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1 Introduction: Mathematical Background

• Roughly speaking, dynamical systems may be divided into two classes :

1. Systems exhibiting chaotic behavior, i.e. their solutions depend sensitively on the
initial data. Such systems are usually not explicitely integrable in terms of “ele-
mentary functions”

2. Systems that are algebraically completely integrable

• Painlevé et al identified all second order ODEs of the form fxx = K(x, f, fx), which are
globally integrable in terms of elementary functions by quadratures or by linearization

The restrictions on the function K, which is rational in fx, algebraic in f , and analytic
in x, arise from careful singularity analysis

• Integrability requires that the only movable singularities in the solution f(x) are poles

• Singularities are movable if their location depends on the initial conditions

• Critical points (including logarithmic branch points and essential singularities) ought
to be fixed to have integrability

• Definition: A simple equation or system has the Painlevé Property
(PP) if its solution in the complex plane has no worse singularities than
movable poles

• For ODEs :

1. They admit a finite dimensional Hamiltonian formulation

2. They have a finite number of first integrals



• For PDEs :

1. Integrability became associated with the existence of a Lax representation which
allows linearization of the given equation(s) (Inverse Scattering Transform)

2. Ablowitz et al conjectured that every ODE, obtained by an exact reduction of a
PDE solvable by IST, possesses the PP

3. Similarity transformations reduce them into ODEs of Painlevé type, (e.g. in one of
the six Painlevé transcendents)

4. Special ones admit solitary travelling wave solutions (called solitons if they conserve
their identity upon collision)

5. They possess infinitely many conserved quantities and symmetries, nontrivial pro-
longation structures, associated Kac-Moody algebras, etc.

2 Algorithm

The algorithm below (Weiss et al ) enables to verify if the ODE or PDE satisfies the necessary
criteria to have the PP

• For the PDE case:

The solution f , say in two independent variables (t, x), expressed as a Laurent series,

f = gα
∞∑

k=0

ukg
k (1)

should only have movable poles

In (1), u0(t, x) 6= 0, α is a negative integer, and uk(t, x) are analytic functions in a
neighborhood of the singular, non-characteristic manifold g(t, x) = 0, with gx(t, x) 6= 0

• For the ODE case:

x will be replaced by g + x0 in (1); x0 being the initial value for x



The Painlevé test is carried out in three steps:

• Step 1:

1. Substitute the leading order term,

f ∝ u0 gα (2)

into the given equation

2. Determine the integer α < 0 by balancing the minimal power terms

3. Calculate u0

• Step 2:

1. Substitute the generic terms

f ∝ u0 gα + ur gα+r (3)

into the equation, only retaining its most singular terms

2. Require that ur is arbitrary

3. Calculate the corresponding values of r > 0, called resonances

• Step 3:

1. Substitute the truncated expansion

f = gα
rmax∑
k=0

uk gk, (4)

where rmax represents the largest resonance, into the complete equation

2. Determine uk unambiguously at the non-resonance levels

3. Check whether or not the compatibility condition is satisfied at resonance levels

• An equation or system has the Painlevé Property and is conjectured to be integrable
if :

1. Step 1 thru 3 can be carried out consistently with α < 0 and with positive resonances,

2. The compatibility conditions are identically satisfied for all resonances

• For an equation to be integrable it is necessary but not sufficient that it passes the
Painlevé test

• Equations for which α = 0 deserve special attention

• For some equations, the resonances are complex conjugate, the compatibility being satis-
fied at real resonance levels

• Quite often the compatibility conditions impose conditions on the coefficients or param-
eters in the given equation

• The above algorithm does not detect the existence of essential singularities



3 Spin-offs of the Painlevé Analysis

• Truncation of the Laurent series (1) at the constant level term leads to auto-Bäcklund
or Darboux transformations

• The resulting Painlevé-Bäcklund equations, obtained by substitution of the truncated
expansion and equating to zero powers of g, can be linearized to derive Lax pairs for
various ODEs and PDEs

• As a consequence for ODEs, it is possible to construct algebraic curves and explicitly
integrate the equations of motion

• For PDEs, Painlevé analysis determines the speed of travelling wave solutions (see
Exs. 3 and 5)

• It provides insight in the construction of soliton solutions via direct methods (Hirota’s
formalism and its clones)

