Symbolic Computation of Travelling Wave Solutions of Nonlinear PDEs and Lattices with Mathematica

Prof. Willy Hereman
Department of Mathematical and Computer Sciences
Colorado School of Mines
Golden, CO-80401, U.S.A.
http://www.mines.edu/fs_home/whereman/
whereman@mines.edu

Colloquium Talk, Physics Department
University of Antwerp, Belgium
Thursday, December 19, 2002, 16:30

Collaborators: Ünal Göktaş (Wolfram Research, Inc.)
Ryan Martino, Joel Miller, Linda Hong (REU ’99)
Doug Baldwin, Steve Formaneck, Andrew Menz (REU ’00)
Doug Baldwin, Ben Kowalski (REU ’01)

Research supported in part by NSF
under Grants DMS-9912293 and CCR-9901929
OUTLINE

• Demonstration
• Purpose & Motivation
• Typical Examples
• Algorithm for Tanh Solutions
• Algorithm for Sech Solutions
• Algorithm for Mixed Tanh-Sech Solutions
• Algorithm for Jacobi elliptic Cn and Sn Solutions
• Extension: Tanh Solutions for Differential-difference Equations (DDEs)
• Analyzing and Solving Nonlinear Systems with Parameters
• Implementation Issues – Future Work
• Paper and Software
• Appendix: A complicated case!
Purpose & Motivation

- **Develop** and implement various **methods** to find closed form solutions of nonlinear PDEs and DDEs: Lie symmetry methods, similarity methods, etc.

- **Fully automate** the hyperbolic and elliptic function methods to compute exact solitary wave solutions of nonlinear partial differential equations (PDEs) and differential-difference equations (DDEs or lattices).

- **Class** of nonlinear PDEs and DDEs solvable with such methods includes famous evolution and wave equations. Typical examples: Korteweg-de Vries, Fisher and Boussinesq PDEs, Toda and Volterra lattices (DDEs).

- Solutions of tanh (kink) or sech (pulse) type **model** solitary waves in fluid dynamics, plasmas, electrical circuits, optical fibers, biogenetics, etc.

- **Benchmark** solutions for numerical PDE solvers.

- **Research aspect**: Design high-quality application packages to compute solitary wave solutions of large classes of nonlinear evolution and wave equations.

- **Educational aspect**: Software as course ware for courses in nonlinear PDEs, theory of nonlinear waves, integrability, dynamical systems, and modeling with symbolic software. REU Projects.

- **Users**: scientists working on nonlinear wave phenomena in fluid dynamics, nonlinear networks, elastic media, chemical kinetics, material science, bio-sciences, plasma physics, and nonlinear optics.
Typical Examples of ODEs and PDEs

• The Duffing equation:

\[u'' + u + \alpha u^3 = 0 \]

Solutions in terms of elliptic functions:

\[u(x) = \pm \frac{\sqrt{c_1^2 - 1}}{\sqrt{\alpha}} \cn(c_1 x + \Delta; \frac{c_1^2 - 1}{2c_1^2}), \]

and

\[u(x) = \pm \frac{\sqrt{2(c_1^2 - 1)}}{\sqrt{\alpha}} \sn(c_1 x + \Delta; \frac{1 - c_1^2}{c_1^2}). \]

• The Korteweg-de Vries (KdV) equation:

\[u_t + 6\alpha uu_x + u_{3x} = 0. \]

Solitary wave solution:

\[u(x, t) = \frac{8c_1^3 - c_2}{6\alpha c_1} - \frac{2c_1^2}{\alpha} \tanh^2 [c_1 x + c_2 t + \Delta], \]

or, equivalently,

\[u(x, t) = -\frac{4c_1^3 + c_2}{6\alpha c_1} + \frac{2c_1^2}{\alpha} \sech^2 [c_1 x + c_2 t + \Delta]. \]

Cnoidal wave solution:

\[u(x, t) = \frac{4c_1^3 (1 - 2m) - c_2}{\alpha c_1} + \frac{12m c_1^2}{\alpha} \cn^2 (c_1 x + c_2 t + \Delta; m), \]

modulus \(m \).
• The modified Korteweg-de Vries (mKdV) equation:
\[u_t + \alpha u^2 u_x + u_{3x} = 0. \]
Solitary wave solution:
\[u(x, t) = \pm \sqrt{\frac{6}{\alpha}} c_1 \text{sech} [c_1 x - c_1^3 t + \Delta]. \]

• Three-dimensional modified Korteweg-de Vries equation:
\[u_t + 6 u^2 u_x + u_{xyz} = 0. \]
Solitary wave solution:
\[u(x, y, z, t) = \pm \sqrt{c_2 c_3} \text{sech} [c_1 x + c_2 y + c_3 z - c_1 c_2 c_3 t + \Delta]. \]

• The combined KdV-mKdV equation:
\[u_t + 6 \alpha u u_x + 6 \beta u^2 u_x + \gamma u_{3x} = 0. \]
Real solitary wave solution:
\[u(x, t) = -\frac{\alpha}{2\beta} \pm \frac{\gamma}{\beta} c_1 \text{sech}(c_1 x + \frac{c_1}{2\beta}(3\alpha^2 - 2\beta \gamma c_1^2) t + \Delta). \]
Complex solutions:
\[u(x, t) = -\frac{\alpha}{2\beta} \pm i \frac{\gamma}{\beta} c_1 \text{tanh}(c_1 x + \frac{c_1}{2\beta}(3\alpha^2 + 4\beta \gamma c_1^2) t + \Delta), \]
\[u(x, t) = -\frac{\alpha}{2\beta} + \frac{1}{2} \frac{\gamma}{\beta} c_1 \left(\text{sech} \xi \pm i \text{tanh} \xi \right), \]
and
\[u(x, t) = -\frac{\alpha}{2\beta} - \frac{1}{2} \frac{\gamma}{\beta} c_1 \left(\text{sech} \xi \mp i \text{tanh} \xi \right), \]
with \(\xi = c_1 x + \frac{c_1}{2\beta}(3\alpha^2 + \beta \gamma c_1^2) t + \Delta. \)
- The Fisher equation:

\[u_t - u_{xx} - u (1 - u) = 0. \]

Solitary wave solution:

\[u(x, t) = \frac{1}{4} \pm \frac{1}{2} \tanh \xi + \frac{1}{4} \tanh^2 \xi, \]

with

\[\xi = \pm \frac{1}{2\sqrt{6}} x \pm \frac{5}{12} t + \Delta. \]

