Invited Lecture 2

Symbolic Computation of Conserved Densities for Systems of Nonlinear Evolution Equations

Willy Hereman

Dept. Mathematical and Computer Sciences
Colorado School of Mines
Golden, CO 80401-1887
U.S.A.

ISLC Workshop
Nordfjordeid, Norway

Monday, June 24, 1996
16:00
Outline Talk

• Purpose
• Motivation
• Other Programs
• Algorithm
• Implementation
• Examples
• Applications
• More Examples
• Scope and Limitations of Code condens.m
• Sample Data File and Output
• Conclusions and Future Work
• **Purpose**

Design and implement an algorithm to compute polynomial-type conservation laws for nonlinear systems of evolution equations

• **Conservation Laws**

Conservation law for a nonlinear PDE

\[\rho_t + J_x = 0 \]

\(\rho \) is the density, \(J \) is the flux

Consider a single nonlinear evolution equation

\[u_t = \mathcal{F}(u, u_x, u_{xx}, \ldots, u_{n,x}) \]

If \(\rho \) is a polynomial in \(u \) and its \(x \) derivatives, and does not depend explicitly on \(x \) and \(t \), then \(\rho \) is called a polynomial conserved density

If \(J \) is also polynomial in \(u \) and its \(x \) derivatives then this is called a polynomial conservation law

Consequently

\[P = \int_{-\infty}^{+\infty} \rho \, dx = \text{constant} \]

provided \(J \) vanishes at infinity
Motivation

– Conservation laws describe the conservation of fundamental physical quantities such as linear momentum and energy. Compare with constants of motion (first integrals) in mechanics.

– or nonlinear PDEs, the existence of a sufficiently large (in principal infinite) number of conservation laws assures complete integrability.

– Conservation laws provide a simple and efficient method to study both quantitative and qualitative properties of PDEs and their solutions, e.g. Hamiltonian structure(s).

– Conservation laws can be used to test numerical integrators for PDEs.
For KdV equation, u and u^2 are conserved quantities. Thus, a numerical scheme should preserves the quantities

$$\sum_j U_{j}^{n-1} = \sum_j U_{j}^{n}$$

and

$$\sum_j [U_{j}^{n-1}]^2 = \sum_j [U_{j}^{n}]^2$$

For two such schemes see Sanz-Serna, J. Comput. Phys. 47, 1982
• Conserved Densities Software

– Conserved densities programs **CONSD** and **SYMCD** by Ito and Kako (Reduce, 1985, 1994 & 1996)

– Conserved densities in **DELiA** by Bocharov (Pascal, 1990)

– Conserved densities and formal symmetries **FS** by Gerdt and Zharkov (Reduce, 1993)

– Conserved densities **condens.m** by Hereman and Göktaş (Mathematica, 1995)

– Conservation laws, based on **CRACK**, by Wolf (Reduce, 1995)

– Conserved densities by Ahner *et al.* (Mathematica, 1995)

Our program is available at ftp site: **mines.edu** in subdirectory

pub/papers/math_cs_dept/software/condens
Example

Consider the Korteweg-de Vries (KdV) equation

$$u_t + uu_x + u_{3x} = 0$$

Conserved densities

$$\rho_1 = u, \quad (u)_t + (\frac{u^2}{2} + u_{2x})_x = 0$$

$$\rho_2 = u^2, \quad (u^2)_t + (\frac{2u^3}{3} + 2uu_{2x} - u_x^2)_x = 0$$

$$\rho_3 = u^3 - 3u_x^2,$$

$$\left(u^3 - 3u_x^2 \right)_t + \left(\frac{3}{4}u^4 - 6uu_x^2 + 3u^2u_{2x} + 3u_{2x}^2 - 6u_xu_{3x} \right)_x = 0$$

$$\vdots$$

$$\rho_6 = u^6 - 60u^3u_x^2 - 30u_x^4 + 108u^2u_{2x}^2$$

$$+ \frac{720}{7}u_{2x}^3 - \frac{648}{7}uu_{3x}^2 + \frac{216}{7}u_{4x}^2, \quad \ldots \ldots \text{long} \ldots \ldots$$

$$\vdots$$
Note: KdV equation is invariant under the scaling symmetry

\[(x, t, u) \rightarrow (\lambda x, \lambda^3 t, \lambda^{-2} u)\]

\(u\) and \(t\) carry the weight of 2, resp. 3 derivatives with respect to \(x\)

\[u \sim \frac{\partial^2}{\partial x^2}, \quad \frac{\partial}{\partial t} \sim \frac{\partial^3}{\partial x^3}\]
Key Idea behind Construction of Densities

Compute the building blocks of density with rank 6

(i) Take all the variables, except \(\frac{\partial}{\partial t} \), with positive weight

Here, only \(u \) with \(w(u) = 2 \)

List all possible powers of \(u \), up to rank 6

\[[u, u^2, u^3] \]

Introduce \(x \) derivatives to ‘complete’ the rank

\(u \) has weight 2, so introduce \(\frac{\partial^4}{\partial x^4} \),

\(u^2 \) has weight 4, so introduce \(\frac{\partial^2}{\partial x^2} \),

\(u^3 \) has weight 6, so no derivative needed

(ii) Apply the derivatives

Remove terms that are total derivatives with respect to \(x \)
or total derivative up to terms kept earlier in the list

\[[u_{4x}] \rightarrow [\] \text{ empty list} \]

\[[u_x^2, uu_{2x}] \rightarrow [u_x^2] \quad (uu_{2x} = (uu_x)_x - u_x^2) \]

\[[u^3] \rightarrow [u^3] \]
Combine the ‘building blocks’

\[\rho = u^3 + c_1 u_x^2 \]

the constant \(c_1 \) must be determined

(iii) Determine the unknown coefficients (\(c_1 \))

1. Compute \(\frac{\partial \rho}{\partial t} = 3u^2 u_t + 2c_1 u_x u_{xt} \),

2. Replace \(u_t \) by \(-(uu_x + u_{3x})\) and \(u_{xt} \) by \(-(uu_x + u_{3x})_x\)

3. Integrate the result with respect to \(x \)

 Carry out all integrations by parts

 \[
 \frac{\partial \rho}{\partial t} = -\left[\frac{3}{4} u^4 + (c_1 - 3) uu_x^2 + 3u^2 u_{2x} - c_1 u_{2x}^2 + 2c_1 u_x u_{3x} \right]_x
 - (c_1 + 3) u_x^3,
 \]

4. The non-integrable (last) term must vanish. Thus, \(c_1 = -3 \)

Result:

\[\rho = u^3 - 3u_x^2 \]

Expression [...] yields

\[
J = \frac{3}{4} u^4 - 6uu_x^2 + 3u^2 u_{2x} + 3u_{2x}^2 - 6u_x u_{3x}
\]
• Algorithm and Implementation

Consider a system of \(N \) nonlinear evolution equations

\[
 u_{i,t} + \mathcal{F}_i(u_j, u_j^{(1)}, \ldots, u_j^{(n)}) = 0 \quad i, j = 1, 2, \ldots, N
\]

where \(u_{i,t} \triangleq \frac{\partial u_i}{\partial t}, \quad u_i^{(n)} \triangleq \frac{\partial^n u_i}{\partial x^n} \)

All \(u_i \) depend on \(x \) and \(t \)

