Symbolic Computation of Travelling Wave Solutions of Nonlinear Differential-Difference Equations

Prof. Willy Hereman

Department of Mathematical and Computer Sciences
Colorado School of Mines
Golden, CO-80401, U.S.A.
http://www.mines.edu/fs_home/whereman/
whereman@mines.edu

Colloquium Talk, Physics Department
University of Antwerp, Belgium
Tuesday, December 23, 2003, 16:00

Collaborators: Douglas Baldwin & Ünal Göktaş (Wolfram Research, Inc.)

Research supported in part by NSF
under Grants DMS-9912293 and CCR-9901929
OUTLINE

Purpose & Motivation

Typical Examples of ODEs, PDEs, and DDEs

Part I: Tanh Method for PDEs

Quick Review of Tanh Algorithm

A Typical Example

Other Types of Functions

Demo of Mathematica Software: PDESpecialSolutions.m

Part II: Tanh Method for DDEs (Lattices)

Algorithm for Tanh Solutions

Typical Examples

Table with Results

Demo of Mathematica Software: DDESpecialSolutions.m

Conclusions & Future Research

Research Papers & Software
Purpose & Motivation

• **Develop** and implement various **methods** to find closed form solutions of nonlinear PDEs and DDEs: direct methods, Lie symmetry methods, similarity methods, etc.

• Fully **automate** the hyperbolic and elliptic function methods to compute travelling solutions of nonlinear PDEs.

• Fully **automate** the hyperbolic tanh method to compute travelling wave solutions of nonlinear differential-difference equations (DDEs or lattices).

• **Class** of nonlinear PDEs and DDEs solvable with such methods includes famous evolution and wave equations, and lattices.

 Examples PDEs: Korteweg-de Vries, Boussinesq, and Kuramoto-Sivashinsky equations.
 Fisher and FitzHugh-Nagumo equations.

 Examples ODEs: Duffing and nonlinear oscillator equations.

 Examples DDEs: Volterra, Toda, and Ablowitz-Ladik lattices.

• **PDEs:** Solutions of tanh (kink) or sech (pulse) type **model** solitary waves in fluids, plasmas, circuits, optical fibers, bio-genetics, etc.

 DDEs: discretizations of PDEs, lattice theory, queing and network problems, solid state and quantum physics.

• **Benchmark** solutions for numerical PDE and DDE solvers.
• **Research aspect:** Design high-quality application packages to compute solitary wave solutions of large classes of nonlinear evolution and wave equations and lattices.

• **Educational aspect:** Software as course ware for courses in nonlinear PDEs and DDEs, theory of nonlinear waves, integrability, dynamical systems, and modeling with symbolic software.

REU projects of NSF. Extreme Programming!

• **Users:** scientists working on nonlinear wave phenomena in fluid dynamics, nonlinear networks, elastic media, chemical kinetics, material science, bio-sciences, plasma physics, and nonlinear optics.
Typical Examples of ODEs and PDEs

• The Duffing equation:

\[u'' + u + \alpha u^3 = 0 \]

Solutions in terms of elliptic functions:

\[u(x) = \pm \frac{\sqrt{c_1^2 - 1}}{\sqrt{\alpha}} \text{cn}(c_1 x + \Delta; \frac{c_1^2 - 1}{2c_1^2}) , \]

and

\[u(x) = \pm \frac{\sqrt{2(c_1^2 - 1)}}{\sqrt{\alpha}} \text{sn}(c_1 x + \Delta; \frac{1 - c_1^2}{c_1^2}) . \]

• The Korteweg-de Vries (KdV) equation:

\[u_t + 6\alpha uu_x + u_{3x} = 0 . \]

Solitary wave solution:

\[u(x, t) = \frac{8c_1^3 - c_2}{6\alpha c_1} - \frac{2c_1^2}{\alpha} \tanh^2 [c_1 x + c_2 t + \Delta] \],

or, equivalently,

\[u(x, t) = -\frac{4c_1^3 + c_2}{6\alpha c_1} + \frac{2c_1^2}{\alpha} \text{sech}^2 [c_1 x + c_2 t + \Delta] . \]

Cnoidal wave solution:

\[u(x, t) = \frac{4c_1^3 (1 - 2m) - c_2}{\alpha c_1} + \frac{12m c_1^2}{\alpha} \text{cn}^2 (c_1 x + c_2 t + \Delta; m) , \]

modulus \(m \).
• The modified Korteweg-de Vries (mKdV) equation:
 \[u_t + \alpha u^2 u_x + u_{3x} = 0. \]

 Solitary wave solution:
 \[u(x, t) = \pm \sqrt{\frac{6}{\alpha}} c_1 \operatorname{sech} \left[c_1 x - c_1^3 t + \Delta \right]. \]

• Three-dimensional modified Korteweg-de Vries equation:
 \[u_t + 6u^2 u_x + u_{xyz} = 0. \]

 Solitary wave solution:
 \[u(x, y, z, t) = \pm \sqrt{c_2 c_3 \operatorname{sech} \left[c_1 x + c_2 y + c_3 z - c_1 c_2 c_3 t + \Delta \right]} \].

