Symbolic Computation of Lax Pairs of Nonlinear Systems of Partial Difference Equations using Multidimensional Consistency

Willy Hereman

Department of Applied Mathematics and Statistics
Colorado School of Mines
Golden, Colorado, U.S.A.
whereman@mines.edu
http://inside.mines.edu/~whereman/

IMCA, Lima, Peru

Tuesday, November 28, 2017, 4:00p.m.
Collaborators

Terry Bridgman (Ph.D. student, CSM)

Reinout Quispel & Peter van der Kamp

La Trobe University, Melbourne, Australia

This presentation is made in TeXpower
Outline

- Origins of nonlinear $P\Delta E$s
- Classification of integrable nonlinear $P\Delta E$s in 2D
- Lax pairs of nonlinear PDEs & gauge equivalence
- Lax pair of nonlinear $P\Delta E$s & gauge equivalence
- Examples of Lax pairs of nonlinear $P\Delta E$s
- Algorithmic computation of Lax pairs (Nijhoff 2001, Bobenko & Suris 2001)
- Software demonstration
- Conclusions and future work
- Addendum: Additional examples
Origins of nonlinear PΔEs

- full discretizations of completely integrable PDEs (Ablowitz, Ladik, Taha)
- fully discretized bilinear equations (Hirota)
- direct linearization of completely integrable PDEs (Quispel, Nijhoff)
- superposition principle (Bianchi permutability) for auto-Bäcklund transformations between solutions of a completely integrable PDE
- classification of multi-dimensionally consistent PΔEs (Adler, Bobenko, Suris)
• **Example:** discrete potential Korteweg-de Vries (pKdV) equation

\[
(u_{n,m} - u_{n+1,m+1})(u_{n+1,m} - u_{n,m+1}) - p^2 + q^2 = 0
\]

• \(u\) is dependent variable or field (scalar case)

 \(n\) and \(m\) are lattice points

• \(p\) and \(q\) are parameters

• **Notation:**

\[
(u_{n,m}, u_{n+1,m}, u_{n,m+1}, u_{n+1,m+1}) = (x, x_1, x_2, x_{12})
\]

• Alternate notations (in the literature):

\[
(u_{n,m}, u_{n+1,m}, u_{n,m+1}, u_{n+1,m+1}) = (\tilde{u}, \hat{u}, \hat{\tilde{u}}, \hat{\hat{u}})
\]

\[
(u_{n,m}, u_{n+1,m}, u_{n,m+1}, u_{n+1,m+1}) = (u_{00}, u_{10}, u_{01}, u_{11})
\]
• Example: discrete pKdV equation

$$(u_{n,m} - u_{n+1,m+1})(u_{n+1,m} - u_{n,m+1}) - p^2 + q^2 = 0$$

Short: $$(x - x_{12})(x_1 - x_2) - p^2 + q^2 = 0$$
Concept of Consistency Around the Cube

Superposition of auto-Bäcklund transformations between 4 solutions x, x_1, x_2, x_3 (3 parameters: p, q, k)
• Introduce a third lattice variable ℓ

• View u as dependent on three lattice points: n, m, ℓ. So, $x = u_{n,m} \rightarrow x = u_{n,m,\ell}$

• Move in three directions:
 - $n \rightarrow n + 1$ over distance p
 - $m \rightarrow m + 1$ over distance q
 - $\ell \rightarrow \ell + 1$ over distance k (spectral parameter)

• Require that the same PΔE holds on the front, bottom, and left faces of the cube

• Require consistency for the computation of $x_{123} = u_{n+1,m+1,\ell+1}$ (3 ways \rightarrow same answer)
Example: discrete pKdV equation

⋆ Equation on front face of cube:

\[(x - x_{12})(x_1 - x_2) - p^2 + q^2 = 0\]

Solve for \(x_{12} = x - \frac{p^2 - q^2}{x_1 - x_2}\)

Compute \(x_{123}:\) \(x_{12} \rightarrow x_{123} = x_3 - \frac{p^2 - q^2}{x_1 - x_2}\)

⋆ Equation on floor of cube:

\[(x - x_{13})(x_1 - x_3) - p^2 + k^2 = 0\]

Solve for \(x_{13} = x - \frac{p^2 - k^2}{x_1 - x_3}\)

Compute \(x_{123}:\) \(x_{13} \rightarrow x_{123} = x_2 - \frac{p^2 - k^2}{x_1 - x_2}\)
Equation on left face of cube:

\[(x - x_{23})(x_3 - x_2) - k^2 + q^2 = 0\]

Solve for \(x_{23} = x - \frac{q^2 - k^2}{x_2 - x_3}\)

Compute \(x_{123} : \quad x_{23} \rightarrow x_{123} = x_1 - \frac{q^2 - k^2}{x_{12} - x_{13}}\)

Verify that all three coincide:

\[x_{123} = x_1 - \frac{q^2 - k^2}{x_{12} - x_{13}} = x_2 - \frac{p^2 - k^2}{x_{12} - x_{23}} = x_3 - \frac{p^2 - q^2}{x_{13} - x_{23}}\]

Upon substitution of \(x_{12}, x_{13}, \text{ and } x_{23}\):

\[x_{123} = \frac{p^2 x_1(x_2 - x_3) + q^2 x_2(x_3 - x_1) + k^2 x_3(x_1 - x_2)}{p^2(x_2 - x_3) + q^2(x_3 - x_1) + k^2(x_1 - x_2)}\]

Consistency around the cube is satisfied!
Tetrahedron property

\[x_{123} = \frac{p^2 x_1(x_2 - x_3) + q^2 x_2(x_3 - x_1) + k^2 x_3(x_1 - x_2)}{p^2(x_2 - x_3) + q^2(x_3 - x_1) + k^2(x_1 - x_2)} \]

is independent of \(x \). Connects \(x_{123} \) to \(x_1, x_2 \) and \(x_3 \).
Classification of 2D scalar nonlinear PΔEs

Adler, Bobenko, Suris (ABS) 2003, 2007

• Consider a family PΔEs: \(Q(x, x_1, x_2, x_{12}; p, q) = 0 \)

• Assumptions (ABS 2003):
 1. Affine linear
 \[
 Q(x, x_1, x_2, x_{12}; p, q) = a_1 xx_1 x_2 x_{12} + a_2 xx_1 x_2 + \ldots + a_{14} x_2 + a_{15} x_{12} + a_{16}
 \]

 2. Invariant under \(D_4 \) (symmetries of square)
 \[
 Q(x, x_1, x_2, x_{12}; p, q) = \epsilon Q(x, x_2, x_1, x_{12}; q, p)
 = \sigma Q(x_1, x, x_{12}, x_2; p, q)
 \]
 \(\epsilon, \sigma = \pm 1 \)

 3. Consistency around the cube
Result of the ABS Classification

• List H
 ▶ H1
 \[(x - x_{12})(x_1 - x_2) + q - p = 0\]

 ▶ H2
 \[(x - x_{12})(x_1 - x_2) + (q - p)(x + x_1 + x_2 + x_{12}) + q^2 - p^2 = 0\]

 ▶ H3
 \[p(x x_1 + x_2 x_{12}) - q(x x_2 + x_1 x_{12}) + \delta(p^2 - q^2) = 0\]
List A

A1

\[p(x + x_2)(x_1 + x_{12}) - q(x + x_1)(x_2 + x_{12}) - \delta^2 pq(p - q) = 0 \]

A2

\[(q^2 - p^2)(xx_1x_2x_{12} + 1) + q(p^2 - 1)(xx_2 + x_1x_{12}) - p(q^2 - 1)(xx_1 + x_2x_{12}) = 0 \]
• List Q

▶ Q1

\[p(x-x_2)(x_1-x_{12})-q(x-x_1)(x_2-x_{12})+\delta^2 pq(p-q) = 0 \]

▶ Q2

\[p(x-x_2)(x_1-x_{12})-q(x-x_1)(x_2-x_{12})+pq(p-q) \]
\[(x+x_1+x_2+x_{12})-pq(p-q)(p^2-pq+q^2) = 0 \]

▶ Q3

\[(q^2-p^2)(xx_{12}+x_1x_2)+q(p^2-1)(xx_1+x_2x_{12}) \]
\[-p(q^2-1)(xx_2+x_1x_{12})-\frac{\delta^2}{4pq}(p^2-q^2)(p^2-1)(q^2-1)=0 \]
Q4 (mother) Hietarinta’s Parametrization

\[\text{sn}(\alpha + \beta; k) \left(x_1 x_2 + x x_{12} \right) \]
\[- \text{sn}(\alpha; k) \left(x x_1 + x_2 x_{12} \right) - \text{sn}(\beta; k) \left(x x_2 + x_1 x_{12} \right) \]
\[+ \text{sn}(\alpha; k) \text{sn}(\beta; k) \text{sn}(\alpha + \beta; k)(1 + k^2 x x_1 x_2 x_{12}) = 0 \]

where \(\text{sn}(\alpha; k) \) is the Jacobi elliptic sine function with modulus \(k \).