• The Painlevé test helps in identifying the infinite dimensional symmetry algebras for
PDEs, which have the structure of subalgebras of Kac-Moody and Virasoro algebras



4 Scope and Limitations of the Program

4.1 Scope

• The program works for a single ODE or PDE

• The degree of nonlinearity in all the variables is unlimited

• The number of parameters in the equation is unlimited

• The number of independent variables is also unlimited

• ODEs and PDEs may have explicitly given time/space dependent coefficients of integer
degree (see Ex. 4)

• PDEs may have arbitrary time/space dependent coefficients (see Ex. 4)

• Coefficients may be complex, although the usefulness of the Painlevé test is then debatable

• A selected positive or negative rational value of α, or α = 0 can be supplied

• The time consuming calculation of the coefficients uk and the verification of the compat-
ibility conditions is optional

• It is possible to substitute an expansion of the form (4) with a selected number of terms,
e.g. to carry on with the calculations beyond rmax

• The output provides vital information, including error messages and warnings, to remedy
possible problems

4.2 Limitations

• Systems of equations are excluded

• The algorithm carries out the traditional Painlevé test based on the expansion (1), with
at least rational α, hence general fractional expansions in g are excluded

• Transcendental terms are not allowed They can often be removed by a suitable transfor-
mation of the dependent variable (see Ex. 2)

• Arbitrary parameters in the powers of f and its derivatives are not allowed

• Neither are arbitrary (unspecified) functions of f and its derivatives

• Selective substitution of certain uk is not possible. u0, u1, etc. are explicitly determined
whenever possible, and their expressions are used in the calculation of the next uk

• Nonlinear equations for u0 are not solved. If they occur the program carries on with the
undetermined coefficient u0 (see Ex. 5)



• The program only checks if the compatibility condition is identically satisfied. It does not
solve for arbitrary parameters (or functions) or for u0 and its derivatives, should these
occur (see Exs. 3, 4 and 5)

• Intermediate output is only possible by putting extra print statements in the program

• The expressions occuring in the output on the screen are not accessible for further inter-
active calculations

5 Using the Program

The program carries out the Painlevé test in batch mode without interaction by the user

The user only has to type in the LHS of the equation and possibly select some options

• For ODEs:

1. The dependent variable f and independent variable x is mandatory

2. A typical term in the ODE reads fx[.](x), where within the brackets the order of
derivation is inserted. The function without derivatives may be denoted by f itself

3. The symbol eq denotes the LHS of the equation

4. Ex.: To test the Fisher ODE, fxx + afx − f 2 + f = 0, one would enter

eq : fx[2](x) + a ∗ f [x](x) + f ∗ ∗ 2− f ;

The program will then treat a as an arbitrary parameter

• For PDEs:

1. A typical term reads ftxyz[k, l, m, n](t, x, y, z), where the integers k, l, m, and n are
the orders of derivation with respect to the variables t, x, y, and z

2. Ex.: To test the KdV equation, ft + affx + fxxx = 0, one enters

eq : ftx[1, 0](t, x) + a ∗ f ∗ ftx[0, 1](t, x) + ftx[0, 3](t, x);

Again, the program will treat a as an arbitrary parameter



6 Examples

In the examples, a, b and c are arbitrary parameters, and a(t) is an arbitrary function

Example 1: The Korteweg-de Vries Equation
For the ubiquitous KdV equation,

ft + ffx + bfxxx = 0, (5)

the program provides the following output:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PAINLEVE ANALYSIS OF EQUATION, bfxxx + ffx + ft = 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBSTITUTE u0 galfa FOR f IN ORIGINAL EQUATION.

MINIMUM POWERS OF g ARE [2 alfa− 1, alfa− 3]

∗ COEFFICIENT OF g2 alfa−1 IS u0
2 alfa gx

∗ COEFFICIENT OF galfa−3 IS u0 (alfa− 2) (alfa− 1) alfa b (gx)
3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FOR EXPONENTS (2 alfa− 1) AND (alfa− 3) OF g, DO

WITH alfa = −2, POWER OF g is −5 −→ SOLVE FOR u0

TERM −2 u0 gx (12 b (gx)
2 + u0)

1
g5 IS DOMINANT

IN EQUATION.

