Symbolic Computation of Scaling Invariant Lax Pairs in Operator Form for Integrable Systems

Willy Hereman

Department of Applied Mathematics and Statistics
Colorado School of Mines, Golden, Colorado

Colorado Nonlinear Day
University of Colorado—Colorado Springs
Saturday, November 1, 2014, 5:00p.m.
Publication:

M. Hickman, W. Hereman, J. Larue, and Ü. Göktaş

REU students:

Sara Clifton, Jacob Rezac, Oscar Aguilar, and
Tony McCollom

Research was supported in part by NSF under Grant CCF-0830783
Outline

• What are Lax pairs of nonlinear PDEs?
• Lax pairs in operator form
• Lax pairs in matrix form
• Reasons to compute Lax pairs
• Quick method to find Lax pairs
• More algorithmic approach
• Examples of Lax pairs of nonlinear PDEs
• Conclusions and future work
Peter D. Lax (1926-)

Seminal paper: Integrals of nonlinear equations of evolution and solitary waves
What are Lax Pairs of Nonlinear PDEs?

• Historical example: Korteweg-de Vries equation

\[u_t + \alpha uu_x + u_{xxx} = 0 \]

• Key idea: Replace the nonlinear PDE with a compatible linear system (Lax pair):

\[
\begin{align*}
\psi_{xx} + \left(\frac{1}{6} \alpha u - \lambda \right) \psi &= 0 \\
\psi_t + 4\psi_{xxx} + \alpha u \psi_x + \frac{1}{2} \alpha u_x \psi + a(t) \psi &= 0
\end{align*}
\]

\(\psi \) is eigenfunction; \(\lambda \) is constant eigenvalue \((\lambda_t = 0)\) (isospectral), and \(a(t) \) is an arbitrary function. We will set \(a(t) = 0 \).
Class of Equations and Notation

• Consider a system of evolution equations:

\[u_t = f(u, u_x, u_{xx}, \ldots, u_{Mx}) \]

with \(u(x, t) = (u^{(1)}, u^{(2)}, \ldots, u^{(N)}) \) and where

\[u^{(j)}_{kx} = \frac{\partial^k u^{(j)}}{\partial x^k} \]

• In examples, the components of \(u \) are \(u, v, \ldots \)

• Define the total derivative operator as

\[D_t \cdot = \frac{\partial \cdot}{\partial t} + \sum_{j=1}^{N} \sum_{k=0}^{M} \frac{\partial \cdot}{\partial u^{(j)}_{kx}} D_x^k \left(u^{(j)}_t \right) \]
Lax Pairs in Operator Form

• Replace a completely integrable nonlinear PDE by a pair of linear equations (called a Lax pair):

\[\mathcal{L}\psi = \lambda\psi \quad \text{and} \quad D_t\psi = M\psi \]

• Require compatibility of both equations

\[\mathcal{L}_t\psi + \mathcal{L}D_t\psi = \lambda D_t\psi \]
\[\mathcal{L}_t\psi + \mathcal{L}M\psi = \lambda M\psi \]
\[= M\lambda\psi \]
\[\dot{=} M\mathcal{L}\psi \]

Hence,
\[\mathcal{L}_t\psi + (\mathcal{L}M - M\mathcal{L})\psi \dot{=} 0 \]
• Lax equation: \(\mathcal{L}_t + [\mathcal{L}, \mathcal{M}] \dot{=} 0 \)

with commutator \([\mathcal{L}, \mathcal{M}] = \mathcal{L}\mathcal{M} - \mathcal{M}\mathcal{L}\).

Furthermore, \(\mathcal{L}_t \psi = [\mathcal{D}_t, \mathcal{L}] \psi = \mathcal{D}_t (\mathcal{L} \psi) - \mathcal{L} \mathcal{D}_t \psi \)

and \(\dot{=} \) means “evaluated on the PDE”

• Example: Lax operators for the KdV equation

\[
\mathcal{L} = \mathcal{D}_x^2 + \frac{1}{6} \alpha u \mathbf{I}
\]

\[
\mathcal{M} = - \left(4 \mathcal{D}_x^3 + \alpha u \mathcal{D}_x + \frac{1}{2} \alpha u_x \mathbf{I} \right)
\]

• Note: \(\mathcal{L}_t \psi + [\mathcal{L}, \mathcal{M}] \psi = \frac{1}{6} \alpha \left(u_t + \alpha uu_x + u_{xxx} \right) \psi \)
Alternate Operator Formulations

