λ+

x

)
+ c2 exp

(
−λ−
x

)]
, (107)

where λ± = (A±D)/2, D2 = A2 + 4B > 0 are the real roots of the charac-
teristic equation P (λ) = λ2 − Aλ−B = 0. If the discriminant D2 is zero or
negative, the solution should be modified appropriately.

Alternatively, we can use the differential invariant approach. By means
of the differential invariant z = y′/y = v′/v of v

(1)
2 = y∂y + y′∂y′ we can

express (106) as a Riccati equation

dz

dx
+ z2 =

D2

4x4
, (108)

which inherits the symmetry ṽ1 = x2∂x + (1 − 2xz)∂z. Using the canonical
coordinates ρ = x(xz − 1), s = −1/x satisfying ṽ1(ρ) = 0, ṽ1(s) = 1, it can
be written as a separable equation, invariant under the group of translations
(ρ, s)→ (ρ, s+ ε),

dρ

ds
=
D2

4
− ρ2

with solution

ρ(s) =


D
2

tanh[D
2

(s+ c0)], D2 > 0,
D
2

cot[D
2

(s+ c0)], D2 < 0,

(s+ c0)−1, D2 = 0.

(109)
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Finally, from the relation

z =
y′

y
=

1

x
+

ρ

x2

by another integration we recover the general solution of (105), and in par-
ticular solution (107) after some manipulation with the arbitrary constants.
For the special case A = 0, B = −1 and D2 = −4, the solution of (108) is
given by

z = x−2

[
x− cot

(
1

x
+ c0

)]
.

Consequently, we obtain the solution of

y′′ + x−4y = 0

as

y = c1x sin

(
1

x
+ c0

)
.

The following equation arises in the integrability analysis of the variable
coefficient Basener–Ross model [13]

y′′(x) + I(x)y = 0, I(x) = −e
2x + 4τex + τ 2

4(τ + 2ex)2
, (110)

where τ is a constant. The relation (100) for the choice A = 1, B = −3/16
(D2 = A2 + 4B = 1/4) and

ξ =
1

2
(2 + τe−x)

gives precisely I(x) as above. One can check that

v1 = ξ(x)

(
∂x −

1

2
y∂y

)
generates one-parameter symmetry group of (110). So we have η(x) =
−ξ(x)/2, ν(x) = ex/2, s(x) = ln(τ + 2ex), and r(x) = ν(x)y. In canonical
coordinates (s, r), r satisfies the constant coefficient equation (ODE (104))

r′′(s)− r′(s) +
3

16
r(s) = 0.

45



Solving this equation and changing to (x, y) coordinates we obtain the general
solution

y(x) = e−x/2
[
c1(τ + 2ex)1/4 + c2(τ + 2ex)3/4

]
.

In general, given ξ(x), A,B, one can solve (100) for I(x) and thus con-
struct an invariant equation of the form (98) with symmetry v = ξ∂x+ηy∂y.
The coefficient η(x) is found from solving p̂(x) = 0 as η(x) = (ξ′ − A)/2. If
η(x) is substituted into q̂(x) of (99) it follows that q̂ = I(x) as expected. We
conclude that

y′′ + I(x)y = 0, I(x) = − 1

4ξ2
(2ξξ′′ − ξ′2 + A2 + 4B) (111)

is invariant under

v = ξ(x)∂x +
1

2
(ξ′(x)− A)y∂y.

Solution is readily obtained by transforming this equation into the constant
coefficient equation (104) by the linear transformation

y(x) =
√
ξ exp[−(A/2)s]r(s), s =

∫
dx

ξ(x)
.

For an equation of the form (98) with p̂ 6= 0, ξ, A,B given we take η =
(ξ′ − p̂ξ − A)/2 and y(x) =

√
ξ exp[−(

∫
p̂dx+ As)/2)]r(s).

The knowledge of invariance of an n-th order ODE under an r-parameter
symmetry group can be useful in reducing in order more than once. But the
full reduction to an equation of order n − r can only be guaranteed if the
symmetry group is solvable.

A Lie algebra g is solvable if the derived series defined recursively by the
chain of subalgebras

g = g(0) ⊇ g(1) . . . ⊇ g(k) ⊇ . . . , g(k) = [g(k−1), g(k−1)] (112)

terminates, namely there exists k ∈ N such that g(k) = 0. The algebra of
commutators Dg = g(1) = [g, g] is called the derived algebra. For the solvable
algebra Dkg = {0} holds.

Theorem 4.13 ([35]). Let E(x, y(n)) = 0 be an n-th order ODE. If E(x, y(n)) =
0 admits a solvable r-parameter group of symmetries G such that , then the
general solution of the equation can be found by quadratures from the gen-
eral solution of an (n − r)-th order reduced ODE E/G. In particular, if the
ODE admits a solvable n-parameter group of symmetries, then the general
solutions can be found by quadratures alone.
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A solvable three-dimensional Lie algebra g always contains a two-dimen-
sional abelian ideal, which is unique up to conjugacy under inner automor-
phisms unless g is abelian or nilpotent. An integration strategy for an ODE
with a three-parameter solvable symmetry group is to first reduce the equa-
tion by this two-dimensional ideal and then to use the remaining symmetry
to complete the integration by quadratures.

Example 4.14. We turn to Eq. (43). As this equation admits a three-
dimensional solvable algebra g = e(2) as the symmetry algebra we can inte-
grate it by three consecutive quadratures. The derived series of g is

g ⊃ Dg = {v1,v2} , D2g = g(2) = {0} .

The third order differential invariants of the ideal {v1,v2} are z = y1,
ρ = y2, ρ′(z) = dρ/dz = z2/z1, in terms of which Eq. (43) reduces to the
first order ODE

(1 + z2)ρ′(z)− 3zρ = ρH(κ), κ = (1 + z2)−3/2ρ. (113)

This equation should retain the final (inherited) symmetry v3, which, in
terms of z, ρ, has the reduced form (from restriction of pr(2)v3 to z, ρ coor-
dinates)

ṽ3 = (1 + z2)∂z + 3zρ∂ρ.

The coordinates κ = (1 + z2)−3/2ρ, χ = arctan z rectifies the vector field
ṽ3 = ∂z. In terms of κ, χ, (113) becomes a separable equation

dκ

dχ
= κH(κ) (114)

with implicit solution Ĥ(κ) = χ+ c1 or solving for ρ = y2 = G(y1, c1), which
is invariant under the translational algebra {v1,v2} and can be integrated
by two further quadratures.

The special case H = λ = const. leads to the similitude invariant equation

(1 + y2
1)y3 = (3y1 + λ)y2

2

with the additional symmetry v4 = x∂x + y∂y. From (114), the solution of
the reduced equation is κ = c1e

λχ, and with the original variables, it is the
second order ODE

y2 = c1(1 + y2
1)3/2 exp {λ arctan y1} .
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For λ = 0, the solutions are curves with the constant curvature κ = c1,
i.e. the family of circles with radius c−1

1

(x− c2)2 + (y − c3)2 = c−2
1 .

In this case the equation admits two further additional symmetries

v5 = (x2 − y2)∂x + 2xy∂y, v6 = 2xy∂x + (y2 − x2)∂y.

The maximal symmetry algebra of the equation is the six-dimensional Lorentz
algebra so(3, 1) (See also Example 2.5).

When λ 6= 0, the corresponding second order ODE can be integrated using
two-parameter translational group. More conveniently, a parametric solution
can be produced by the introduction of the parametrization τ = arctan y1 in
the form

x(τ) = c1e
−λτ (λ cos τ − sin τ) + c2, y(τ) = c1e

−λτ (λ sin τ + cos τ) + c3.

To see what happens when the symmetry group is not solvable we con-
sider the following example of a third-order ODE, known as the Schwarzian
equation,

y3

y1

− 3

2

(
y2

y1

)2

= F (x), (115)

where F is any function of its argument, admitting the nonsolvable symmetry
group SL(2,R), with Lie algebra having the basis

v1 = ∂y, v2 = y∂y, v3 = y2∂y. (116)

The corresponding Lie group SL(2,R) is the group of linear fractional trans-
formations

(x, y)→
(
x,
ay + b

cy + d

)
,

(
a b
c d

)
∈ SL(2,R).

The expression on the left-hand side of (115) is called the Schwarzian deriva-
tive of y with respect to x and is denoted by the symbol {y, x}. It is invari-
ant under the Möbius transformation in y: {(ay + b)/(cy + d);x} = {y, x},
ad−bc = 1 (a unique differential invariant of order ≤ 3 of the algebra (116)).
A two-dimensional solvable subalgebra g0 generated by {v1,v2} can be used
to reduce the equation to one of first order. The second-order differential
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invariants of g0 are x and w = y2/y1, in terms of which the reduced equation
becomes

dw

dx
=

1

2
w2 + F (x),

which is recognized as a Riccati equation. This equation does not inherit the
symmetry v3 of the original equation. Indeed, the reduced vector field ṽ3 in
terms of the invariants x and w is nonlocal (the so-called exponential vector
field)

ṽ3 = 2e
∫
wdx∂w.

On the other hand, the well-known Hopf–Cole transformation w = −2 θ
′(x)
θ(x)

(y1 = y′ = θ−2) linearizes to

θ′′ +
F (x)

2
θ = 0. (117)

Let θ and ψ be two independent solutions of (117). Then, we have ψ/θ =
W
∫
θ−2dx+c, where W is the (constant) Wronskian of θ and ψ, (we can put

W = 1 by scaling ψ) and c is an arbitrary constant, that can be absorbed
to ψ so that we can put c = 0 without loss of generality. The solution y can
now be expressed as a ratio y = ψ/θ of two linearly independent solutions to
(117).

When F (x) = 0 (known as the Kummer–Schwarz equation; this equation
is also encountered in the study of geodesic curves in spaces of constant curva-
ture), the symmetry algebra g becomes six-dimensional and has a direct-sum
structure g = sl(2,R)⊕ sl(2,R) spanned by the vector fields (116) and

v4 = ∂x, v5 = x∂x, v6 = x2∂x. (118)

The symmetry group is then a linear fractional group of both x and y co-
ordinates. The corresponding solution is the linear fractional (or Möbius)
transformation in x: y = (ax+ b)/(cx+ d), ad− bc 6= 0.

Remark 4.15. There are only two types of third order ODE admitting 6-
dimensional symmetry groups: (1 + y2

1)y3 = 3y1y
2
2 and {y, x} = 0. The

maximal symmetry algebra for a third order ODE is seven-dimensional and
is attained if and only if it is equivalent to the linear equation y3 = 0 up to
a linear point (equivalence) transformation.

In general, for any ODE of order n ≥ 3, the symmetry group has dimen-
sion ≤ n + 4. The maximal dimension n + 4 is attained if and only if the
equation is linear or linearizable by a point transformation.
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4.1 Group classification problem

When a system involves an arbitrary parameter or arbitrary function, the
symmetry group can have a richer symmetry for certain specific forms of
these arbitrary terms. The problem of identifying such arbitrary parame-
ters or functions is known as the group classification problem. When there
are only parameters or arbitrary functions of a single argument of indepen-
dent or dependent variable then the problem is easily tackled solving the
determining system where splitting is almost always possible. The arbitrary
functions are found by solving an ODE (the so-called classifying ODE). The
situation becomes rather complicated when the system depends on arbitrary
functions of more than one argument. In this case, the group classification
problem is often solved by reducing it to the classification of realizations of
low-dimensional abstract Lie algebras combined with the notion of equiva-
lence group and the knowledge of abstract Lie theory.