Other parameterizations (Adler, Nijhoff, Viallet) are given in the literature.
Systems of PDEs

Example: Schwarzian-Boussinesq System

\[
\begin{align*}
y x_1 - z_1 + z &= 0 \\
y x_2 - z_2 + z &= 0 \\
x y_{12}(y_1 - y_2) - y (px_1 y_2 - qx_2 y_1) &= 0
\end{align*}
\]

• System has three dependent variable \(x, y,\) and \(z\). Thus, \(x = (x, y, z)\).

• System has two single-edge equations and one full-face equation.

• System is consistent around the cube (CAC).
Peter D. Lax (1926-)

Refresher: Lax Pairs of Nonlinear PDEs

• Historical example: Korteweg-de Vries equation

\[u_t + \alpha uu_x + u_{xxx} = 0 \quad \alpha \in \mathbb{R} \]

• Key idea: Replace the nonlinear PDE with a compatible linear system (Lax pair):

\[\psi_{xx} + \left(\frac{1}{6} \alpha u - \lambda \right) \psi = 0 \]

\[\psi_t + 4\psi_{xxx} + \alpha u\psi_x + \frac{1}{2} \alpha u_x \psi = 0 \]

\[\psi \text{ is eigenfunction; } \lambda \text{ is constant eigenvalue} \]

(\(\lambda_t = 0\)) (isospectral)
Lax Pairs in Matrix Form (AKNS Scheme)

- Express compatibility of

\[\begin{align*}
 D_x \Psi &= X \Psi \\
 D_t \Psi &= T \Psi
\end{align*} \]

where \(\Psi = \begin{bmatrix} \psi \\ \psi_x \end{bmatrix} \)

- Lax equation (zero-curvature equation):

\[D_t X - D_x T + [X, T] \doteq 0 \]

with commutator \([X, T] = XT - TX\)

and where \(\doteq \) means “evaluated on the PDE”
• Example: Lax pair for the KdV equation

\[X = \begin{bmatrix} 0 & 1 \\ \lambda - \frac{1}{6} \alpha u & 0 \end{bmatrix} \]

\[T = \begin{bmatrix} \frac{1}{6} \alpha u_x & -4\lambda - \frac{1}{3} \alpha u \\ -4\lambda^2 + \frac{1}{3} \alpha \lambda u + \frac{1}{18} \alpha^2 u^2 + \frac{1}{6} \alpha u_{2x} & -\frac{1}{6} \alpha u_x \end{bmatrix} \]

Substitution into the Lax equation yields

\[D_t X - D_x T + [X, T] = -\frac{1}{6} \alpha \begin{bmatrix} 0 & 0 \\ u_t + \alpha uu_x + u_{3x} & 0 \end{bmatrix} \]
Equivalence under Gauge Transformations

- Lax pairs are equivalent under a gauge transformation:

If \((X, T)\) is a Lax pair then so is \((X', T')\) with

\[
X' = GXG^{-1} + D_x(G)G^{-1} \\
T' = GTG^{-1} + D_t(G)G^{-1}
\]

\(G\) is arbitrary invertible matrix and \(\Phi = G\Psi\) where \(\Phi\) goes with \((X, T)\), i.e., \(D_x\Phi = X\Phi\) and \(D_t\Phi = T\Phi\).

Thus,

\[
D_tX - D_xT + [X, T] = 0
\]
• Example: For the KdV equation

\[X = \begin{bmatrix} 0 & 1 \\ \lambda - \frac{1}{6} \alpha u & 0 \end{bmatrix} \text{ and } X = \begin{bmatrix} -ik & \frac{1}{6} \alpha u \\ -1 & ik \end{bmatrix} \]

Here,\n
\[X = GXG^{-1} \text{ and } T = GTG^{-1} \]

with\n
\[G = \begin{bmatrix} -ik & 1 \\ -1 & 0 \end{bmatrix} \]

where \(\lambda = -k^2 \)
Reasons to Compute a Lax Pair

• Compatible linear system is the starting point for application of the IST and the Riemann-Hilbert method for boundary value problems
• Confirm the complete integrability of the PDE
• Zero-curvature representation of the PDE
• Compute conservation laws of the PDE
• Discover families of completely integrable PDEs

Question: How to find a Lax pair of a completely integrable PDE?

Answer: There is no completely systematic method
Lax Pair of Nonlinear PΔEs

• Replace the nonlinear PΔE by

\[\psi_1 = L \psi \quad (\text{recall } \psi_1 = \psi_{n+1,m}) \]
\[\psi_2 = M \psi \quad (\text{recall } \psi_2 = \psi_{n,m+1}) \]

For scalar PΔEs, \(L, M \) are \(2 \times 2 \) matrices;
\[x_3 = \frac{f}{F} \quad \text{and} \quad \psi = \begin{bmatrix} F \\ f \end{bmatrix} \]

For systems of PΔEs, \(L, M \) are \(N \times N \) matrices;
\[x_3 = \frac{f}{F}, y_3 = \frac{g}{F}, z_3 = \frac{h}{F}, \text{ etc., } \psi = [F \ f \ g \ h \ \ldots]^T \]

where \(T \) is transpose.
Express compatibility:

\[\psi_{12} = L_2 \psi_2 = L_2 M \psi \]
\[\psi_{12} = M_1 \psi_1 = M_1 L \psi \]

Lax equation:

\[L_2 M - M_1 L = 0 \]
Equivalence under Gauge Transformations

- Lax pairs of the same size are equivalent under a gauge transformation

If \((L, M)\) is a Lax pair then so is \((L', M')\) with

\[
L' = G_1 L G^{-1}
\]
\[
M' = G_2 M G^{-1}
\]

where \(G\) is an invertible matrix, \(\phi = G \psi\)
goes with \((L', M')\) i.e., \(\phi_1 = L \phi, \ \phi_2 = M \phi\).

Proof: Trivial verification that

\[
(L_2 M - M_1 L) \phi \overset{\cdot}{=} 0 \iff (L_2 M - M_1 L) \psi \overset{\cdot}{=} 0
\]
Examples of Lax Pairs of PΔEs

• **Example 1:** Discrete pKdV Equation

\[
(x - x_{12})(x_1 - x_2) - p^2 + q^2 = 0
\]

• **Lax pair:** \(x_3 = \frac{f}{F}, \quad \psi = [F \ f]^T\)

\[
L = tL_c = t \begin{bmatrix} 1 & -x_1 \\ x & p^2 - k^2 - xx_1 \end{bmatrix}
\]

\[
M = sM_c = s \begin{bmatrix} 1 & -x_2 \\ x & q^2 - k^2 - xx_2 \end{bmatrix}
\]

with \(t = s = 1\) or \(t = \frac{1}{\sqrt{\text{Det}L_c}} = \frac{1}{\sqrt{k^2 - p^2}}\)

and \(s = \frac{1}{\sqrt{\text{Det}M_c}} = \frac{1}{\sqrt{k^2 - q^2}}\). Here, \(t \frac{t_2}{t} \frac{s}{s_1} = 1\).
• **Example 2: Schwarzian-Boussinesq System**

\[
\begin{align*}
 y x_1 - z_1 + z &= 0 \\
 y x_2 - z_2 + z &= 0 \\
 x y_{12}(y_1 - y_2) - y (p x_1 y_2 - q x_2 y_1) &= 0
\end{align*}
\]

• **Lax pair:** \[\psi = [F \ g \ h]^T \]

\[
L = tL_c = t \begin{bmatrix}
 y_1 & -1 & 0 \\
 \frac{k z y_1}{x} & \frac{p y x_1}{x} & -\frac{k y_1}{x} \\
 0 & -z_1 & y_1
\end{bmatrix}
\]
\[M = sM_c = s \begin{bmatrix} y_2 & -1 & 0 \\ \frac{k z y_2}{x} & \frac{q y x_2}{x} & -\frac{k y_2}{x} \\ 0 & -z_2 & y_2 \end{bmatrix} \]

with \(t = s = \frac{1}{y} \), or \(t = \frac{1}{y_1} \) and \(s = \frac{1}{y_2} \),

or \(t = 3 \sqrt{\frac{x}{y_1^2 y x_1}} \) and \(s = 3 \sqrt{\frac{x}{y_2^2 y x_2}} \).