- The generalized Kuramoto-Sivashinski equation:

\[u_t + uu_x + u_{xx} + \sigma u_{3x} + u_{4x} = 0. \]

Solitary wave solutions

(ignoring symmetry \(u \to -u, x \to -x, \sigma \to -\sigma \)):

For \(\sigma = 4 \):

\[u(x, t) = 9 - 2c_2 - 15 \tanh \xi \left(1 + \tanh \xi - \tanh^2 \xi \right) \]

with \(\xi = \frac{x}{2} + c_2 t + \Delta. \)

For \(\sigma = \frac{12}{\sqrt{47}} \):

\[u(x, t) = \frac{45 \mp 4418c_2}{47\sqrt{47}} \pm \frac{45}{47\sqrt{47}} \tanh \xi - \frac{45}{47\sqrt{47}} \tanh^2 \xi \pm \frac{15}{47\sqrt{47}} \tanh^3 \xi \]

with \(\xi = \pm \frac{1}{2\sqrt{47}} x + c_2 t + \Delta. \)
For $\sigma = 16/\sqrt{73}$:

$$u(x, t) = \frac{2 (30 + 5329c_2)}{73\sqrt{73}} \pm \frac{75}{73\sqrt{73}} \tanh \xi - \frac{60}{73\sqrt{73}} \tanh^2 \xi \pm \frac{15}{73\sqrt{73}} \tanh^3 \xi$$

with $\xi = \pm \frac{1}{2\sqrt{73}} x + c_2 t + \Delta$.

For $\sigma = 0$:

$$u(x, t) = -2 \left[\frac{19}{11} c_2 - \frac{135}{11} \frac{\tanh \xi}{\sqrt{11}} + \frac{165}{19} \frac{\tanh^3 \xi}{\sqrt{19}} \right]$$

with $\xi = \frac{1}{2} \sqrt{\frac{11}{19}} x + c_2 t + \Delta$.

- The Boussinesq (wave) equation:

$$u_{tt} - u_{2x} + 3uu_{2x} + 3u_x^2 + \alpha u_{4x} = 0,$$

or written as a first-order system (v auxiliary variable):

$$u_t + v_x = 0,$$
$$v_t + u_x - 3uu_x - \alpha u_{3x} = 0.$$

Solitary wave solution:

$$u(x, t) = \frac{c_1^2 - c_2^2 + 8\alpha c_1^4}{3c_1^2} - 4\alpha c_1^2 \tanh^2 [c_1 x + c_2 t + \Delta],$$
$$v(x, t) = b_0 + 4\alpha c_1 c_2 \tanh^2 [c_1 x + c_2 t + \Delta].$$

- The Broer-Kaup system:

$$u_{ty} + 2(uu_x)_y + 2v_{xx} - u_{xy} = 0,$$
$$v_t + 2(\nu v)_x + v_{xx} = 0.$$

Solitary wave solution:

$$u(x, t) = -\frac{c_3}{2c_1} + c_1 \tanh [c_1 x + c_2 y + c_3 t + \Delta],$$
$$v(x, t) = c_1 c_2 - c_1 c_2 \tanh^2 [c_1 x + c_2 y + c_3 t + \Delta].$$
System of three nonlinear coupled equations (Gao & Tian, 2001):

\[
\begin{align*}
 u_t - u_x - 2v &= 0, \\
 v_t + 2uw &= 0, \\
 w_t + 2uv &= 0.
\end{align*}
\]

Solutions:

\[
\begin{align*}
 u(x, t) &= \pm c_2 \tanh \xi, \\
 v(x, t) &= \pm \frac{1}{2} c_2 (c_1 - c_2) \sech^2 \xi, \\
 w(x, t) &= -\frac{1}{2} c_2 (c_1 - c_2) \sech^2 \xi,
\end{align*}
\]

and

\[
\begin{align*}
 u(x, t) &= \pm ic_2 \sech \xi, \\
 v(x, t) &= \pm \frac{1}{2} ic_2 (c_1 - c_2) \tanh \xi \sech \xi, \\
 w(x, t) &= \frac{1}{4} c_2 (c_1 - c_2) \left(1 - 2 \sech^2 \xi\right) ,
\end{align*}
\]

and also

\[
\begin{align*}
 u(x, t) &= \pm \frac{1}{2} ic_2 \left(\sech \xi + i \tanh \xi\right) , \\
 v(x, t) &= \pm \frac{1}{4} c_2 (c_1 - c_2) \sech \xi \left(\sech \xi + i \tanh \xi\right) , \\
 w(x, t) &= -\frac{1}{4} c_2 (c_1 - c_2) \sech \xi \left(\sech \xi + i \tanh \xi\right)
\end{align*}
\]

with \(\xi = c_1 x + c_2 t + \Delta \).
• Nonlinear sine-Gordon equation (light cone coordinates):

\[\Phi_{xt} = \sin \Phi. \]

Set \(u = \Phi_x, \ v = \cos(\Phi) - 1, \)

\[u_{xt} - u - u v = 0, \]
\[u_t^2 + 2v + v^2 = 0. \]

Solitary wave solution (kink):
\[u = \pm \frac{1}{\sqrt{-c}} \text{sech}\left[\frac{1}{\sqrt{-c}}(x - ct) + \Delta \right], \]
\[v = 1 - 2 \text{sech}^2\left[\frac{1}{\sqrt{-c}}(x - ct) + \Delta \right]. \]

Solution:
\[\Phi(x, t) = \int u(x, t) dx = \pm 4 \arctan \left(\exp \left(\frac{1}{\sqrt{-c}}(x - ct) + \Delta \right) \right). \]

• ODEs from quantum field theory:

\[u_{xx} = -u + u^3 + auv^2, \]
\[v_{xx} = bv + cv^3 + av(u^2 - 1). \]

Solitary wave solutions:
\[u = \pm \tanh\left[\sqrt{\frac{a^2 - c}{2(a-c)}} x + \Delta \right], \]
\[v = \pm \sqrt{\frac{1-a}{a-c}} \text{sech}\left[\sqrt{\frac{a^2 - c}{2(a-c)}} x + \Delta \right], \]

provided \(b = \sqrt{\frac{a^2-c}{2(a-c)}}. \)
Typical Examples of DDEs (lattices)