Algorithm consists of three major steps

1. Determine weights (scaling properties) of variables & parameters

2. Construct the form of the density (building blocks)

3. Determine the unknown numerical coefficients
Procedure to determine the weights (scaling properties)

Define

weight of a variable: the number of partial derivatives with respect to x the variable carries

rank of a term: the total weight of that term in terms of partial derivatives with respect to x

For example:

$$u_t \rightarrow r_{1,1} = w(u) + w\left(\frac{\partial}{\partial t}\right)$$

$$uu_x \rightarrow r_{1,2} = 2w(u) + 1$$

$$u_{3x} \rightarrow r_{1,3} = w(u) + 3$$

where $r_{i,k}$ denotes the rank of the k^{th} term in the i^{th} equation

w denotes the weight of its argument

Uniformity in rank requires

$$r_{1,1} = r_{1,2} = r_{1,3}$$

Thus

$$w(u) = 2, \quad w\left(\frac{\partial}{\partial t}\right) = 3$$
Require that all terms in any particular equation have the same rank
(\textit{uniformity in rank})

Different equations in the same system may have different ranks
Introduce the following notations:

- \(w \) returns the weight of its argument
- \(g \) returns the degree of nonlinearity of its argument
- \(d \) returns the number of partial derivatives with respect to its argument
- \(r_{i,k} \) denotes the rank of the \(k^{th} \) term in the \(i^{th} \) equation

Pick

\[
 w\left(\frac{\partial}{\partial x}\right) = 1, \ldots, w\left(\frac{\partial^n}{\partial x^n}\right) = n
\]

All weight are assumed nonnegative and rational

List of ‘variables’ that carry weights

\[
 \left\{ \frac{\partial}{\partial t}, u_1, u_2, \ldots, u_N, p_1, p_2, \ldots, p_P \right\}
\]
Step 1 Take the i^{th} equation with K_i terms

Step 2 For each of its terms compute the rank

$$r_{i,k} = d(x) + d(t) \ w(\frac{\partial}{\partial t}) + \sum_{j=1}^{N} g(u_j) \ w(u_j) + \sum_{j=1}^{P} g(p_j) \ w(p_j)$$

$k = 1, 2, \ldots, K$

If the variable u_j and/or the parameter p_j is missing then $g(u_j) = 0$ or $g(p_j) = 0$, or both

Step 3 Use uniformity in rank in the i^{th} equation

Form the linear system

$$A_i = \{r_{i,1} = r_{i,2} = \cdots = r_{i,K_i}\}$$

Step 4 Repeat steps (1) through (3) for all equations

Step 5 Gather the equations A_i

Form the global linear system

$$\mathcal{A} = \bigcup_{i=1}^{N} A_i$$

Step 6 Solve \mathcal{A} for the $N + P + 1$ unknowns $w(u_j)$, $w(p_j)$ and $w(\frac{\partial}{\partial t})$
Example

Consider the Boussinesq equation

\[u_{tt} - u_{2x} + uu_{2x} + u_x^2 + a u_{4x} = 0 \]

with nonzero parameter \(a \).

Can be written as a system of evolution equations

\[u_{1,t} + u_2' = 0 \]

\[u_{2,t} + u_1' - u_1u_1' - a u_1^{(3)} = 0 \]

In the second equation

\[u_1' \text{ and } a u_1^{(3)} \]

do not allow for uniformity in rank.

Introduce an auxiliary parameter \(b \) with weight and replace the system by

\[u_{1,t} + u_2' = 0 \]

\[u_{2,t} + b u_1' - u_1u_1' - a u_1^{(3)} = 0 \]
Determine ranks and weights

\begin{align*}
 r_{1,1} &= 1 \ w\left(\frac{\partial}{\partial t}\right) + 1 \ w(u_1) \\
 r_{1,2} &= 1 + 1 \ w(u_2) \\
 r_{2,1} &= 1 \ w\left(\frac{\partial}{\partial t}\right) + 1 \ w(u_2) \\
 r_{2,2} &= 1 + 1 \ w(u_1) + 1 \ w(b) \\
 r_{2,3} &= 1 + 2w(u_1) \\
 r_{2,4} &= 3 + 1 \ w(u_1)
\end{align*}

Uniformity in rank for each equation requires

\begin{align*}
 A_1 &= \{r_{1,1} = r_{1,2}\} \\
 A_2 &= \{r_{2,1} = r_{2,2} = r_{2,3} = r_{2,4}\} \\
 \text{and} \quad A &= A_1 \cup A_2
\end{align*}

Solve \(A \) for \(w(u_1), w(u_2), w\left(\frac{\partial}{\partial t}\right) \) and \(w(b) \)

\begin{align*}
 w(u_1) &= 2, \quad w(b) = 2, \quad w(u_2) = 3 \quad \text{and} \quad w\left(\frac{\partial}{\partial t}\right) = 2
\end{align*}

or

\begin{align*}
 u_1 &\sim b \sim \frac{\partial^2}{\partial x^2}, \quad u_2 \sim \frac{\partial^3}{\partial x^3}, \quad \frac{\partial}{\partial t} \sim \frac{\partial^2}{\partial x^2}
\end{align*}
• **Construct the Form of the Density**

Let \(\mathcal{V} = \{v_1, v_2, \ldots, v_Q\} \) be the sorted list (descending weights) of all variables, including all parameters, but excluding \(\frac{\partial}{\partial t} \).

Step 1 Form all combinations of variables of rank \(R \) or less

Recursively, form sets consisting of ordered pairs

\[(T_{q,s}; W_{q,s})\]

where \(T_{q,s} \) denotes a combination of different powers of the variables
and \(W_{q,s} \) denotes the total weight of \(T_{q,s} \)

\(q \) refers to the variable \(v_q \)

\(s \) refers to the allowable power of \(v_q \) such that \(W_{q,s} \leq R \)
Set $\mathcal{B}_0 = \{(1; 0)\}$ and proceed as follows:

For $q = 1$ through Q **do**

For $m = 0$ through $M - 1$ **do**

Form $B_{q,m} = \bigcup_{s=0}^{b_{q,m}} \{(T_{q,s}; W_{q,s})\}$

M is the number of pairs in \mathcal{B}_{q-1}

$T_{q,s} = T_{q-1,m} v_q^s$

$W_{q,s} = W_{q-1,m} + s w(v_q)$

$(T_{q-1,m}; W_{q-1,m})$ is the $(m + 1)^{st}$ ordered pair in \mathcal{B}_{q-1}

$b_{q,m} = \left\lfloor \frac{R - W_{q-1,m}}{w(v_q)} \right\rfloor$ is the maximum allowable power of v_q

Set $\mathcal{B}_q = \bigcup_{m=0}^{M-1} B_{q,m}$

Step 2 Set $\mathcal{G} = \mathcal{B}_Q$

Note: \mathcal{G} has all possible combinations of powers of variables that produce rank R or less
Step 3 Introduce partial derivatives with respect to x

For each pair $(T_{Q,s}; W_{Q,s})$ in \mathcal{G}, apply $\frac{\partial^\ell}{\partial x^\ell}$ to the term $T_{Q,s}$ provided $\ell = R - W_{Q,s}$ is integer

This introduces just enough partial derivatives with respect to x
so that all the pairs retain weight R

Gather in set \mathcal{H} all the terms that result from computing $\frac{\partial^\ell(T_{Q,s})}{\partial x^\ell}$