• The combined KdV-mKdV equation:
 \[u_t + 6\alpha uu_x + 6\beta u^2 u_x + \gamma u_{3x} = 0. \]

 Real solitary wave solution:
 \[u(x, t) = -\frac{\alpha}{2\beta} \pm \sqrt{\frac{\gamma}{\beta}} c_1 \operatorname{sech} \left(c_1 x + \frac{c_1}{2\beta} (3\alpha^2 - 2\beta \gamma c_1^2) t + \Delta \right). \]

 Complex solutions:
 \[u(x, t) = -\frac{\alpha}{2\beta} \pm i \sqrt{\frac{\gamma}{\beta}} c_1 \operatorname{tanh} \left(c_1 x + \frac{c_1}{2\beta} (3\alpha^2 + 4\beta \gamma c_1^2) t + \Delta \right), \]

 \[u(x, t) = -\frac{\alpha}{2\beta} + \frac{1}{2} \sqrt{\frac{\gamma}{\beta}} c_1 \left(\operatorname{sech} \xi \pm i \operatorname{tanh} \xi \right), \]

 and
 \[u(x, t) = -\frac{\alpha}{2\beta} - \frac{1}{2} \sqrt{\frac{\gamma}{\beta}} c_1 \left(\operatorname{sech} \xi \mp i \operatorname{tanh} \xi \right) \]

 with \(\xi = c_1 x + \frac{c_1}{2\beta} (3\alpha^2 + \beta \gamma c_1^2) t + \Delta \).
• The Fisher equation:

\[u_t - u_{xx} - u(1 - u) = 0. \]

Solitary wave solution:

\[u(x, t) = \frac{1}{4} \pm \frac{1}{2} \tanh \xi + \frac{1}{4} \tanh^2 \xi, \]

with

\[\xi = \pm \frac{1}{2\sqrt{6}} x \pm \frac{5}{12} t + \Delta. \]

• The generalized Kuramoto-Sivashinski equation:

\[u_t + uu_x + u_{xx} + \sigma u_{3x} + u_{4x} = 0. \]

Solitary wave solutions (ignoring symmetry \(u \to -u, x \to -x, \sigma \to -\sigma \)):

For \(\sigma = 4 \):

\[u(x, t) = 9 - 2c^2 - 15 \tanh \xi (1 + \tanh \xi - \tanh^2 \xi) \]

with \(\xi = \frac{x}{2} + c^2 t + \Delta. \)

For \(\sigma = \frac{12}{\sqrt{47}} \):

\[u(x, t) = \frac{45 \mp 4418c^2}{47\sqrt{47}} \pm \frac{45}{47\sqrt{47}} \tanh \xi - \frac{45}{47\sqrt{47}} \tanh^2 \xi \pm \frac{15}{47\sqrt{47}} \tanh^3 \xi \]

with \(\xi = \pm \frac{1}{2\sqrt{47}} x + c^2 t + \Delta. \)
For $\sigma = 16/\sqrt{73}$:

$$u(x, t) = \frac{2}{73^{\sqrt{73}}} \left(30 \pm 5329c_2 \right) \pm \frac{75}{73^{\sqrt{73}}} \tanh \xi - \frac{60}{73^{\sqrt{73}}} \tanh^2 \xi \pm \frac{15}{73^{\sqrt{73}}} \tanh^3 \xi$$

with $\xi = \pm \frac{1}{2\sqrt{73}} x + c_2 t + \Delta$.

For $\sigma = 0$:

$$u(x, t) = -2 \left\{ \sqrt{\frac{19}{11}} c_2 - \frac{135}{19} \sqrt{\frac{11}{19}} \tanh \xi + \frac{165}{19} \sqrt{\frac{11}{19}} \tanh^3 \xi \right\}$$

with $\xi = \frac{1}{2\sqrt{19}} x + c_2 t + \Delta$.