Here, \(\frac{t_2}{t} \frac{s}{s_1} = \frac{y_1}{y_2} \).
Lax Pair Algorithm for Scalar PΔEs

(Nijhoff 2001, Bobenko and Suris 2001)

Applies to PΔEs that are consistent around the cube

Example: Discrete pKdV Equation

• Step 1: Verify the consistency around the cube

Use the equation on floor

\[(x - x_{13})(x_1 - x_3) - p^2 + k^2 = 0\]

to compute \[x_{13} = x - \frac{p^2 - k^2}{x_1 - x_3} = \frac{x_3x - xx_1 + p^2 - k^2}{x_3 - x_1}\]

Use the equation on left face

\[(x - x_{23})(x_3 - x_2) - k^2 + q^2 = 0\]

to compute \[x_{23} = x - \frac{q^2 - k^2}{x_2 - x_3} = \frac{x_3x - xx_2 + q^2 - k^2}{x_3 - x_2}\]
Step 2: Homogenization

★ Numerator and denominator of

$$x_{13} = \frac{x_3x-xx_1+p^2-k^2}{x_3-x_1} \quad \text{and} \quad x_{23} = \frac{x_3x-xx_2+q^2-k^2}{x_3-x_2}$$

are linear in \(x_3\).

★ Substitute \(x_3 = \frac{f}{F}\) into \(x_{13}\) to get

$$x_{13} = \frac{xf+(p^2-k^2-xx_1)F}{f-x_1F}$$

★ On the other hand, \(x_3 = \frac{f}{F} \quad \rightarrow \quad x_{13} = \frac{f_1}{F_1} \).

Thus, \(x_{13} = \frac{f_1}{F_1} = \frac{xf+(p^2-k^2-xx_1)F}{f-x_1F}\).

Hence, \(F_1 = t(f-x_1F)\) and

\(f_1 = t\left(xf+(p^2-k^2-xx_1)F\right)\)
In matrix form

\[
\begin{bmatrix}
F_1 \\
f_1
\end{bmatrix} = t \begin{bmatrix}
1 & -x_1 \\
x & p^2 - k^2 - xx_1
\end{bmatrix} \begin{bmatrix}
F \\
f
\end{bmatrix}
\]

Matches \(\psi_1 = L \psi \) with \(\psi = \begin{bmatrix}
F \\
f
\end{bmatrix} \)

Similarly, from \(x_{23} = \frac{f_2}{F_2} = \frac{xf + (q^2 - k^2 - xx_2)F}{f - x_2F} \)

\[
\psi_2 = \begin{bmatrix}
F_2 \\
f_2
\end{bmatrix} = s \begin{bmatrix}
1 & -x_2 \\
x & q^2 - k^2 - xx_2
\end{bmatrix} \begin{bmatrix}
F \\
f
\end{bmatrix} = M \psi.
\]
Therefore,

\[
L = t \quad L_c = t \begin{bmatrix}
1 & -x_1 \\
x & p^2 - k^2 - xx_1
\end{bmatrix}
\]

\[
M = s \quad M_c = s \begin{bmatrix}
1 & -x_2 \\
x & q^2 - k^2 - xx_2
\end{bmatrix}
\]
• Step 3: Determine \(t \) and \(s \)

★ Substitute \(L = t L_c, M = s M_c \) into \(L_2 M - M_1 L = 0 \)

\[\rightarrow t_2 s (L_c)_2 M_c - s_1 t (M_c)_1 L_c = 0 \]

★ Solve the equation from the (2-1)-element for

\[\frac{t_2}{t} \frac{s}{s_1} = f(x, x_1, x_2, p, q, \ldots) \]

Find rational \(t \) and \(s \).

★ Apply determinant to get

\[\frac{t_2}{t} \frac{s}{s_1} = \sqrt{\frac{\det L_c}{\det (L_c)_2}} \sqrt{\frac{\det (M_c)_1}{\det M_c}} \]

Solution: \(t = \frac{1}{\sqrt{\det L_c}}, \quad s = \frac{1}{\sqrt{\det M_c}} \)

\[\rightarrow \text{Always works but introduces roots!} \]
The ratio \(\frac{t_2}{t} \frac{s}{s_1} \) is invariant under the change

\[t \rightarrow \frac{a_1}{a} t, \quad s \rightarrow \frac{a_2}{a} s, \]

where \(a(x) \) is arbitrary.

Proper choice of \(a(x) \) \(\implies \) Rational \(t \) and \(s \).

No roots needed!
Algorithmic Computation of Lax Pairs for Systems of PΔEs

Example 2: Schwarzian-Boussinesq System

\[y x_1 - z_1 + z = 0 \]
\[y x_2 - z_2 + z = 0 \]
\[x y_{12}(y_1 - y_2) - y (p x_1 y_2 - q x_2 y_1) = 0 \]

- System has two single-edge equations and one full-face equation
• Edge equations require augmentation of system with additional shifted, edge equations

\[y_2 x_{12} - z_{12} + z_2 = 0 \]
\[y_1 x_{12} - z_{12} + z_1 = 0 \]

• Edge equations will provide additional constraints during homogenization (Step 2).

The way you handle edge equations leads to gauge-equivalent Lax pairs!
• Step 1: Verify the consistency around the cube
 ★ System on the front face:

\[
\begin{align*}
y x_1 - z_1 + z &= 0 \\
y x_2 - z_2 + z &= 0 \\
x y_{12}(y_1 - y_2) - y (p x_1 y_2 - q x_2 y_1) &= 0 \\
y_2 x_{12} - z_{12} + z_2 &= 0 \\
y_1 x_{12} - z_{12} + z_1 &= 0
\end{align*}
\]

Solve for \(x_{12}, y_{12}, \) and \(z_{12} \):

\[
\begin{align*}
x_{12} &= \frac{z_2 - z_1}{y_1 - y_2} \\
y_{12} &= \frac{y(px_1 y_2 - qx_2 y_1)}{x(y_1 - y_2)} \\
z_{12} &= \frac{y_1 z_2 - y_2 z_1}{y_1 - y_2}
\end{align*}
\]
Compute x_{123}, y_{123}, and z_{123}:

$$x_{123} = \frac{z_{23} - z_{13}}{y_{13} - y_{23}}$$

$$y_{123} = \frac{y_3(px_{13}y_{23} - qx_{23}y_{13})}{x_3(y_{13} - y_{23})}$$

$$z_{123} = \frac{y_{13}z_{23} - y_{23}z_{13}}{y_{13} - y_{23}}$$
System on the bottom face:

\[y x_1 - z_1 + z = 0 \]
\[y x_3 - z_3 + z = 0 \]
\[x y_{13}(y_1 - y_3) - y(px_1 y_3 - k x_3 y_1) = 0 \]
\[y_3 x_{13} - z_{13} + z_3 = 0 \]
\[y_1 x_{13} - z_{13} + z_1 = 0 \]