Step 4 Remove the terms from \mathcal{H} that can be written as a derivative with respect to x, or as a derivative up to terms kept prior in the set

Call the resulting set \mathcal{I}, which consists of the building blocks of the density ρ with desired rank R

Step 5 If \mathcal{I} has I elements, then their linear combination will produce the polynomial density of rank R

$$\rho = \sum_{i=1}^{I} c_i \mathcal{I}(i)$$

$\mathcal{I}(i)$ denotes the i^{th} element in \mathcal{I}

c_i are numerical coefficients, still to be determined
Example

Return to the Boussinesq equation, where

\[w(u_1) = 2, \ w(b) = 2, \ \text{and} \ w(u_2) = 3 \]

For example, construct the density with rank \(R = 6 \)
\[\mathcal{V} = \{ u_2, u_1, b \} \]

Hence, \(v_1 = u_2, \ v_2 = u_1, \ v_3 = b \) and \(Q = 3 \)

Step 1 For \(q = 1, \ m = 0 \):

\[b_{1,0} = \left[\frac{6}{3} \right] = 2 \]

Thus, with \(T_{1,s} = u_2^s \), and \(W_{1,s} = 3s \), where \(s = 0, 1, 2 \)
we obtain

\[B_1 = B_{1,0} = \{ (1; 0), (u_2; 3), (u_2^2; 6) \} \]

For \(q = 2, \ m = 0 \):

\[b_{2,0} = \left[\frac{6-0}{2} \right] = 3 \]

So, with \(T_{2,s} = u_1^s \), and \(W_{2,s} = 2s \), with \(s = 0, 1, 2, 3 \)
we obtain

\[B_{2,0} = \{ (1; 0), (u_1; 2), (u_1^2; 4), (u_1^3; 6) \} \]
For $q = 2$, $m = 1$:

\[B_{2,1} = \{(u_2; 3), (u_1 u_2; 5)\} \text{ since } b_{2,1} = \left\lceil \frac{6-3}{2} \right\rceil = 1 \]

\[T_{2,s} = u_2 u_1^s \]

and

\[W_{2,s} = 3 + 2s, \text{ and } s = 0, 1 \]

For $q = 2$, $m = 2$:

\[b_{2,2} = \left\lceil \frac{6-6}{2} \right\rceil = 0 \]

Therefore $B_{2,2} = \{(u_2^2; 6)\}$

Hence,

\[\mathcal{B}_2 = \{(1; 0), (u_1; 2), (u_1^2; 4), (u_1^3; 6), (u_2; 3), (u_1 u_2; 5), (u_2^2; 6)\} \]

For $q = 3$: introduce possible powers of b

An analogous procedure leads to

\[B_{3,0} = \{(1; 0), (b; 2), (b^2; 4), (b^3; 6)\} \quad B_{3,4} = \{(u_2; 3), (b u_2; 5)\} \]

\[B_{3,1} = \{(u_1; 2), (b u_1; 4), (b^2 u_1; 6)\} \quad B_{3,5} = \{(u_1 u_2; 5)\} \]

\[B_{3,2} = \{(u_1^2; 4), (b u_1^2; 6)\} \quad B_{3,6} = \{(u_2^2; 6)\} \]

\[B_{3,3} = \{(u_1^3; 6)\} \]

Thus

\[\mathcal{B}_3 = \{(1; 0), (b; 2), (b^2; 4), (b^3; 6), (u_1; 2), (b u_1; 4), (b^2 u_1; 6), (u_1^2; 4), (b u_1^2; 6), (u_1^3; 6), (u_2; 3), (b u_2; 5), (u_1 u_2; 5), (u_2^2; 6)\} \]
Step 2 Set $\mathcal{G} = \mathcal{B}_3$

Step 3 Apply derivatives to the first components of the pairs in \mathcal{G}

Compute ℓ for each pair of \mathcal{G}:

$$\ell = 6, 4, 2, 0, 4, 2, 0, 2, 0, 0, 3, 1, 1,$$ and 0

Gather the terms after applying partial derivatives w.r.t. x

Hence

$$\mathcal{H} = \{0, b^3, u_1^{(4)}, bu_1^{(2)}, b^2u_1, (u_1')^2, u_1u_1^{(2)},$$

$$bu_1^2, u_1^3, u_2^{(3)}, bu_2', u_1u_2', u_1'u_2, u_2^2\}$$

Step 4 Remove from \mathcal{H} the terms that can be written as a derivative with respect to x or as a derivative up to terms retained earlier in that set

This gives

$$\mathcal{I} = \{b^2u_1, bu_1^2, u_1^3, u_2^2, u_1'u_2, (u_1')^2\}$$

Step 5 Combine these building blocks and form ρ of rank 6

$$\rho = c_1 b^2u_1 + c_2 bu_1^2 + c_3 u_1^3 + c_4 u_2^2 + c_5 u_1'u_2 + c_6 (u_1')^2$$
Calculus of Variations
provides a useful tool to verify if an expression is a derivative

Theorem

If

\[f = f(x, y_1, \ldots, y_1^{(n)}, \ldots, y_N, \ldots, y_N^{(n)}) \]

then

\[\mathcal{L}_{\vec{y}}(f) \equiv \vec{0} \]

if and only if

\[f = \frac{d}{dx} g \]

where

\[g = g(x, y_1, \ldots, y_1^{(n-1)}, \ldots, y_N, \ldots, y_N^{(n-1)}) \]

Notations:

\[\vec{y} = [y_1, \ldots, y_N]^T \]

\[\mathcal{L}_{\vec{y}}(f) = [\mathcal{L}_{y_1}(f), \ldots, \mathcal{L}_{y_N}(f)]^T \]

\[\vec{0} = [0, \ldots, 0]^T \]

\((T \text{ for transpose})\)
and **Euler Operator:**

\[\mathcal{L}_{y_i} = \frac{\partial}{\partial y_i} - \frac{d}{dx}(\frac{\partial}{\partial y_i'}) + \frac{d^2}{dx^2}(\frac{\partial}{\partial y_i''}) + \cdots + (-1)^n \frac{d^n}{dx^n}(\frac{\partial}{\partial y_i^{(n)}}) \]

Proof: see Olver (1986, pp. 252)

• Determine the Unknown Coefficients

Step 1 Compute \(\frac{\partial \rho}{\partial t} \)

Replace all \((u_{i,t})^{(j)}, \ i, j = 0, 1, \ldots\) from the given system

Step 2 The resulting expression \(E \) must be the total derivative of some functional \(-J \)

Two options:

- Integrate by parts

 Isolate the non-integrable part

 Set it equal to zero

 The latter leads to a linear system for the coefficients \(c_i \) to be solved

- Use the Euler-Lagrange equations

 Apply the Euler operator

\[\mathcal{L}_{u_i} = \frac{\partial}{\partial u_i} - \frac{d}{dx}(\frac{\partial}{\partial u_i'}) + \frac{d^2}{dx^2}(\frac{\partial}{\partial u_i''}) + \cdots + (-1)^n \frac{d^n}{dx^n}(\frac{\partial}{\partial u_i^{(n)}}) \]

 to \(E \)
If E is completely integrable no terms will be left, i.e.

$$\mathcal{L}_{u_1}(E) \equiv 0, \ldots, \mathcal{L}_{u_N}(E) \equiv 0$$

otherwise set the remaining terms equal to zero and form the linear system for the coefficients c_i