- The Boussinesq (wave) equation:

$$u_{tt} - u_{2x} + 3u u_{2x} + 3u_x^2 + \alpha u_{4x} = 0,$$

or written as a first-order system (v auxiliary variable):

$$u_t + v_x = 0,$$

$$v_t + u_x - 3uu_x - \alpha u_{3x} = 0.$$

Solitary wave solution:

$$u(x, t) = \frac{c_1^2 - c_2^2 + 8\alpha c_4^4}{3c_1^2} - 4\alpha c_1^2 \tanh^2 [c_1 x + c_2 t + \Delta],$$

$$v(x, t) = b_0 + 4\alpha c_1 c_2 \tanh^2 [c_1 x + c_2 t + \Delta].$$

- The Broer-Kaup system:

$$u_{ty} + 2(uu_x)_y + 2v_{xx} - u_{xyy} = 0,$$

$$v_t + 2(uv)_x + v_{xx} = 0.$$

Solitary wave solution:

$$u(x, t) = -\frac{c_3}{2c_1} + c_1 \tanh [c_1 x + c_2 y + c_3 t + \Delta],$$

$$v(x, t) = c_1 c_2 - c_1 c_2 \tanh^2 [c_1 x + c_2 y + c_3 t + \Delta].$$
• System of three nonlinear coupled equations (Gao & Tian, 2001):

\[u_t - u_x - 2v = 0, \]
\[v_t + 2uw = 0, \]
\[w_t + 2uv = 0. \]

Solutions:

\[u(x, t) = \pm c_2 \tanh \xi, \]
\[v(x, t) = \pm \frac{1}{2} c_2 (c_1 - c_2) \sech^2 \xi, \]
\[w(x, t) = -\frac{1}{2} c_2 (c_1 - c_2) \sech^2 \xi, \]

and

\[u(x, t) = \pm ic_2 \sech \xi, \]
\[v(x, t) = \pm \frac{1}{2} ic_2 (c_1 - c_2) \tanh \xi \sech \xi, \]
\[w(x, t) = \frac{1}{4} c_2 (c_1 - c_2) \left(1 - 2 \sech^2 \xi \right), \]

and also

\[u(x, t) = \pm \frac{1}{2} ic_2 \left(\sech \xi + i \tanh \xi \right), \]
\[v(x, t) = \pm \frac{1}{4} c_2 (c_1 - c_2) \sech \xi \left(\sech \xi + i \tanh \xi \right), \]
\[w(x, t) = -\frac{1}{4} c_2 (c_1 - c_2) \sech \xi \left(\sech \xi + i \tanh \xi \right) \]

with \(\xi = c_1 x + c_2 t + \Delta. \)
• Nonlinear sine-Gordon equation (light cone coordinates):

\[\Phi_{xt} = \sin \Phi. \]

Set \(u = \Phi_x, \ v = \cos(\Phi) - 1, \)

\[u_{xt} - u - u v = 0, \]
\[u_t^2 + 2v + v^2 = 0. \]

Solitary wave solution (kink):

\[u = \pm \frac{1}{\sqrt{-c}} \sech\left[\frac{1}{\sqrt{-c}}(x - ct) + \Delta \right], \]
\[v = 1 - 2 \sech^2\left[\frac{1}{\sqrt{-c}}(x - ct) + \Delta \right]. \]

Solution:

\[\Phi(x, t) = \int u(x, t) \, dx = \pm 4 \arctan \left[\exp \left(\frac{1}{\sqrt{-c}}(x - ct) + \Delta \right) \right]. \]

• ODEs from quantum field theory:

\[u_{xx} = -u + u^3 + auv^2, \]
\[v_{xx} = bv + cv^3 + av(u^2 - 1). \]

Solitary wave solutions:

\[u = \pm \tanh\left[\sqrt{\frac{a^2 - c}{2(a - c)}}x + \Delta \right], \]
\[v = \pm \sqrt{\frac{1 - a}{a - c}} \sech\left[\sqrt{\frac{a^2 - c}{2(a - c)}}x + \Delta \right], \]

provided \(b = \sqrt{\frac{a^2 - c}{2(a - c)}}. \)
Typical Examples of DDEs (lattices)

- The Volterra lattice:
 \[
 \begin{aligned}
 \dot{u}_n &= u_n(v_n - v_{n-1}), \\
 \dot{v}_n &= v_n(u_{n+1} - u_n).
 \end{aligned}
 \]

 Travelling wave solution:
 \[
 \begin{aligned}
 u_n(t) &= -c_1 \coth(d_1) + c_1 \tanh [d_1 n + c_1 t + \delta], \\
 v_n(t) &= -c_1 \coth(d_1) - c_1 \tanh [d_1 n + c_1 t + \delta].
 \end{aligned}
 \]

- The Toda lattice:
 \[
 \begin{aligned}
 \ddot{u}_n &= (1 + \dot{u}_n)(u_{n-1} - 2u_n + u_{n+1}).
 \end{aligned}
 \]