Solve for \(x_{13}, y_{13}, \) and \(z_{13} \):

\[x_{13} = \frac{z_3 - z_1}{y_1 - y_3} \]
\[y_{13} = \frac{y(px_1 y_3 - k x_3 y_1)}{x(y_1 - y_3)} \]
\[z_{13} = \frac{y_1 z_3 - y_3 z_1}{y_1 - y_3} \]
Compute x_{123}, y_{123}, and z_{123}:

\[
x_{123} = \frac{z_{23} - z_{12}}{y_{12} - y_{23}}
\]

\[
y_{123} = \frac{y_2(p x_{12} y_{23} - k x_{23} y_{12})}{x_2(y_{12} - y_{23})}
\]

\[
z_{123} = \frac{y_{12} z_{23} - y_{23} z_{12}}{y_{12} - y_{23}}
\]
System on the left face:

\[y x_3 - z_3 + z = 0 \]
\[y x_2 - z_2 + z = 0 \]
\[x y_{23}(y_3 - y_2) - y (px_3 y_2 - qx_2 y_3) = 0 \]
\[y_2 x_{23} - z_2 + z_2 = 0 \]
\[y_1 x_{23} - z_2 + z_1 = 0 \]

Solve for \(x_{23}, y_{23}, \) and \(z_{23} \):

\[x_{23} = \frac{z_3 - z_2}{y_2 - y_3} \]
\[y_{23} = \frac{y(qx_2 y_3 - kx_3 y_2)}{x(y_2 - y_3)} \]
\[z_{23} = \frac{y_2 z_3 - y_3 z_2}{y_2 - y_3} \]
Compute x_{123}, y_{123}, and z_{123}:

$$x_{123} = \frac{z_{13} - z_{12}}{y_{12} - y_{13}}$$

$$y_{123} = \frac{y_1(q x_{12} y_{13} - k x_{13} y_{12})}{x_1(y_{12} - y_{13})}$$

$$z_{123} = \frac{y_{12} z_{13} - y_{13} z_{12}}{y_{12} - y_{13}}$$

Substitute x_{12}, y_{12}, y_{12}, x_{13}, y_{13}, z_{13}, x_{23}, y_{23}, z_{23} into the above to get
\[x_{123} = \frac{x(x_1 - x_2)(y_1(z_2 - z_3) + y_2(z_3 - z_1) + y_3(z_1 - z_2))}{(z_1 - z_2)(px_1(y_3 - y_2) + qx_2(y_1 - y_3) + kx_3(y_2 - y_1))} \]

\[y_{123} = \frac{q(z_2 - z_1)(kx_3y_1 - px_1y_3) + k(z_3 - z_1)(px_1y_2 - qx_2y_1)}{x_1(px_1(y_3 - y_2) + qx_2(y_1 - y_3) + kx_3(y_2 - y_1))} \]

\[z_{123} = \frac{px_1(y_3z_2 - y_2z_3) + qx_2(y_1z_3 - y_3z_1) + kx_3(y_2z_1 - y_1z_2)}{px_1(y_3 - y_2) + qx_2(y_1 - y_3) + kx_3(y_2 - y_1)} \]

Answer is unique and independent of \(x \) and \(y \).

Consistency around the cube is satisfied!
• Step 2: Homogenization

★ Observed that x_3, y_3 and z_3 appear linearly in numerators and denominators of

\[
\begin{align*}
x_{13} &= \frac{z_3 - z_1}{y_1 - y_3} \\
y_{13} &= \frac{y(px_1y_3 - kx_3y_1)}{x(y_1 - y_3)} \\
z_{13} &= \frac{y_1z_3 - y_3z_1}{y_1 - y_3}
\end{align*}
\]
Substitute
\[x_3 = \frac{f}{F}, \quad y_3 = \frac{g}{G}, \quad \text{and} \quad z_3 = \frac{h}{H}. \]

Use constraints (from left face edges)
\[
y x_1 - z_1 + z = 0, \quad y x_2 - z_2 + z = 0
\Rightarrow y x_3 - z_3 + z = 0
\]

Solve for \[x_3 = \frac{z_3 - z}{y} \]

Thus, \[x_3 = \frac{f}{F} = \frac{h - zH}{yH}, \quad y_3 = \frac{g}{G}, \quad \text{and} \quad z_3 = \frac{h}{H}. \]
★ Substitute x_3, y_3, z_3 into x_{13}, y_{13}, z_{13}:

\[
\begin{align*}
x_{13} & = \frac{G(h - z_1 H)}{H(y_1 G - g)} \\
y_{13} & = \frac{y(px_1 g F - ky_1 f G)}{Fx(y_1 G - g)} \\
z_{13} & = \frac{y_1 h G - z_1 g H}{H(y_1 G - g)}
\end{align*}
\]

Require that numerators and denominators are linear in f, g, h, F, G, and H. That forces $H = G = F$.

Hence, $x_3 = \frac{h - z F}{y F}, \ y_3 = \frac{g}{F}, \ \text{and} \ z_3 = \frac{h}{F}$.
Compute

\[
x_3 = \frac{h - zF}{yF} \quad \rightarrow \quad x_{13} = \frac{h_1 - z_1F_1}{y_1F_1}
\]

\[
y_3 = \frac{g}{F} \quad \rightarrow \quad y_{13} = \frac{g_1}{F_1}
\]

\[
z_3 = \frac{h}{F} \quad \rightarrow \quad z_{13} = \frac{h_1}{F_1}
\]

Hence,

\[
x_{13} = \frac{h - z_1F}{y_1F - g} = \frac{h_1 - z_1F_1}{y_1F_1}
\]

\[
y_{13} = \frac{y_p x_1 g - ky_1 h + kzy_1 F}{x(y_1 F - g)} = \frac{g_1}{F_1}
\]

\[
z_{13} = \frac{y_1 h - z_1 g}{y_1 F - g} = \frac{h_1}{F_1}
\]
Note that

\[x_{13} = \frac{h - z_1 F}{y_1 F - g} = \frac{h_1 - z_1 F_1}{y_1 F_1} \]

is automatically satisfied as a result of the relation

\[x_3 = \frac{z_3 - z}{y}. \]

\[\star \] Write in matrix form:

\[\psi_1 = \begin{bmatrix} F_1 \\ g_1 \\ h_1 \end{bmatrix} = t \begin{bmatrix} y_1 & -1 & 0 \\ \frac{kzy_1}{x} & \frac{pyx_1}{x} & -\frac{ky_1}{x} \\ 0 & -z_1 & y_1 \end{bmatrix} \begin{bmatrix} F \\ g \\ h \end{bmatrix} = L \psi \]

\[\star \] Repeat the same steps for \(x_{23}, y_{23}, z_{23} \) to obtain
\[\psi_2 = \begin{bmatrix} F_2 \\ g_2 \\ h_2 \end{bmatrix} = s \begin{bmatrix} y_2 & -1 & 0 \\ \frac{kz y_2}{x} & \frac{qy x_2}{x} & -\frac{ky_2}{x} \\ 0 & -z_2 & y_2 \end{bmatrix} \begin{bmatrix} F \\ g \\ h \end{bmatrix} = M \psi \]

\[
\star \text{ Therefore, } \\
L = t L_{\text{core}} = t \begin{bmatrix} y_1 & -1 & 0 \\ \frac{kz y_1}{x} & \frac{p y x_1}{x} & -\frac{ky_1}{x} \\ 0 & -z_1 & y_1 \end{bmatrix} \\
M = s M_{\text{core}} = s \begin{bmatrix} y_2 & -1 & 0 \\ \frac{kz y_2}{x} & \frac{qy x_2}{x} & -\frac{ky_2}{x} \\ 0 & -z_2 & y_2 \end{bmatrix} \]
• **Step 3: Determine** t and s

 ✰ Substitute $L = t L_{\text{core}}, M = s M_{\text{core}}$ into

 $L_2 M - M_1 L = 0$

 $\rightarrow t_2 s (L_{\text{core}})_2 M_{\text{core}} - s_1 t (M_{\text{core}})_1 L_{\text{core}} = 0$

 ✰ Solve the equation from the (2-1)-element:

 \[
 \frac{t_2}{t} \frac{s}{s_1} = \frac{y_1}{y_2}.
 \]

 Thus, $t = s = \frac{1}{y}$, or $t = \frac{1}{y_1}$ and $s = \frac{1}{y_2}$,

 or (from determinant method) $t = \frac{3\sqrt{x}}{y_1 y x_1}$ and

 $s = \frac{3\sqrt{x}}{y_2 y x_2}$.