WITH u0 = −12 b (gx)
2 −→ FIND RESONANCES

SUBSTITUTE u0 galfa + ur gr+alfa FOR f IN EQUATION

TERM b (gx)
3 (r − 6) (r − 4) (r + 1) ur gr−5 IS DOMINANT

IN EQUATION.

THE 2 NON-NEGATIVE INTEGRAL ROOTS ARE [r = 4, r = 6]

WITH MAXIMUM RESONANCE = 6 −→ CHECK RESONANCES.

SUBSTITUTE POWER SERIES
∑6

k=0 gk−2 uk FOR f IN EQUATION.

WITH u0 = −12 b (gx)
2

∗ COEFFICIENT OF 1
g4 IS 6b(gx)

2((−12b(gx)
2)x − 36bgxgxx + 5u1gx)

u1 = 12bgxx

∗ COEFFICIENT OF 1
g3 IS 24bgx(4bgxgxxx − 3b(gxx)

2 + u2(gx)
2 + gtgx)

u2 = −4bgxgxxx − 3b(gxx)
2 + gtgx

(gx)
2

∗ COEFFICIENT OF 1
g2 IS



−12b(b(gx)
2gxxxx − 4bgxgxxgxxx + 3b(gxx)

3 − gtgxgxx

−u3(gx)
4 + gtx(gx)

2)/gx

u3 =
b(gx)

2gxxxx − 4bgxgxxgxxx + 3b(gxx)
3 − gtgxgxx + gtx(gx)

2

(gx)
4

∗ COEFFICIENT OF 1
g

IS 0

u4 IS ARBITRARY !

COMPATIBILITY CONDITION IS SATISFIED !

∗ COEFFICIENT OF 1 IS

−(b2(gx)
4gxxxxxx − 9b2(gx)

3gxxgxxxxx − 17b2(gx)
3gxxxgxxxx

+48b2(gx)
2(gxx)

2gxxxx − 2bgt(gx)
3gxxxx + 70b2(gx)

2gxx(gxxx)
2

−174b2gx(gxx)
3gxxx + 17bgt(gx)

2gxxgxxx − 8bgtx(gx)
3gxxx

+81b2(gxx)
5 − 21bgtgx(gxx)

3 + 21bgtx(gx)
2(gxx)

2

+6u4b(gx)
6gxx − 9bgtxx(gx)

3gxx + (gt)
2(gx)

2gxx + 6u5b(gx)
8

+6(u4)xb(gx)
7 + gtt(gx)

4 + 2bgtxxx(gx)
4 − 2gtgtx(gx)

3)/(gx)
5

u5 = −(b2(gx)
4gxxxxxx − 9b2(gx)

3gxxgxxxxx − 17b2(gx)
3gxxxgxxxx

+48b2(gx)
2(gxx)

2gxxxx − 2bgt(gx)
3gxxxx + 70b2(gx)

2gxx(gxxx)
2

−174b2gx(gxx)
3gxxx + 17bgt(gx)

2gxxgxxx − 8bgtx(gx)
3gxxx

+81b2(gxx)
5 − 21bgtgx(gxx)

3 + 21bgtx(gx)
2(gxx)

2 + 6u4b(gx)
6gxx

−9bgtxx(gx)
3gxx + (gt)

2(gx)
2gxx + 6(u4)xb(gx)

7 + gtt(gx)
4

+2bgtxxx(gx)
4 − 2gtgtx(gx)

3)/(6b(gx)
8)

∗ COEFFICIENT OF g IS 0

u6 IS ARBITRARY !

COMPATIBILITY CONDITION IS SATISFIED !
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



Example 2: The sine-Gordon Equation

The transcendental term in the sine-Gordon equation, in light cone coordinates,

utx − sin(u) = 0, (6)

can be removed by the simple substitution f = exp(iu) to obtain an equivalent equation with
polynomial terms:

−2ftfx + 2fftx − f 3 + f = 0. (7)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PAINLEVE ANALYSIS OF EQUATION, −2ftfx + 2fftx − f 3 + f = 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SUBSTITUTE u0 galfa FOR f IN ORIGINAL EQUATION.