 Travelling wave solution:
 \[
 u_n(t) = a_{10} \pm \sinh(d_1) \tanh [d_1 n \pm \sinh(d_1) t + \delta].
 \]

- The Relativistic Toda lattice:
 \[
 \begin{aligned}
 \dot{u}_n &= (1 + \alpha u_n)(v_n - v_{n-1}), \\
 \dot{v}_n &= v_n(u_{n+1} - u_n + \alpha v_{n+1} - \alpha v_{n-1}).
 \end{aligned}
 \]

 Travelling wave solution:
 \[
 \begin{aligned}
 u_n(t) &= -\frac{1}{\alpha} - c_1 \coth(d_1) + c_1 \tanh [d_1 n + c_1 t + \delta], \\
 v_n(t) &= \frac{c_1 \coth(d_1)}{\alpha} - \frac{c_1}{\alpha} \tanh [d_1 n + c_1 t + \delta].
 \end{aligned}
 \]
• The Ablowitz-Ladik lattice:

\[\dot{u}_n(t) = (\alpha + u_n v_n)(u_{n+1} + u_{n-1}) - 2\alpha u_n, \]

\[\dot{v}_n(t) = -(\alpha + u_n v_n)(v_{n+1} + v_{n-1}) + 2\alpha v_n. \]

Travelling wave solution:

\[u_n(t) = \frac{\alpha \sinh^2(d_1)}{a_{21}} (\pm 1 - \tanh [d_1 n + 2\alpha t \sinh^2(d_1) + \delta]), \]

\[v_n(t) = a_{21} (\pm 1 + \tanh [d_1 n + 2\alpha \sinh^2(d_1)t + \delta]). \]

• 2D Toda lattice:

\[\frac{\partial^2 u_n}{\partial x \partial t}(x, t) = \left(\frac{\partial u_n}{\partial t} + 1 \right) (u_{n-1} - 2u_n + u_{n+1}). \]

Travelling wave solution:

\[u_n(x, t) = a_{10} + \frac{1}{c_2} \sinh^2(d_1) \tanh \left[d_1 n + \frac{\sinh^2(d_1)}{c_2} x + c_2 t + \delta \right]. \]

• Hybrid lattice:

\[\dot{u}_n(t) = (1 + \alpha u_n + \beta u_n^2)(u_{n-1} - u_{n+1}), \]

Travelling wave solution:

\[u_n(t) = \frac{-\alpha \pm \sqrt{\alpha^2 - 4\beta} \tanh(d_1)}{2\beta} \tanh \left[d_1 n + \frac{\alpha^2 - 4\beta}{2\beta} \tanh(d_1)t + \delta \right]. \]
Algorithm for Tanh Solutions for system of PDEs

System of nonlinear PDEs of order m

$$\Delta(u(x), u'(x), u''(x), \cdots u^{(m)}(x)) = 0.$$

Dependent variable u has M components u_i (or u, v, w, \ldots).

Independent variable x has N components x_j (or x, y, z, \ldots, t).

Step T1:

- Seek solution $u(x) = U(T)$, with

 $$T = \tanh \xi = \tanh \left[\sum_j^N c_j x_j + \delta \right].$$

- Observe $\tanh' \xi = 1 - \tanh^2 \xi$ or $T' = 1 - T^2$. Hence, all derivative of T are polynomial in T. For example, $T'' = -2T(1 - T^2)$, etc.

- Repeatedly apply the operator rule

 $$\frac{\partial \bullet}{\partial x_j} = \frac{\partial \xi}{\partial x_j} \frac{dT}{d\xi} \frac{d \bullet}{dT} = c_j (1 - T^2) \frac{d \bullet}{dT}$$

 Produces a nonlinear system of ODEs

 $$\Delta(T, U(T), U'(T), U''(T), \ldots, U^{(m)}(T)) = 0.$$

NOTE: Compare with the ultra-spherical (linear) ODE:

$$(1 - x^2)y''(x) - (2\alpha + 1)xy'(x) + n(n + 2\alpha)y(x) = 0$$

with integer $n \geq 0$ and α real. Includes:

- Legendre equation ($\alpha = \frac{1}{2}$),
- ODE for Chebyshev polynomials of type I ($\alpha = 0$),
- ODE for Chebyshev polynomials of type II ($\alpha = 1$).
• Example: For the Boussinesq system

\[u_t + v_x = 0, \]
\[v_t + u_x - 3uu_x - \alpha u_{3x} = 0, \]

after cancelling common factors \(1 - T^2 \),

\[c_2 U' + c_1 V' = 0, \]
\[c_2 V' + c_1 U' - 3c_1 U U' \]
\[+ \alpha c_1^3 \left[2(1 - 3T^2)U' + 6T(1 - T^2)U'' - (1 - T^2)^2 U''' \right] = 0. \]

Step T2:

• Seek polynomial solutions

\[U_i(T) = \sum_{j=0}^{M_i} a_{ij} T^j. \]

Determine the highest exponents \(M_i \geq 1 \).