• The Toda lattice:
 \[\ddot{u}_n = (1 + \dot{u}_n)(u_{n-1} - 2u_n + u_{n+1}). \]
 Solitary wave solution:
 \[u_n(t) = a_0 \pm \sinh(c_1) \tanh[c_1n \pm \sinh(c_1)t + \Delta]. \]

• The Volterra lattice:
 \[\dot{u}_n = u_n(v_n - v_{n-1}), \quad \dot{v}_n = v_n(u_{n+1} - u_n). \]
 Solitary wave solution:
 \[u_n(t) = -c_2 \coth(c_1) + c_2 \tanh [c_1n + c_2t + \Delta], \]
 \[v_n(t) = -c_2 \coth(c_1) - c_2 \tanh [c_1n + c_2t + \Delta]. \]

• The Relativistic Toda lattice:
 \[\dot{u}_n = (1 + \alpha u_n)(v_n - v_{n-1}), \quad \dot{v}_n = v_n(u_{n+1} - u_n + \alpha v_{n+1} - \alpha v_{n-1}). \]
 Solitary wave solution:
 \[u_n(t) = -c_2 \coth(c_1) - \frac{1}{\alpha} + c_2 \tanh [c_1n + c_2t + \Delta], \]
 \[v_n(t) = \frac{c_2 \coth(c_1)}{\alpha} - \frac{c_2}{\alpha} \tanh [c_1n + c_2t + \Delta]. \]
Algorithm for Tanh Solutions for system of PDEs

Given: System of nonlinear PDEs of order m

$$\Delta(u(x), u'(x), u''(x), \ldots, u^{(m)}(x)) = 0.$$

Dependent variable u has M components u_i (or u, v, w, \ldots).
Independent variable x has N components x_j (or x, y, z, \ldots, t).

Step T1:

- Seek solution $u(x) = U(T)$, with

$$T = \tanh \xi = \tanh \left[\sum_j c_j x_j + \Delta \right].$$

- Observe $\tanh' \xi = 1 - \tanh^2 \xi$ or $T' = 1 - T^2$. Hence, all derivative of T are polynomial in T. For example, $T'' = -2T(1 - T^2)$, etc.

- Repeatedly apply the operator rule

$$\frac{\partial \bullet}{\partial x_j} = \frac{d \bullet}{dT} \frac{\partial T}{\partial x_j} = c_j (1 - T^2) \frac{d \bullet}{dT}.$$

Produces a nonlinear system of ODEs

$$\Delta(T, U(T), U'(T), U''(T), \ldots, U^{(m)}(T)) = 0.$$

NOTE: Compare with the ultra-spherical (linear) ODE:

$$(1 - x^2)y''(x) - (2\alpha + 1)xy'(x) + n(n + 2\alpha)y(x) = 0$$

with integer $n \geq 0$ and α real. Includes:

* Legendre equation ($\alpha = \frac{1}{2}$),
* ODE for Chebyshev polynomials of type I ($\alpha = 0$),
* ODE for Chebyshev polynomials of type II ($\alpha = 1$).
Example: For the Boussinesq system
\[
\begin{aligned}
\frac{\partial u}{\partial t} + v_x &= 0, \\
\frac{\partial v}{\partial t} + u_x - 3uu_x - \alpha u_{3x} &= 0,
\end{aligned}
\]
after cancelling common factors \(1 - T^2\),
\[
\begin{aligned}
c_2 U' + c_1 V' &= 0, \\
c_2 V' + c_1 U' - 3c_1 UU' \\
+ \alpha c_1^3 \left[2(1 - 3T^2)U' + 6T(1 - T^2)U'' - (1 - T^2)^2 U'''
ight] &= 0.
\end{aligned}
\]

Step T2:

- Seek polynomial solutions
 \[
 U_i(T) = \sum_{j=0}^{M_i} a_{ij} T^j.
 \]

Determine the highest exponents \(M_i \geq 1\).
Substitute \(U_i(T) = T^{M_i}\) into the LHS of ODE.
Gives polynomial \(P(T)\).
For every \(P_i\) consider all possible balances of the highest exponents in \(T\).
Solve the resulting linear system(s) for the unknowns \(M_i\).

- Example: Balance highest exponents for the Boussinesq system
 \[
 M_1 - 1 = M_2 - 1, \quad 2M_1 - 1 = M_1 + 1.
 \]
So, \(M_1 = M_2 = 2\).
Hence,
\[
\begin{aligned}
U(T) &= a_{10} + a_{11} T + a_{12} T^2, \\
V(T) &= a_{20} + a_{21} T + a_{22} T^2.
\end{aligned}
\]
Step T3:

- Derive algebraic system for the unknown coefficients \(a_{ij} \) by setting to zero the coefficients of the power terms in \(T \).
- Example: Algebraic system for Boussinesq case

 \[
 a_{11} c_1 (3a_{12} + 2\alpha c_1^2) = 0, \\
 a_{12} c_1 (a_{12} + 4\alpha c_1^2) = 0, \\
 a_{21} c_1 + a_{11} c_2 = 0, \\
 a_{22} c_1 + a_{12} c_2 = 0, \\
 a_{11} c_1 - 3a_{10} a_{11} c_1 + 2\alpha a_{11} c_1^3 + a_{21} c_2 = 0, \\
 -3a_{11}^2 c_1 + 2a_{12} c_1 - 6a_{10} a_{12} c_1 + 16\alpha a_{12} c_1^3 + 2a_{22} c_2 = 0.
 \]

Step T4:

- Solve the nonlinear algebraic system with parameters.
- Example: Solution for Boussinesq system

 \[
 a_{10} = \frac{c_1^2 - c_2^2 + 8\alpha c_1^4}{3c_1^2}, \quad a_{11} = 0, \\
 a_{12} = -4\alpha c_1^2, \quad a_{20} = \text{free}, \\
 a_{21} = 0, \quad a_{22} = 4\alpha c_1 c_2.
 \]

Step T5:

- Return to the original variables. Test the final solution(s) of PDE. Reject trivial solutions.
- Example: Solitary wave solution for Boussinesq system:

 \[
 u(x, t) = \frac{c_1^2 - c_2^2 + 8\alpha c_1^4}{3c_1^2} - 4\alpha c_1^2 \tanh^2 \left[c_1 x + c_2 t + \Delta \right], \\
 v(x, t) = a_{20} + 4\alpha c_1 c_2 \tanh^2 \left[c_1 x + c_2 t + \Delta \right].
 \]
Algorithm for Sech Solutions for system of PDEs

Given: System of PDEs of order \(m \)
\[
\Delta(u(x), u'(x), u''(x), \ldots, u^{(m)}(x)) = 0.
\]
Dependent variable \(u \) has \(M \) components \(u_i \) (or \(u, v, w, \ldots \)).
Independent variable \(x \) has \(N \) components \(x_j \) (or \(x, y, z, \ldots, t \)).