• Define $\tilde{L} = L - \lambda I$ and $\tilde{M} = M - D_t$

• Then, the Lax pair becomes

$$\tilde{L}\psi = 0 \quad \text{and} \quad \tilde{M}\psi = 0$$

and the Lax equation becomes $[\tilde{L}, \tilde{M}] = O$

Challenge: Find commuting operators modulo the (nonlinear) PDE

• If S is an arbitrary invertible operator, then

$$\hat{L} = SLS^{-1} \quad \hat{M} = SMS^{-1} \quad \hat{D}_t = S D_t S^{-1}$$

satisfy $\hat{L}_t + [\hat{L}, \hat{M}] = O$
Lax Pairs in Matrix Form

• Express compatibility of

\[D_x \Psi = X \Psi \]
\[D_t \Psi = T \Psi \]

where \(\Psi = \begin{bmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_N \end{bmatrix} \), \(X \) and \(T \) are \(N \times N \) matrices

• Lax equation (zero-curvature equation):

\[D_t X - D_x T + [X, T] \dot{=} 0 \]

with commutator \([X, T] = XT - TX \)
• Example: Lax pair for the KdV equation

\[
X = \begin{bmatrix}
0 & 1 \\
\lambda - \frac{1}{6} \alpha u & 0
\end{bmatrix}
\]

\[
T = \begin{bmatrix}
\frac{1}{6} \alpha u_x & -4\lambda - \frac{1}{3} \alpha u \\
-4\lambda^2 + \frac{1}{3} \alpha \lambda u + \frac{1}{18} \alpha^2 u^2 + \frac{1}{6} \alpha u_{2x} & -\frac{1}{6} \alpha u_x
\end{bmatrix}
\]

Substitution into the Lax equation yields

\[
D_t X - D_x T + [X, T] = -\frac{1}{6} \alpha \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}
\]

\[
= \begin{bmatrix}
u_t + \alpha uu_x + u_{3x} & 0
\end{bmatrix}
\]
Equivalence under Gauge Transformations

- Lax pairs are equivalent under a gauge transformation:

If (X, T) is a Lax pair then so is (\tilde{X}, \tilde{T}) with

\[
\tilde{X} = G \, X \, G^{-1} + D_x(G) \, G^{-1}
\]
\[
\tilde{T} = G \, T \, G^{-1} + D_t(G) \, G^{-1}
\]

G is arbitrary invertible matrix and $\tilde{\Psi} = G \Psi$.

Thus,

\[
\dot{\tilde{X}}_t - \tilde{T}_x + [\tilde{X}, \tilde{T}] = 0
\]
• Example: For the KdV equation

\[
\begin{bmatrix}
0 & 1 \\
\lambda - \frac{1}{6} \alpha u & 0
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
-ik & \frac{1}{6} \alpha u \\
-1 & ik
\end{bmatrix}
\]

Here,

\[
\tilde{X} = G \ X \ G^{-1}
\quad \text{and} \quad
\tilde{T} = G \ T \ G^{-1}
\]

with

\[
G = \begin{bmatrix}
-i k & 1 \\
-1 & 0
\end{bmatrix}
\]

where \(\lambda = -k^2 \)
Reasons to Compute a Lax Pair

• Compatible linear system is the starting point for application of the IST and the Riemann-Hilbert method for boundary value problems
• Confirm the complete integrability of the PDE
• Zero-curvature representation of the PDE
• Compute conservation laws of the PDE
• Discover families of completely integrable PDEs

Question: How to find a Lax pair of a completely integrable PDE?

Answer: There is no completely systematic method
Dilation Invariance and Weights

• KdV equation is invariant under dilation symmetry

\[(x, t, u) \rightarrow (\kappa^{-1} x, \kappa^{-3} t, \kappa^2 u) = (\tilde{x}, \tilde{t}, \tilde{u})\]

where \(\kappa\) is an arbitrary parameter. Indeed,

\[u_t + \alpha uu_x + u_{xxx} = 0 \rightarrow \frac{1}{\kappa^5} (\tilde{u}_{\tilde{t}} + \alpha \tilde{u}\tilde{u}_{\tilde{x}} + \tilde{u}_{\tilde{x}\tilde{x}\tilde{x}}) = 0\]

• The weight \(W\) of a variable is the exponent of \(\kappa\) in the symmetry. Thus, \(W(x) = -1, W(t) = -3\), or

\[W(D_x) = 1, \quad W(D_t) = 3, \quad W(u) = 2\]

• The total weight of the KdV equation is 5 because each monomial scales with \(\kappa^5\)
• The Lax operators for the KdV equation are scaling invariant.