Example 4.16. A classification problem: We wish to determine all pos-
sible forms of F (y) for which the following ODE allows a two-dimensional
symmetry algebra:

y′′ = µy′ + F (y), µ 6= 0, F ′′ 6= 0. (119)

Under the reflection x → −x, we have µ → −µ so we can assume µ >
0 without loss of generality. The special nonlinearity F (y) = ay3 + by is
recognized as Duffing’s equation (See page 42). The trivial case µ = 0 is
clearly integrable. It has the energy first integral (Hamiltonian)

H =
1

2
y′2 + V (y) = constant, F (y) = −V ′(y).

The symmetry classification for µ 6= 0 naturally characterizes all possible
integrable cases. Eq. (119) arises in obtaining travelling-wave solutions of
the nonlinear heat (diffusion) equation

ut = uxx + F (u), F ′′ 6= 0. (120)

These are solutions of the form u(x, t) = y(z) = y(x − ct), being invariant
under a combination of time and space translational symmetries. In what
follows we take z ≡ x.

We can put µ = 1 in (119) by scaling the independent variable x→ µ−1x
and redefining µ−2F as F . The equation is invariant under translation of x so

50



that v1 = ∂x generates a symmetry. For certain functions F , the symmetry
group will be two-dimensional. The general symmetry algebra is generated
by vector fields of the form

v = ξ(x, y)∂x + η(x, y)∂y. (121)

The second prolongation formula for vector field v is

pr(2)v = ξ(x, y)∂x + η(x, y)∂y + η1(x, y, y′)∂y′ + η2(x, y, y′, y′′)∂y′′ ,

where
η1 = Dxη − y′Dxξ, η2 = Dxη

1 − y′′Dxξ.

Higher order prolongation coefficients can be calculated from the recursion
formula (18)

ηk = Dxη
k−1 − ykDxξ, yk = y(k),

or in terms of the characteristic Q(x, y, y′) = η − y′ξ as

ηk = Dk
xQ+ ξyk+1.

From the infinitesimal symmetry requirement (23) we find η2− η1− ηF ′ = 0
on solutions. This condition, replacing y′′ by y′+F (y), is a cubic polynomial
in the first derivative y′ with coefficients depending on x and y. Setting these
coefficients equal to zero we obtain the determining system for the coefficients
ξ, η

3Fξy + ξx − 2ηxy + ξxx = 0, (122)

2ξy − ηyy + 2ξxy = 0, (123)

ξyy = 0, (124)

F ′η − (ηy − 2ξx)F − ηxx + ηx = 0. (125)

Differentiating twice the first two equations with respect to y and using the
third one and the condition F ′′ 6= 0 (F is not linear) we find

ξy = 0, ηyy = 0.

So this gives ξ = b(x) and η = c(x)y + d(x), and then (121) takes the form

v = b(x)∂x + [c(x)y + d(x)]∂y, b 6= 0. (126)
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The determining equations are then reduced to solving the classifying
ODE

(cy + d)F ′ − (c− 2b′)F = (c′′ − c′)y + d′′ − d′ (127)

with the relation
2c′ − (b′ + b′′) = 0 (128)

from which we have

c =
1

2
(L+ b′ + b), (129)

where L is a constant.
Now we shall require the equation under study be invariant under a two-

dimensional symmetry algebra with commutation relation

[v1,v2] = kv2

and v1 = ∂x. The case k = 0 is abelian.
We shall find all possible forms of X2 that obey the commutation relation

and the corresponding F (not linear in y). The commutation relation implies
that we must have

b′ = kb, c′ = kc, d′ = kd,

and then
b = b0e

kx, c = c0e
kx, d = d0e

kx,

c′′ − c′ = c0k(k − 1)ekx, d′′ − d′ = d0k(k − 1)ekx.

The classifying ODE then becomes

(c0y + d0)F ′ − (c0 − 2kb0)F = k(k − 1)(c0y + d0), (130)

where b0, c0, d0 are constants. The relation (128) gives

k[2c0 − (k + 1)b0] = 0.

If k = 0 then b, c and d are arbitrary constants and F should be linear
in y (This is seen from differentiation of (130)). This means the symmetry
algebra should be nonabelian.

If k = −1 then c0 = 0 and b0 is arbitrary. The ODE becomes now

F ′ − βF = 2, d0 =
2

β
b0, β 6= 0,
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which integrates to F (y) = αeβy − 2
β
. The symmetry algebra spanned by

v1 = ∂x, v2 = e−x[∂x +
2

β
∂y] (131)

leaves invariant

y′′ = y′ + αeβy − 2

β
. (132)

By scaling transformation y → (β/2)y, followed by translation y → y +
(1/2) lnα, α > 0, we can put β = 2, and α = 1, respectively. Our represen-
tative equation simplifies to

y′′ = y′ + e2y − 1. (133)

If k = 1 then we have b0 = c0 6= 0 and

(y + δ)F ′ + F = 0, δ =
d0

b0

.

The corresponding F and the symmetry algebra are given by

F = α(y + δ)−1, v1 = ∂x, v2 = ex[∂x + (y + δ)∂y].

Now we let k 6= 0,−1: If we assume c0 6= 0, from (128) we have

b0 =
2c0

k + 1
6= 0.

If we put d0 = b0
δ(k+1)

2
= c0δ, the ODE (130) can be written as

(y + δ)F ′ − γF =
2(γ2 − 1)

(γ + 3)2
(y + δ), γ =

1− 3k

k + 1
. (134)

The solution of the ODE (134) is given by

F = M(y + δ)γ − 2(γ + 1)

(γ + 3)2
(y + δ), γ 6= 1,−3. (135)

The symmetry algebra is given by

v1 = ∂x, v2 = ekx
[
∂x +

k + 1

2
(y + δ)∂y

]
, k =

1− γ
γ + 3

. (136)

53



Note that the above result also contains the subcase k = 1 (but not k = −1).
By change of basis v1 → −v1, v2 → v2 and v1 → kv1, v2 → v2 the
commutation relation takes the standard form for a two-dimensional non-
abelian algebra: [v1,v2] = v2.

The form of (135) is not changed by the linear transformation ỹ = py+q.
The arbitrary coefficient F (y) gets changed into F̃ (ỹ) = pF ( ỹ−q

p
). By a

suitable choice of p and q we can set M = 1 and δ = 0.
The two-dimensional symmetry algebra makes reduction of the original

equation possible to quadratures by methods of differential invariants or
canonical coordinates. We consider the case k 6= −1 with two-parameter
symmetry group generated by

v1 = ∂x, v2 = ekx
[
∂x +

k + 1

2
y∂y

]
.

The function F in the invariant ODE (119) is given by

F (y) = yγ +
(k2 − 1)

4
y, γ =

1− 3k

k + 1
. (137)

The above relation between γ and k is a reemergence of the integrability
condition (94) discussed in Example (92). Compare this equation with (92).

According to Theorem 4.8, we start to reduce by the normal subalgebra
v2, which, in terms of the coordinates

s = k−1e−kx, r = ye−(k+1)x/2, (138)

has the canonical form ṽ2 = −∂s. The transformed equation becomes

d2r

ds2
= e

(3k−1)
2

x

[
−k

2 − 1

4
y + F (y)

]
= rγ, (139)

which retains the symmetry v1. In terms of the invariants r and ρ = dr/ds of
v1, it reduces to the first order ODE ρdρ/dr = rγ with solution ρ2 = 2 ln r+c1

if γ = −1; ρ2 = 2(γ + 1)−1rγ+1 + c1, otherwise. The general solution is
obtained implicitly after a second quadrature from (dr/ds)2 = ρ2(r). The
alterative way is to integrate directly using the integrating factor I = r′(s).
When γ = 2, 3, the solutions are obtained in terms of Jacobi elliptic functions
or Weierstrass ℘ function, when γ > 3 in terms of hyperelliptic integrals.
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The case k = −1 is treated similarly. The canonical coordinates r = y−x,
s = ex maps Eq. (133) to r′′(s) = e2r with symmetry {∂s, s∂s − ∂r}. The
corresponding solution is given by

y = x+ ln

{
2
√
c1c2

exp
{
−√c1ex

}
− c2

2 exp
{√

c1ex
}} , c1 > 0

or
y = x+ ln

{√
−c1 sec[

√
−c1(ex + c2)]

}
, c1 < 0.

Remark 4.17. We note that Example 4.16 does not provide a complete
group (or symmetry) classification. Rather, it identifies classes of F (y) for
which the equation is invariant only under a two-dimensional symmetry group
which is sufficient for reduction to quadratures. The complete classification
should be done using the equivalence group of the equation. In this frame-
work, the group classification of the more general equation

y′′ = f(x, y), fyy 6= 0 (140)

was carried out in [39]. The interested reader is referred to this paper for
the details of the classification procedure. We here present the complete
classification results in Table 1.

The change of independent variable τ = eµx converts Eq. (119) to

yττ = τ−2f(y),

where f(y(τ)) should be obtained from F (y(x)) by the inverse transforma-
tion. This equivalent equation belongs to the class (140). For nonconstant
µ = A(x), the classification problem was solved in [32].

Finally, we comment that the quadratic Liénard equation

y′′ + f(y)y′2 + g(y) = 0, (141)

where f(y) and g(y) are arbitrary smooth functions of y, can be transformed
to a subclass of (140) of the form

Y ′′(x) +G(Y ) = 0, G(Y ) = W ′(y)g(y)

by the invertible change of dependent variable Y = W (y), W ′(y) 6= 0 where
W (y) is chosen as a solution of W ′′ − f(y)W ′ = 0. So complete group
classification of (141) can be extracted from Table 1.
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N f(x, y) v1 v2 v3

1 f(y) ∂x 0 0
2 ey ∂x x∂x − 2∂y 0
3 yk, k 6= −3 ∂x (k − 1)x∂x − 2y∂y 0
4 ±y−3 ∂x 2x∂x + y∂y x2∂x + xy∂y
5 x−2F (y) x∂x 0 0

Table 1: Group classification of y′′ = f(x, y)

However, the classification problem for the standard Liénard equation

y′′ + f(y)y′ + g(y) = 0 (142)

is more complicated. Such a classification, but without effective use of the
equivalence group to obtain the simplest forms of f and g and the correspond-
ing symmetry algebras, was treated in [41] excluding linearizable equations
that occur when f ′′ = 0 and 3g′− f 2 = const. (See Example (5.11) and Sub-
section 5.2). In the nonlinearizable case, when f 6= 0, the maximal symmetry
algebra is two-dimensional (The trivial symmetry v1 = ∂x is extended by an
additional symmetry v2 of the form (126)). The algebra can not be abelian,
otherwise the equation would have to be linear. This is because the com-
mutation relation [v1,v2] = 0 would imply v2 = y∂y, up to the equivalence
subgroup ỹ = py + q. A three-dimensional symmetry algebra can exist only
when f = 0 (See Table 1).