With either option, construct a linear system, denoted by S

Step 3 Two cases may occur, depending on whether or not there are parameters in the system

Case I:

If the only unknowns in S are c_i’s, just solve S for c_i’s

Substitute the nonempty solution into ρ to get its final form

Case II:

If in addition to the coefficients c_i’s there are also parameters p_i in S

Determine the conditions on the parameters so that ρ of the given form exists for at least some c_i’s nonzero
These **compatibility conditions** assure that the system has other than trivial solutions

- Set $\mathcal{C} = \{c_1, c_2, \ldots, c_I\}$ and $i = 1$
- **While** $\mathcal{C} \neq \{\}$ **do**:
 - For the building block $\mathcal{I}(i)$ with coefficient c_i to appear in ρ, one needs $c_i \neq 0$
 - Therefore, set $c_i = 1$ and eliminate all the other c_j from \mathcal{S}
 - This gives compatibility conditions consistent with the presence of the term $c_i \mathcal{I}(i)$ in ρ
If compatibility conditions require that some of the parameters are zero

then

\(c_i \) must be zero since parameters are assumed to be nonzero

Hence, set \(C = C \setminus \{c_i\} \), and \(i = i' \)

where \(i' \) is the smallest index of the \(c_j \) that remain in \(C \)

else

Solve the compatibility conditions and for each resulting branch

Solve the system \(S \) for \(c_j \)

Substitute the solution into \(\rho \) to obtain its final form

Collect those \(c_j \) which are zero for \textit{all} of the branches into a set \(Z \)

The \(c_i \) in \(Z \) might not have occurred in any density yet

Give them a chance to occur:

Set \(C = C \cap Z \), and \(i = i' \)

where \(i' \) is the smallest index of the \(c_j \) that are still in \(C \)
• Example

Consider the parameterized coupled KdV equations (Hirota-Satsuma)

\[
\begin{align*}
 u_t - 6\alpha uu_x + 6vv_x - \alpha u_{3x} &= 0 \\
 v_t + 3uv_x + v_{3x} &= 0
\end{align*}
\]

Here, \(w(u) = w(u) = 2 \) and the form of the density of rank 4 is

\[
\rho = c_1 u^2 + c_2 uv + c_3 v^2 = c_1 u_1^2 + c_2 u_1 u_2 + c_3 u_2^2
\]

Step 1 Compute \(\rho_t \) and replace all \((u_{i,t})^{(j)}\) to get

\[
E = 2c_1u_1 \left(6\alpha u_1u_1^{(1)} - 6u_2u_2^{(1)} + \alpha u_1^{(3)} \right) \\
+ c_2u_2 \left(6\alpha u_1u_1^{(1)} - 6u_2u_2^{(1)} + \alpha u_1^{(3)} \right) \\
- c_2u_1 \left(3u_1u_2^{(1)} + u_2^{(3)} \right) - 2c_3u_2 \left(3u_1u_2^{(1)} + u_2^{(3)} \right)
\]

Step 2 Either integrate by parts or apply the Euler operator

Get the linear system for the coefficients \(c_1, c_2 \) and \(c_3 \)

\[
S = \{(1 + \alpha)c_2 = 0, \ 2c_1 + c_3 = 0\}
\]

Obviously, \(C = \{c_1, c_2, c_3\} \) with one parameter \(\alpha \)
Step 3 Search for compatibility conditions

- Set $c_1 = 1$, which gives

$$\{c_1 = 1, \; c_2 = 0, \; c_3 = -2\}$$

without any constraint on the parameter α

Since only $c_2 = 0$, $\mathcal{Z} = \{c_2\}$ and $\mathcal{C} = \mathcal{C} \cap \mathcal{Z} = \{c_2\}$, with $i' = 2$

- Set $c_2 = 1$

This leads to the compatibility condition $\alpha = -1$, and

$$\{c_1 = -\frac{1}{2} c_3, \; c_2 = 1\}$$

Since $\mathcal{Z} = \{\}$ the procedure ends

One gets two densities of rank 4, one without any constraint on α, one with a constraint

In summary:

$$\rho = u_1^2 - 2u_2^2$$

and

$$\rho = -\frac{1}{2} c_3 u_1^2 + u_1 u_2 + c_3 u_2^2$$

with compatibility condition $\alpha = -1$
Search for densities of rank $R \leq 8$

Rank 2: No condition on α

One always has the trivial density $\rho = u$

Rank 4: At this level, two branches emerge

1. No condition on α
 \[
 \rho = u^2 - 2v^2
 \]

2. For $\alpha = -1$
 \[
 \rho = uv + c \left(v^2 - \frac{1}{2}u^2 \right), \quad c \text{ is free}
 \]
Rank 6: No condition on α and

$$\rho = u^3 - \frac{3}{\alpha + 1} uv^2 - \frac{1}{2} u_x^2 + \frac{3}{\alpha + 1} v_x^2, \quad \alpha \neq -1$$

Rank 8: The system has conserved density

$$\rho = u^4 - \frac{12}{5} u^2 v^2 + \frac{12}{5} v^4 - 2 uu_x^2 - \frac{24}{5} uv_x^2 - \frac{8}{5} v^2 u_{2x} + \frac{1}{5} u_{2x}^2 + \frac{8}{5} v_{2x}^2$$

provided that $\alpha = \frac{1}{2}$

Therefore, $\alpha = \frac{1}{2}$ (integrable case!) appears in the computation of density of rank 8

For $\alpha = \frac{1}{2}$, we also computed the density of Rank 10

$$\rho = -\frac{7}{20} u^5 + u^3 v^2 - uv^4 - \frac{7}{4} u^2 u_x^2 + \frac{1}{2} v^2 u_x^2 + u^2 v_x^2$$

$$+ 4 v^2 v_x^2 + uv^2 u_{2x} + v_x^2 u_{2x} - \frac{7}{20} uu_{2x}^2 - 2 uv_{2x}^2 + \frac{1}{40} u_{3x}^2$$

$$+ \frac{2}{5} v_{3x}^2 + \frac{1}{10} v^2 u_{4x}$$
A Class of Fifth-Order Evolution Equations

\[u_t + \alpha u^2 u_x + \beta u_x u_{2x} + \gamma uu_{3x} + u_{5x} = 0 \]

where \(\alpha, \beta, \gamma \) are nonzero parameters

\[u \sim \frac{\partial^2}{\partial x^2} \]

Special cases:

- \(\alpha = 30 \) \(\beta = 20 \) \(\gamma = 10 \) Lax
- \(\alpha = 5 \) \(\beta = 5 \) \(\gamma = 5 \) Sawada–Kotera
 or Caudry–Dodd–Gibbon
- \(\alpha = 20 \) \(\beta = 25 \) \(\gamma = 10 \) Kaup–Kupershmidt
- \(\alpha = 2 \) \(\beta = 6 \) \(\gamma = 3 \) Ito

Under what conditions for the parameters \(\alpha, \beta, \) and \(\gamma \) does this equation admit a density of fixed rank?