Indeed,

\[\mathcal{L} = D_x^2 + \frac{1}{6} \alpha u I \]

is uniform of weight 2.

\[\mathcal{M} = - \left(4D_x^3 + \alpha u D_x + \frac{1}{2} \alpha u_x I \right) \]

is uniform of weight 3

• Furthermore, \(\mathcal{L}\psi = \lambda \psi \) and \(D_t \psi = \mathcal{M} \psi \) are uniform in weight if \(W(\lambda) = W(\mathcal{L}) = 2 \) and \(W(\mathcal{M}) = W(D_t) = 3 \)
Elementary Method to Compute Lax Pairs

Using the KdV equation as an example

- Select $W(\mathcal{L}) = 2$. Here $W(\mathcal{M}) = 3$. In general, $W(\mathcal{L}) \geq W(u)$ and $W(\mathcal{M}) = W(D_t)$.

- Build \mathcal{L} and \mathcal{M} as linear combinations of scaling invariant terms with undetermined coefficients:

 $$\mathcal{L} = D_x^2 + c_1 u I$$

 $$\mathcal{M} = c_2 D_x^3 + c_3 u D_x + c_4 u_x I$$

- Substitute into $\mathcal{L}_t + [\mathcal{L}, \mathcal{M}] = O$, and replace u_t by $-(\alpha uu_x + u_3x)$
• Set the coefficients of $D_x^2, D_x, \text{ and } I$ equal to zero

• Set the coefficients of like monomial terms in u, u_x, u_{xx}, etc. equal to zero

• Reduce the nonlinear algebraic system

\[
2c_3 - 3c_1c_2 = 0, \quad 2c_4 + c_3 - 3c_1c_2 = 0, \\
c_1(c_3 + \alpha) = 0, \quad c_1 - c_4 + c_1c_2 = 0
\]

with the Gröbner basis method into

\[
c_1(6c_1 - \alpha) = 0, \quad c_1(c_2 + 4) = 0, \quad c_1(c_3 + \alpha) = 0,
\]

\[
c_1(2c_4 + \alpha) = 0, \quad 6c_1 + c_3 = 0, \quad 3c_1 + c_4 = 0
\]

• Solve: $c_1 = \frac{1}{6}\alpha, \quad c_2 = -4, \quad c_3 = -\alpha, \quad c_4 = -\frac{1}{2}\alpha$
• Substitute the coefficients into \mathcal{L} and \mathcal{M}:

$$\mathcal{L} = D_x^2 + \frac{1}{6} \alpha u I$$

$$\mathcal{M} = -\left(4D_x^3 + \alpha u D_x + \frac{1}{2} \alpha u_x I\right)$$

• In complicated cases the nonlinear algebraic systems are long and hard to solve (too many solution branches)

• A divide and conquer strategy is needed
Algorithm to Compute Lax Pairs
Using the KdV equation as an example

• Step 1: Compute the weights

\[W(D_x) = 1, \quad W(D_t) = 3, \quad W(u) = 2 \]

• Step 2: Build a candidate Lax pair

Select \(W(L) = 2 \). Here \(W(M) = 3 \).

The candidate Lax pair is

\[
\begin{align*}
L &= D_x^2 + f_1 D_x + f_0 I \\
M &= c_3 D_x^3 + g_2 D_x^2 + g_1 D_x + g_0 I
\end{align*}
\]

with undetermined functions \(f_0, f_1, g_0, g_1, g_2 \) and undetermined constant coefficient \(c_3 \).
• **Step 3:** Substitute into the Lax equation

\[
\mathcal{L}_t + [\mathcal{L}, \mathcal{M}] = \\
\left(2D_x g_2 - 3c_3 D_x f_1 \right) D_x^3 \\
+ \left(D_x^2 g_2 - 3c_3 D_x^2 f_1 + f_1 D_x g_2 + 2D_x g_1 - 2g_2 D_x f_1 \\
- 3c_3 D_x f_0 \right) D_x^2 \\
+ \left(D_t f_1 - c_3 D_x^3 f_1 + D_x^2 g_1 - g_2 D_x^2 f_1 - 3c_3 D_x^2 f_0 \\
+ f_1 D_x g_1 + 2D_x g_0 - g_1 D_x f_1 - 2g_2 D_x f_0 \right) D_x \\
+ \left(D_t f_0 - c_3 D_x^3 f_0 + D_x^2 g_0 - g_2 D_x^2 f_0 + f_1 D_x g_0 - g_1 D_x f_0 \right) I
\]
• Step 4: Solve the kinematic constraints (i.e., equations not involving D_t)