Summary: Lax Pair for Schwarzian-BSQ System

• Option a: Solving the edge equation for $x_3 = \frac{z_3 - z}{y}$ yields

$$x_3 = \frac{h - zF}{yF}, \quad y_3 = \frac{g}{F}, \quad \text{and} \quad z_3 = \frac{h}{F}, \quad \psi_a = \begin{bmatrix} F \\ g \\ h \end{bmatrix}$$

• Corresponding Lax matrix:

$$L_a = \frac{1}{y} \begin{bmatrix} y_1 & -1 & 0 \\ \frac{kzy_1}{x} & \frac{pyx_1}{x} & -\frac{ky_1}{x} \\ 0 & -z_1 & y_1 \end{bmatrix}$$
• Option b: Solving the edge equation for
\[z_3 = x_3 y + z \text{ yields} \]
\[x_3 = \frac{f}{F}, \quad y_3 = \frac{g}{F}, \text{ and } z_3 = \frac{zF + yf}{F}, \quad \psi_b = \begin{bmatrix} F \\ f \\ g \end{bmatrix} \]

• Corresponding Lax matrix:
\[L_b = \frac{1}{y} \begin{bmatrix} y_1 & 0 & -1 \\ z - z_1 & y & 0 \\ 0 & -\frac{kyy_1}{x_1} & \frac{pyz_1}{x} \end{bmatrix} \]
• Gauge Equivalences between these Lax Matrices

\[L_b = G_1 L_a G^{-1}, \quad \psi_b = G \psi_a \]

with

\[
G = \begin{bmatrix}
1 & 0 & 0 \\
-\frac{z}{y} & 0 & \frac{1}{y} \\
0 & 1 & 0
\end{bmatrix}
\]
Software Demonstration
Conclusions and Future Work

• **Mathematica code** works for **scalar** $P\Delta E_s$ in 2D defined on quad-graphs (quadrilateral faces).
• **Mathematica code** has been extended to systems of $P\Delta E_s$ in 2D defined on quad-graphs.
• Code can be used to **test** (i) consistency around the cube and compute or test (ii) Lax pairs.
• Consistency around cube $\iff P\Delta E$ has Lax pair.
• $P\Delta E$ has Lax pair $\not\iff$ consistency around cube. Indeed, there are $P\Delta E$s with a Lax pair that are not consistent around the cube.
 Example: discrete sine-Gordon equation.
• Avoid the determinant method to avoid square roots! Factorization plays an essential role!

• Future Work: Extension to more complicated systems of $P\Delta Es$.
Thank You
Additional Examples

• **Example:** Discrete pKdV Equation

\[
(x - x_{12})(x_1 - x_2) - p^2 + q^2 = 0
\]

• **Lax pair:**

\[
L = tL_{\text{core}} = t \begin{bmatrix}
 x & p^2 - k^2 - xx_1 \\
 1 & -x_1
\end{bmatrix}
\]

\[
M = sM_{\text{core}} = s \begin{bmatrix}
 x & q^2 - k^2 - xx_2 \\
 1 & -x_2
\end{bmatrix}
\]

with \(t = s = 1 \) or \(t = \frac{1}{\sqrt{\det L_{\text{core}}}} = \frac{1}{\sqrt{k^2 - p^2}} \)

and \(s = \frac{1}{\sqrt{\det M_{\text{core}}}} = \frac{1}{\sqrt{k^2 - q^2}} \).

Here, \(x_3 = \frac{f}{F}, \, \psi = [f \ F]^T \), and \(\frac{t_2}{t} \frac{s}{s_1} = 1 \).
• Example: (H1) Equation (ABS classification)

\[(x - x_{12})(x_1 - x_2) + q - p = 0\]

• Lax pair:

\[
L = t \begin{bmatrix} x & p - k - xx_1 \\ 1 & -x_1 \end{bmatrix}
\]

\[
M = s \begin{bmatrix} x & q - k - xx_2 \\ 1 & -x_2 \end{bmatrix}
\]

with \(t = s = 1 \) or \(t = \frac{1}{\sqrt{k-p}} \) and \(s = \frac{1}{\sqrt{k-q}} \)

Here, \(x_3 = \frac{f}{F} \), \(\psi = \begin{bmatrix} f \\ F \end{bmatrix} \), and \(\frac{t_2}{t} \frac{s}{s_1} = 1 \).
• **Example:** (H2) Equation (ABS 2003)

\[(x-x_{12})(x_1-x_2)+(q-p)(x+x_1+x_2+x_{12})+q^2-p^2=0\]

• **Lax pair:**

\[
L = t \begin{bmatrix} p - k + x & p^2 - k^2 + (p - k)(x + x_1) - xx_1 \\ 1 & -(p - k + x_1) \end{bmatrix}
\]

\[
M = s \begin{bmatrix} q - k + x & q^2 - k^2 + (q - k)(x + x_2) - xx_2 \\ 1 & -(q - k + x_2) \end{bmatrix}
\]

with \(t = \frac{1}{\sqrt{2(k-p)(p+x+x_1)}} \) and \(s = \frac{1}{\sqrt{2(k-q)(q+x+x_2)}} \)

Here, \(x_3 = \frac{f}{F} \), \(\psi = \begin{bmatrix} f \\ F \end{bmatrix} \), and \(\frac{t_2}{t} \frac{s}{s_1} = \frac{p+x+x_1}{q+x+x_2} \).
• Example: (H3) Equation (ABS 2003)

\[p(xx_1 + x_2x_{12}) - q(xx_2 + x_1x_{12}) + \delta(p^2 - q^2) = 0 \]

• Lax pair:

\[
L = t \begin{bmatrix} kx & -(\delta(p^2 - k^2) + pxx_1) \\ \delta p & -kx_1 \end{bmatrix}
\]

\[
M = s \begin{bmatrix} kx & -(\delta(q^2 - k^2) + qxx_2) \\ q & -kx_2 \end{bmatrix}
\]

with \(t = \frac{1}{\sqrt{(p^2-k^2)(\delta p + xx_1)}} \) and \(s = \frac{1}{\sqrt{(q^2-k^2)(\delta q + xx_2)}} \)

Here, \(x_3 = \frac{f}{F}, \psi = \begin{bmatrix} f \\ F \end{bmatrix}, \) and \(\frac{t_2}{t} \frac{s}{s_1} = \frac{\delta p + xx_1}{\delta q + xx_2}. \)
• Example: (H3) Equation \((\delta = 0) \) (ABS 2003)

\[
p(xx_1 + x_2x_{12}) - q(xx_2 + x_1x_{12}) = 0
\]

• Lax pair:

\[
L = t \begin{bmatrix} kx & -pxx_1 \\ p & -kx_1 \end{bmatrix}
\]

\[
M = s \begin{bmatrix} kx & -qx x_2 \\ q & -kx_2 \end{bmatrix}
\]

with \(t = s = \frac{1}{x} \) or \(t = \frac{1}{x_1} \) and \(s = \frac{1}{x_2} \).