Remark 4.18. The special case γ = 2, k = −1/5 and F (y) = y(y−6/25) of
(137) deserves a special attention, because this relates, up to a scaling of y,
to the travelling-wave solutions of Fisher’s equation (or nonlinear reaction-
diffusion equation)

ut = uxx + au(1− u). (143)

This equation originated in 1936 to model the propagation of a gene in a pop-
ulation. Notice that under the change of variable u→ 1−u, the parameter a
changes sign. The corresponding travelling-wave solutions are then reduced
to integrating the second order ODE r′′(s) = r2. The general solution of this
equation is r = ℘(s/

√
6 + a; 0, g3), where a, g3 are arbitrary constants. Here

℘(s; g2, g3) is the Weierstrass ℘ function with invariants g2 and g3.
Changing to the original variables using s = −5ex/5, r = ye−2x/5 from
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(138), for g3 6= 0, the solutions can be written as

y(x) = e2x/5℘

(
5√
6
ex/5 + a; 0, g3

)
. (144)

We note that ℘ is an even function since g2 = 0 and g3 is arbitrary. They
are doubly periodic with an infinite number of poles on the real axis. The
solutions of biological interest are obtained for g3 = 0. Using the fact that
℘(s; 0, 0) = s−2 we find

y(x) =

[
5√
6

+ ae−x/5
]−2

satisfying the boundary conditions limx→∞ y(x) = 6/25 and limx→−∞ y(x) =
0. In [1], it was shown that for the special wave speed c = 5/

√
6, for which

the Fisher’s equation passes the necessary condition to be of Painlevé type
(we already discussed this constraint on page 41 as a condition of integra-
bility by quadratures), can be reduced to the canonical form r′′ = 6r2 by a
transformation of the both independent and dependent variables of the form
y(x) = f(x)r(s), s = h(x) with f and h appropriately chosen.

Another context in which γ = 2 appears is the study of travelling solutions
of the two-dimensional Korteweg–de Vries–Burgers (µ 6= 0) and Kadomtsev–
Petviashvili (µ = 0) equations for the special quadratic nonlinearity F (u) [9].
In this paper, factorization technique was applied to obtain solution (144).

We recall that the case γ = 3, k = −1/3 corresponds to the travelling
wave solutions for the Newell–Whitehead–Segel equation. The rectifying
transformation is r = −3ex/3, s = e−x/3y.

5 Group-invariant solutions

One of the main applications of the notion of symmetry group to PDEs
is to construct group-invariant solutions. Suppose that G is a symmetry
group of the system (11). A solution u = f(x) is called group-invariant if
g.f = f for all g ∈ G. This means that a group-invariant solution does
not change under the symmetry group transformations. For example, if G
is the group of rotations in the space of independent variables x, then a
solution invariant under G will be a function of the radius alone in the form
u = F (|x|). Travelling wave solutions are solutions invariant under the group
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of translations. Self-similar (or similarity) solutions that frequently arise in
applications correspond to scaling symmetries.

Theorem 5.1. Suppose that the symmetry group G acts on the space of in-
dependent and dependent variables E = X×U and sweeps out generic orbits
of dimension d and of codimension p+ q− d (the number of functionally in-
dependent invariants of the group G). Then all the group-invariant solutions
to E = 0 can be found by solving a reduced system of differential equations
E/G = 0 in d fewer independent variables.

For example, if we have a system of partial differential equations in two
independent variables, then the solutions invariant under a one-parameter
symmetry group can all be found by integrating a system of ordinary differ-
ential equations.

Reduction in the number of independent variables will be possible if the
orbit dimension d satisfies the inequality p ≤ d. When d = p, the reduced
system E/G = 0 is a system of algebraic equations, while if d > p there are
no group-invariant solutions. In particular, if d = p− 1 we have a system of
ODEs.

Let G be a local Lie group of transformations with infinitesimal generators
v1, . . . ,vr, and the associated characteristics Q1, . . . , Qr. Then a function is
invariant under G if and only if it is a solution to the system of quasilinear
first order partial differential equations characterizing the functions invariant
under G

Qα,l(x, u
(1)) = 0, α = 1, 2, . . . , q, l = 1, 2, . . . , r. (145)

The group-invariant solution thus will satisfy both the original system to-
gether with the invariance constraints (145), which form an overdetermined
system of PDEs. The method of symmetry reduction consists of solving
(145) in terms of invariant coordinates and substituting these into the origi-
nal system. In the final step all non-invariant coordinates will drop out of the
resulting reduced system. What remains to derive group-invariant solutions
is to solve the reduced system depending on fewer independent variables.

Given a solution invariant under a subgroup H of the full symmetry group
G of a system, it can be transformed to other group-invariant solutions by
elements g ∈ G not in the subgroup H. Two group-invariant solutions are
called inequivalent if one can not be transformed to the other by some group
transformation g ∈ G. The corresponding reduced systems also have to
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be inequivalent. Two subgroups which are conjugate under the symmetry
group G will produce equivalent reduced systems (systems connected with a
transformation in the symmetry group).

Let H ⊂ G be a s-parameter subgroup. If u = f(x) is a solution invariant
underH and g ∈ G is any other group element, then the transformed function
u = f̃(x) = g.f(x) is a solution invariant under the conjugate subgroup
Kg(H) = g.H.g−1.

For example, the stationary solutions u = f(x) of an evolution equation
such as heat equation and KdV (Korteweg–de Vries) equation invariant under
Galilean group vb can be conjugated by the Galilean boosts e−cvb∂te

cvb to
map to travelling wave solutions u = f(x− ct) and vice versa.

So the collection of all group-invariant solutions are partitioned into
equivalence classes. If g is the Lie algebra of G, we are interested in obtaining
a representative list of subalgebras of g (also called an optimal system of sub-
algebras) such that every subalgebra of g is conjugate to precisely one algebra
in the list and no two subalgebras in the list are conjugate. Two algebras
g and g′ are conjugate under G if g = Gg′G−1. Consequently, the problem
of classifying group-invariant solutions is completely tantamount to finding
the optimal system of subalgebras. When this task has been finished, it is
sufficient to construct only group-invariant solutions corresponding to these
representative subalgebras in the list. All other solutions can be obtained
by applying the symmetry transformations to the representative classes of
solutions.

For a finite dimensional Lie algebra of dimension ≥ 2, this is in general
a complicated problem. If g is a direct sum of two or more algebras, there is
an algorithmic classification method [55, 42, 45], which is an adaptation to
Lie algebras of the Goursat’s method for direct products of discrete groups.
When g is semidirect sum of two algebras, for example when g is a Levi de-
composition of a semi-simple algebra and its radical (maximal solvable ideal)
a method has been proposed in [44] (See also [54]). In physical applications,
one usually encounters with low-dimensional algebras as symmetry algebras.
In such cases, subalgebras of real three- and four-dimensional Lie algebras
[43] can be of great use in the classification of group-invariant solutions.

In the one-dimensional case, subalgebra classification problem is solved
by using the adjoint transformations using the Baker–Campbell–Housedorff
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formula (or the Lie series)

Ad(exp(εv))w = exp (εv)w exp (−εv) = w + ε[v,w] +
ε2

2!
[v, [v,w]] + . . . ,

(146)
where v,w ∈ g and ε is the group parameter. This series terminates or
can be easily summed up when the vector field v is a nilpotent element or
generates a translation, rotation or scaling group. The basic idea is to take
a general vector field v = span {v1, . . . ,vr} in g and to simplify it as much
as possible using adjoint transformations.

Example 5.2. We give an example of one-dimensional subalgebras for the
simple algebra so(3,R) with commutation relations

[v1,v2] = v3, [v3,v1] = v2, [v2,v3] = v1.

so(3,R) has no no-trivial ideals and it has only one-dimensional (non-trivial)
subalgebras.

Let v = a1v1 + a2v2 + a3v3 ∈ so(3,R). For a3 6= 0, using the formula
(146) and the above commutation relations and summing infinite series in ε
we find

Ad(exp(εv2))v1 = cos εv1 − sin εv3, Ad(exp(εv2))v3 = sin εv1 + cos εv3,

and from the linearity of the adjoint transformation

v′ = Ad(exp(εv2))v = a′1v1 + a′2v2 + a′3v3,

where

a′1 = a1 cos ε+ a3 sin ε, a′2 = a2, a′3 = −a1 sin ε+ a3 cos ε.

Note that a′21 + a′22 + a′23 = a2
1 + a2

2 + a2
3 for any ε ∈ R. This means that the

positive-definite function I(v) = a2
1 +a2

2 +a2
3 > 0 (unless a1 = a2 = a3 = 0) is

an invariant of the corresponding adjoint transformation. It can be seen that
I is an invariant of the full adjoint action: I(Adg(v)) = I(v), g ∈ SO(3,R),
the Lie group of so(3,R). If a3 6= 0, we can choose ε such that the coefficient
a′3 is zero. So we may assume that a3 = 0 and v = a1v1 + a2v2. If a2 6= 0,
we further conjugate this form of v by v3 (or equivalently apply an inner
automorphism of the algebra) and find

v′ = Ad(exp(αv3))v = (a1 cosα− a2 sinα)v1 + (a1 sinα + a2 cosα)v2.
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Now we can arrange for α to be such that the coefficient of v2 is zero and
hence v is conjugate to a1v1 for a1 6= 0 or to v1 by scaling. The optimal
system contains only one vector field v1. Any solution invariant under the
one-parameter group generated by v ∈ so(3,R) is equivalent to a solution
invariant under the group generated by v1.

The example of one-dimensional subalgebras of the sl(2,R) algebra can
be found in [35, 38, 18]. For the subalgebra classification of the symmetry
algebra of the heat equation, which will be needed in the following example,
see for example [53, 54, 35].

Example 5.3. We consider the diffusion equation with constant drift b

ut = xuxx + bux, b > 0. (147)

As this equation contains a parameter the structure of its symmetry group
will crucially depend on the parameter. The problem of determination of all
possible symmetries can be regarded as a group classification problem. Let
the symmetry group of (147) be generated by the vector fields

v = τ(t, x, u)∂t + ξ(t, x, u)∂x + ϕ(t, x, u)∂u, (148)

where the coefficients τ , ξ and ϕ will be determined from the invariance
criterion (23). We need to know the second prolongation of v

pr(2)v = v + ϕt∂ut + ϕx∂ux + ϕxx∂uxx + . . . .

Applying the criterion to E(t, x, u, ut, ux, uxx) = ut − xuxx − bux gives on
solutions

ϕt − xϕxx − ξuxx − bϕx = 0,

where, from (24), in terms of the characteristic Q = ϕ− ξux − τut,

ϕt = DtQ+ ξuxt + τutt, ϕx = DxQ+ ξuxx + τuxt,

and
ϕxx = D2

xQ+ ξuxxx + τuxxt.