- **Rank 2:**
 No condition
 \[\rho = u \]

- **Rank 4:**
 Condition: \(\beta = 2\gamma \) (Lax and Ito cases)
 \[\rho = u^2 \]
– **Rank 6:**
Condition:

\[10\alpha = -2\beta^2 + 7\beta\gamma - 3\gamma^2 \]

(Lax, SK, and KK cases)

\[\rho = u^3 + \frac{15}{(-2\beta + \gamma)}u_x^2 \]

– **Rank 8:**

1. \(\beta = 2\gamma \) (Lax and Ito cases)

\[\rho = u^4 - \frac{6\gamma}{\alpha}uu_x^2 + \frac{6}{\alpha}u_{2x}^2 \]

2. \(\alpha = -\frac{2\beta^2 - 7\beta\gamma - 4\gamma^2}{45} \) (SK, KK and Ito cases)

\[\rho = u^4 - \frac{135}{2\beta + \gamma}uu_x^2 + \frac{675}{(2\beta + \gamma)^2}u_{2x}^2 \]

– **Rank 10:**
Condition:

\[\beta = 2\gamma \]

and

\[10\alpha = 3\gamma^2 \]

(Lax case)

\[\rho = u^5 - \frac{50}{\gamma}u^2u_x^2 + \frac{100}{\gamma^2}uu_{2x}^2 - \frac{500}{7\gamma^3}u_{3x}^2. \]
What are the necessary conditions for the parameters $\alpha, \beta,$ and γ so that this equation could admit ∞ many polynomial conservation laws?

- If $\alpha = \frac{3}{10} \gamma^2$ and $\beta = 2\gamma$ then there is a sequence (without gaps!) of conserved densities (Lax case)

- If $\alpha = \frac{1}{5} \gamma^2$ and $\beta = \gamma$ then there is a sequence (with gaps!) of conserved densities (SK case)

- If $\alpha = \frac{1}{5} \gamma^2$ and $\beta = \frac{5}{2} \gamma$ then there is a sequence (with gaps!) of conserved densities (KK case)

- If
 \[
 \alpha = -\frac{2\beta^2 - 7\beta \gamma + 4\gamma^2}{45}
 \]
 or
 \[
 \beta = 2\gamma
 \]
 then there is a conserved density of rank 8

Combine both conditions: $\alpha = \frac{2\gamma^2}{9}$ and $\beta = 2\gamma$ (Ito case)
Application 2

A Class of Seventh-Order Evolution Equations

\[u_t + au^3u_x + bu^3_x + cuu_xu_{2x} + du^2u_{3x} + eu_{2x}u_{3x} + fu_xu_{4x} + guu_{5x} + u_{7x} = 0 \]

where \(a, b, c, d, e, f, g \) are nonzero parameters

\[u \sim \frac{\partial^2}{\partial x^2} \]

Special cases:

SK – Ito Case \(a = 252, \ b = 63, \ c = 378, \ d = 126, \)

\[e = 63, \quad f = 42, \quad g = 21, \]

Lax Case \(a = 140, \ b = 70, \ c = 280, \ d = 70, \)

\[e = 70, \quad f = 42, \quad g = 14 \]
What are the necessary conditions for the parameters so that this equation could admit \(\infty \) many polynomial conservation laws?

Combine the conditions **Rank 2** through **Rank 8**:

- If \(a = \frac{5}{98} g^3 \), \(b = \frac{5}{14} g^2 \), \(c = \frac{10}{7} g^2 \), \(d = \frac{5}{14} g^2 \), \(e = 5g \), \(f = 3g \) then there is a sequence (without gaps!) of conserved densities (Lax case)

- If \(a = \frac{4}{147} g^3 \), \(b = \frac{1}{7} g^2 \), \(c = \frac{6}{7} g^2 \), \(d = \frac{2}{7} g^2 \), \(e = 3g \), \(f = 2g \) then there is a sequence (with gaps!) of conserved densities (SK-Ito case)

- What if \(a = \frac{4}{147} g^3 \), \(b = \frac{5}{14} g^2 \), \(c = \frac{9}{7} g^2 \), \(d = \frac{2}{7} g^2 \), \(e = 6g \), \(f = \frac{7}{2} g \)?

This case is not mentioned in the literature!

With \(g = 42 \) first five densities

\[
\begin{align*}
\rho_1 &= u, \\
\rho_2 &= -8u^3 + u_x^2, \\
\vdots \\
\rho_5 &= -\frac{480}{53}u^7 + \frac{3780}{53}u^4u_x^2 + \frac{861}{106}uu_x^4 \\
&\quad -\frac{644}{53}u^3u_{2x}^2 - \frac{291}{212}u^2u_xu_{2x}^2 - \frac{737}{318}uu_{2x}^3 \\
&\quad +u^2u_{3x}^2 + \frac{133}{636}u_{2x}u_{3x}^2 - \frac{2}{53}uu_{4x}^2 + \frac{1}{1908}u_{5x}^2
\end{align*}
\]

Extension of Kaup-Kupershmidt case? YES, proof by Sanders
• More Examples

• Nonlinear Schrödinger Equation

\[iq_t - q_{2x} + 2|q|^2q = 0 \]

Program can not handle complex equations
Replace by

\[u_t - v_{2x} + 2v(u^2 + v^2) = 0 \]
\[v_t + u_{2x} - 2u(u^2 + v^2) = 0 \]

where \(q = u + iv \)

Scaling properties

\[u \sim v \sim \frac{\partial}{\partial x}, \quad \frac{\partial}{\partial t} \sim \frac{\partial^2}{\partial x^2} \]

First seven conserved densities:

\[\rho_1 = u^2 + v^2 \]
\[\rho_2 = vu_x \]
\[\rho_3 = u^4 + 2u^2v^2 + v^4 + u_x^2 + v_x^2 \]
\[\rho_4 = u^2vu_x + \frac{1}{3}v^3u_x - \frac{1}{6}vu_{3x} \]
\[\rho_5 = -\frac{1}{2} u^6 - \frac{3}{2} u^4 v^2 - \frac{3}{2} u^2 v^4 - \frac{1}{2} v^6 - \frac{5}{2} u^2 u_x^2 - \frac{1}{2} v^2 u_x^2 - \frac{3}{2} u^2 v_x^2 - \frac{5}{2} v^2 v_x^2 + u v^2 u_{2x} - \frac{1}{4} u_{2x}^2 - \frac{1}{4} v_{2x}^2 \]

\[\rho_6 = -\frac{3}{4} u^4 v u_x - \frac{1}{2} u^2 v^3 u_x - \frac{3}{20} v^5 u_x + \frac{1}{4} v u_x^3 - \frac{1}{4} v u_x v_x^2 + u v u_x u_{2x} + \frac{1}{4} u^2 v u_{3x} + \frac{1}{12} v^3 u_{3x} - \frac{1}{40} v u_{5x} \]

\[\rho_7 = \frac{5}{4} u^8 + 5 u^6 v^2 + \frac{15}{2} u^4 v^4 + 5 u^2 v^6 + \frac{5}{4} v^8 + \frac{35}{2} u^4 u_x^2 - 5 u^2 v^2 u_x^2 + \frac{5}{2} v^4 u_x^2 - \frac{7}{4} u_x^4 + \frac{15}{2} u^4 v_x^2 + 25 u^2 v^2 v_x^2 + \frac{35}{2} v^4 v_x^2 - \frac{5}{2} u_x^2 v_x^2 - \frac{7}{4} v_x^4 - 10 u^3 v^2 u_{2x} - 5 u v^4 u_{2x} - 5 u v v_x^2 u_{2x} + \frac{7}{2} u^2 u_{2x}^2 + \frac{1}{2} v^2 u_{2x}^2 + \frac{5}{2} u^2 v_{2x}^2 + \frac{7}{2} v^2 v_{2x}^2 \]
• The Ito system