Substitute \(U_i(T) = T^{M_i} \) into the LHS of ODE.

Gives polynomial \(P(T) \).

For every \(P_i \) consider all possible balances of the highest exponents in \(T \).

Solve the resulting linear system(s) for the unknowns \(M_i \).

• Example: Balance highest exponents for the Boussinesq system

\[M_1 - 1 = M_2 - 1, \quad 2M_1 - 1 = M_1 + 1. \]

So, \(M_1 = M_2 = 2 \).

Hence,

\[U(T) = a_{10} + a_{11} T + a_{12} T^2, \]
\[V(T) = a_{20} + a_{21} T + a_{22} T^2. \]
Step T3:

- Derive algebraic system for the unknown coefficients \(a_{ij} \) by setting to zero the coefficients of the power terms in \(T \).

- Example: Algebraic system for Boussinesq case

 \[
 a_{11} c_1 (3a_{12} + 2\alpha c_1^2) = 0, \\
 a_{12} c_1 (a_{12} + 4\alpha c_1^2) = 0, \\
 a_{21} c_1 + a_{11} c_2 = 0, \\
 a_{22} c_1 + a_{12} c_2 = 0, \\
 a_{11} c_1 - 3a_{10} a_{11} c_1 + 2\alpha a_{11} c_1^3 + a_{21} c_2 = 0, \\
 -3a_{11}^2 c_1 + 2a_{12} c_1 - 6a_{10} a_{12} c_1 + 16\alpha a_{12} c_1^3 + 2a_{22} c_2 = 0.
 \]

Step T4:

- Solve the nonlinear algebraic system with parameters.

- Example: Solution for Boussinesq system

 \[
 a_{10} = \frac{c_1^2 - c_2^2 + 8\alpha c_1^4}{3c_1^2}, \quad a_{11} = 0, \\
 a_{12} = -4\alpha c_1^2, \quad a_{20} = \text{free}, \\
 a_{21} = 0, \quad a_{22} = 4\alpha c_1 c_2.
 \]

Step T5:

- Return to the original variables. Test the final solution(s) of PDE. Reject trivial solutions.

- Example: Solitary wave solution for Boussinesq system:

 \[
 u(x, t) = \frac{c_1^2 - c_2^2 + 8\alpha c_1^4}{3c_1^2} - 4\alpha c_1^2 \tanh^2 [c_1 x + c_2 t + \delta], \\
 v(x, t) = a_{20} + 4\alpha c_1 c_2 \tanh^2 [c_1 x + c_2 t + \delta].
 \]
Other Types of Solutions for PDEs

<table>
<thead>
<tr>
<th>Function</th>
<th>ODE (y' = \frac{dy}{d\xi})</th>
<th>Chain Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tanh(\xi))</td>
<td>(y' = 1 - y^2)</td>
<td>(\frac{\partial \bullet}{\partial x_j} = c_j (1 - T^2) \frac{d \bullet}{dT})</td>
</tr>
<tr>
<td>(\sech(\xi))</td>
<td>(y' = -y \sqrt{1 - y^2})</td>
<td>(\frac{\partial \bullet}{\partial x_j} = -c_j s \sqrt{1 - s^2} \frac{d \bullet}{ds})</td>
</tr>
<tr>
<td>(\tan(\xi))</td>
<td>(y' = 1 + y^2)</td>
<td>(\frac{\partial \bullet}{\partial x_j} = c_j (1 + \tan^2) \frac{d \bullet}{dT \tan})</td>
</tr>
<tr>
<td>(\exp(\xi))</td>
<td>(y' = y)</td>
<td>(\frac{\partial \bullet}{\partial x_j} = c_j E \frac{d \bullet}{dE})</td>
</tr>
<tr>
<td>(\text{cn}(\xi; m))</td>
<td>(y' = -\sqrt{(1 - y^2)(1 - m + m y^2)})</td>
<td>(\frac{\partial \bullet}{\partial x_j} = -c_j \sqrt{(1 - \text{cn}^2)(1 - m + m \text{cn}^2)} \frac{d \bullet}{d \text{cn}})</td>
</tr>
<tr>
<td>(\text{sn}(\xi; m))</td>
<td>(y' = \sqrt{(1 - y^2)(1 - m y^2)})</td>
<td>(\frac{\partial \bullet}{\partial x_j} = c_j \sqrt{(1 - \text{sn}^2)(1 - m \text{sn}^2)} \frac{d \bullet}{d \text{sn}})</td>
</tr>
</tbody>
</table>
Algorithm for Tanh Solutions for System of DDEs