Eliminating uxx using E = 0 and splitting with respect to the derivatives ut,
ux, uxt we find that τx = τu = 0, ξu = 0 and ϕuu = 0, which mean τ = τ(t),
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ξ = ξ(t, x), ϕ = φ(t, x)u + ψ(t, x). Using this information and setting equal
to zero the coefficients of u, ut, ux, the determining system is simplified to

2xξx − τ̇x− ξ = 0, x2(ξxx − 2φx)− xξt − bxξx + bξ = 0, (149a)

φt = xφxx + bφx, ψt = xψxx + bψx. (149b)

Solving for ξ from the first equation of (149a) we find

ξ(t, x) = f(t)
√
x+ τ̇x.

Then using this information in the second equation gives

4x3/2(2φx + τ̈) + 4ḟx+ (1− 2b)f = 0,

from which on integrating we have

φ(t, x) = −1

4

[
2τ̈x+ 4ḟ

√
x+

(2b− 1)f√
x

]
+ g(t).

Substituting φ in the first equation of (149b) we find

(2b− 1)(2b− 3)f = 0, f̈ = 0,
...
τ = 0, bτ̈ + 2ġ = 0. (150)

The last two equations specify τ and g as

τ(t) = τ2t
2 + τ1t+ τ0, g(t) = − b

2
τ̇ + g0,

where τ2, τ1, τ0, g0 are the integration constants. Finally, the last equation
in (149b) decouples from the others, therefore we find that for any solu-
tion ψ(t, x) of (147), the vector field vψ = ψ∂u gives rise to a symmetry,
which simply reflects the superposition rule of the linear equations. Here-
after, we shall factor out this infinite-dimensional algebra. The constant g0

corresponds to the scaling symmetry v0 = u∂u. This means we can multiply
solutions by constants. There are two cases to consider:

b 6∈ {1/2, 3/2} (f = 0): v depends on four integration constants. The
symmetry algebra g4 is four-dimensional. A suitable basis is given by

v1 = ∂t, v2 = t∂t + x∂x,

v3 = t2∂t + 2tx∂x − (x+ bt)u∂u, v0 = u∂u.
(151)
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[vi,vj] v1 v2 v3 v4 v5

v1 0 v1 2v2 0 v4

v2 -v1 0 v3 -v4/2 v5/2
v3 -2v2 -v3 0 -v5 0
v4 0 v4/2 v5 0 -v0/2
v5 -v4 -v5/2 0 v0/2 0

Table 2: Commutator Table

b ∈ {1/2, 3/2} (f 6= 0): We have f(t) = f1t + f0. The symmetry algebra
g6 is six-dimensional. In this case, the basis (151) for b = 1/2 is extended by
two additional elements

v4 =
√
x∂x, v5 = tv4 −

√
xu∂u, (152)

and for b = 3/2 by the following two

v4 =
√
x∂x −

1

2
√
x
u∂u, v5 = tv4 −

√
xu∂u. (153)

v0 is the center element of the symmetry algebra.
From the commutator table (2) we see that the algebra g4 has the struc-

ture of a direct sum g4 = sl(2,R) ⊕ {v0}, where sl(2,R) ' {v1,v2,v3},
whereas the algebra g6 has the semidirect sum structure g6 = sl(2,R)]h(1),
where h(1) ' {v0,v4,v5} is the three-dimensional Heisenberg algebra with
center v0. The symmetry algebra g6 is isomorphic to the well-known symme-
try algebra of the constant coefficient heat equation ut = uxx. The existence
of such an isomorphism is a necessary (but not sufficient) condition for a
point transformation Φ : (t, x, u)→ (t̃, x̃, ũ) to exist, mapping equations into
each other. Indeed, in the case of b = 1/2, there is a point transformation
(not necessarily unique)

Φ : t̃ = −1

t
, x̃ =

2
√
x

t
, ũ =

√
t exp

(x
t

)
u, (154)

and

Φ : t̃ = −1

t
, x̃ =

2
√
x

t
, ũ =

√
tx exp

(x
t

)
u, (155)

if b = 3/2, mapping (147) to the first canonical form ũt̃ = ũx̃x̃. If b = 1/2, a
simple change of space variable x̃ = 2

√
x alone also does the job.
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Let b = 3/2. The pushforwards ṽi = Φ∗(vi) of the vector fields vi,
i = 0, . . . , 5 of the algebra g6 via the map Φ are easily calculated:

ṽ1 = t2∂t + tx∂x −
1

4
(x2 + 2t)u∂u, ṽ2 = −

(
t∂t +

x

2
∂x

)
+

1

2
ṽ0,

ṽ3 = ∂t, ṽ4 = −
(
t∂x −

x

2
u∂u

)
, ṽ5 = ∂x, ṽ0 = v0 = u∂u,

(156)

where all coordinates should be replaced by tildes (written in the new coor-
dinates). The Lie algebra g̃ spanned by {ṽi} is recognized to be the sym-
metry algebra of ut = uxx, having the Levi decomposition g̃ = {ṽ3, ṽ2, ṽ1} ]
{ṽ5, ṽ4, ṽ0} ' sl(2,R) ] h(1). This can be verified by using the same steps
of symmetry calculation done for Eq. (147).

For b = 1/2, the pushforwards ṽi = Φ∗(vi) of the vector fields vi,
i = 0, 1, 2, . . . , 5 of the algebra g6 spanned by (151)-(152) via the map
Φ : (t, x, u) → (t, 2

√
x, u) are exactly the basis vectors of the heat equa-

tion algebra:

ṽ1 = ∂t, ṽ2 = t∂t +
x

2
∂x, ṽ3 = t2∂t + xt∂x −

1

4
(x2 + 2t)v0,

ṽ4 = ∂x, ṽ5 = t∂x −
x

2
v0, v0 = u∂u.

(157)

The corresponding one-parameter symmetry groups are time translations,
scaling in t, x, projective (or inversional) transformation, Galilei boosts, space
translations and scaling in u, respectively.

In the case b /∈ {1/2, 3/2}, the equation transforms to the second canon-
ical form

ũt̃ = ũx̃x̃ +
µ

x̃2
ũ, µ =

(2b− 1)(2b− 3)

4
(158)

via the transformation

t̃ = t, x̃ = 2
√
x, u = x(1−2b)/4ũ,

admitting the symmetry algebra spanned by

v1 = ∂t̃, v2 = t̃∂t̃ +
x̃

2
∂x̃,

v3 = t̃2∂t̃ + t̃x̃∂x̃ −
1

4
(x̃2 + 2t̃)ũ∂ũ, v0 = ũ∂ũ.

(159)

We thus have given the identification of the symmetry algebras of two
locally equivalent differential equations, (147) and ut = uxx. In general,
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two equivalent differential equations have isomorphic symmetry groups. If a
differential equation with a symmetry g is mapped to another one by a point
transformation Φ, then g̃ = Φ · g ·Φ−1 is a symmetry of the second equation.

The well-known solutions of ut = uxx can be mapped to solutions of (147)
when b = 1/2, 3/2. We note that the given equation is also invariant under
the discrete group of simultaneous time and space reflections: (t, x, u) →
(−t,−x, u).

Symmetry group of the equation will now be used to derive explicit
group-invariant solutions. We illustrate how to construct group-invariant
fundamental solution of (147) for any value of b using the most general ele-
ment v = a0v0 + a1v1 + a2v2 + a3v3 of the Lie algebra g4. A fundamental
solution K(t, x; y) as distributions satisfies (147) with the initial condition
limt↘0K(t, x; y) = δ(x − y), where δ(x − y) is the Dirac distribution with
singularity at y. The initial condition puts the following restrictions on the
coefficients of (148) (See [7, 8, 14, 15] for details)

τ(0) = 0, ξ(0, y) = 0, φ(0, y) + τ̇(0) + ξx(0, y) = 0. (160)

These conditions are satisfied by the vector field (a projective type symmetry)

v = t2∂t + 2tx∂x − (x− y + bt)u∂u. (161)

The fundamental solution will be looked for as a solution invariant the sym-
metry group generated by (161). Its invariants are found by solving the
invariance condition Q(x, t, u, ut, ux) = ϕ − τut − ξux = 0 as η = x/t2,
ζ = utb exp[(x+ y)/t]. The group-invariant solution has the form

u = t−b exp

{
−x+ y

t

}
F (η).

Substituting the above solution u into (147) we find that F satisfies

ηF ′′ + bF ′ − yF = 0.

We note that this ODE is free of the non-invariant coordinates. The solution
F , which is bounded near zero is given by

F =

(
η

y

)(1−b)/2

Ib−1(2
√
yη),
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where Iν denotes the usual modified Bessel function of the first kind and
order ν. We recall the following asymptotic relations for small values of x

Iν ∼
1

2νν!
xν , I−ν ∼

2ν

(−ν)!
x−ν , ν 6∈ Z.

We thus have constructed the following fundamental solution, up to a nonzero
multiplicative constant C,

K(t, x; y) =
C

t

(
x

y

) 1−b
2

exp

{
−x+ y

t

}
Ib−1

(
2
√
xy

t

)
.

The value of C is determined from the normalization condition.
The special case b = 1/2 with C = π−1/2 produces the elementary solution

K(t, x; y) =
1√
πty

exp

{
−x+ y

t

}
cosh

(
2
√
xy

t

)
. (162)

Translation along t gives the full heat kernel K(t, x; t0, x0) = K(t− t0, x;x0).
Similarly, in the case b = 3/2 with C = π−1/2, K is again elementary

K(t, x; y) =
1√
πtx

exp

{
−x+ y

t

}
sinh

(
2
√
xy

t

)
. (163)

Both fundamental solutions satisfy the normalization condition∫ ∞
0

K(0, x; y)dx = 1.

We remark that solutions (162)-(163) can be recovered using the trans-
formations (154)-(155) and the separable solutions (solutions invariant under
ṽ3 + yv0, y > 0 a parameter)

ũ(t̃, x̃) = Ceyt̃

{
cosh(

√
y x̃),

sinh(
√
y x̃),

of the heat equation ũt̃ = ũx̃x̃.
In the case when b 6= 1/2, 3/2, group-invariant solutions can be derived

using the one dimensional subalgebras (an optimal system of subalgebras) of
the algebra g4 (See (201)).
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Now let us look at the action of a subgroup, say v3 of (151), on the
solution u(t, x), exp {εv3}u(t, x). We find by exponentiating v3 the group
action generated by v3

ũε(t, x) = (1 + εt)−b exp

{
−εx

1 + εt

}
u

(
x

(1 + εt)2
,

t

1 + εt

)
. (164)

Formula (164) states that if u(t, x) is a solution of (147), then ũε(t, x) is also
a solution. Simple solutions like stationary (time-independent) solutions can
be mapped to new solutions. A stationary solution u(x) satisfies the linear
ODE xuxx+bux = 0 with two-parameter solution u(x) = c0 +c1x

1−b if b 6= 1,
and u(x) = c0 + c1 lnx if b = 1. They get mapped to the following new
solutions, respectively:

uε(t, x) = (1 + εt)−b exp

{
−εx

1 + εt

}[
c0 + c1(1 + εt)2(b−1)x1−b] , b 6= 1,

uε(t, x) = (1 + εt)−1 exp

{
−εx

1 + εt

}[
c0 + c1 log

√
x

1 + εt

]
, b = 1.