\[
\begin{align*}
 u_t - u_{3x} - 6uu_x - 2vv_x &= 0 \\
 v_t - 2u_xv - 2uv_x &= 0
\end{align*}
\]

\[
\begin{align*}
 u &\sim \frac{\partial^2}{\partial x^2} \\
 v &\sim \frac{\partial^2}{\partial x^2}
\end{align*}
\]

\[
\begin{align*}
 \rho_1 &= c_1u + c_2v \\
 \rho_2 &= u^2 + v^2 \\
 \rho_3 &= 2u^3 + 2uv^2 - u_x^2 \\
 \rho_4 &= 5u^4 + 6u^2v^2 + v^4 - 10uu_x^2 + 2v^2u_{2x} + u_{2x}^2 \\
 \rho_5 &= 14u^5 + 20u^3v^2 + 6uv^4 - 70uu_x^2 + 10v^2u_x^2 \\
 &\quad - 4v^2v_x^2 + 20uv^2u_{2x} + 14uu_{2x}^2 - u_{3x}^2 + 2v^2u_{4x}
\end{align*}
\]

and more conservation laws
• The dispersiveless long-wave system

\[
\begin{align*}
 u_t + vu_x + uv_x &= 0 \\
 v_t + u_x + vv_x &= 0
\end{align*}
\]

\(u\) free, \(v\) free, but \(u \sim 2v\)

choose \(u \sim \frac{\partial}{\partial x}\) and \(2v \sim \frac{\partial}{\partial x}\)

\[
\begin{align*}
 \rho_1 &= v \\
 \rho_2 &= u \\
 \rho_3 &= uv \\
 \rho_4 &= u^2 + uv^2 \\
 \rho_5 &= 3u^2v + uv^3 \\
 \rho_6 &= \frac{1}{3}u^3 + u^2v^2 + \frac{1}{6}uv^4 \\
 \rho_7 &= u^3v + u^2v^3 + \frac{1}{10}uv^5 \\
 \rho_8 &= \frac{1}{3}u^4 + 2u^3v^2 + u^2v^4 + \frac{1}{15}uv^6
\end{align*}
\]

and more

Always the same set irrespective the choice of weights
A generalized Schamel equation

\[n^2 u_t + (n + 1)(n + 2)u^n u_x + u_{3x} = 0 \]

where \(n \) is a positive integer

\[\rho_1 = u, \quad \rho_2 = u^2 \]

\[\rho_3 = \frac{1}{2} u_x^2 - \frac{n^2}{2} u^{2+\frac{2}{n}} \]

For \(n \neq 1, 2 \) no further conservation laws
Three-Component Korteweg-de Vries Equation

\[
\begin{align*}
 u_t - 6uu_x + 2vv_x + 2ww_x - u_{3x} &= 0 \\
 v_t - 2vu_x - 2uv_x &= 0 \\
 w_t - 2wu_x - 2uw_x &= 0
\end{align*}
\]

Scaling properties

\[
 u \sim v \sim w \sim \frac{\partial^2}{\partial x^2}, \quad \frac{\partial}{\partial t} \sim \frac{\partial^3}{\partial x^3}
\]

First five densities:

\[
\begin{align*}
 \rho_1 &= c_1u + c_2v + c_3w \\
 \rho_2 &= u^2 - v^2 - w^2 \\
 \rho_3 &= -2u^3 + 2uv^2 + 2uw^2 + u_x^2 \\
 \rho_4 &= -\frac{5}{2}u^4 + 3u^2v^2 - \frac{1}{2}v^4 + 3u^2w^2 - v^2w^2 - \frac{1}{2}w^4 \\
 &\quad + 5uu_x^2 + v^2u_{2x} + w^2u_{2x} - \frac{1}{2}u_{2x}^2 \\
 \rho_5 &= -\frac{7}{10}u^5 + u^3v^2 - \frac{3}{10}uv^4 + u^3w^2 - \frac{3}{5}uv^2w^2 - \frac{3}{10}uw^4 \\
 &\quad + \frac{7}{2}u^2u_x^2 + \frac{1}{2}v^2u_x^2 + \frac{1}{2}w^2u_x^2 + \frac{1}{5}v^2v_x^2 \\
 &\quad - \frac{1}{5}w^2v_x^2 + \frac{1}{5}w^2w_x^2 + uv^2u_{2x} + uw^2u_{2x} - \frac{7}{10}uu_{2x}^2 \\
 &\quad - \frac{1}{5}vw^2v_{2x} + \frac{1}{20}u_{3x}^2 + \frac{1}{10}v^2u_{4x} + \frac{1}{10}w^2u_{4x}
\end{align*}
\]
• A modified vector derivative NLS equation

$$\frac{\partial B_\perp}{\partial t} + \frac{\partial}{\partial x}(B_\perp^2 B_\perp) + \alpha B_\perp B_\perp^0 \cdot \frac{\partial B_\perp}{\partial x} + e_x \times \frac{\partial^2 B_\perp}{\partial x^2} = 0$$

Replace the vector equation by

$$u_t + (u(u^2 + v^2) + \beta u - v_x)_x = 0$$
$$v_t + (v(u^2 + v^2) + u)_x = 0$$

\(u\) and \(v\) denote the components of \(B_\perp\) parallel and perpendicular to \(B_\perp^0\) and \(\beta = \alpha B_\perp^2\)

$$u^2 \sim \frac{\partial}{\partial x}, \quad v^2 \sim \frac{\partial}{\partial x}, \quad \beta \sim \frac{\partial}{\partial x}$$

First 6 conserved densities

$$\rho_1 = c_1 u + c_2 v$$
$$\rho_2 = u^2 + v^2$$
$$\rho_3 = \frac{1}{2}(u^2 + v^2)^2 - uv_x + u_x v + \beta u^2$$
$$\rho_4 = \frac{1}{4}(u^2 + v^2)^3 + \frac{1}{2}(u_x^2 + v_x^2) - u^3 v_x + v^3 u_x + \frac{\beta}{4}(u^4 - v^4)$$
\[\rho_5 = \frac{1}{4}(u^2 + v^2)^4 - \frac{2}{5}(u_x v_{2x} - u_{2x} v_x) + \frac{4}{5}(u u_x + v v_x)^2 + \frac{6}{5}(u^2 + v^2)(u_x^2 + v_x^2) - (u^2 + v^2)^2(u v_x - u_x v) + \frac{\beta}{5}(2u_x^2 - 4u^3 v_x + 2u^6 + 3u^4 v^2 - v^6) + \frac{\beta^2}{5}u^4\]

\[\rho_6 = \frac{7}{16}(u^2 + v^2)^5 + \frac{1}{2}(u_{2x}^2 + v_{2x}^2) - \frac{5}{2}(u^2 + v^2)(u_x v_{2x} - u_{2x} v_x) + 5(u^2 + v^2)(u u_x + v v_x)^2 + \frac{15}{4}(u^2 + v^2)^2(u_x^2 + v_x^2) - \frac{35}{16}(u^2 + v^2)^3(u v_x - u_x v) + \frac{\beta}{8}(5u^8 + 10u^6 v^2 - 10u^2 v^6 - 5v^8 + 20u^2 u_x^2 - 12u^5 v_x + 60u v^4 v_x - 20v^2 v_x^2) + \frac{\beta^2}{4}(u^6 + v^6)\]
• **Scope and Limitations**