Nonlinear differential-difference equations (DDEs) of order m

$$\Delta(u_{n+p_1}(x), u_{n+p_2}(x), \ldots, u_{n+p_k}(x), u'_{n+p_1}(x), u'_{n+p_2}(x), \ldots, u'_{n+p_k}(x), \ldots, u^{(r)}_{n+p_1}(x), u^{(r)}_{n+p_2}(x), \ldots, u^{(r)}_{n+p_k}(x)) = 0.$$

Dependent variable u_n has M components $u_{i,n}$ (or u_n, v_n, w_n, \ldots)
Independent variable x has N components x_i (or t, x, y, \ldots).
Shift vectors $p_i \in \mathbb{Z}^Q$.
$u^{(r)}(x)$ is collection of mixed derivatives of order r.

Simplest case for independent variable (t), and one lattice point (n):

$$\Delta(..., u_{n-1}, u_n, u_{n+1}, ..., \dot{u}_{n-1}, \dot{u}_n, \dot{u}_{n+1}, ..., u^{(r)}_{n-1}, u^{(r)}_n, u^{(r)}_{n+1}, ...) = 0.$$

Step D1:

- Seek solution $u_n(x) = U_n(T_n)$, with $T_n = \tanh(\xi_n), \quad \xi_n = \sum_{i=1}^{Q} d_i n_i + \sum_{j=1}^{N} c_j x_j + \delta = d \cdot n + c \cdot x + \delta.$

- Repeatedly apply the operator rule

 $$\frac{d \bullet}{dx_j} = \frac{\partial \xi_n}{\partial x_j} \frac{dT_n}{dT_n} \frac{d \bullet}{dT_n} = c_j (1 - T_n^2) \frac{d \bullet}{dT_n},$$

 transforms DDE into

 $$\Delta(U_{n+p_1}(T_n), \ldots, U_{n+p_k}(T_n), U'_{n+p_1}(T_n), \ldots, U'_{n+p_k}(T_n), \ldots, U^{(r)}_{n+p_1}(T_n), \ldots, U^{(r)}_{n+p_k}(T_n)) = 0.$$

Note: U_{n+p_s} is function of T_n not of T_{n+p_s}.
• Example: Toda lattice

\[\ddot{u}_n = (1 + \dot{u}_n) (u_{n-1} - 2u_n + u_{n+1}) \]

transforms into

\[c_1^2 (1 - T_n^2) \left[2T_n U'_n - (1 - T_n^2) U''_n \right] + \left[1 + c_1 (1 - T_n^2) U'_n \right] [U_{n-1} - 2U_n + U_{n+1}] = 0. \]

Step D2:

• Seek polynomial solutions

\[U_{i,n}(T_n) = \sum_{j=0}^{M_i} a_{ij} T_n^j. \]

Use \(\tanh(x + y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y} \) to deal with the shift:

\[T_{n+p_s} = \frac{T_n + \tanh \phi_s}{1 + T_n \tanh \phi_s}, \]

where

\[\phi_s = p_s \cdot d = p_{s1}d_1 + p_{s2}d_2 + \cdots + p_{sQ}d_Q, \]

Substitute \(U_{i,n}(T_n) = T_n^{M_i} \), and

\[U_{i,n+p_s}(T_n) = T_n^{M_i} = \left[\frac{T_n + \tanh \phi_s}{1 + T_n \tanh \phi_s} \right]^{M_i}, \]

and balance the highest exponents in \(T_n \) to determine \(M_i \).

Note: \(U_{i,n+0}(T_n) = T_n^{M_i} \) is of degree \(M_i \) in \(T_n \).

\[U_{i,n+p_s}(T_n) = \left[\frac{T_n + \tanh \phi_s}{1 + T_n \tanh \phi_s} \right]^{M_i} \] is of degree zero in \(T_n \).
• Example: Balance of exponents for Toda lattice

\[2M_1 + 1 = M_1 + 2. \]

So, \(M_1 = 1 \). Hence,

\[
U_n(T_n) = a_{10} + a_{11}T_n, \\
U_{n\pm1}(T(n \pm 1)) = a_{10} + a_{11}T(n \pm 1) = a_{10} + a_{11} \frac{T_n \pm \tanh(d_1)}{1 \pm T_n \tanh(d_1)}.
\]

Step D3:

• Determine the algebraic system for the unknown coefficients \(a_{ij} \) by setting to zero the coefficients of the powers in \(T_n \).