(165)

The remaining symmetry group of translation in t and scaling in t and x:
(t, x)→ (λ(t+ t0), λx) can be applied to these solutions to obtain new ones
depending on two more group parameters t0, λ (solutions invariant under the
group SL(2,R)).

Example 5.4. ([24]) A tricky classification problem for the generalized
Fokker–Planck–Kolmogorov equation with a varying coefficient

ut − uxx + p(x)uy = 0. (166)

We assume that p is not constant, otherwise by a simple change of variable
u = U(t, x, z), z = t − p−1y, it would be equivalent to the heat equation
Ut = Uxx. The special case p(x) = x is known as the celebrated Kolmogorov
equation. In the sequel we shall show that in this case the Lie point symmetry
group is maximal.

The general element of the symmetry algebra is written in the form

v = τ(t, x, y, u)∂t + ξ(t, x, y, u)∂x + η(t, x, y, u)∂y + ϕ(t, x, y, u)∂u. (167)

The linearized symmetry condition

ϕt − ϕxx + p′(x)ξuy + p(x)ϕy = 0
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should be satisfied on solutions. Here ϕt, ϕxx, ϕy are the coefficients in the
appropriate prolongation of v

ϕt = DtQ+ τutt + ξutx + ηuty, ϕy = DyQ+ τuyt + ξuyx + ηuyy,

ϕxx = D2
xQ+ τuxxt + ξuxxx + ηuxxy,

where Q = ϕ− τut − ξux − ηuy is the characteristic function.
We find it more convenient to substitute ut from (166), rather than uxx

as was done in the previous example. The coefficients of the terms involving
uxxx imply that

τ = τ(t, y), ξ = ξ(t, x, y), η = η(t, y), ϕ = f(t, x, y)u+ g(t, x, y).

From the linearity of the equation we a priori know that g must solve the
equation. Using this simplification and setting the coefficients of the terms
uxx, uy, ux, and u equal to zero lead to the overdetermined system of homo-
geneous linear PDEs

2ξx − τt − pτy = 0,

ξp′ + p2τy − ηt + p(τt − ηy) = 0,

ξt − ξxx + pξy + 2fx = 0,

ft − fxx + pfy = 0.

(168)

Inspection of the determining system (168) suggests that while the principal
symmetry algebra g0 (valid for any p) is obvious

g0 = {v1,v2,v3,v4} = {∂t, ∂y, u∂u, g∂u} , (169)

where g is a solution of (166), it is not straightforward to obtain a classifying
equation for p. To remedy this situation we pass to use the equivalence
group and algebra of the equation. It is quite simple to find the equivalence
transformations (including the discrete ones) for a linear equation as such
and is given by

t̃ = α2t+ t0, x̃ = αx+ x0, ỹ = βy + δt+ y0, ũ = γu+ ρ(t, x),

p̃ = α−2(βp+ δ),
(170)

where α, β, γ, δ, t0, x0, y0 are parameters and ρ(t, x) solves ρt − ρxx = 0. The
continuous part of this group is generated by the equivalence algebra gE with
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basis

e1 = ∂t, e2 = ∂x, e3 = ∂y,

e4 = t∂y + ∂p, e5 = y∂y + p∂p,

e6 = t∂t + x∂x − 2p∂p, e7 = u∂u, e8 = ρ(t, x)∂u.

(171)

Now the idea is to project the algebra gE to the space (x, p) so that we have
g̃E = proj(x,p) gE with basis

ẽ2 = ∂x, ẽ4 = ∂p, ẽ5 = p∂p, ẽ6 = x∂x − 2p∂p. (172)

This is a four-dimensional solvable subalgebra. We are interested in the
extensions of the principal algebra by searching the nontrivial invariant curves
in the space (x, p) of the algebra with general element

ẽ = c2ẽ2 + c4ẽ4 + c5ẽ5 + c6ẽ6

for all possible choices of the parameters c2, c4, c5, c6. The possible invariants
result from the following combinations

e(1) = x∂x + ∂p, e(2) = ∂x + p∂p, e(3) = x∂x + kp∂p,

e(4) = x∂x − 2p∂p, e(5) = ∂x + ∂p,

where k is a constant. The corresponding independent invariants lead to five
different possibilities

p(x) ∈
{

lnx, ex, xk, x−2, x
}
. (173)

Actually, they can be replaced by their slightly more general forms under the
action of the equivalence group. For example, p(x) = xk invariant under e(3)

is equivalent to p(x) = λ(x+ µ)k + ν.
The principal algebra g0 will extend for these choices of the coefficient p.

Given these values, the full symmetry algebra can be obtained by solving the
determining equations (168). The strategy is to solve the second equation of
(168) for ξ

ξ = −p
2

p′
τy +

1

p′
ηt −

p

p′
(τt − ηy), p′ 6= 0 (174)

and to substitute into the first one resulting in the equation

A(x)τt +B(x)τy + C(x)ηt +D(x)ηy = 0, (175)
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where
A(x) = 2pp′′ − 3p′2, B(x) = p(2pp′′ − 5p′2),

C(x) = −2p′′, D(x) = −2(pp′′ − p′2).

This equation places restrictions on the dependence of τ and η on t, y. With
this information, the third equation is integrated to determine the form of
f . Finally, all remaining dependencies are explicitly specified from the last
equation of (168) as a compatibility condition. We note that A(x) ≡ 0 for
p(x) = x−2, while B,C,D remain nonzero, which means that we must have
τ = τ(t) and η = const. In a similar way, C(x)

∣∣
p=x
≡ 0, and D(x)

∣∣
p=ex
≡ 0.

1.) p(x) = lnx: Splitting (175) with respect to lnx, (lnx)2, it follows that

2(ηt + ηy) = 3τt, ηy = 5τy + 2τt, τy = 0.

This is easily solved for τ, η. We keep only the integration constants leading to
the extensions. We find τ̈ = 0 so we take τ = t (τ = 1 leads to the generator
of the principal algebra) and then η = y + t/2, ξ = x/2. The remaining
equations imply f = 0 and we conclude that the additional symmetry element
is

v4 = 2t∂t + x∂x + (t+ 2y)∂y.

2.) p(x) = ex: Following the same vector fields as before we find two
additional elements as

v4 = ∂x + y∂y, v5 = 2y∂x + y2∂y − (ex + y)u∂u.

We use v5 to obtain new solutions from the y-independent (∂y invariant)
solution of (166), namely the heat kernel

u = U(t, x) =
c√
t

exp

[
−x

2

4t

]
.

v5 transforms this solution to

uε(t, x, y) =
c√

t(1 + εy)
exp

[
− εex

1 + εy
− x̃2

4t

]
, x̃ = x− 2 log(1 + εy).

Another class of solutions can be obtained from the ∂t invariant solutions
U(x, y) satisfying the PDE

Uxx + exUy = 0.
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A three-parameter separable solution in terms of Bessel functions of order
zero is given by

U(x, y) = eµy[AJ0(2
√
µex/2) +BY0(2

√
µex/2)], (176)

where µ, A,B are arbitrary constants. They are transformed to other time
independent solutions

u = c(1 + εy)−1 exp

[
− εex

1 + εy

]
U(x̃, ỹ),

where
x̃ = x− 2 log(1 + εy), ỹ =

y

1 + εy
.

The remaining symmetries can also be applied to this solution to produce
new multi-parameter solutions.

3.) p(x) = xk, k 6= 0, 1,−2: Eq. (175) has the form

xk[(k + 2)τt − 2ηy] + (3k + 2)x2kτy + 2(k − 1)ηt = 0.

This implies that the cases when k ∈ {1,−2,−2/3} need separate analysis.
When this is not the case, we have

ηy =
k + 2

2
τt, τy = ηt = 0,

and then

τ̈ = 0, ηy = η′(y) =
k + 2

2
τ̇ .

We find only one additional symmetry

v4 = 2t∂t + x∂x + (k + 2)y∂y.

Below we shall see that the case k = −2 in which τ = τ(t) and η = 0 (we
discard η = const.) and k = 1 lead to more additional symmetries.

4.) p(x) = x−2: The first two equations are already satisfied. The third
one gives

f(t, x, y) = − τ̈
8
x2 + F (t, y).

The last equation determines F and τ as

...
τ = 0, Ft = − τ̈

4
, Fy = 0.
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In conclusion, the additional symmetry vector fields are obtained as

v4 = 2t∂t + x∂x, v5 = 4t2∂t + 4tx∂x − (2t+ x2)u∂u.

The subalgebra {v1,v4,v5} spans an sl(2,R) algebra, which also leaves
invariant the one-dimensional heat equation ut − uxx = 0. Acting on solu-
tions by v5 induces the formula transforming solutions U(t, x, y) to the new
solutions

uε(t, x, y) =
1√

1 + 4εt
exp

[
−εx2

1 + 4εt

]
U(t̃, x̃, y), (177)

where t̃ = t(1+4εt)−1, x̃ = x(1+4εt)−1, and ε is the group parameter. Time
independent solutions (invariant under v1 = ∂t) of the form u = U(x, y)
satisfy the PDE (one-dimensional heat equation with variable diffusivity)

Uy = x2Uxx,

which is equivalent to the heat equation [14]

Vy = Vzz (178)

by the transformation

U =
√
x exp

[
−y

4

]
V (z, y), z = lnx, x > 0.

This implies we can transform the heat kernel (fundamental solution up to
a multiplicative constant)

V (z, y) =
C
√
y

exp

[
− z

2

4y

]
(179)

to the solution

uε(t, x, y) =
c

(1 + 4εt)

√
x

y
exp

[
− εx2

1 + 4εt
− y2 + z2

4y

]
, z = ln x̃. (180)

The translational symmetry group t → t + a puts the singularity at t =
−(4ε)−1 to some t0 > 0.

Remark 5.5. In general, the time independent solutions of (166) satisfy the
heat equation with diffusivity a(x) = 1/p(x) (y plays the role of time)

Uy = a(x)Uxx.
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It can be shown that such an equation is equivalent to the standard one by
a point transformation if and only if a(x) = (a2x

2 + a1x+ a0)2 [14], which of
course includes the case p = x−2 discussed above.

Another choice when this is possible is the third case p = xk where
k = −4. In this case, a point transformation taking

Uy = x4Uxx (181)

to the heat equation (178) is given by

U(x, y) = xV (y, z), z = −1

x
.

A particular extension of the equation under study allowing power diffu-
sivity

ut = x5uxx − xuy (182)

deserves consideration. In Ref. [56], the symmetry algebra of this equation
has been shown to be eight-dimensional with a basis

v1 = ∂t, v2 = ∂y, v3 = u∂u,

v4 = 3t∂t − x∂x + 2y∂y, v5 = −y∂t + x2∂x + xu∂u,

v6 = −y
2

2
∂t + x2y∂x +

(
xy +

1

2x

)
u∂u,

v7 = 3ty∂t − x(3tx+ y)∂x + y2∂y − (x−2 + 3tx+ 3y)u∂u,

v8 = −y
3

3
∂t + x2y2∂x +

(
xy2 +

y

x
− t
)
u∂u.