– Systems must be polynomial in dependent variables

– Only two independent variables (x and t) are allowed

– No terms should *explicitly* depend on x and t

– Program only computes polynomial-type conserved densities
 only polynomials in the dependent variables and their derivatives
 no explicit dependencies on x and t

– No limit on the number of evolution equations
 In practice: time and memory constraints

– Input systems may have (nonzero) parameters
 Program computes the conditions for parameters such that densities (of a given rank) might exist

– Systems can also have parameters with (unknown) weight
 Allows one to test systems with non-uniform rank

– For systems where one or more of the weights are free
 Program prompts the user to enter values for the free weights

– Negative weights are not allowed

– Fractional weights are permitted

– Form of ρ can be given (testing purposes)
• Sample Data and Output

Data file for the Hirota-Satsuma system

\[u_t - 6 \alpha uu_x + 6vv_x - \alpha u_{3x} = 0 \]
\[v_t + 3uv_x + v_{3x} = 0 \]

(* start of data file d_phrsat.m *)

dep = False;

(* Hirota-Satsuma System *)

eq[1][x,t] = D[u[1][x,t],t]-aa*D[u[1][x,t],{x,3}]-
6*aa*u[1][x,t]*D[u[1][x,t],x]+6*u[2][x,t]*D[u[2][x,t],x];

eq[2][x,t] = D[u[2][x,t],t]+D[u[2][x,t],{x,3}]+3*u[1][x,t]*D[u[2][x,t],x];

noeqs = 2;
name = "Hirota-Satsuma System (parameterized)";
parameters = {aa};
weightpars = {};
formrho[x,t] = {};

(* end of data file d_phrsat.m *)
Explanation of the lines in the data file

debug = False;
No trace of output. Set it True to see a detailed trace

eq[k][x,t] = ...;
Give the k^{th} equation of the system in Mathematica notation
Note that there is no == 0 at the end

noeqs = 2;
Specifies the number of equations in the system

name = "Hirota-Satsuma System (parameterized)";
Pick a short name for the system. The quotes are essential

parameters = {aa};
Give a list of the parameters in the system
If there are none, set parameters = {};

weightpars = {};
Give a list of those parameters that are assumed to have weights
Weighted parameters are listed in weightpars, not in parameters
The latter is only a list of weightless parameters

formrho[x,t] = {};
Unless the form of ρ is given, program will automatically compute it
This option allows to test forms of ρ (from the literature)
Anything within (* and *) are comments (ignored by Mathematica)

For testing purposes, the form of the density can be given

For example:

\[
\text{formrho}[x,t]=\{c[1]*u[1][x,t]^3+c[2]*D[u[1][x,t],x]^2\};
\]

Density ρ must be given in expanded form and with coefficients $c[i]$

The braces are essential

If ρ is given, the program skips both the computation of scaling properties and the construction of ρ

Program continues with given ρ, and computes the $c[i]$

For search for densities of specific rank, set \text{formrho}[x,t] = \{ \};
Menu Interface and Sample Output

Example: Compute ρ of rank 4 for Drinfel’d-Sokolov system

\[u_t + 3vv_x = 0 \]
\[v_t + 2v_{3x} + 2uv_x + u_xv = 0 \]

Start *Mathematica*

Type

```math
In[1]:= <<condens.m
```

Menu interface: program prompts automatically for answers

```plaintext
*** MENU INTERFACE *** (page: 3)
```

21) Kaup-Broer System (d_broer.m)
22) Drinfel’d-Sokolov System (d_soko.m)
23) Dispersiveless Long Wave System (d_disper.m)
24) 3-Component KdV System (d_3ckdv.m)
25) 2-Component Nonlinear Schrodinger Eq. (d_2cnls.m)
26) Boussinesq System (d_bous.m)