• Example: Algebraic system for Toda lattice

\[
c_1^2 - \tanh^2(d_1) - a_{11}c_1 \tanh^2(d_1) = 0, \\
c_1 - a_{11} = 0.
\]

Step D4:

• Solve the nonlinear algebraic system with parameters.

• Example: Solution of algebraic system for Toda lattice

\[
a_{10} = \text{free}, \quad a_{11} = \pm \sinh(d_1), \quad c_1 = \pm \sinh(d_1).
\]

Step D5:

• Return to the original variables. Test solution(s) of DDE. Reject trivial ones.

• Example: Solitary wave solution for Toda lattice:

\[
u_n(t) = a_{10} \pm \sinh(d_1) \tanh\left[d_1n \pm \sinh(d_1) t + \delta \right].
\]
Example of System of DDEs: Relativistic Toda Lattice

\[\dot{u}_n = (1 + \alpha u_n)(v_n - v_{n-1}), \]
\[\dot{v}_n = v_n(u_{n+1} - u_n + \alpha v_{n+1} - \alpha v_{n-1}). \]

Change of variables

\[u_n(t) = U_n(T_n), \quad v_n(t) = V_n(T_n), \]

with

\[T_n(t) = \tanh [d_1 n + c_1 t + \delta]. \]

gives

\[c_1 (1 - T^2) U'_n - (1 + \alpha U_n)(V_n - V_{n-1}) = 0, \]
\[c_1 (1 - T^2) V'_n - V_n(U_{n+1} - U_n + \alpha V_{n+1} - \alpha V_{n-1}) = 0. \]

Seek polynomial solutions

\[U_n(T_n) = \sum_{j=0}^{M_1} a_{1j} T_n^j, \quad V_n(T_n) = \sum_{j=0}^{M_2} a_{2j} T_n^j. \]

Balance the highest exponents in \(T_n \) to determine \(M_1 \), and \(M_2 \):

\[M_1 + 1 = M_1 + M_2, \quad M_2 + 1 = M_1 + M_2. \]

So, \(M_1 = M_2 = 1 \). Hence,

\[U_n = a_{10} + a_{11} T_n, \quad V_n = a_{20} + a_{21} T_n. \]
Algebraic system for a_{ij}:

\[-a_{11}c_1 + a_{21}\tanh(d_1) + \alpha a_{10}a_{21}\tanh(d_1) = 0,\]
\[a_{11}\tanh(d_1)(\alpha a_{21} + c_1) = 0,\]
\[-a_{21}c_1 + a_{11}a_{20}\tanh(d_1) + 2\alpha a_{20}a_{21}\tanh(d_1) = 0,\]
\[\tanh(d_1)(a_{11}a_{21} + 2\alpha a_{21}^2 - a_{11}a_{20}\tanh(d_1)) = 0,\]
\[a_{21}\tanh^2(d_1)(c_1 - a_{11}) = 0.\]

Solution of the algebraic system

\[a_{10} = -\frac{1}{\alpha} - c_1\coth(d_1),\]
\[a_{11} = c_1,\]
\[a_{20} = \frac{c_1\coth(d_1)}{\alpha},\]
\[a_{21} = -\frac{c_1}{\alpha}.\]

Solitary wave solution in original variables:

\[u_n(t) = -\frac{1}{\alpha} - c_1\coth(d_1) + c_1\tanh[d_1n + c_1t + \Delta],\]
\[v_n(t) = \frac{c_1\coth(d_1)}{\alpha} - \frac{c_1}{\alpha}\tanh[d_1n + c_1t + \Delta].\]
Multi-dimensional Example: 2D Toda Lattice

2D Toda lattice:

\[\frac{\partial^2 y_n}{\partial x \partial t} = \exp (y_{n-1} - y_n) - \exp (y_n - y_{n+1}), \]

\(y_n(x,t) \) is displacement from equilibrium of the \(n \)-th unit mass under an exponential decaying interaction force between nearest neighbors.