(183)

One can transform time independent solutions u = U(x, y) of (182)

U =
Cx
√
y

exp

[
− 1

4x2y2

]
to new time dependent solutions using some appropriate subalgebra of the
symmetry algebra.

Finally, we note the following solution singular at (0, x0, 0), x0 > 0

u =
CH(t)x

y2
exp

[
−3x2

0t
2x2 + 3x0tx(x+ x0)y − (x2 + x0x+ x2

0)y2

x2
0x

2y3

]
, (184)
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where H(t) is the Heaviside function and C is a constant. This solution is
invariant under the 4-dimensional subalgebra

w1 = 3x2
0ty∂t − x2

0x(3tx+ y)∂x + x2
0y

2∂y +

[
1− x2

0

x2
− 3x2

0tx− 3x2
0y

]
u∂u,

w2 = [3t(x0 + 5x3
0y)− y]∂t + [5x3

0y − x0x− (15x3
0t− 1)x2]∂x+

+ x0y(5x2
0y + 2)∂y +

[
x− 5x2

0

x2
− 15x3

0tx− 15x3
0y

]
u∂u,

w3 =
1

2
(3x0t− y)y∂t −

x

2
[3x0tx+ (x0 − 2x)y]∂x +

x0

2
y2∂y+

+
1

2x2
[x− x0 − 3x0x

2y + (2y − 3x0t)x
3]u∂u,

w4 = v8,

(185)

leaving invariant the PDE

Lu = ut − xuy − x5uxx = δ(t)δ(x− x0)δ(y).

5.) p(x) = x (Kolmogorov equation): From Eq. (175) we get

3τt + 5xτy − 2ηy = 0,

which implies τ = τ(t), η(t, y) = (3/2)τ̇ y + h(t). Using these results in the
third equation gives us

f(t, x, y) = −3
...
τ

4
xy − τ̈

2
x2 − ḧ

2
x+ F (y, t).

The last equation reduces to the condition

x

4
[5

...
τ x+ 3τ (4)y + 2

...
h ]− τ̈ − xFy − Ft = 0. (186)

Splitting (186) with respect to x and x2 gives

Ft = −τ̈ , Fy =
1

2

...
h ,

...
τ = 0

from which

F =
1

2

...
hy +H(t), h(4) = 0, Ḣ = −τ̈ .
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Finally, the general element of the symmetry algebra depends on eight ar-
bitrary integration constants, only five of them leads to additional vector
fields:

v4 = ∂x + t∂y, v5 = 2t∂t + x∂x + 3y∂y − 2u∂u,

v6 = t2∂t + (xt+ 3y)∂x + 3ty∂y − (2t+ x2)u∂u,

v7 = 3t2∂x + t3∂y + 3(y − tx)u∂u, v8 = 2t∂x + t2∂y − xu∂u.

We conclude that the maximal symmetry algebra is attained when p(x) = x.
We note that this equation is also invariant under the discrete transforma-
tions

(t, x, y, u)→ (t,−x,−y,−u).

The construction of the Kolmogorov’s fundamental solutionK(x, y, t;x0, y0, t0)
with the distributional limit property

lim
t→t+0

K(x, y, t;x0, y0, t0) = δ(x− x0, y − y0),

using the approach of Example (5.3) can be found in [15, 24] and is given by

K =

√
3

2π(t− t0)2
exp

[
−(x− x0)2

4(t− t0)
− 3

(t− t0)

(
y − y0

t− t0
− x+ x0

2

)2
]
. (187)

Example 5.6. The nonlinear diffusion (porous medium) equation

ut = u4uxx (188)

is invariant under a five dimensional symmetry group generated by

v1 = ∂t, v2 = ∂x, v3 = 2t∂t + x∂x,

v4 = x∂x +
u

2
∂u, v5 = x2∂x + xu∂u.

(189)

The study of possible invariant solutions was presented in [12]. We shall only
discuss solutions invariant under the dilatational subalgebra

d = v3 − v4 = 2t∂t −
u

2
∂u.

This implies the reduction ansatz u = t−1/4F (x) leading to the ODE F ′′ =
−1/4F−3, which is the special form of the Ermakov-Pinney equation (See
(97)). This equation inherits the sl(2,R) algebra with basis v2,v4,v5 of
(189). Thus we obtain the particular solution

u = t−1/4F (x) = ±t−1/4(A+ 2Bx+ Cx2)1/2, 4(B2 − AC) = 1.
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Example 5.7. We now consider the (2+1)-dimensional nonlinear Darboux
equation

�u+
b

t
ut + auk = 0, (190)

where a, b, k are arbitrary real parameters and � = ∂2
t − ∆2 = ∂2

t − ∂2
x −

∂2
y is the wave (also called d’Alembert) operator in the (2+1)-dimensional

Minkowski space with metric dt2 − dx2 − dy2.
The linear wave equation �u = 0 obtained for a = 0, b = 0 (See Example

2.43 of [35]) is known to be invariant under the ten-dimensional conformal
group Conf(R1,2) of the pseudo-Euclidean space R1,2. A suitable basis of the
corresponding Lie algebra (conformal algebra) is given by the seven elements
of the Poincaré-similitude subalgebra

pt = ∂t, px = ∂x, py = ∂y,

kxt = t∂x + x∂t, kyt = t∂y + y∂t, jxy = y∂x − x∂y,

d = t∂t + x∂x + y∂y −
u

2
∂u,

(191)

plus the three conformal generators

ct = (x2 + y2 + t2)∂t + 2xt∂x + 2yt∂y − tu∂u,
cx = 2xt∂t + (t2 + x2 − y2)∂x + 2xy∂y − xu∂u,
cy = 2yt∂t + 2xy∂x + (t2 − x2 + y2)∂y − yu∂u.

(192)

Eq. (190) can be viewed as a special case of the nonlinear perturbation of
the singular operator � + (b/t)∂t = 0

�u+
b

t
ut + f(t, u) = 0. (193)

In this case the symmetry gets considerably reduced:

px = ∂x, py = ∂y, jxy = y∂x − x∂y. (194)

In the special case f(t, u) = f(u), invariance under the dilation

d = t∂t + x∂x + y∂y + qu∂u, q =
2

1− k
, k 6= 1 (195)

restricts f to f(u) = auk and the corresponding equation becomes (190).
With the condition k = (b + 5)/(b + 1), b 6= −1 (q = −(b + 1)/2), it admits
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further the following two conformal transformations

cx = 2xt∂t + (t2 + x2 − y2)∂x + 2xy∂y − (b+ 1)xu∂u,

cy = 2yt∂t + 2xy∂x + (t2 − x2 + y2)∂y − (b+ 1)yu∂u.
(196)

We comment that the singularly perturbed linear version of (193) with
f(t, u) = at−2u preserves the same symmetry without any restriction on q
which can be taken zero. If, in addition, 2b − b2 + 4a = 0 then there is an
additional generator

pt = ∂t −
b

2t
u∂u,

which is mapped to the translational vector field ∂t by the transformation
u = t−b/2v and the new equation becomes the usual wave equation �v = 0.

On the other hand, the maximal symmetry algebra of (190) is achieved
when b = 0 (k = 5), which reduces to the Klein–Gordon equation (also called
classical φ6-field equation)

�u = au5. (197)

Its symmetry algebra is precisely the 10-dimensional conformal algebra with
basis given by (191)-(192), excluding the linearity reflecting symmetry.

The 1+1-dimensional linear variant of (190) is known as the Euler–
Poisson–Darboux (EPD) equation:

utt +
b

t
ut − uxx = 0. (198)

The values b = 0, 2 are exceptional (Eq. is equivalent to the wave equation
as mentioned above. See (34) for its symmetry algebra). The EPD equation
admits a four-dimensional symmetry algebra with basis ([30])

v1 = ∂x, v2 = t∂t + x∂x,

v3 = 2tx∂t + (x2 + t2)∂x − bxu∂u, v4 = u∂u.
(199)

The non-zero commutation relations are

[v1,v2] = v1, [v1,v3] = 2v2, [v2,v3] = v3. (200)

The symmetry algebra has the direct-sum structure g = sl(2,R)⊕ {v4}.
The one-dimensional subalgebras of g ([43]) are

{v1} , {v4} , {v2 + pv4} , p ≥ 0,

{v1 + v3 + qv4} , {v1 + εv4} , ε = ±1, q ∈ R.
(201)
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We can put ε = 1 by invariance under x → −x. All solutions invariant
under these subalgebras can be found by symmetry reduction technique [30].
For example, the solution corresponding to the subalgebra {v1 + v4} has the
form u = exF (t), where F (t) satisfies the ODE

tF ′′ + bF ′ − tF = 0

with solution in terms of modified Bessel functions of the form

F (t) = t(1−b)/2I±(b−1)/2(t).

For even integer b, this solution is elementary.
Solution invariant under the third subalgebra admits the reduction for-

mula u = (x − t)pF (τ), τ = (x + t)/(x − t). Substitution into the EPD
equation gives the hypergeometric equation

τ(1− τ)F ′′ +

[
1− p− b

2
−
(

1− p+
b

2

)
τ

]
F ′ +

bp

2
F = 0. (202)

So the solution can be expressed in terms of hypergeometric function as

u = (x− t)p2F1

(
−p, b

2
, 1− p− b

2
; τ

)
, 1− p− b

2
6∈ Z≤0.

Solutions invariant under {v1 + v3} will have the form u = t−b/2F (τ), τ =
(1 + x2 − t2)/t where F (τ) satisfies

(τ 2 + 4)F ′′ + 2τF ′ − b(b− 2)

4
F = 0.

The special cases b = 0, 2 are trivially integrated. Otherwise, the general
solution of this equation can be expressed in terms of Legendre functions with
imaginary argument iτ/2 and order (b − 2)/2, known as oblate spheroidal
harmonics for τ > 0 and b = 2(n+ 1), n ∈ Z0.

The sl(2,R) invariance can be used to derive identities for hypergeometric
and Bessel functions, and transformation formulas for other solutions of the
EPD equation.

The symmetry group corresponding to v3 is found by integrating the
following Cauchy problem

d

dε
t̃(t, x; ε) = 2t̃x̃,

d

dε
x̃(t, x; ε) = t̃2 + x̃2,

d

dε
ũ(t, x; ε) = −bx̃ũ (203)
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subject to the initial conditions t̃(t, x; 0) = t, x̃(t, x; 0) = x, ũ(t, x; 0) = u.
The first two equations written in canonical coordinates gives the transla-
tional group r̃ = r and s̃ = s+ ε, where

r =
t

t2 − x2
, s =

x

t2 − x2

satisfying v3(r) = 0, v3(s) = 1. Solving for t̃ and x̃ we find the transformation
of (t, x):

t̃ =
t

1− 2εx− ε2(t2 − x2)
, x̃ =

x+ ε(t2 − x2)

1− 2εx− ε2(t2 − x2)
.

Finally integrating the last equation in (203) we find

ũ = σ(t, x; ε)b/2u, σ(t, x; ε) = 1− 2εx− ε2(t2 − x2).