Here, \(x_3 = \frac{f}{F} \), \(\psi = \begin{bmatrix} f \\ F \end{bmatrix} \), and \(\frac{t_2}{t} \frac{s}{s_1} = \frac{x_1 x}{xx_2} = \frac{x_1}{x_2} \).

\[p(x+x_2)(x_1+x_{12}) - q(x+x_1)(x_2+x_{12}) - \delta^2 pq(p-q) = 0 \]

(Q1) if \(x_1 \rightarrow -x_1 \) and \(x_2 \rightarrow -x_2 \)

Lax pair:

\[
L = t \begin{bmatrix}
(k - p)x_1 + kx & -p \left(\delta^2 k(k - p) + xx_1 \right) \\
p & -((k - p)x + kx_1)
\end{bmatrix}
\]

\[
M = s \begin{bmatrix}
(k - q)x_2 + kx & -q \left(\delta^2 k(k - q) + xx_2 \right) \\
q & -((k - q)x + kx_2)
\end{bmatrix}
\]
with \(t = \frac{1}{\sqrt{k(k-p)((\delta p+x+x_1)(\delta p-x-x_1))}} \) and
\[
s = \frac{1}{\sqrt{k(k-q)((\delta q+x+x_2)(\delta q-x-x_2))}}
\]

Here \(x_3 = \frac{f}{F}, \psi = \begin{bmatrix} f \\ F \end{bmatrix} \), and
\[
\frac{t_2}{t} \frac{s}{s_1} = \frac{q(\delta p+(x+x_1))(\delta p-(x+x_1))}{p(\delta q+(x+x_2))(\delta q-(x+x_2))}.
\]

Question: Rational choice for \(t \) and \(s \)?
• Example: (A2) Equation (ABS 2003)

\[(q^2 - p^2)(xx_1x_2x_{12} + 1) + q(p^2 - 1)(xx_2 + x_1x_{12}) - p(q^2 - 1)(xx_1 + x_2x_{12}) = 0\]

(Q3) with \(\delta = 0\) via Möbius transformation:

\[x \rightarrow x, x_1 \rightarrow \frac{1}{x_1}, x_2 \rightarrow \frac{1}{x_2}, x_{12} \rightarrow x_{12}, p \rightarrow p, q \rightarrow q\]

• Lax pair:

\[L = t \begin{bmatrix} k(p^2 - 1)x & -(p^2 - k^2 + p(k^2 - 1)xx_1) \\ p(k^2 - 1) + (p^2 - k^2)xx_1 & -k(p^2 - 1)x_1 \end{bmatrix}\]

\[M = s \begin{bmatrix} k(q^2 - 1)x & -(q^2 - k^2 + q(k^2 - 1)xx_2) \\ q(k^2 - 1) + (q^2 - k^2)xx_2 & -k(q^2 - 1)x_2 \end{bmatrix}\]
with \(t = \frac{1}{\sqrt{(k^2-1)(k^2-p^2)(p-xx_1)(pxx_1-1)}} \)

and \(s = \frac{1}{\sqrt{(k^2-1)(k^2-q^2)(q-xx_2)(qxx_2-1)}} \)

Here, \(x_3 = \frac{f}{F} \), \(\psi = \begin{bmatrix} f \\ F \end{bmatrix} \), and

\[
\frac{t_2}{t} \frac{s}{s_1} = \frac{(q^2-1)(p-xx_1)(pxx_1-1)}{(p^2-1)(q-xx_2)(qxx_2-1)}.
\]

Question: Rational choice for \(t \) and \(s \)?
• Example: (Q1) Equation (ABS 2003)

\[p(x-x_2)(x_1-x_{12}) - q(x-x_1)(x_2-x_{12}) + \delta^2 pq(p-q) = 0 \]

• Lax pair:

\[L = t \begin{bmatrix} (p-k)x_1 + kx & -p(\delta^2 k(p-k) + xx_1) \\ p & -((p-k)x + kx_1) \end{bmatrix} \]

\[M = s \begin{bmatrix} (q-k)x_2 + kx & -q(\delta^2 k(q-k) + xx_2) \\ q & -((q-k)x + kx_2) \end{bmatrix} \]

with \(t = \frac{1}{\delta p \pm (x-x_1)} \) and \(s = \frac{1}{\delta q \pm (x-x_2)} \),

or \(t = \frac{1}{\sqrt{k(p-k)((\delta p+x-x_1)(\delta p-x+x_1))}} \) and

\(s = \frac{1}{\sqrt{k(q-k)((\delta q+x-x_2)(\delta q-x+x_2))}} \)
Here, $x_3 = \frac{f}{F}$, $\psi = \begin{bmatrix} f \\ F \end{bmatrix}$, and

$$\frac{t_2}{t} \frac{s}{s_1} = \frac{q(\delta p+(x-x_1))(\delta p-(x-x_1))}{p(\delta q+(x-x_2))(\delta q-(x-x_2))}.$$
• Example: (Q1) Equation \((\delta = 0)\) (ABS 2003)

\[
p(x - x_2)(x_1 - x_{12}) - q(x - x_1)(x_2 - x_{12}) = 0
\]

which is the cross-ratio equation

\[
\frac{(x - x_1)(x_{12} - x_2)}{(x_1 - x_{12})(x_2 - x)} = \frac{p}{q}
\]

• Lax pair:

\[
L = t \begin{bmatrix}
(p - k)x_1 + kx & -pxx_1 \\
\quad p & -((p - k)x + kx_1)
\end{bmatrix}
\]

\[
M = s \begin{bmatrix}
(q - k)x_2 + kx & -qx x_2 \\
\quad q & -((q - k)x + kx_2)
\end{bmatrix}
\]
\[t = \frac{1}{x-x_1} \quad \text{and} \quad s = \frac{1}{x-x_2} \]

or \[t = \frac{1}{\sqrt{k(k-p)(x-x_1)}} \quad \text{and} \quad s = \frac{1}{\sqrt{k(k-q)(x-x_2)}}. \]

Here, \(x_3 = \frac{f}{F}, \quad \psi = \begin{bmatrix} f \\ F \end{bmatrix}, \quad \text{and} \quad \frac{t_2}{t} \frac{s}{s_1} = \frac{q(x-x_1)^2}{p(x-x_2)^2}. \]
• Example: (Q2) Equation (ABS 2003)

\[p(x-x_2)(x_1-x_{12}) - q(x-x_1)(x_2-x_{12}) + pq(p-q) \]
\[(x+x_1+x_2+x_{12}) - pq(p-q)(p^2-pq+q^2) = 0 \]

• Lax pair:

\[
L = \begin{bmatrix}
(k-p)(kp-x_1) + kx \\
-p \left(k(k-p)(k^2-kp+p^2-x-x_1) + xx_1 \right) \\
p & -((k-p)(kp-x) + kx_1)
\end{bmatrix}
\]

\[
M = \begin{bmatrix}
(k-q)(kq-x_2) + kx \\
-q \left(k(k-q)(k^2-kq+q^2-x-x_2) + xx_2 \right) \\
q & -((k-q)(kq-x) + kx_2)
\end{bmatrix}
\]
with

\[t = \frac{1}{\sqrt{k(k-p)((x-x_1)^2-2p^2(x+x_1)+p^4)}} \]

and

\[s = \frac{1}{\sqrt{k(k-q)((x-x_2)^2-2q^2(x+x_2)+q^4)}} \]

Here, \(x_3 = \frac{f}{F} \), \(\psi = [f \ F]^T \), and

\[
\frac{t_2}{t} \quad \frac{s}{s_1} = \frac{q ((x - x_1)^2 - 2p^2(x + x_1) + p^4)}{p ((x - x_2)^2 - 2q^2(x + x_2) + q^4)}
\]

\[
= \frac{p ((X + X_1)^2 - p^2) ((X - X_1)^2 - p^2)}{q ((X + X_2)^2 - q^2) ((X - X_2)^2 - q^2)}
\]

with \(x = X^2 \), and, consequently, \(x_1 = X_1^2 \), \(x_2 = X_2^2 \).
• Example: (Q3) Equation (ABS 2003)

\[(q^2 - p^2)(xx_{12} + x_1 x_2) + q(p^2 - 1)(xx_1 + x_2 x_{12}) \]
\[-p(q^2 - 1)(xx_2 + x_1 x_{12}) - \frac{\delta^2}{4pq}(p^2 - q^2)(p^2 - 1)(q^2 - 1) = 0\]