Step S1:

- Seek solution \(u_i(x) = U_i(S) \), with
 \[
 S = \text{sech}\xi = \text{sech}\left[\sum_j c_j x_j + \Delta \right].
 \]
- Observe \((\text{sech}\xi)' = -\tanh\xi \text{sech}\xi \) or \(S' = -TS = -\sqrt{1 - S^2}S \).
- Repeatedly apply the operator rule
 \[
 \frac{\partial\bullet}{\partial x_j} = \frac{d\bullet}{dS} \frac{\partial S}{\partial x_j} = -c_j S \sqrt{1 - S^2} \frac{d\bullet}{dS}.
 \]

Leads to coupled system of nonlinear ODEs
\[
\Gamma(S, U(S), U'(S), \ldots) + \sqrt{1 - S^2} \Pi(S, U(S), U'(S), \ldots) = 0.
\]

All components of \(\Gamma \) and \(\Pi \) are polynomial ODEs.

First case: \(\Gamma = 0 \) or \(\Pi = 0 \).
\[
\Delta(S, U(S), U'(S), \ldots) = 0.
\]
\(\Delta \) stands for either \(\Gamma \) or \(\Pi \).

Note: All terms in the given system of PDE must be of even or odd order.
Example: For the 3D mKdV equation
\[u_t + 6u^2u_x + u_{xyz} = 0, \]
after cancelling a common factor \(-\sqrt{1 - S^2} S\),
\[c_4 U' + 6c_1 U^2 U' + c_1 c_2 c_3 [(1 - 6S^2) U' + 3S(1 - 2S^2) U'' + S^2(1 - S^2) U'''] = 0. \]

Step S2:

- Seek polynomial solutions
 \[U_i(S) = \sum_{j=0}^{M_i} a_{ij} S^j. \]

 Substitute \(U_i(S) = S^{M_i} \) and balance the highest power terms in \(S \) to determine \(M_i \).

- Example: Balance of exponents for the 3D mKdV case
 \[3M_1 - 1 = M_1 + 1. \]
 So, \(M_1 = 1 \). Hence,
 \[U(S) = a_{10} + a_{11} S. \]

Step S3:

- Derive algebraic system for the unknown coefficients \(a_{ij} \) by setting to zero the coefficients of the power terms in \(S \).

- Example: Algebraic system for 3D mKdV case
 \[a_{11} c_1 (a_{11}^2 - c_2 c_3) = 0, \]
 \[a_{11} (6a_{10}^2 c_1 + c_1 c_2 c_3 + c_4) = 0, \]
 \[a_{10} a_{11}^2 c_1 = 0. \]
Step S4:

- Solve the nonlinear algebraic system with parameters.
- Example: Solution for 3D mKdV case

\[
\begin{align*}
a_{10} &= 0, \\
a_{11} &= \pm \sqrt{c_1 c_3}, \\
c_4 &= -c_1 c_2 c_3.
\end{align*}
\]

Step S5:

- Return to the original variables. Test the final solution(s). Reject trivial solutions.
- Example: Solitary wave solution for the 3D mKdV equation

\[
u(x, y, z, t) = \pm \sqrt{c_2 c_3} \text{sech}(c_1 x + c_2 y + c_3 z - c_1 c_2 c_3 t).
\]

Second case: $\Gamma \neq 0$ and $\Pi \neq 0$.

\[
\Gamma(S, U(S), U'(S), \ldots) + \sqrt{1 - S^2} \Pi(S, U(S), U'(S), \ldots) = 0.
\]

Most general solution

\[
U_i(S) = \sum_{j=0}^{\hat{M}_i} \sum_{k=0}^{\hat{N}_i} \tilde{a}_{i,j,k} S^j T^k.
\]

Double series is not necessary! Solution can be rearranged as

\[
U_i(S) = \sum_{j=0}^{M_i} a_{ij} S^j + T \sum_{j=0}^{N_i} b_{ij} S^j.
\]
Algorithm for Mixed Tanh/Sech Solutions for PDEs

Step ST1:

- Seek solution in \(u_i(x) = U_i(S) \), with
 \[
 S = \text{sech}\xi = \text{sech}\left[\sum_{j} c_j x_j + \Delta\right].
 \]

Repeatedly apply the operator rule
\[
\frac{\partial \bullet}{\partial x_j} = \frac{d \bullet}{dS} \frac{\partial S}{\partial x_j} = -c_j S \sqrt{1 - S^2} \frac{d \bullet}{dS}.
\]

- Example: Coupled system due to Gao and Tian (2001)
 \[
 u_t - u_x - 2v = 0,
 \]
 \[
 v_t + 2uw = 0,
 \]
 \[
 w_t + 2uv = 0,
 \]

transforms into
\[
(c_1 - c_2) S \sqrt{1 - S^2} U' - 2V = 0,
\]
\[
c_2 S \sqrt{1 - S^2} V' - 2UW = 0,
\]
\[
c_2 S \sqrt{1 - S^2} W' - 2UV = 0.
\]

Step ST2:

- Seek solution
 \[
 U_i(S) = \sum_{j=0}^{M_i} a_{ij} S^j + \sqrt{1 - S^2} \sum_{j=0}^{N_i} b_{ij} S^j.
 \]

First, determine the leading exponents \(M_i, N_i \). Substitute
\[
U_i(S) = a_{i0} + a_i M_i S^{M_i} + \sqrt{1 - S^2} (b_{i0} + b_{iN_i} S^{N_i})
\]
to get
\[P(S) + \sqrt{1 - S^2} Q(S) = 0. \]

\(P \) and \(Q \) are polynomials.

Consider possible balances of the highest exponents in \(P_i \) and \(Q_i \).

Get a linear system of \(2M \) (or less) equations for the \(2M \) unknown \(M_i \) and \(N_i \).

No longer assume \(M_i \geq 1, N_i \geq 1 \) (some \(M_i \) or \(N_i \) may be zero).