The factor σ has the property σ(t, x; ε) = σ(t̃, x̃;−ε)−1. The symmetry group
action on a solution U(t, x) induces the transformation formula for solutions

u(t, x) = σ(t, x;−ε)−b/2U
(

t

σ(t, x;−ε)
,
x− ε(t2 − x2)

σ(t, x;−ε)

)
.

In Ref. [30], transformations leaving EPD equation invariant but chang-
ing the parameter b to derive a variety of generating functions for the stan-
dard hypergeometric functions 2F1 were also considered.

The Euler–Darboux (ED) equation

uξη +
1

ξ + η
(αuξ + βuη) = 0 (204)

includes the EPD equation (198) as a special case. This equation has im-
portant applications in aerodynamics. The change of coordinates ξ = t+ x,
η = t − x transforms (198) to (204) with α = β = b/2. Eq. (204) for
α = β = N ∈ Z admits a general solution

u(ξ, η) =
∂N−1

∂ξN−1

f(ξ)

ξ + η
+

∂N−1

∂ηN−1

g(η)

ξ + η
, (205)

where f and g are arbitrary functions. This implies that the general solution
of (198) can be obtained for b = 2N . For example, for N = 1 (b = 2), the
d’Alembert solution of the radial wave equation is obtained

u =
f(ξ) + g(η)

ξ + η
=

1

2t
(f(t+ x) + g(t− x)).
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A basis for the symmetry algebra of (204) is

v1 = ∂ξ − ∂η, v2 = ξ∂ξ + η∂η −
(α + β)

2
u∂u,

v3 = ξ2∂ξ − η2∂η − (βξ − αη)u∂u, v4 = u∂u

(206)

with the same non-zero commutation relations (200). The EPD and ED
equations have isomorphic symmetry algebras. For values α = β 6= 2N , we
have symmetry methods at our disposal for producing exact solutions of the
ED equation.

A complete classification of group invariant solutions of (197) would go
far beyond the scope of these notes. Instead, we will focus on the solutions
invariant under one-parameter subgroup generated by the conformal elements

c = α0ct + α1cx + α2cy,

where α0, α1, α2 are arbitrary parameters. Invariance under this subalgebra
leads to the reduction formula

u = r−1f(ξ), ξ = r−2(β0t+ β1x+ β2y), r2 = t2 − x2 − y2 (207)

with the constraint among the parameters

β0α0 − β1α1 − β2α2 = 0.

Substitution of (207) into (197) gives the second order ODE

β2f ′′ = af 5, β2 = β2
0 − β2

1 − β2
2 6= 0, (208)

which has the first integral

f ′2 =
a

3β2
(f 6 + c).

A further change of the dependent variable f = F−1/2 simplifies it to

F ′2 =
4a

3β2
(cF 3 + 1),

whose solution for c 6= 0 can be expressed in terms of Weierstrass ℘ function
as

F = ℘(z; 0, g3), z =

√
ac

3β2
(ξ + ξ0), g3 = −4c−1.
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In addition to the invariant solutions, the subgroup action on solutions
obtained through the exponentiation exp {ε0ct + ε1cx + ε2cy} can be utilized
to derive a formula for the transformation of solutions. More precisely, when-
ever U(r) = U(t, x, y) is a solution to (197), so is

u(r) = σ−1/2U(r̃), σ(r; ε) = 1−2ε.r+ε2r2, r̃ = σ−1(r−r2ε), r = (t, x, y),

where ε = (ε0, ε1, ε2) is the vector of group parameters, r2 = t2 − x2 − y2

and ε2 = |ε|2 = ε2
0 + ε2

1 + ε2
2. Note the relation σ(r; ε) = σ(r̃;−ε)−1. The

reader can compare the conformal transformations r̃ = σ−1(r − r2ε) of the
R1,2 space leaving its metric form invariant, dr̃2 = σ−2dr2, with those of the
Euclidean plane R2 given by (27)-(28).

Remark 5.8. The (n + 1)-dimensional conformally invariant extension of
Eq. (197) [10] is

�u(x) = ux0x0 −∆nu = au(n+3)/(n−1), n ≥ 2, (209)

where ∆n =
∑n

µ=1 uxµxµ is the Laplace operator and x = (x0, x1, . . . , xn) ∈
R1,n. The symmetry algebra is (n+2)(n+3)/2-dimensional conformal algebra
of the conformal group Conf(R1,n) with basis

pµ = ∂xµ , d =
n∑
µ=0

xµ∂xµ +
1− n

2
u∂u, µ = 0, 1, 2, . . . , n,

jµν = xµ∂xν − xν∂xµ , j0ν = x0∂xν + xν∂x0 , µ, ν = 1, 2, . . . , n

cµ = 2xµd− εx2∂xµ + (1− n)xiu∂u, x2 = x2
0 −

n∑
µ=1

x2
µ,

(210)

where ε = 1 for µ = 0 and ε = −1 for µ = 1, 2, . . . , n. The subalgebras
spanned by the basis elements {pµ, jµν , j0ν} and {pµ, jµν , j0ν ,d} are called
the Poincaré algebra of dimension (n+1)(n+2)/2 and the similitude algebra
of dimension (n2 + 3n+ 4)/2, respectively.

5.1 Linearization by symmetry structure

We know that a linear differential equation or one that is linearizable by a
point transformation admits an infinite-dimensional symmetry algebra. By
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checking the existence of such a symmetry structure we can construct lin-
earizing transformations. A well-known example is the potential Burgers’
equation [35]

ut = uxx + u2
x, (211)

admitting the infinite-dimensional symmetry algebra generated by the vector
fields

v1 = ∂x, v2 = ∂t, v3 = ∂x, v4 = 2t∂x − x∂u,
v5 = 2t∂t + x∂x, v6 = 4t2∂t + xt∂x − (2t+ x2)∂u, vρ = ρ(x, t)e−u∂u,

where ρ is a solution to the linear heat equation ρt = ρxx. It is easy to see
that the point transformation ũ = eu maps the basis vector fields to (157) of
the linear equation together with ṽρ = ρ(x, t)∂ũ and Eq. (211) to the linear
heat equation ũt = ũxx. The transformation v = ux relates (211) to the usual
Burgers’ equation

vt = vxx + 2vvx. (212)

So we have established the celebrated Cole–Hopf transformation v = (ln ũ)x =
ũx/ũ taking solutions of (212) to positive solutions of the heat equation.

As well, for higher order PDEs, we can use the same method of look-
ing at the maximal point symmetry algebra (if possible) and constructing a
linearizing transformation from its infinite-dimensional symmetry involving
an arbitrary function as being solution to a linear PDE. We comment that
there might be PDEs with finite symmetry algebra that can be linearized by
nonpoint transformations.

Example 5.9. (Exercise 2.22 of [35]) The nonlinear Thomas equation

E = utx + αut + βux + γuxut = 0, γ 6= 0 (213)

can be shown to be linearizable by a point transformation. We first compute
its symmetry algebra. A general element of the algebra is written in the form

v = τ(t, x, u)∂t + ξ(t, x, u)∂x + ϕ(t, x, u)∂u. (214)

We need only the prolongation of v involving coefficients of utx, ut, ux

pr(2)v = v + ϕt∂ut + ϕx∂ux + ϕtx∂utx .

Acting on E by the prolonged vector field provides the linearized equation

ϕtx + (α + γux)ϕ
t + (β + γut)ϕ

x = 0. (215)
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Replacing utx by −(αut + βux + γuxut) and splitting with respect to the
derivatives utt, uttux and uxx, uxxut we find

τx = τu = 0, ξt = ξu = 0.

Using the simplification τ = τ(t) and ξ = ξ(x) and splitting the remaining
determining equations resulting from (215) with respect to the derivatives
involving utux, ut, ux we find

utux : ϕuu + γϕu = 0,

ut : ϕxu + γϕx + αξ′ = 0,

ux : ϕtu + γϕt + βτ̇ = 0,

u0 : ϕtx + αϕt + βϕx = 0.

(216)

From the first equation we have ϕ(t, x, u) = f(t, x) + e−γug(t, x), γ 6= 0.
Substitution back into (216) determines the form of f

f(t, x) = −1

γ
(αξ + βτ) + c,

where c is an arbitrary constant. The last equation of (216) gives

e−γu(gtx + αgt + βgx) =
αβ

γ
(τ̇ + ξ′).

This implies that if one of α, β is zero then g has to satisfy a linear PDE and
τ , ξ remain arbitrary. The symmetry algebra is then infinite dimensional and
is spanned by

v = τ(t)∂t + ξ(x)∂x +

[
−α
γ
ξ(x) + c+ g(t, x)e−γu

]
∂u

if β = 0, and

v = τ(t)∂t + ξ(x)∂x +

[
−β
γ
τ(t) + c+ g(t, x)e−γu

]
∂u

if α = 0. The function g satisfies gtx+αgt = 0 and gtx+βgx = 0, respectively.
Otherwise, we must have τ̇ + ξ′ = 0. This fixes τ and ξ as τ = λt + c1,

ξ = −λx + c2, where λ, c1, c2 are arbitrary constants. Summarizing, we
conclude that the general element v depends on four parameters c1, c2, c, λ
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and an arbitrary solution of a linear PDE. So (213) is invariant under an
infinite dimensional symmetry algebra with the basis vector fields

v1 = ∂t, v2 = ∂x, v3 = ∂u, v4 = t∂t − x∂x + γ−1(αx− βt)∂u,
v(ρ) = e−γuρ(t, x)∂u,

(217)

where ρ(t, x) solves the linear equation

ρtx + αρt + βρx = 0. (218)

The fact that the Lie symmetry algebra depends on solutions of a linear
PDE suggests that there must exist a change of dependent variable that will
linearize the original equation. Such a transformation is given by ũ = F (u)
with the property F ′ = eγu so that ũ = γ−1eγu where ũ satisfies

ũtx + αũt + βũx = 0.

The linear transformation ũ = e−αx−βtv(t, x) removes the parameters α and
β, resulting in

vtx − αβv = 0. (219)

This equation inherits the symmetry ṽ4 = t∂t − x∂x from v4. Its invariants
are τ = tx and v so we reduce it by the transformation v = G(τ) to the ODE

τG′′ +G′ − αβG = 0.

The general solution of this equation can be written in terms of the modified
Bessel functions

G(τ) = c1I0(2
√
αβτ) + c2K0(2

√
αβτ).

The choice c1 = 1, c2 = 0 yields the fundamental solution (or Green’s func-
tion) at the origin (0, 0) (See [2])

G(t, x; 0, 0) = I0(2
√
αβtx).

It is sufficient to use the translational invariance to obtain the Green’s func-
tion at (t0, x0)

G(t, x; t0, x0) = I0

(
2
√
αβ(t− t0)(x− x0)

)
.

A particular the solution of the given PDE will be in the form

u =
1

γ
log[γG(tx)− αx− βt].

84



Example 5.10. We consider a third order KdV-type evolution equation

ut = uxxx + 6u−1uxuxx + u−2u3
x.