• Lax pair:

\[
L = t \begin{bmatrix}
-4kp (p(k^2 - 1)x + (p^2 - k^2)x_1) \\
(p^2 - 1)(\delta^2 k^2 - \delta^2 k^4 - \delta^2 p^2 + \delta^2 k^2 p^2 - 4k^2 pxx_1) \\
-4k^2 p(p^2 - 1) & 4kp (p(k^2 - 1)x_1 + (p^2 - k^2)x)
\end{bmatrix}
\]

\[
M = s \begin{bmatrix}
-4kq (q(k^2 - 1)x + (q^2 - k^2)x_2) \\
(q^2 - 1)(\delta^2 k^2 - \delta^2 k^4 - \delta^2 q^2 + \delta^2 k^2 q^2 - 4k^2 qxx_2) \\
-4k^2 q(q^2 - 1) & 4kq (q(k^2 - 1)x_2 + (q^2 - k^2)x)
\end{bmatrix}
\]
with

\[t = \frac{1}{2k \sqrt{p(k^2 - 1)(k^2 - p^2)} \left(4p^2(x^2 + x_1^2) - 4p(1 + p^2)x_1 + \delta^2 (1-p^2)^2 \right)} \]

and

\[s = \frac{1}{2k \sqrt{q(k^2 - 1)(k^2 - q^2)} \left(4q^2(x^2 + x_2^2) - 4q(1 + q^2)x_2 + \delta^2 (1-q^2)^2 \right)} \].
Here, $x_3 = \frac{f}{F}$, $\psi = \begin{bmatrix} f \\ F \end{bmatrix}$, and

\[
\begin{align*}
\frac{t_2}{t} & \quad s \\
\frac{s}{s_1} & = \frac{q(q^2 - 1) \left(4p^2(x^2 + x_1^2) - 4p(1+p^2)xx_1 + \delta^2(1-p^2)^2\right)}{p(p^2 - 1) \left(4q^2(x^2 + x_2^2) - 4q(1+q^2)xx_2 + \delta^2(1-q^2)^2\right)} \\
& = \frac{q(q^2 - 1) \left(4p^2(x - x_1)^2 - 4p(p-1)^2xx_1 + \delta^2(1-p^2)^2\right)}{p(p^2 - 1) \left(4q^2(x - x_2)^2 - 4q(q-1)^2xx_2 + \delta^2(1-q^2)^2\right)} \\
& = \frac{q(q^2 - 1) \left(4p^2(x + x_1)^2 - 4p(p+1)^2xx_1 + \delta^2(1-p^2)^2\right)}{p(p^2 - 1) \left(4q^2(x + x_2)^2 - 4q(q+1)^2xx_2 + \delta^2(1-q^2)^2\right)}
\end{align*}
\]
where

$$4p^2(x^2 + x_1^2) - 4p(1 + p^2)xx_1 + \delta^2(1 - p^2)^2$$

$$= \delta^2(p - e^{X + X_1})(p - e^{-(X + X_1)})(p - e^{X - X_1})(p - e^{-(X - X_1)})$$

$$= \delta^2(p - \cosh(X + X_1) + \sinh(X + X_1))$$

$$\quad (p - \cosh(X + X_1) - \sinh(X + X_1))$$

$$\quad (p - \cosh(X - X_1) + \sinh(X - X_1))$$

$$\quad (p - \cosh(X - X_1) - \sinh(X - X_1))$$

with $x = \delta \cosh(X)$, and, consequently,

$x_1 = \delta \cosh(X_1)$, $x_2 = \delta \cosh(X_2)$.
• **Example:** (Q3) Equation \((\delta = 0)\) (ABS 2003)

\[
(q^2 - p^2)(x x_{12} + x_1 x_2) + q(p^2 - 1)(x x_1 + x_2 x_{12}) \\
- p(q^2 - 1)(x x_2 + x_1 x_{12}) = 0
\]

• **Lax pair:**

\[
L = t \begin{bmatrix}
(p^2 - k^2)x_1 + p(k^2 - 1)x & -k(p^2 - 1)x x_1 \\
(p^2 - 1)k & -((p^2 - k^2)x + p(k^2 - 1)x_1)
\end{bmatrix}
\]

\[
M = s \begin{bmatrix}
(q^2 - k^2)x_2 + q(k^2 - 1)x & -k(q^2 - 1)x x_2 \\
(q^2 - 1)k & -((q^2 - k^2)x + q(k^2 - 1)x_2)
\end{bmatrix}
\]
\textbullet \ with \ t = \frac{1}{px-x_1} \ and \ s = \frac{1}{qx-x_2} \\

or \ t = \frac{1}{px_1-x} \ and \ s = \frac{1}{qx_2-x} \\

or \ t = \frac{1}{\sqrt{(k^2-1)(p^2-k^2)(px-x_1)(px_1-x)}} \\

and \ s = \frac{1}{\sqrt{(k^2-1)(q^2-k^2)(qx-x_2)(qx_2-x)}}. \\

Here, \ x_3 = \frac{f}{F}, \ \psi = \begin{bmatrix} f \\ F \end{bmatrix}, \ and \\

\frac{t_2}{t} \frac{s}{s_1} = \frac{(q^2-1)(px-x_1)(px_1-x)}{(p^2-1)(qx-x_2)(qx_2-x)}.
• Example: \((\alpha, \beta)\)-equation (Quispel 1983)

\[
\begin{align*}
((p-\alpha)x-(p+\beta)x_1) & \cdot ((p-\beta)x_2-(p+\alpha)x_{12}) \\
-((q-\alpha)x-(q+\beta)x_2) & \cdot ((q-\beta)x_1-(q+\alpha)x_{12}) = 0
\end{align*}
\]

• Lax pair:

\[
L = t \begin{bmatrix}
(p-\alpha)(p-\beta)x + (k^2-p^2)x_1 & -(k-\alpha)(k-\beta)xx_1 \\
(k+\alpha)(k+\beta) & -(p+\alpha)(p+\beta)x_1 + (k^2-p^2)x
\end{bmatrix}
\]

\[
M = s \begin{bmatrix}
(q-\alpha)(q-\beta)x + (k^2-q^2)x_2 & -(k-\alpha)(k-\beta)xx_2 \\
(k+\alpha)(k+\beta) & -(q+\alpha)(q+\beta)x_2 + (k^2-q^2)x
\end{bmatrix}
\]
• with \(t = \frac{1}{(\alpha-p)x+(\beta+p)x_1} \) and \(s = \frac{1}{(\alpha-q)x+(\beta+q)x_2} \)

or \(t = \frac{1}{(\beta-p)x+(\alpha+p)x_1} \) and \(s = \frac{1}{(\beta-q)x+(\alpha+q)x_2} \)

or \(t = \frac{1}{\sqrt{(p^2-k^2)(\beta-p)x+(\alpha+p)x_1)((\alpha-p)x+(\beta+p)x_1)} \)

and \(s = \frac{1}{\sqrt{(q^2-k^2)(\beta-q)x+(\alpha+q)x_2)((\alpha-q)x+(\beta+q)x_2)} \)

Here, \(x_3 = \frac{f}{F}, \quad y = \begin{bmatrix} f \\ F \end{bmatrix}, \) and

\[
\frac{t_2}{t} \frac{s}{s_1} = \frac{((\beta-p)x+(\alpha+p)x_1)((\alpha-p)x+(\beta+p)x_1)}{((\beta-q)x+(\alpha+q)x_2)((\alpha-q)x+(\beta+q)x_2)}.
\]
Example: Discrete sine-Gordon Equation

\[
xx_1x_2x_{12} - pq(xx_{12} - x_1x_2) - 1 = 0
\]

(H3) with \(\delta = 0 \) via extended Möbius transformation:

\[
x \rightarrow x, \quad x_1 \rightarrow x_1, \quad x_2 \rightarrow \frac{1}{x_2}, \quad x_{12} \rightarrow -\frac{1}{x_{12}}, \quad p \rightarrow \frac{1}{p}, \quad q \rightarrow q
\]

Discrete sine-Gordon equation is **NOT** consistent around the cube, but has a Lax pair!

Lax pair:

\[
L = \begin{bmatrix}
p & -kx_1 \\
-k & px_1 \\
\end{bmatrix}
\]

\[
M = \begin{bmatrix}
\frac{qx_2}{x} & -\frac{1}{kx} \\
-x_2 & q \\
\end{bmatrix}
\]
Example: Lattice due to Hietarinta (2011)

\[zx_1 - y_1 - x = 0 \]
\[zx_2 - y_2 - x = 0 \]
\[z_{12} - \frac{y}{x} - \frac{1}{x} \left(\frac{px_1 - qx_2}{z_1 - z_2} \right) = 0 \]

System has two single-edge equations and one full-face equation.