Trouble. Strongly underdetermined problem. Set all \(M_i = 2 \) and \(N_i = 1 \).

- **Example:** Quadratic solutions in \(S \) and \(T \) only.

Substitute
\[
\begin{align*}
U(S) &= a_{10} + a_{11}S + a_{12}S^2 + \sqrt{1 - S^2} (b_{10} + b_{11}S), \\
V(S) &= a_{20} + a_{21}S + a_{22}S^2 + \sqrt{1 - S^2} (b_{20} + b_{21}S), \\
W(S) &= a_{30} + a_{31}S + a_{32}S^2 + \sqrt{1 - S^2} (b_{30} + b_{31}S).
\end{align*}
\]

leads to
\[P(S) + \sqrt{1 - S^2} Q(S) = 0, \]

\(P \) and \(Q \) are polynomials.

Step ST3:

- Derive the algebraic system for the coefficients \(a_{ij}, b_{ij} \) by setting to zero the coefficients of power terms in \(S \) in \(P = 0 \) and \(Q = 0 \) separately.

- **Example:** Algebraic system has 25 equations (not shown).
Step ST4:

- Solve the nonlinear algebraic system with parameters.
- Example: 11 solutions in total: 3 are trivial ($U_i = \text{constant}$), 8 are nontrivial.

Step ST5:

- Return to the original variables. Test the final solution(s). Reject trivial (constant) solutions.
- Example: Solitary wave solutions:

\[
\begin{align*}
 u(x,t) &= \pm c_2 \tanh \xi, \\
 v(x,t) &= \mp \frac{1}{2} c_2 (c_1 - c_2) \sech^2 \xi, \\
 w(x,t) &= -\frac{1}{2} c_2 (c_1 - c_2) \sech^2 \xi,
\end{align*}
\]

(could have been obtained with tanh-method), and

\[
\begin{align*}
 u(x,t) &= \pm ic_2 \sech \xi, \\
 v(x,t) &= \pm \frac{1}{2} ic_2 (c_1 - c_2) \tanh \xi \sech \xi, \\
 w(x,t) &= \frac{1}{4} c_2 (c_1 - c_2) \left(1 - 2 \sech^2 \xi \right),
\end{align*}
\]

and also

\[
\begin{align*}
 u(x,t) &= \pm \frac{1}{2} ic_2 \left(\sech \xi + i \tanh \xi \right), \\
 v(x,t) &= \pm \frac{1}{4} c_2 (c_1 - c_2) \sech \xi \left(\sech \xi + i \tanh \xi \right), \\
 w(x,t) &= -\frac{1}{4} c_2 (c_1 - c_2) \sech \xi \left(\sech \xi + i \tanh \xi \right).
\end{align*}
\]

plus the c.c. solutions.

In all solutions $\xi = c_1 x + c_2 t + \Delta$.
Algorithm for Jacobi Cn and Sn Solutions of PDEs

Given: System of nonlinear PDEs of order m

$$\Delta(u(x), u'(x), u''(x), \ldots, u^{(m)}(x)) = 0.$$

Dependent variable u has M components u_i (or u, v, w, \ldots).
Independent variable x has N components x_j (or x, y, z, \ldots, t).

Step CN1:

- Seek solution $u(x) = U(CN)$, with

$$CN = \text{cn}(\xi; m) = \text{cn}\left(\sum_j c_j x_j + \Delta\right); m).$$

with modulus m.

- Observe $\text{cn}'(\xi; m) = -\text{sn}(\xi; m) \text{dn}(\xi; m)$.

Using

$$\text{sn}^2(\xi; m) = 1 - \text{cn}^2(\xi; m), \quad \text{dn}^2(\xi; m) = 1 - m + m \text{cn}^2(\xi; m),$$

one has

$$CN' = -\sqrt{(1 - CN^2)(1 - m + m CN^2)}.$$

- Repeatedly apply the operator rule

$$\frac{\partial \bullet}{\partial x_j} = \frac{d \bullet}{d CN} \frac{d CN}{d \xi} \frac{\partial \xi}{\partial x_j} = -c_j \sqrt{(1 - CN^2)(1 - m + m CN^2)} \frac{d \bullet}{d CN},$$

produces a nonlinear ODE:

$$\Delta(CN, U(CN), U'(CN), U''(CN), \ldots, U^{(m)}(CN)) = 0.$$
• Example: The KdV equation
\[u_t + \alpha uu_x + u_{xxx} = 0, \]
transforms into
\[\left(c_1^3(1 - 2m + 6m CN^2) - c_2 - \alpha c_1 U_1 \right) U_1' \\
+ 3c_1^3 CN(1 - 2m + 2m CN^2)U_1'' - c_1^3(1 - CN^2)(1 - m + m CN^2)U_1''' = 0. \]

Step CN2:

• Seek polynomial solutions
\[U_i(CN) = \sum_{j=0}^{M_i} a_{ij} CN^j. \]

Determine the highest exponents \(M_i \geq 1. \)

• Example: For KdV case: \(M_1 = 2. \) Thus,
\[U_1(CN) = a_{10} + a_{11} CN + a_{12} CN^2. \]

Step CN3:

• Derive the algebraic system for the coefficients \(a_{ij}. \)

• Example: Algebraic system for KdV case
\[-3 a_{11} c_1 (\alpha a_{12} - 2m c_1^2) = 0, \]
\[-2 a_{12} c_1 (\alpha a_{12} - 12m c_1^2) = 0, \]
\[-a_{11} (\alpha a_{10} c_1 - c_1^3 + 2m c_1^3 + c_2) = 0, \]
\[-\alpha a_{11}^2 c_1 - a_{12} (2 \alpha a_{10} c_1 - 16m c_1^3 - 8c_1^3 + 2c_2) = 0. \]

Note: modulus \(m \) is extra parameter.
Step CN4:

- Solve the nonlinear algebraic system with parameters.
- Example: Solution for KdV system

$$
\begin{align*}
 a_{10} &= \frac{4c_1^3 (1 - 2m) - c_2}{\alpha c_1}, \\
 a_{11} &= 0, \\
 a_{12} &= \frac{12m c_1^2}{\alpha}.
\end{align*}
$$

Step CN5:

- Return to the original variables. Test the final solution(s) of PDE. Reject trivial solutions.
- Example: Cnoidal solution for the KdV equation:

$$
u(x, t) = \frac{4c_1^3 (1 - 2m) - c_2}{\alpha c_1} + \frac{12m c_1^2}{\alpha} \text{cn}^2(c_1x + c_2t + \Delta; m).$$

NOTE: For Jacobi sn solutions, use

$$
\begin{align*}
 \text{cn}^2(\xi; m) &= 1 - \text{sn}^2(\xi; m), \\
 \text{dn}^2(\xi; m) &= 1 - m \text{sn}^2(\xi; m), \\
 \text{sn}'(\xi; m) &= \text{cn}(\xi; m) \text{dn}(\xi; m).
\end{align*}
$$

Hence,

$$
\text{SN}' = \sqrt{(1 - \text{SN}^2)(1 - m \text{SN}^2)},
$$

with $\text{SN} = \text{sn}(\xi; m)$.