MINIMUM POWERS OF g ARE [2alfa− 2, 3 alfa, alfa]

∗ COEFFICIENT OF g2 alfa−2 IS −2 u0
2 alfa gt gx

∗ COEFFICIENT OF g3 alfa IS −u0
3

∗ COEFFICIENT OF galfa IS u0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FOR EXPONENTS 2 alfa− 2 AND 3 alfa OF g, DO

WITH alfa = −2, POWER OF g is 6 −→ SOLVE FOR u0

TERM u0
2 (4gtgx − u0)

1
g6 IS DOMINANT IN EQUATION.

WITH u0 = 4gtgx −→ FIND RESONANCES

SUBSTITUTE u0 galfa + ur gr+alfa FOR f IN EQUATION

TERM 8(gt)
2(gx)

2(r − 2)(r + 1) ur gr−6 IS DOMINANT

IN EQUATION.

THE ONLY NON-NEGATIVE INTEGRAL ROOT IS [r = 2]

WITH MAXIMUM RESONANCE = 2 −→ CHECK RESONANCES.

SUBSTITUTE POWER SERIES
∑2

k=0 gk−2uk FOR f IN EQUATION.

WITH u0 = 4gtgx

∗ COEFFICIENT OF 1
g5 IS −16(gt)

2(4gtx + u1)(gx)
2

u1 = −4 gtx

∗ COEFFICIENT OF 1
g4 IS 0

u2 IS ARBITRARY !

COMPATIBILITY CONDITION IS SATISFIED !
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FOR EXPONENTS (2 alfa− 2) AND (alfa) OF g, alfa = 2 IS

NON-NEGATIVE.



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FOR EXPONENTS (3 alfa) AND (alfa) OF g, alfa = 0 IS NON-NEGATIVE.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Example 3: The Fisher Equation

From rigorous analysis it follows that if the initial datum is given by u(0, x) = 1 (x ≤
0), u(0, x) = 0 (x > 0), then the solution of the Fisher equation,

ut − uxx + u2 − u = 0, (8)

will converge to a travelling wave of speed c = 2. Furthermore, for every speed c ≥ 2 there is
a travelling wave with u(t,−∞) = 1, u(t,∞) = 0.

In 1979, an exact closed form solution of (8) was constructed:
u(t, x) = U(x− x0 − 5t√

6
) = U(ξ), where

U(ξ) =
1

4

(
1− tanh

(
ξ

2
√

6

))2

, (9)

with x0 any constant.

The Painlevé analysis for (8), put into a travelling frame of reference, exactly determines this
particular wave speed c = 5√

6
, which, indeed, is larger than 2.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PAINLEVE ANALYSIS OF EQUATION, fxx + cfx − f 2 + f = 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SUBSTITUTE u0 galfa FOR f IN ORIGINAL EQUATION.

MINIMUM POWERS OF g ARE [2 alfa, alfa− 2]

∗ COEFFICIENT OF g2 alfa IS −u0
2

∗ COEFFICIENT OF galfa−2 IS u0 (alfa− 1) alfa

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FOR EXPONENTS (2 alfa) AND (alfa− 2) OF g, DO

WITH alfa = −2, POWER OF g is −4 −→ SOLVE FOR u0

TERM −(u0 − 6) u0
1
g4 IS DOMINANT IN EQUATION.

WITH u0 = 6 −→ FIND RESONANCES

SUBSTITUTE u0 galfa + ur gr+alfa FOR f IN EQUATION

TERM (r − 6)(r + 1) ur gr−4 IS DOMINANT IN EQUATION.

THE ONLY NON-NEGATIVE INTEGRAL ROOT IS [r = 6]

WITH MAXIMUM RESONANCE = 6 −→ CHECK RESONANCES.

SUBSTITUTE POWER SERIES
∑6

k=0 gk−2 uk FOR f IN EQUATION.

WITH u0 = 6



∗ COEFFICIENT OF 1
g3 IS −2 (6c + 5u1)

u1 = −6c

5

∗ COEFFICIENT OF 1
g2 IS −6(c2 + 50u2 − 25)

25

u2 = −(c− 5)(c + 5)

50

∗ COEFFICIENT OF 1
g

IS −6(c3 + 250u3)

125

u3 = − c3

250

∗ COEFFICIENT OF 1 IS −7c4 + 5000u4 − 125

500

u4 = −7c4 − 125

5000

∗ COEFFICIENT OF g IS −79c5 − 1375c + 75000u5

12500

u5 = −c(79c4 − 1375)

75000

∗ COEFFICIENT OF g2 IS −c2(6c2 − 25)(6c2 + 25)

6250
= 0

u6 IS ARBITRARY !