Lax pair:

\[
L = t \begin{bmatrix}
\frac{yz}{x} & \frac{k}{x} & \frac{kx - px_1 z - yzz_1}{x} \\
-x_1 z & z_1 & xz_1 \\
z & 0 & -z z_1
\end{bmatrix}
\]
and

\[
M = s \begin{bmatrix}
\frac{yz}{x} & k & \frac{kx-qx_2z-yzz_2}{x} \\
-x_2z & z_2 & xz_2 \\
z & 0 & -zz_2
\end{bmatrix},
\]

where \(t = s = \frac{1}{z} \), or \(t = \frac{1}{z_1}, s = \frac{1}{z_2} \),

or \(t = \sqrt[3]{\frac{x}{x_1z^2z_1}}, s = \sqrt[3]{\frac{x}{x_2z^2z_2}} \).

Here, \(x_3 = \frac{h}{G}, y_3 = \frac{g}{G}, z_3 = \frac{f}{G}, \psi = \begin{bmatrix} f \\ g \\ G \end{bmatrix} \), and

\(\frac{t_2}{t} \frac{s}{s_1} = \frac{z_1}{z_2} \).
• **Example:** Discrete Boussinesq System
 (Tongas and Nijhoff 2005)

\[
\begin{align*}
 z_1 - xx_1 + y &= 0 \\
 z_2 - xx_2 + y &= 0 \\
 (x_2 - x_1)(z - xx_{12} + y_{12}) - p + q &= 0
\end{align*}
\]

• **Lax pair:**

\[
L = t
\begin{bmatrix}
 -x_1 & 1 & 0 \\
 -y_1 & 0 & 1 \\
 p - k - xy_1 + x_1z & -z & x
\end{bmatrix}
\]
\[
M = s \begin{bmatrix}
-x_2 & 1 & 0 \\
-y_2 & 0 & 1 \\
q - k - xy_2 + x_2z & -z & x
\end{bmatrix}
\]

with \(t = s = 1 \), or \(t = \frac{1}{\sqrt[3]{p-k}} \) and \(s = \frac{1}{\sqrt[3]{q-k}} \).

Here, \(x_3 = \frac{f}{F} \), \(y_3 = \frac{g}{F} \), \(\psi = \begin{bmatrix} f \\ F \\ g \end{bmatrix} \), and \(\frac{t_2}{t} \frac{s}{s_1} = 1 \).
• Example: System of pKdV Lattices

(Xenitidis and Mikhailov 2009)

\[(x - x_{12})(y_1 - y_2) - p^2 + q^2 = 0\]
\[(y - y_{12})(x_1 - x_2) - p^2 + q^2 = 0\]

• Lax pair:

\[
L = \begin{bmatrix}
0 & 0 & tx & t(p^2 - k^2 - xy_1) \\
0 & 0 & t & -ty_1 \\
Ty & T(p^2 - k^2 - x_1y) & 0 & 0 \\
T & -Tx_1 & 0 & 0
\end{bmatrix}
\]
\[
M = \begin{bmatrix}
0 & 0 & sx & s(q^2 - k^2 - xy_2) \\
0 & 0 & s & -sy_2 \\
Sy & S(q^2 - k^2 - x_2y) & 0 & 0 \\
S & -Sx_2 & 0 & 0 \\
\end{bmatrix}
\]

with \(t = s = T = S = 1 \),

or \(tT = \frac{1}{\sqrt{\text{Det}L_c}} = \frac{1}{p-k} \) and \(sS = \frac{1}{\sqrt{\text{Det}M_c}} = \frac{1}{q-k} \).

Here, \(x_3 = \frac{f}{F} \), \(y_3 = \frac{g}{G} \), \(\psi = [f \ F \ g \ G]^T \), and

\[
\frac{T_2}{T} \frac{S}{s_1} = 1 \quad \text{and} \quad \frac{T_2}{t} \frac{s}{S_1} = 1,
\]

or \(\frac{T_2}{\mathcal{T}} \frac{S}{S_1} = 1 \), with \(\mathcal{T} = tT, \ S = sS. \)
• Example: Discrete NLS System (Xenitidis and Mikhailov 2009)

\[y_1 - y_2 - y \left((x_1 - x_2)y + p - q \right) = 0 \]
\[x_1 - x_2 + x_{12} \left((x_1 - x_2)y + p - q \right) = 0 \]

• Lax pair:

\[
L = t \begin{bmatrix}
-1 & x_1 \\
y & k - p - xy_1
\end{bmatrix}
\]
\[
M = s \begin{bmatrix}
-1 & x_2 \\
y & k - q - xy_2
\end{bmatrix}
\]
with $t = s = 1$, or $t = \frac{1}{\sqrt{\text{Det} L_c}} = \frac{1}{\sqrt{\alpha-k}}$ and $s = \frac{1}{\sqrt{\beta-k}}$.

Here, $x_3 = \frac{f}{F}$, $\psi = \begin{bmatrix} f \\ F \end{bmatrix}$, and $\frac{t_2}{t} \frac{s}{s_1} = 1$.
• Example: Schwarzian-Boussinesq Lattice
 (Nijhoff 1999)

\[y z_1 - x_1 + x = 0 \]
\[y z_2 - x_2 + x = 0 \]
\[z y_{12} (y_1 - y_2) - y (p y_2 z_1 - q y_1 z_2) = 0 \]

• Lax pair:

\[
L = t \begin{bmatrix}
y & 0 & -yz_1 \\
-kyy_1/z & pyz_1/z & 0 \\
0 & -1 & y_1
\end{bmatrix}
\]
\[
M = s \begin{bmatrix}
 y & 0 & -yz_2 \\
 -\frac{kyy_2}{z} & \frac{pyz_2}{z} & 0 \\
 0 & -1 & y_2 \\
\end{bmatrix}
\]

with \(t = s = \frac{1}{y} \), or \(t = \frac{1}{y_1} \) and \(s = \frac{1}{y_2} \),
or \(t = \sqrt[3]{\frac{z}{y^2y_1z_1}} \) and \(s = \sqrt[3]{\frac{z}{y^2y_2z_2}} \).

Here, \(x_3 = \frac{fy+Fx}{F} \), \(y_3 = \frac{g}{F} \), \(z_3 = \frac{f}{F} \), \(\psi = \begin{bmatrix} f \\ g \\ F \end{bmatrix} \),
and \(\frac{t_2}{t} \frac{s}{s_1} = \frac{y_1}{y_2} \).
Example: Toda modified Boussinesq System

(Nijhoff 1992)

\[
y_{12}(p - q + x_2 - x_1) - (p - 1)y_2 + (q - 1)y_1 = 0
\]

\[
y_1 y_2(p - q - z_2 + z_1) - (p - 1)yy_2 + (q - 1)yy_1 = 0
\]

\[
y(p + q - z - x_{12})(p - q + x_2 - x_1) - (p^2 + p + 1)y_1
\]

\[
+ (q^2 + q + 1)y_2 = 0
\]

Lax pair:

\[
L = t \begin{bmatrix}
k + p - z & \frac{1+k+k^2}{y} & -k^2y - y_1 - p^2(y_1 - yy_1 - kyy_1 + yzx_1) - kyy_1 + yzx_1 \\
0 & p - 1 & (1 - k)y_1 \\
1 & 0 & p - k - x_1
\end{bmatrix}
\]
\[
M = s \begin{bmatrix}
k + q - z & \frac{1+k+k^2}{y} & -k^2 y - y_2 - q^2(y_2 - y) - ky(x_2 - z) + yzx_2 \\
0 & q - 1 & 0 \\
1 & 0 & (1 - k)y_2 \\
\end{bmatrix}
\]

with \(t = s = 1 \), or \(t = 3\sqrt{\frac{y_1}{y}} \) and \(s = 3\sqrt{\frac{y_2}{y}} \).

Here, \(x_3 = \frac{f}{F} \), \(y_3 = \frac{g}{F} \), \(\psi = \begin{bmatrix} f \\ g \\ F \end{bmatrix} \),

and \(\frac{t_2}{t} \frac{s}{s_1} = 1 \).