nn) Next Page
tt) Your System
qq) Exit the Program
```
ENTER YOUR CHOICE: 22

Enter the rank of rho: 4

Use Variational Derivative instead of Integration by Parts? (y/n): y

Enter the name of the output file: d_soko4.o
This is the density: \( u[2][x, t] \)

This is the flux:

\[
2 u[1][x, t] u[2][x, t] - 2 (u[2])^{(1,0)} [x, t] + (2,0) > 4 u[2][x, t] (u[2])^{(2,0)} [x, t]
\]

Result of explicit verification \( (\rho_t + J_x) = 0 \)
In[2] :=

At the end of computation, density and flux are available

To see these, type

In[2] := rho[x,t]

Out[2] = u[2][x, t]

In[3] := j[x,t]

Out[3] = 2 u[1][x, t] u[2][x, t] - (1,0) 2 (u[2]) [x, t] + (2,0) > 4 u[2][x, t] (u[2]) [x, t]
• Conclusions & Further Research

– Comparison with other programs

* Parameter analysis
* Not restricted to uniform rank
* Not restricted to evolution equations provided that one can write the equation(s) as a system of evolution equations

– Usefulness

* Testing models for integrability
* Study of classes of nonlinear PDEs
* Study of generalized symmetries

– Future work

* Generalization towards broader classes of equations
* Generalization towards non-local conservation laws
* Conservation laws with variable coefficients
* Interface issues between Mathematica, Maple and Reduce programs
<table>
<thead>
<tr>
<th>Density</th>
<th>Sawada-Kotera equation</th>
<th>Lax equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho_1$</td>
<td>$u$</td>
<td>$u$</td>
</tr>
<tr>
<td>$\rho_2$</td>
<td>$\frac{1}{2}u^2$</td>
<td></td>
</tr>
<tr>
<td>$\rho_3$</td>
<td>$\frac{1}{3}u^3 - \frac{1}{6}u_x^2$</td>
<td>$\frac{1}{3}u^3 - \frac{1}{6}u_x^2$</td>
</tr>
<tr>
<td>$\rho_4$</td>
<td>$\frac{1}{4}u^4 - \frac{9}{4}uu_x^2 + \frac{3}{4}u_x^2$</td>
<td>$\frac{1}{4}u^4 - \frac{9}{4}uu_x^2 + \frac{1}{20}u_x^2$</td>
</tr>
<tr>
<td>$\rho_5$</td>
<td>$\frac{1}{5}u^5 - \frac{2}{5}u^2u_x^2 + \frac{1}{5}uu_x^2 - \frac{1}{50}u_x^2$</td>
<td></td>
</tr>
<tr>
<td>$\rho_6$</td>
<td>$\frac{1}{6}u^6 - \frac{25}{4}u^3u_x^2 - \frac{17}{8}u_x^4 + 6u^2u_x^2$ + $2u_x^2$</td>
<td>$\frac{1}{6}u^6 - \frac{25}{4}u^3u_x^2 - \frac{17}{8}u_x^4 + 6u^2u_x^2$ + $2u_x^2$</td>
</tr>
<tr>
<td>$\rho_7$</td>
<td>$\frac{1}{7}u^7 - \frac{9}{7}u^4u_x^2 - \frac{54}{5}uu_x^4 + \frac{57}{5}u^3u_x^2$ + $\frac{648}{35}u_x^2u_x^2$ + $\frac{489}{35}uu_x^2$ + $\frac{261}{35}u^2u_x^2$ + $\frac{288}{35}u_x^2u_x^2$ + $\frac{81}{35}uu_x^2$ + $\frac{9}{35}u^2$</td>
<td>$\frac{1}{7}u^7 - \frac{9}{7}u^4u_x^2 - \frac{54}{5}uu_x^4 + \frac{57}{5}u^3u_x^2$ + $\frac{648}{35}u_x^2u_x^2$ + $\frac{489}{35}uu_x^2$ + $\frac{261}{35}u^2u_x^2$ + $\frac{288}{35}u_x^2u_x^2$ + $\frac{81}{35}uu_x^2$ + $\frac{9}{35}u^2$</td>
</tr>
<tr>
<td>$\rho_8$</td>
<td>$\frac{1}{8}u^8 - \frac{7}{4}u^5u_x^2 - \frac{35}{12}u^2u_x^4 + \frac{7}{4}u^4u_x^2$ + $\frac{7}{4}uu_x^2u_x^2$ + $\frac{5}{3}u^2u_x^3$ + $\frac{7}{21}u_x^4$ + $\frac{1}{7}u^3u_x^2$</td>
<td>$\frac{1}{8}u^8 - \frac{7}{4}u^5u_x^2 - \frac{35}{12}u^2u_x^4 + \frac{7}{4}u^4u_x^2$ + $\frac{7}{4}uu_x^2u_x^2$ + $\frac{5}{3}u^2u_x^3$ + $\frac{7}{21}u_x^4$ + $\frac{1}{7}u^3u_x^2$</td>
</tr>
</tbody>
</table>

**Table 1: Conserved Densities for the Sawada-Kotera and Lax 5th-order equations**
<table>
<thead>
<tr>
<th>Density</th>
<th>Kaup-Kuperschmidt equation</th>
<th>Ito equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho_1$</td>
<td>$u$</td>
<td>$u$</td>
</tr>
<tr>
<td>$\rho_2$</td>
<td>$\frac{1}{8}u_x^2$</td>
<td>$\frac{u^2}{2}$</td>
</tr>
<tr>
<td>$\rho_3$</td>
<td>$\frac{u^4}{4} - \frac{9}{16}u u_x^2 + \frac{3}{64}u_2x^2$</td>
<td>$\frac{u^4}{4} - \frac{9}{4}u u_x^2 + \frac{3}{4}u_2x^2$</td>
</tr>
<tr>
<td>$\rho_4$</td>
<td>$\frac{u^4}{4} - \frac{9}{16}u u_x^2 + \frac{3}{64}u_2x^2$</td>
<td>$\frac{u^4}{4} - \frac{9}{4}u u_x^2 + \frac{3}{4}u_2x^2$</td>
</tr>
<tr>
<td>$\rho_5$</td>
<td>$\frac{u^6}{6} - \frac{35}{16}u^3 u_x^2 - \frac{31}{256}u^4 + \frac{51}{64}u^2 u_2x^2$</td>
<td>$\frac{u^6}{6} - \frac{35}{16}u^3 u_x^2 - \frac{31}{256}u^4 + \frac{51}{64}u^2 u_2x^2$</td>
</tr>
<tr>
<td>$\rho_6$</td>
<td>$\frac{u^6}{6} - \frac{35}{16}u^3 u_x^2 - \frac{31}{256}u^4 + \frac{51}{64}u^2 u_2x^2$</td>
<td>$\frac{u^6}{6} - \frac{35}{16}u^3 u_x^2 - \frac{31}{256}u^4 + \frac{51}{64}u^2 u_2x^2$</td>
</tr>
<tr>
<td>$\rho_7$</td>
<td>$\frac{u^7}{7} - \frac{27}{8}u^4 u_x^2 - \frac{369}{320}u u_x^4 + \frac{69}{60}u^3 u_2x^2$</td>
<td>$\frac{u^7}{7} - \frac{27}{8}u^4 u_x^2 - \frac{369}{320}u u_x^4 + \frac{69}{60}u^3 u_2x^2$</td>
</tr>
<tr>
<td>$\rho_8$</td>
<td>$\frac{u^7}{7} - \frac{27}{8}u^4 u_x^2 - \frac{369}{320}u u_x^4 + \frac{69}{60}u^3 u_2x^2$</td>
<td>$\frac{u^7}{7} - \frac{27}{8}u^4 u_x^2 - \frac{369}{320}u u_x^4 + \frac{69}{60}u^3 u_2x^2$</td>
</tr>
<tr>
<td>Density</td>
<td>Sawada-Kotera-Ito equation</td>
<td>Lax equation</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>$\rho_1$</td>
<td>$u$</td>
<td>$u$</td>
</tr>
<tr>
<td>$\rho_2$</td>
<td>$-u^2$</td>
<td>$u^2$</td>
</tr>
<tr>
<td>$\rho_3$</td>
<td>$-u^3 + u_x^2$</td>
<td>$-2u^3 + u_x^2$</td>
</tr>
<tr>
<td>$\rho_4$</td>
<td>$3u^4 - 9uu_x^2 + u_x^2$</td>
<td>$5u^4 - 10uu_x^2 + u_x^2$</td>
</tr>
<tr>
<td>$\rho_5$</td>
<td>$-\frac{12}{7}u^6 + \frac{150}{7}u^3u_x^2 + \frac{17}{7}u_x^4 - \frac{48}{7}u^2u_{2x}^2$</td>
<td>$-\frac{7}{3}u^6 + \frac{70}{3}u^3u_x^2 + \frac{35}{18}u_x^4 - \frac{7}{9}u^2u_{2x}^2$</td>
</tr>
<tr>
<td>$\rho_6$</td>
<td>$-\frac{16}{21}u_x^3 + uu_{3x}^2 - \frac{1}{21}u_{4x}^2$</td>
<td>$-\frac{10}{9}u_{2x}^3 + uu_{3x}^2 - \frac{1}{18}u_{4x}^2$</td>
</tr>
<tr>
<td>$\rho_7$</td>
<td>$5u^7 - 105u^4u_x^2 - 42uu_x^4 + \frac{133}{3}u^3u_x^2$</td>
<td>$\frac{7}{3}u^7 + \frac{35}{3}u^4u_x^2 + \frac{35}{9}uu_x^4 - \frac{14}{3}u^3u_{2x}^2$</td>
</tr>
<tr>
<td>$\rho_8$</td>
<td>$+24u_x^2u_{2x}^2 + \frac{163}{9}uu_{2x}^2 - \frac{29}{3}u^2u_{3x}^2$</td>
<td>$-\frac{7}{3}u_x^2u_{2x}^2 - \frac{20}{9}uu_{2x}^3 + u^2u_{3x}^2$</td>
</tr>
<tr>
<td>$\rho_8$</td>
<td>$-\frac{32}{9}u_x^2u_{3x}^2 + uu_{4x}^2 - \frac{1}{27}u_{5x}^2$</td>
<td>$\frac{5}{9}u_{2x}u_{3x}^2 - \frac{1}{9}uu_{4x}^2 + \frac{1}{198}u_{5x}^2$</td>
</tr>
<tr>
<td>$\rho_8$</td>
<td>$\frac{3}{2}u^8 - 42u^5u_x^2 - 35u^2u_x^4 + 21u^4u_{2x}^2$</td>
<td>$\frac{7}{11}u_{2x}u_{4x}^2 - \frac{1}{11}uu_{5x}^2 + \frac{1}{280}u_{6x}^2$</td>
</tr>
</tbody>
</table>