COMPATIBILITY CONDITION: −c2(6c2 − 25)(6c2 + 25)

6250
= 0,

∗ ∗ ∗ CONDITION IS NOT SATISFIED .∗ ∗ ∗

∗ ∗ ∗ CHECK FOR FREE PARAMETERS OR PRESENCE OF u0 ∗ ∗ ∗ −−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−



Example 4: The cylindrical KDV Equation

The cylindrical Korteweg-de Vries equation,

fx

2t
+ fxxxx + 6ffxx + 6(fx)

2 + ftx = 0, (10)

has the Painlevé property. One easily determines the coefficient 1
2t

in (10), by analyzing a
cylindrical KdV equation with arbitrary coefficient a(t) of fx. Integration of the compatibility
condition a(t)t + 2a(t)2 = 0, gives a(t) = 1

2t
.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PAINLEVE ANALYSIS OF EQUATION,

a(t)fx + fxxxx + 6ffxx + 6(fx)
2 + ftx = 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBSTITUTE u0 galfa FOR f IN ORIGINAL EQUATION.

MINIMUM POWERS OF g ARE [2 alfa− 2, alfa− 4]

∗ COEFFICIENT OF g2 alfa−2 IS 6u0
2 alfa (2alfa− 1) (gx)

2

∗ COEFFICIENT OF galfa−4 IS u0 (alfa− 3)(alfa− 2)(alfa− 1) alfa (gx)
4

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FOR EXPONENTS (2 alfa− 2) AND (alfa− 4) OF g, DO

WITH alfa = −2, POWER OF g is −6 −→ SOLVE FOR u0

TERM 60 u0 (gx)
2 (2(gx)

2 + u0)
1
g6 IS DOMINANT

IN EQUATION.

WITH u0 = −2(gx)
2 −→ FIND RESONANCES

SUBSTITUTE u0 galfa + ur gr+alfa FOR f IN EQUATION

TERM (gx)
4(r − 6)(r − 5)(r − 4)(r + 1)urg

r−6 IS DOMINANT

IN EQUATION.

THE 3 NON-NEGATIVE INTEGRAL ROOTS ARE

[r = 4, r = 5, r = 6]

WITH MAXIMUM RESONANCE = 6 −→ CHECK RESONANCES.

SUBSTITUTE POWER SERIES
∑6

k=0 gk−2uk FOR f IN EQUATION.

WITH u0 = −2(gx)
2

∗ COEFFICIENT OF 1
g5 IS 120(gx)

4(2gxx − u1)

u1 = 2gxx

∗ COEFFICIENT OF 1
g4 IS

−12(gx)
2(4gxgxxx − 3(gxx)

2 + 6u2(gx)
2 + gtgx)



u2 = −4gxgxxx − 3(gxx)
2 + gtgx

6(gx)2

∗ COEFFICIENT OF 1
g3 IS

4((gx)
3a(t) + (gx)

2gxxxx − 4gxgxxgxxx

+3(gxx)
2 − gtgxgxx − 6u3(gx)

4 + gtx(gx)
2)

u3 = ((gx)
3a(t) + (gx)

2gxxxx − 4gxgxxgxxx + 3(gxx)
2 − gtgxgxx

+gtx(gx)
2)/(6(gx)

4)

∗ COEFFICIENT OF 1
g2 IS 0

u4 IS ARBITRARY !

COMPATIBILITY CONDITION IS SATISFIED !

∗ COEFFICIENT OF 1
g

IS 0

u5 IS ARBITRARY !

COMPATIBILITY CONDITION IS SATISFIED !

∗ COEFFICIENT OF 1 IS
a(t)t + 2a(t)2

6

u6 IS ARBITRARY !