Chain rule:

$$
\frac{\partial \bullet}{\partial x_j} = \frac{d \bullet}{d \text{SN}} \frac{d \text{SN}}{d \xi} \frac{\partial \xi}{\partial x_j} = c_j \sqrt{(1 - \text{SN}^2)(1 - m \text{SN}^2)} \frac{d \bullet}{d \text{SN}}.
$$
Algorithm for Tanh Solutions for system of DDEs

Given: System of nonlinear differential-difference equations (DDEs) of order \(m \)
\[
\Delta(..., u_{n-1}, u_n, u_{n+1}, ..., \dot{u}_n, ..., u_{n}^{(m)}) = 0.
\]

Dependent variable \(u_n \) has \(M \) components \(u_{i,n} \) (or \(u_n, v_n, w_n, ... \))
Independent variable \(x \) has 2 components \(x_i \) (or \(n, t \)).
No derivatives on shifted variables!

Step D1:

- Seek solution \(u_n(t) = U_n(T) \), with
 \[
 T = T_n(t) = \tanh [c_1 n + c_2 t + \Delta].
 \]

 - **Note:** The argument of \(T \) depends on \(n \).
- Repeatedly apply the operator rule
 \[
 \frac{d\bullet}{dt} = \frac{d\bullet}{dT} \frac{dT}{dt} = c_2 (1 - T^2) \frac{d\bullet}{dT}.
 \]
 Produces a nonlinear system of type
 \[
 \Delta(T, \cdots, U_{n-1}^{(i)}, U_n^{(i)}, U_{n+1}^{(i)}, \cdots, U_n^{(i)}, U_n^{''}, \cdots, U_{n}^{(m)}) = 0.
 \]
- **Example:** Toda lattice
 \[
 \ddot{u}_n = (1 + \dot{u}_n)(u_{n-1} - 2u_n + u_{n+1})
 \]
 transforms into
 \[
 c_2^2 (1 - T^2) [2TU_n' - (1 - T^2)U_n'' + [1 + c_2 (1 - T^2)U_n'] [U_n - 2U_n + U_{n+1}] = 0.
 \]
Step D2:

- Seek polynomial solutions
 \[U_{i,n}(T_n) = \sum_{j=0}^{M_i} a_{ij} T_n^j. \]

Use
\[\tanh(x + y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y} \]
to deal with the shift:
\[U_{i,n\pm p}(T(n \pm p)) = \sum_{j=0}^{M_i} a_{i,j} [T(n + p)]^j = \sum_{j=0}^{M_i} a_{i,j} \left[\frac{T_n \pm \tanh(pc_1)}{1 \pm T_n \tanh(pc_1)} \right]^j. \]

Substitute \(U_{i,n} = T_n^{M_i} \), and
\[U_{i,n\pm p}(T(n \pm p)) = [T(n + p)]^{M_i} = \left[\frac{T_n \pm \tanh(pc_1)}{1 \pm T_n \tanh(pc_1)} \right]^{M_i}, \]
and balance the potential highest exponents in \(T_n \) to determine \(M_i \).

Note: \(U_{i,n\pm p}(T(n \pm p)) \) is homogeneous of degree zero in \(T \).

- Example: Balance of exponents for Toda lattice
 \[2M_1 - 1 = M_1 + 1. \]
 So, \(M_1 = 1 \).

Hence,
\[U_n(T_n) = a_{10} + a_{11} T_n, \]
\[U_{n\pm 1}(T(n \pm 1)) = a_{10} + a_{11} T(n \pm 1) = a_{10} + a_{11} \frac{T_n \pm \tanh(c_1)}{1 \pm T_n \tanh(c_1)}. \]
Step D3:

- Determine the algebraic system for the unknown coefficients a_{ij} by setting to zero the coefficients of the powers in T_n.
- Example: Algebraic system for Toda lattice
 \[c_2^2 - \tanh^2(c_1) - a_{11}c_2 \tanh^2(c_1) = 0, \]
 \[c_2 - a_{11} = 0. \]

Step D4:

- Solve the nonlinear algebraic system with parameters.
- Example: Solution of algebraic system for Toda lattice
 \[a_{10} = \text{free}, \]
 \[a_{11} = \pm \sinh(c_1), \]
 \[c_2 = \pm \sinh(c_1). \]

Step D5:

- Return to the original variables. Test solution(s) of DDE. Reject trivial ones.
- Example: Solitary wave solution for Toda lattice:
 \[u_n(t) = a_0 \pm \sinh(c_1) \tanh [c_1n \pm \sinh(c_1) t + \Delta]. \]
Example: System of DDEs: Relativistic Toda lattice

\[\dot{u}_n = (1 + \alpha u_n)(v_n - v_{n-1}), \]
\[\dot{v}_n = v_n(u_{n+1} - u_n + \alpha v_{n+1} - \alpha v_{n-1}). \]

Change of variables

\[u_n(t) = U_n(T_n), \quad v_n(t) = V_n(T_n), \]

with

\[T_n(t) = \tanh [c_1 n + c_2 t + \Delta]. \]

gives

\[c_2(1 - T^2)U'_n - (1 + \alpha U_n)(V_n - V_{n-1}) = 0, \]
\[c_2(1 - T^2)V'_n - V_n(U_{n+1} - U_n + \alpha V_{n+1} - \alpha V_{n-1}) = 0. \]

Seek polynomial solutions

\[U_n(T_n) = \sum_{j=0}^{M_1} a_{1j} T_n^j, \quad V_n(T_n) = \sum_{j=0}^{M_2} a_{2j} T_n^j. \]

Balance the highest exponents in \(T_n \) to determine \(M_1 \), and \(M_2 \) :

\[M_1 + 1 = M_1 + M_2, \quad M_2 + 1 = M_1 + M_2. \]