Equate the coefficients of D^3_x and D^2_x to zero and solve, yielding

\[g_2 = \frac{3}{2} c_3 f_1, \]
\[g_1 = \frac{3}{4} c_3 D_x f_1 + \frac{3}{8} c_3 f_1^2 + \frac{3}{2} c_3 f_0 \]

• The candidate M operator reduces to

\[M = c_3 D^3_x + \frac{3}{2} c_3 f_1 D^2_x + \frac{3}{8} c_3 \left(2 D_x f_1 + f_1^2 + 4 f_0 \right) D_x + g_0 I \]

• The candidate L remains unchanged
• Step 5: Solve the dynamical equations (i.e., equations that do involve D_t)

The coefficients of I and D_x yield

$$D_t f_1 + 2D_x g_0 - \frac{1}{8} c_3 D_x \left(2D_x^2 f_1 + 12D_x f_0 - f_1^3 + 12f_1f_0 \right) = 0$$

$$D_t f_0 + D_x^2 g_0 + f_1 D_x g_0 - c_3 \left(D_x^3 f_0 + \frac{3}{2} f_1 D_x^2 f_0 + \frac{3}{4} D_x f_1 D_x f_0 + \frac{3}{8} f_1^2 D_x f_0 + \frac{3}{2} f_0 D_x f_0 \right) = 0$$

• Because $W(\mathcal{L}) = 2$ one has $f_1 = 0$. Thus,

$$2D_x g_0 - \frac{3}{2} c_3 D_x^2 f_0 = 0$$

$$D_t f_0 + D_x^2 g_0 - c_3 \left(D_x^3 f_0 + \frac{3}{2} f_0 D_x f_0 \right) = 0$$
• Step 5: continued

Solving these equations gives

\[g_0 = \frac{3}{4} c_3 D_x f_0 \quad \text{and} \quad f_0 = b_0 u \]

• Replace \(u_t \) by \(- (\alpha uu_x + u_3x)\),

\[\left(\alpha + \frac{3}{2} c_3 b_0 \right) uu_x + \left(1 + \frac{1}{4} c_3 \right) u_3x = 0 \]

• Hence,

\[c_3 = -4, \quad b_0 = \frac{1}{6} \alpha, \quad f_0 = \frac{1}{6} \alpha u, \quad f_1 = 0, \quad g_0 = -\frac{1}{2} \alpha u_x \]
Step 6: Substitute the coefficients into the undetermined functions and these into the candidate pair.

Thus,

\[\mathcal{L} = D_x^2 + \frac{1}{6} \alpha u I \]

and

\[\mathcal{M} = - \left(4 D_x^3 + \alpha u D_x + \frac{1}{2} \alpha u_x I \right) \]

form a Lax pair for the KdV equation.
Algorithm for Computing Lax Pairs

- Compute the scaling symmetry of the PDE
- Select $W(\mathcal{L}) = l \geq 1$.

 From the Lax equation: $W(\mathcal{M}) = W(\partial_t) = m$

- Build a candidate Lax pair of the form

\[
\mathcal{L} = D_x^l + f_{l-1}D_x^{l-1} + \ldots + f_0 I
\]
\[
\mathcal{M} = c_m D_x^m + g_{m-1}D_x^{m-1} + \ldots + g_0 I
\]

for a constant c_m

- Substitute into the Lax equation
• Separate into **kinematic constraints and dynamical equations**
• Solve the kinematic equations
• Solve the dynamical equations
• Substitute the coefficients into undetermined functions and these into the candidate Lax pair
• Test the Lax pair
• Example 1: The modified KdV (mKdV) equation

\[u_t + \alpha u^2 u_x + u_{3x} = 0 \]

has weights of \(W(u) = W(D_x) = 1 \) and \(W(D_t) = 3 \)

• Selecting \(W(L) = 1 \) gives a trivial Lax pair

• Select \(W(L) = 2 \), as in the KdV case, yields

\[
\mathcal{L} = D_x^2 + f_1 D_x + f_0 I \\
\mathcal{M} = c_3 D_x^3 + g_2 D_x^2 + g_1 D_x + g_0 I
\]