Set

\[\frac{\partial u_n}{\partial t} = \exp (y_{n-1} - y_n) - 1. \quad (*) \]

Then,

\[\exp (y_{n-1} - y_n) = \frac{\partial u_n}{\partial t} + 1, \]

and the 2D-Toda lattice becomes

\[\frac{\partial^2 y_n}{\partial x \partial t} = \frac{\partial u_n}{\partial t} + 1 - \left(\frac{\partial u_{n+1}}{\partial t} + 1 \right) = \frac{\partial u_n}{\partial t} - \frac{\partial u_{n+1}}{\partial t}. \]

Integrate with respect to \(t \) to get

\[\frac{\partial y_n}{\partial x} = u_n - u_{n+1}. \]

Differentiate (*) with respect to \(x \) and

\[\frac{\partial^2 u_n}{\partial x \partial t} = \frac{\partial}{\partial x} (\exp (y_{n-1} - y_n) - 1) \]

\[= \exp (y_{n-1} - y_n) \left(\frac{\partial y_{n-1}}{\partial x} - \frac{\partial y_{n}}{\partial x} \right), \]

\[= \left(\frac{\partial u_n}{\partial t} + 1 \right) \left(u_{n-1} - u_n - (u_n - u_{n+1}) \right), \]

\[= \left(\frac{\partial u_n}{\partial t} + 1 \right) (u_{n-1} - 2u_n + u_{n+1}). \]
So, the 2D Toda lattice is written in polynomial form:

\[
\frac{\partial^2 u_n}{\partial x \partial t} = \left(\frac{\partial u_n}{\partial t} + 1 \right) (u_{n-1} - 2u_n + u_{n+1}).
\]

Travelling wave solution:

\[
u_n(x, t) = a_{10} + \frac{1}{c_2} \sinh^2(d_1) \tanh \left[d_1 n + \frac{\sinh^2(d_1)}{c_2} x + c_2 t + \delta \right].
\]

Complicated Example: Ablowitz-Ladik Lattice

The Ablowitz-Ladik lattice:

\[
\dot{u}_n(t) = (\alpha + u_n v_n)(u_{n+1} + u_{n-1}) - 2\alpha u_n,
\]

\[
\dot{v}_n(t) = - (\alpha + u_n v_n(v_{n+1} + v_{n-1}) + 2\alpha v_n.
\]

Travelling wave solution:

\[
u_n(t) = \frac{\alpha \sinh^2(d_1)}{a_{21}} \left(\pm 1 - \tanh \left[d_1 n + 2\alpha \sinh^2(d_1) + \delta \right] \right),
\]

\[
v_n(t) = a_{21} (\pm 1 + \tanh \left[d_1 n + 2\alpha \sinh^2(d_1) t + \delta \right]).
\]
Analyzing and Solving Nonlinear Parameterized Systems

Assumptions:

• All $c_i \neq 0$ and $d_i \neq 0$ (and modulus $m \neq 0$).
• Parameters ($\alpha, \beta, \gamma, \ldots$). Otherwise the maximal exponents M_i may change.
• All $M_i \geq 1$.
• All $a_i M_i \neq 0$. Highest power terms in U_i must be present, except in mixed sech-tanh-method.
• Solve for a_{ij}, then c_i, tanh(d_i), and m. Then find conditions on parameters.

Strategy followed by hand:

• Solve all linear equations in a_{ij} first (cost: branching). Start with the ones without parameters. Capture constraints in the process.
• Solve linear equations in c_i, tanh(d_i), m if they are free of a_{ij}.
• Solve linear equations in parameters if they free of a_{ij}, c_i, tanh(d_i), m.
• Solve quasi-linear equations for a_{ij}, c_i, tanh(d_i), m.
• Solve quadratic equations for a_{ij}, c_i, tanh(d_i), m.
• Eliminate cubic terms for a_{ij}, c_i, tanh(d_i), m, without solving.
• Show remaining equations, if any.

Alternatives:

• Use (adapted) Gröbner bases techniques.
• Use Ritt-Wu characteristic sets method.
• Use combinatorics on coefficients $a_{ij} = 0$ or $a_{ij} \neq 0$.
Implementation Issues – Software Demo – Future Work

- Demonstration of Mathematica package for hyperbolic and elliptic function methods for PDEs and tanh function for DDEs.

- Long term goal: Develop PDESolve and DDESolve for analytical solutions of nonlinear PDEs and DDEs.

- Implement various methods: Lie symmetry methods, etc.

- Look at other types of explicit solutions involving
 - other hyperbolic and elliptic functions sinh, cosh, dn,
 - complex exponentials combined with sech or tanh.

- Other applications (of the nonlinear algebraic solver):
 Computation of conservation laws, symmetries, first integrals, etc. leading to linear parameterized systems for unknowns coefficients (see InvariantsSymmetries by Göktaş and Hereman).
• Preprints:

 Available from http://www.mines.edu/fs_home/whereman/

• Software:

 Available via anonymous FTP from mines.edu in directory pub/papers/math_cs_dept/software/pde-sols;
 or via Internet URL: http://www.mines.edu/fs_home/whereman/

 Available via anonymous FTP from mines.edu in directory pub/papers/math_cs_dept/software/dde-sols;
 or via Internet URL: http://www.mines.edu/fs_home/whereman/