So, \(M_1 = M_2 = 1. \) Hence,

\[U_n = a_{10} + a_{11} T_n, \quad V_n = a_{20} + a_{21} T_n. \]

Algebraic system for \(a_{ij} \) :

\[-a_{11} c_2 + a_{21} \tanh(c_1) + \alpha a_{10} a_{21} \tanh(c_1) = 0, \]
\[a_{11} \tanh(c_1)(\alpha a_{21} + c_2) = 0, \]
\[-a_{21} c_2 + a_{11} a_{20} \tanh(c_1) + 2\alpha a_{20} a_{21} \tanh(c_1) = 0, \]
\[\tanh(c_1)(a_{11} a_{21} + 2\alpha a_{21}^2 - a_{11} a_{20} \tanh(c_1)) = 0, \]
\[a_{21} \tanh^2(c_1)(c_2 - a_{11}) = 0. \]
Solution of the algebraic system

\[
\begin{align*}
a_{10} &= -c_2 \coth(c_1) - \frac{1}{\alpha}, \\
a_{11} &= c_2, \\
a_{20} &= \frac{c_2 \coth(c_1)}{\alpha}, \\
a_{21} &= -\frac{c_2}{\alpha}.
\end{align*}
\]

Solitary wave solution in original variables:

\[
\begin{align*}
u_n(t) &= -c_2 \coth(c_1) - \frac{1}{\alpha} + c_2 \tanh [c_1 n + c_2 t + \Delta], \\
v_n(t) &= \frac{c_2 \coth(c_1)}{\alpha} - \frac{c_2}{\alpha} \tanh [c_1 n + c_2 t + \Delta].
\end{align*}
\]
Analyzing and Solving Nonlinear Parameterized Systems

Assumptions:

- All \(c_i \neq 0 \) and modulus \(m \neq 0 \).
- Parameters \((\alpha, \beta, \gamma, \ldots) \). Otherwise the maximal exponents \(M_i \) may change.
- All \(M_i \geq 1 \).
- All \(a_{iM_i} \neq 0 \). Highest power terms in \(U_i \) must be present, except in mixed sech-tanh-method.
- Solve for \(a_{ij} \), then \(c_i, m \) then find conditions on parameters.

Strategy followed by hand:

- Solve all linear equations in \(a_{ij} \) first (cost: branching). Start with the ones without parameters. Capture constraints in the process.
- Solve linear equations in \(c_i, m \) if they are free of \(a_{ij} \).
- Solve linear equations in parameters if they free of \(a_{ij}, c_i, m \).
- Solve quasi-linear equations for \(a_{ij}, c_i, m \) parameters.
- Solve quadratic equations for \(a_{ij}, c_i, m \) parameters.
- Eliminate cubic terms for \(a_{ij}, c_i, m \) parameters, without solving.
- Show remaining equations, if any.

Alternatives:

- Use (adapted) Gröbner bases techniques.
- Use Ritt-Wu characteristic sets method.
- Use combinatorics on coefficients \(a_{ij} = 0 \) or \(a_{ij} \neq 0 \).
Implementation Issues – Software Demo – Future Work

• Demonstration of Mathematica package for hyperbolic and elliptic function methods for PDEs and DDEs.

• Long term goal: Develop PDESolve and DDESolve for analytical solutions of nonlinear PDEs and DDEs.

• Implement various methods: Lie symmetry methods, etc.

• Look at other types of explicit solutions involving
 – other hyperbolic and elliptic functions sinh, cosh, dn,
 – complex exponentials combined with sech or tanh.

• Seek solutions $u(x, t) = U(F(\xi))$, for special functions F, where $F'(\xi)$ is polynomial or irrational expression in F.

Examples:
 – If $F = \tanh \xi$

 $F'(\xi) = 1 - F^2(\xi)$.

 Chain rule:

 $\frac{\partial \bullet}{\partial x_j} = c_j(1 - F^2) \frac{d\bullet}{dF}$.

 – If $F = \sech \xi$

 $F'(\xi) = -F(\xi) \sqrt{1 - F^2(\xi)}$.

 Chain rule:

 $\frac{\partial \bullet}{\partial x_j} = -c_j F \sqrt{1 - F^2} \frac{d\bullet}{dF}$.

 – If $F = \cn \xi$

 $cn' \xi = -sn \xi \ dn \xi$

 $F'(\xi) = -\sqrt{1 - F^2} \sqrt{1 - m + mF^2}$.
Chain rule:
\[
\frac{\partial \bullet}{\partial x_j} = -c_j \sqrt{1 - F^2} \sqrt{1 - m + mF^2} \frac{d\bullet}{dF}.
\]

• Add the constraining differential equations to the system of PDEs directly.

• Why are tanh and sech solutions so prevalent?

• Other applications (of the nonlinear algebraic solver):
 Computation of conservation laws, symmetries, first integrals, etc. leading to linear parameterized systems for unknowns coefficients (see InvariantsSymmetries by Göktaş and Hereman).
• Preprint:
 Available from http://www.mines.edu/fs_home/whereman/

• Software:
 Available via anonymous FTP from mines.edu in directory pub/papers/math_cs_dept/software/pde-sols;
or via Internet URL: http://www.mines.edu/fs_home/whereman/

 Available via anonymous FTP from mines.edu in directory pub/papers/math_cs_dept/software/dde-sols;
or via Internet URL: http://www.mines.edu/fs_home/whereman/
Appendix: A Complicated Case

Class of fifth-order evolution equations with parameters:

\[u_t + \alpha\gamma^2 u^2 u_x + \beta\gamma u_x u_{2x} + \gamma u u_{3x} + u_{5x} = 0. \]

Well-Known Special cases

Lax case: \(\alpha = \frac{3}{10}, \beta = 2, \gamma = 10 \). Two solutions:

\[u(x, t) = 4c_1^2 - 6c_1^2 \tanh^2 \left[c_1 x - 56c_1^5 t + \Delta \right], \]

and

\[u(x, t) = a_0 - 2c_1^2 \tanh^2 \left[c_1 x - 2(15a_0^2 c_1 - 40a_0 c_1^3 + 28c_1^5) t + \Delta \right], \]

where \(a_0 \) is arbitrary.