• Requiring uniform weights gives

\[
f_1 = b_0 u, \quad f_0 = b_1 u^2 + b_2 u_x, \quad g_0 = a_1 u^3 + a_2 uu_x + a_3 u_{xx}\]
Example 1: The mKdV equation – continued

Solving the kinematic constraints and dynamical equations gives the Lax pair

\[L = D_x^2 + 2\epsilon u D_x + \frac{1}{6} \left((6\epsilon^2 + \alpha) u^2 + (6\epsilon \pm \sqrt{-6\alpha}) u_x \right) \]

\[M = -4D_x^3 - 12\epsilon u D_x^2 \]

\[- \left((12\epsilon^2 + \alpha) u^2 + (12\epsilon \pm \sqrt{-6\alpha}) u_x \right) D_x \]

\[- \left((4\epsilon^3 + \frac{2}{3}\epsilon\alpha) u^3 + (12\epsilon^2 \pm \epsilon\sqrt{-6\alpha} + \alpha) uu_x \right) \]

\[+ \left(3\epsilon \pm \frac{1}{2}\sqrt{-6\alpha} \right) u_{xx} \]

• Example 2: The Boussinesq system

\[u_t - v_x = 0 \]
\[v_t - \beta u_x + 3uu_x + \alpha u_3x = 0 \]

has \(W(D_x) = 1, W(D_t) = W(u) = W(\beta) = 2, W(\nu) = 3 \)

• Select \(W(\mathcal{L}) = 3 \). Then,

\[\mathcal{L} = D_x^3 + f_1D_x + f_0I \]
\[\mathcal{M} = c_2D_x^2 + g_0I \]

• The kinematic constraint yields \(g_0 = \frac{2}{3} c_2 f_1 + c_0\beta \)

The dynamical equations then become

\[D_tf_1 = c_2 \left(2Dxf_0 - D_x^2f_1 \right) \]
\[D_tf_0 = c_2 \left(D_x^2f_0 - \frac{2}{3}D_x^3f_1 - \frac{2}{3}f_1D_xf_1 \right) \]
• **Example 2: The Boussinesq system – continued**

• The uniform weight ansatz gives

\[
\begin{align*}
 f_1 &= a_1 u + a_2 \beta \\
f_0 &= a_3 u_x + D_x^{-1} \left(a_4 u^2 + a_5 \beta u + a_6 v_x + a_7 \beta^2 \right)
\end{align*}
\]

• Solving the dynamical equations gives

\[
\begin{align*}
 \mathcal{L} &= D_x^3 + \frac{1}{4\alpha} (3u - \beta) D_x + \frac{3}{8\alpha^2} \left(\alpha u_x \pm \frac{1}{3} \sqrt{3\alpha} v \right) I \\
 \mathcal{M} &= \pm \sqrt{3\alpha} D_x^2 \pm \frac{\sqrt{3\alpha}}{2\alpha} u I
\end{align*}
\]

[V. E. Zakharov, Sov. Phys. JETP, 1974]
• **Example 3:** The coupled KdV system (Hirota & Satsuma)

\[u_t - 6\beta uu_x + 6vv_x - \beta u_3x = 0 \]
\[v_t + 3uv_x + v_3x = 0 \]

has \(W(D_x) = 1, W(D_t) = 3, W(u) = W(v) = 2. \)

• **Select** \(W(L) = 4. \) If \(\beta = \frac{1}{2}, \) then

\[
L = D_x^4 + 2uD_x^2 + 2(u_x - v_x)D_x + (u^2 - v^2 + u_{2x} - v_{2x})I
\]
\[
M = 2D_x^3 + 3uD_x + 3\left(\frac{1}{2}u_x - v_x\right)I
\]

• Example 4: The Drinfel’d-Sokolov-Wilson system

\[u_t + 3vv_x = 0, \quad v_t + 2uv_x + \alpha u_x v + 2v_3x = 0 \]

has \(W(D_x) = 1, W(D_t) = 3, W(u) = W(v) = 2. \)