The symmetry algebra is infinite-dimensional with basis elements

v1 = ∂t, v2 = ∂x, v3 = 3t∂t + x∂x, v4 = u∂u, vρ = ρ(t, x)u−2∂u,

where ρ is any solution to the linear KdV equation ρt = ρxxx. The trans-
formation ũ = u3 maps the symmetry algebra to that of the linear KdV
equation ũt = ũxxx, and hence the original equation to the linear one.

It may not always be practical to calculate the maximal infinite-dimensional
symmetry algebra by application of the Lie symmetry algorithm. When this
is the case, it is usually useful to give some tests involving only certain finite-
dimensional subalgebra of the maximal symmetry algebra. But, in this case,
for PDEs the construction of linearizing transformation is a tricky task.

For ODEs, we already encountered such a test (due to Lie) in Example
3.7. See also Remark 4.4. It is sufficient to identify a two-dimensional sub-
algebra equivalent to the canonical forms A2,2 (abelian) or A2,4 (nonabelian)
as the eight-dimensional symmetry algebra of a linearizable second order
ODE. Finding linearizing coordinates is immediate. A further example is
the following second member of the Riccati chain, known to be linearizable
to z3 = z′′′ = 0 by the Hopf–Cole transformation y = z′(x)/z(x).

Example 5.11.
E(x, y(2)) = y2 + 3yy1 + y3 = 0. (220)

This equation admits a linearly connected (rank-one) nonabelian 2-dimensional
algebra spanned by

v1 = y∂x − y3∂y, v2 = λ(x, y)v1, λ(x, y) =
x

y

(
1− 1

2
xy

)
with commutation relation [v1,v2] = v1. This is verified by noting

pr(2)v1(E) = −3(y2 + y1)E,

and

pr(2)v2(E) =
1

2
[3x2(y2 + y1)− 4]E,
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then checking the infinitesimal invariance criterion (23). This knowledge
ensures us that Eq. (220) has a eight-dimensional symmetry algebra and
thus can be linearized.

A linearizing coordinate transformation r = r(x, y), s = s(x, y) is found
by solving the set of linear first order PDEs v1(r) = 0, v1(s) = 1, v2(r) = 0,
v2(s) = s as

r = x− 1

y
, s =

x

y
− x2

2
.

Note that we simply have chosen r as a joint invariant and s = λ(x, y). The
transformed algebra is the canonical form A2,4 : {∂s, s∂s}. This transforma-
tion linearizes Eq. (220) to s′′(r) = 0. This is readily seen by calculating the
following derivative and using the given equation:

d2s

dr2
= −y

3(y2 + 3yy1 + y3)

(y2 + y1)3
= 0.

We note that the full eight-dimensional symmetry algebra of the equation
is isomorphic to that of the equation s′′ = 0. This is the sl(3,R) algebra
generated by the vector fields

∂r, r∂r, s∂r, rs∂r + s2∂s,

∂s, r∂s, s∂s, r2∂r + rs∂s.

The corresponding group is just the projective group SL(3,R) in the (r, s)
plane

(r̃, s̃) : (r, s)→
(
a1r + a2s+ a3

a7r + a8s+ a9

,
a4r + a5s+ a6

a7r + a8s+ a9

)
with the condition ∣∣∣∣∣∣

a1 a2 a3

a4 a5 a6

a7 a8 a9

∣∣∣∣∣∣ 6= 0.

The projective group SL(3,R) maps the family of straight lines (and also
quadrics) onto themselves. Another interesting fact is that this group has
the lowest order differential invariant starting at order 7. But obviously there
are lower order relative differential invariants such as the second order one
I = s′′(r). This means that, for some differential function µ, s̃′′(r̃) = µs′′(r)
under the projective group. A differential function I : Jn → R is a relative
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differential invariant of order n of a Lie algebra g if for some differential
function λ(x, u(n))

pr(n)v(I) = λ(x, u(n))I

for every prolonged vector field pr(n)v ∈ g(n). If λ = 0, I is a differential
invariant of order n. The seventh order differential invariant can be expressed
in terms of relative differential invariants (See [23]).

In the following example we shall make use of the existence of an infinite-
dimensional symmetry algebra to find a linearizing transformation.

Example 5.12.

y2 + p(x)y = σ
y2

1

y
, (221)

where σ is an arbitrary constant. This equation is invariant under the sym-
metry algebra represented by the vector fields

v1 = y∂y, v2(ρ) = ρ(x)yσ∂y,

where ρ(x) satisfies the linear equation

ρ′′(x) + (1− σ)ρ(x) = 0. (222)

We note that under the condition (222)

pr(2)v2(E) = λ(x, y)E, λ(x, y) = σρ(x)yσ,

where E = y2 +py−σy−1y2
1. The vector fields v1,v2(ρ) reflect the linearity of

the equation modulo a transformation. Indeed, the point transformation y =
z1/(1−σ), σ 6= 1 maps v2(f) to ṽ2(ρ) = ρ(x)∂z (preserving the homogeneity in
z) and the equation to the linear homogeneous one

z2 + (1− σ)p(x)z = 0.

If we extend Eq. (221) to

y2 + p(x)y = σ
y2

1

y
+ h(x, y) (223)

and impose invariance under v2(f) we find h(x, y) = g(x)yσ, σ 6= 1. If
σ = 1 we go back to the case h = 0. The resulting equation continues to
be linearizable by the same transformation. The transformed equation is the
nonhomogeneous linear one

z2 + (1− σ)p(x)z = (1− σ)g(x).

87



5.2 Lie’s Linearization Theorem

This theorem states that amongst second-order ordinary differential equa-
tions, Eq. y2 = f(x, y, p) with p = y1 is point equivalent to the trivial
free-particle equation y2 = 0 if and only if the following fourth-order Tresse
(absolute) invariants [31]

I1 = fpppp = 0, I2 = D̂2
xfpp−4D̂xfyp−fpD̂xfpp+6fyy−3fyfpp+4fpfyp = 0,

(224)

are identically zero. Here D̂x = ∂x + p∂y + f∂p is the truncation of the usual
total derivative operator Dx restricted to y2 = f . The first condition implies
that f should be at most cubic in p = y1.

Example 5.13. Any equation admitting a A2,3-type symmetry can be lin-
earized if and only if it has the form

xy2 = ay3
1 + by2

1 +

(
1 +

b2

3a

)
y1 +

b(9a+ b2)

27a2
, (225)

where a 6= 0 and b are arbitrary constants. The necessary and sufficient
conditions (224) for linerizability are satisfied. We can simplify (225) using
the equivalence group transformation shifting only the parameter b as b →
b+ε [47]. This means that we can put b = 0 by choosing the group parameter
ε = −b. This transformation is given by

x̃ =
√
e−b(1 + x2)− 1, ỹ = e−b/2

(
y +

b

3a
x

)
. (226)

So (225) has effectively been reduced to

x̃ỹ2 = aỹ3
1 + ỹ1. (227)

Moreover, a can be transformed to a = ε = ±1 by scaling y (or x). Two
equivalent equations have isomorphic symmetry groups so that there should
be a point transformation mapping the two Lie algebras and Eqs. (227)
and y2 = 0 into each other. See [47] for the construction of such a map. An
easier way of achieving linearization is by using a two-dimensional subalgebra
of type A22 of 4.4 of its entire sl(3,R) symmetry algebra given by

v1 =
1

x̃
∂x̃, v2 =

ỹ

x̃
∂x̃.
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Suitable canonical coordinates are r = ỹ (an invariant), s = x̃2/2, which
maps the subalgebra to {∂s, r∂s} and Eq. (227) to the linear equation s′′(r) =
ỹ−3

1 (ỹ1 − x̃ỹ2) = −a. Consequently, the solution in tilde coordinates is

aỹ2 + x̃2 + c1ỹ + c2 = 0.

Reverting to (x, y) coordinates via (226) and redefining arbitrary constants
c1, c2 leads to the solution of (225)

ay2 +
2b

3
xy +

(
1 +

b2

9a

)
x2 + C1

(
y +

b

3a
x

)
+ C2 = 0,

which geometrically describes a family of ellipses or hyperbolas as its dis-
criminant ∆ = −4a varies for a < 0 or a > 0, respectively.

Equation of Example 5.11 with two-dimensional symmetry group gener-
ated by {∂x, x∂x − y∂y} of the type A23 of 4.4 (modulo a point transformation
(x, y) → (y−1, x + y−1)) belongs to the class (225) with a = −1, b = 6 or to
(227) with a = −1 and hence once again its linearizability has been estab-
lished.

In general, if the second order equation y2 = f(x, y, p) is known to sat-
isfy linearizability conditions (224), it is sufficient to pick a two-dimensional
intransitive subalgebra of type A2,2 or A2,4 (up to change of basis) of the
sl(3,R) symmetry algebra to transform to a linear equation.

Linearization criteria (224) for the ODE (223) is fulfilled if h(x, y) satisfies
the PDE

y2hyy − σyhy + σh = 0,

allowing the general solution h = g(x)yσ + f(x)y for σ 6= 1. The arbitrary
function f(x) can be put to zero by taking a linear combination with p(x).

For σ = 1, we find h = g(x)y ln y, y > 0, excluding the linear term
f(x)y. Then, the vector field v(ρ) = ρ(x)y∂y, where ρ solves the linear
ODE ρ′′ − gρ = 0, is a symmetry because pr(2)v(E) = −ρ(x)E = 0 on
E = y2 + py − y−1y2

1 − g(x)y ln y = 0. It permits us to find the linearizing
transformation y = ez. The linearized ODE is z′′ − g(x)z + p(x) = 0.

We comment that there are also similar tests for second order systems
of ODEs based on the structure of symmetry algebras [49]. For systems of
PDEs, a general approach to linearizability can be found in the paper [25]
(See also the book [4]).
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5.3 Concluding remarks

So far we restricted our attention to local Lie point transformations that leave
the system of differential equations invariant. They are usually called classi-
cal symmetries of the system. There are several uses of them in the context
of differential equations like group-invariant solutions for PDEs and integra-
tion for ODEs among others. One the important generalizations of classical
symmetries is the notion of generalized (or Lie–Bäcklund) symmetries. They
were originally introduced by E. Noether in her celebrated paper [33] (See [34]
for a more recent English translation), which related variational symmetries
and (local) conservation laws. They also play a central role in soliton theory
of completely integrable nonlinear partial differential equations. Evolution
equations like KdV (Korteweg–de Vries) and KP (Kadomtsev–Petviashvili)
are known to admit infinite hierarchies of generalized symmetries and conser-
vation laws. An approach to classification of integrable systems is to identify
systems admitting generalized symmetries up to differential substitutions
preserving the differential structure of the system. The infinitesimal genera-
tors of generalized symmetries depend on derivatives of dependent variables.
In the special case of one dependent variable, every first order generalized
symmetry determines a contact symmetry (local diffeomorphisms of the n-th
order jet space Jn, preserving the contact ideal generated by contact forms
of the equation) and vice versa.

Over the last few decades, numerous useful extensions of the classical Lie
approach to group-invariant solutions have been developed. Among others,
they include the method of partially invariant solutions [38], non-classical
method, methods of conditional (point or generalized) [37], and of symmetries
of potential systems [4].
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