Sawada-Kotera case: \(\alpha = \frac{1}{5}, \beta = 1, \gamma = 5 \). Two solutions:

\[u(x, t) = 8c_1^2 - 12c_1^2 \tanh^2 \left[c_1 x - 16c_1^5 t + \Delta \right], \]

and

\[u(x, t) = a_0 - 6c_1^2 \tanh^2 \left[c_1 x - (5a_0^2 c_1 - 40a_0 c_1^3 + 76c_1^5) t + \Delta \right], \]

where \(a_0 \) is arbitrary.

Kaup-Kupershmidt case: \(\alpha = \frac{1}{5}, \beta = \frac{5}{2}, \gamma = 10 \). Two solutions:

\[u(x, t) = c_1^2 - \frac{3}{2} c_1^2 \tanh^2 \left[c_1 x - c_1^5 t + \Delta \right], \]

and

\[u(x, t) = 8c_1^2 - 12c_1^2 \tanh^2 \left[c_1 x - 176c_1^5 t + \Delta \right]. \]

No free constants!

Ito case: \(\alpha = \frac{2}{5}, \beta = 2, \gamma = 3 \). One solution:

\[u(x, t) = 20c_1^2 - 30c_1^2 \tanh^2 \left[c_1 x - 96c_1^5 t + \Delta \right]. \]
What about the General case?

Q1: Can we retrieve the special solutions?
Q2: What are the condition(s) on the parameters α, β, γ for solutions of tanh-type to exist?

Tanh solutions:

$$u(x, t) = a_0 + a_1 \tanh [c_1x + c_2t + \Delta] + a_2 \tanh^2 [c_1x + c_2t + \Delta].$$

Nonlinear algebraic system must be analyzed, solved (or reduced!):

$$a_1(\alpha \gamma^2 a_2^2 + 6\gamma a_2 c_1^2 + 2\beta \gamma a_2 c_1^2 + 24c_1^4) = 0,$$

$$a_1(\alpha \gamma^2 a_1^2 + 6\alpha \gamma^2 a_0 a_2 + 6\gamma a_0 c_1^2 - 18\gamma a_2 c_1^2 - 12\beta \gamma a_2 c_1^2 - 120c_1^4) = 0,$$

$$\alpha \gamma^2 a_2^2 + 12\gamma a_2 c_1^2 + 6\beta \gamma a_2 c_1^2 + 360c_1^4 = 0,$$

$$2\alpha \gamma^2 a_1^2 a_2 + 2\alpha \gamma^2 a_0 a_2^2 + 3\gamma a_1^2 c_1^2 + \beta \gamma a_1^2 c_1^2 + 12\gamma a_0 a_2 c_1^2 - 8\gamma a_2 c_1^2 - 8\beta \gamma a_2^2 c_1^2 - 480a_2 c_1^4 = 0,$$

$$a_1(\alpha \gamma^2 a_0^2 c_1 - 2\gamma a_0 c_1^3 + 2\beta \gamma a_2 c_1^3 + 16c_1^5 + c_2) = 0,$$

$$\alpha \gamma^2 a_0 a_2^2 c_1 - \alpha \gamma^2 a_0^2 c_1 + \gamma a_1^2 c_1^3 - \beta \gamma a_1^2 c_1^3 - 8\gamma a_0 a_2 c_1^3 + 2\beta \gamma a_2 c_1^3 + 136a_2 c_1^5 + a_2 c_2 = 0.$$

Unknowns: a_0, a_1, a_2.

Parameters: $c_1, c_2, \alpha, \beta, \gamma$.

Solve and **Reduce** cannot be used on the whole system!
Actual Solution: Two major cases:

CASE 1: $a_1 = 0$, two subcases

Subcase 1-a:

\[
a_2 = -\frac{3}{2}a_0,
\]

\[
c_2 = c_1^3(24c_1^2 - \beta \gamma a_0),
\]

where a_0 is one of the two roots of the quadratic equation:

\[
\alpha \gamma^2 a_0^2 - 8\gamma a_0 c_1^2 - 4\beta \gamma a_0 c_1^2 + 160c_1^4 = 0.
\]

Subcase 1-b: If $\beta = 10\alpha - 1$, then

\[
a_2 = -\frac{6}{\alpha \gamma} c_1^2,
\]

\[
c_2 = -\frac{1}{\alpha}(\alpha^2 \gamma^2 a_0^2 c_1 - 8\alpha \gamma a_0 c_1^3 + 12c_1^5 + 16\alpha c_1^5),
\]

where a_0 is arbitrary.

CASE 2: $a_1 \neq 0$, then

\[
\alpha = \frac{1}{392}(39 + 38\beta + 8\beta^2)
\]

and

\[
a_2 = -\frac{168}{\gamma(3 + 2\beta)} c_1^2,
\]

provided β is root of

\[
(104\beta^2 + 886\beta + 1487)(520\beta^3 + 2158\beta^2 - 1103\beta - 8871) = 0.
\]
Subcase 2-a: If $\beta^2 = -\frac{1}{104}(886\beta + 1487)$, then

\[
\alpha = -\frac{2\beta + 5}{26},
\]

\[
a_0 = -\frac{49c_1^2(9983 + 4378\beta)}{26\gamma(8 + 3\beta)(3 + 2\beta)^2},
\]

\[
a_1 = \pm \frac{336c_1^2}{\gamma(3 + 2\beta)},
\]

\[
a_2 = -\frac{168c_1^2}{\gamma(3 + 2\beta)},
\]

\[
c_2 = -\frac{364c_1^5(3851 + 1634\beta)}{6715 + 2946\beta}.
\]

Subcase 2-b: If $\beta^3 = \frac{1}{520}(8871 + 1103\beta - 2158\beta^2)$, then

\[
\alpha = \frac{39 + 38\beta + 8\beta^2}{392},
\]

\[
a_0 = \frac{28c_1^2 (6483 + 5529\beta + 1066\beta^2)}{(3 + 2\beta)(23 + 6\beta)(81 + 26\beta)\gamma},
\]

\[
a_1^2 = \frac{28224c_1^4 (4\beta - 1)(26\beta - 17)}{(3 + 2\beta)^2(23 + 6\beta)(81 + 26\beta)\gamma^2},
\]

\[
a_2 = -\frac{168c_1^2}{\gamma(3 + 2\beta)},
\]

\[
c_2 = -\frac{8c_1^5 (1792261977 + 1161063881\beta + 188900114\beta^2)}{959833473 + 632954969\beta + 105176786\beta^2}.
\]