• Select \(W(\mathcal{L}) = 6. \) If \(\alpha = 1, \) then

\[
\mathcal{L} = D_x^6 + 2uD_x^4 + (4u_x - 3v_x)D_x^3 \\
+ \left(\frac{9}{2} (u_{2x} - v_{2x}) - u^2 - v^2 \right) D_x^2 \\
+ \left(\frac{5}{2} (u_{3x} - v_{3x}) + 2 (uu_x - vv_x) + u_x v - uv_x \right) D_x \\
+ \left(\frac{1}{2} (u_{4x} - v_{4x}) + \frac{1}{2} (u + v)(u_{2x} - v_{2x}) + \frac{1}{4} (u_x^2 - v_x^2) \right) \mathcal{I}
\]

\[
\mathcal{M} = D_x^3 + uD_x - \frac{1}{2} (3v_x - u_x) \mathcal{I}
\]

Example 5: Class of fifth-order KdV equations

\[u_t + \alpha u^2 u_x + \beta u_x u_{xx} + \gamma uu_{3x} + u_5u = 0 \]

includes several completely integrable equations:

<table>
<thead>
<tr>
<th>Parameter ratios</th>
<th>Commonly used values</th>
<th>Equation name</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\left(\frac{\alpha}{2}, \frac{\beta}{\gamma} \right)]</td>
<td>(30, 20, 10), (120, 40, 20), (270, 60, 30)</td>
<td>Lax</td>
</tr>
<tr>
<td>[\left(\frac{1}{5}, 1 \right)]</td>
<td>(5, 5, 5), (180, 30, 30), (45, 15, 15)</td>
<td>Sawada-Kotera</td>
</tr>
<tr>
<td>[\left(\frac{1}{5}, \frac{5}{2} \right)]</td>
<td>(20, 25, 10)</td>
<td>Kaup-Kupershmidt</td>
</tr>
</tbody>
</table>
Example 5: Fifth-order equations – continued

For $W(\mathcal{L}) = 2$, only Lax’s equation has a Lax pair

$$\mathcal{L} = D_x^2 + \frac{1}{10} \gamma u I$$

$$\mathcal{M} = -16 D_x^5 - 4 \gamma u D_x^3 - 6 \gamma u_x D_x^2 - \gamma \left(5u_{xx} + \frac{3}{10} \gamma u^2\right) D_x$$

$$- \gamma \left(\frac{3}{2} u_{3x} + \frac{3}{10} \gamma uu_x\right) I$$

Example 5: Fifth-order equations – continued

For $W(\mathcal{L}) = 3$, the Sawada-Kotera and Kaup-Kupershmidt equations have Lax pairs

For the Kaup-Kupershmidt equation:

$$\mathcal{L} = D_x^3 + \frac{1}{5} \gamma u D_x + \frac{1}{10} \gamma u_x I$$

$$\mathcal{M} = 9 D_x^5 + 3 \gamma u D_x^3 + \frac{9}{2} \gamma u_x D_x^2 + \left(\frac{1}{5} \gamma^2 u^2 + \frac{7}{2} \gamma u_{xx} \right)$$

$$+ \left(\frac{1}{5} \gamma^2 uu_x + \gamma u_{3x} \right) I$$

• Example 5: Fifth-order equations — continued

• For the Sawada-Kotera equation with $W(\mathcal{L}) = 3$:

\[
\mathcal{L} = D_x^3 + \frac{1}{5} \gamma u D_x
\]

\[
\mathcal{M} = 9 D_x^5 + 3 \gamma u D_x^3 + 3 \gamma u_x D_x^2 + \left(\frac{1}{5} \gamma^2 u^2 + 2 \gamma u_{2x} \right) D_x
\]

Computations also resulted in:

\[
\tilde{\mathcal{L}} = D_x^3 + \frac{1}{5} \gamma u D_x + \frac{1}{5} \gamma u_x I = D_x \mathcal{L} D_x^{-1}
\]

\[
\tilde{\mathcal{M}} = 9 D_x^5 + 3 \gamma u D_x^3 + 6 \gamma u_x D_x^2 + \left(\frac{1}{5} \gamma^2 u^2 + 5 \gamma u_{2x} \right) D_x
\]

\[
+ \left(\frac{2}{5} \gamma^2 uu_x + 2 \gamma u_{3x} \right) I = D_x \mathcal{M} D_x^{-1}
\]
Conclusions and Future Work

- Scaling invariant Lax pairs in operator form are fairly easy to construct
- Scaling invariant Lax pairs in matrix form are hard to construct
- Gauge equivalence: Which Lax pairs are useful, which ones are not?
- Compare with Wahlquist & Estabrook method, pseudo-differential operator method, etc.
- Implementation in Mathematica
Thank You