COMPATIBILITY CONDITION:
a(t)t + 2a(t)2

6
= 0,

∗ ∗ ∗ CONDITION IS NOT SATISFIED .∗ ∗ ∗

∗ ∗ ∗ CHECK FOR FREE PARAMETERS OR PRESENCE OF u0 ∗ ∗ ∗
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



Example 5: The Fitz Hugh-Nagumo Equation

In 1975 it was found that the Fitz Hugh-Nagumo equation,

ut − uxx − u(1− u)(u− a) = 0, (11)

has a closed form travelling wave solution, u(t, x) = U(x− x0 − ct) = U(ξ), where

U(ξ) =

(
1 + exp(− ξ√

2
)

)−1

=
1

2

(
1 + tanh

(
ξ

2
√

2

))
, (12)

and c = 2a−1√
2

.

Motivated by the results of the Painlevé analysis, recently two more closed form solutions to
the Fitz Hugh-Nagumo equation were found. Both take the form,

U(ξ) =
1

2

(
A + B tanh

(
Cξ

2
√

2

))
, (13)

where

A = B = C = a for c =
2− a√

2
,

and

A = 1 + a and B = C = a− 1 for c =
−(a + 1)√

2
.

Carrying out the Painlevé test for (11), in a travelling frame, leads to a compatibility condition
which for u0 =

√
2 factors into

c

(
c− (2a− 1)√

2

)(
c +

(a + 1)√
2

)(
c +

(a− 2)√
2

)
= 0. (14)

The nonzero roots for c correspond with the wave speeds in (12) and (13). Remark that for
a = 1

2
the wave (12) is stationary (c = 0)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PAINLEVE ANALYSIS OF EQUATION, fxx + cfx − f 3 + (a + 1)f 2 − af = 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBSTITUTE u0 galfa FOR f IN ORIGINAL EQUATION.

MINIMUM POWERS OF g ARE [3alfa, 2alfa, alfa− 2]

∗ COEFFICIENT OF g3alfa IS −u0
3

∗ COEFFICIENT OF g2alfa IS u0
2 (a + 1)

∗ COEFFICIENT OF galfa−2 IS u0 (alfa− 1) alfa

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

FOR EXPONENTS (3alfa) AND (2alfa) OF g, alfa = 0 IS NON-NEGATIVE.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



FOR EXPONENTS (3alfa) AND (alfa− 2) OF g, DO

WITH alfa = −1, POWER OF g is −3 −→ SOLVE FOR u0

TERM −u0(u0
2 − 2) 1

g3 IS DOMINANT IN EQUATION.

WITH u0
2 = 2 −→ FIND RESONANCES

SUBSTITUTE u0 galfa + ur gr+alfa FOR f IN EQUATION

TERM (r − 4)(r + 1) ur gr−3 IS DOMINANT

IN EQUATION.

THE ONLY NON-NEGATIVE INTEGRAL ROOT IS [r = 4]

WITH MAXIMUM RESONANCE = 4 −→ CHECK RESONANCES.

SUBSTITUTE POWER SERIES
∑4

k=0 ukg
k−1 FOR f IN EQUATION.

WITH u0
2 = 2

∗ COEFFICIENT OF 1
g2 IS −(u0c− 2a + 6u1 − 2)

u1 = −u0c− 2a− 2

6

∗ COEFFICIENT OF 1
g

IS −u0c
2 − 2u0a

2 + 2u0a + 36u2 − 2u0

6

u2 = −u0(c
2 − 2a2 + 2a− 2)

36

∗ COEFFICIENT OF 1 IS

−2u0c
3 − 3u0a

2c + 3u0ac− 3u0c− 2a3 + 3a2 + 3a + 108u3 − 2

27

u3 = −2u0c
3 − 3u0a

2c + 3u0ac− 3u0c− 2a3 + 3a2 + 3a− 2

108

∗ COEFFICIENT OF g IS

−c(2u0c
3 − 3u0a

2c + 3u0ac− 3u0c− 2a3 + 3a2 + 3a− 2)

27

u4 IS ARBITRARY !

COMPATIBILITY CONDITION:

−c(2u0c
3 − 3u0a

2c + 3u0ac− 3u0c− 2a3 + 3a2 + 3a− 2)

27
= 0,

∗ ∗ ∗ CONDITION IS NOT SATISFIED. ∗ ∗ ∗
∗ ∗ ∗ CHECK FOR FREE PARAMETERS OR PRESENCE OF u0 ∗ ∗ ∗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−


