SYMBOLIC COMPUTATION
OF
CONSERVED DENSITIES

Willy Hereman

Dept. of Mathematical and Computer Sciences
Colorado School of Mines
Golden, Colorado, USA

IMACS Conference
Applications of Computer Algebra
Tuesday, May 16, 1995
15:30
I. INTRODUCTION

Symbolic Software

- Solitons via Hirota’s method (Macsyma & Mathematica)
- Painlevé test for ODEs or PDEs (Macsyma)
- Conservation laws of PDEs (Mathematica)
- Lie symmetries for ODEs and PDEs (Macsyma)

Purpose of the programs

- Study of integrability of nonlinear PDEs
- Exact solutions as bench mark for numerical algorithms
- Classification of nonlinear PDEs
- Lie symmetries \rightarrow solutions via reductions

Collaborators

- Ünal Göktaş (MS student)
- Chris Elmer (MS student)
- Wuning Zhuang (MS student)
- Ameina Nuseir (Ph.D student)
- Mark Coffey (CU-Boulder)
II. MATHEMATICA PROGRAM FOR CONSERVED DENSITIES

• Purpose

Compute polynomial-type conservation laws of single PDEs and systems of PDEs

Conservation law:
\[\rho_t + J_x = 0 \]

both \(\rho(u, u_x, u_{2x}, \ldots, u_{nx}) \) and \(J(u, u_x, u_{2x}, \ldots, u_{nx}) \)

Consequently
\[P = \int_{-\infty}^{+\infty} \rho dx = \text{constant} \]

provided \(J \) vanishes at infinity

Compare with constants of motions in classical mechanics
Example

Consider the KdV equation

\[u_t + u u_x + u_{3x} = 0 \]

Conserved densities:

\[
\begin{align*}
\rho_1 &= u \\
\rho_2 &= u^2 \\
\rho_3 &= u^3 - 3u_x^2 \\
\vdots \\
\rho_6 &= u^6 - 60u^3u_x^2 - 30u_x^4 + 108u^2u_{2x}^2 \\
&+ \frac{720}{7}u_{2x}^3 - \frac{648}{7}uu_{3x}^2 + \frac{216}{7}u_{4x}^2 \\
\vdots
\end{align*}
\]

Integrable equations have \(\infty \) conservation laws
Algorithm and Implementation

Consider the scaling (weights) of the KdV

\[u \sim \frac{\partial^2}{\partial x^2}, \quad \frac{\partial}{\partial t} \sim \frac{\partial^3}{\partial x^3} \]

Compute building blocks of \(\rho_3 \)

(i) Start with building block \(u^3 \)

Divide by \(u \) and differentiate twice \((u^2)_{2x} \)

Produces the list of terms

\[[u_x^2, uu_{2x}] \rightarrow [u_x^2] \]

Second list: remove terms that are total derivative
with respect to \(x \) or total derivative
up to terms earlier in the list

Divide by \(u^2 \) and differentiate twice \((u)_{4x} \)

Produces the list: \([u_{4x}] \rightarrow [] \)

[] is the empty list
Gather the terms:

$$\rho_3 = u^3 + c[1]u_x^2$$

where the constant c_1 must be determined

(ii) Compute $\frac{\partial \rho_3}{\partial t} = 3u^2u_t + 2c_1u_xu_{xt}$

Replace u_t by $-(uu_x + u_{xxx})$ and u_{xt} by $-(uu_x + u_{xxx})_x$

(iii) Integrate the result with respect to x

Carry out all integrations by parts

$$\frac{\partial \rho_3}{\partial t} = -\left[\frac{3}{4}u^4 + (c_1 - 3)uu_x^2 + 3u^2u_{xx} - c_1u_{xx}^2 + 2c_1u_xu_{xxx}\right]_x$$

$$-(c_1 + 3)u_x^3$$

The last non-integrable term must vanish

Thus, $c_1 = -3$

Result:

$$\rho_3 = u^3 - 3u_x^2$$

(iv) Expression $[...]$ yields

$$J_3 = \frac{3}{4}u^4 - 6uu_x^2 + 3u^2u_{xx} + 3u_{xx}^2 - 6u_xu_{xxx}$$
Computer building blocks of ρ_6

(i) Start with u^6

Divide by u and differentiate twice

$(u^5)_{2x}$ produces the list of terms

$[u^3u^2_x, u^4u_{2x}] \rightarrow [u^3u^2_x]$

Next, divide u^6 by u^2, and compute $(u^4)_{4x}$

Corresponding list:

$[u^4_x, uu^2_xu_{2x}, u^2u^2_{2x}, u^2u_xu_{3x}, u^3u_{4x}] \rightarrow [u^4_x, u^2u^2_{2x}]$

Proceed with $(\frac{u^6}{u^3})_{6x} = (u^3)_{6x}, (\frac{u^6}{u^4})_{8x} = (u^2)_{8x}$

and $(\frac{u^6}{u^5})_{10x} = (u)_{10x}$

Obtain the lists:

$[u^3_{2x}, u_xu_{2x}u_{3x}, uu^2_{3x}, u^2u^2_xu_{4x}, uu_xu_{4x}, uu_xu_{5x}, u^2u_{6x}] \rightarrow [u^3_{2x}, uu^2_{3x}]$

$[u^2_{4x}, u_3xu_{5x}, u_2xu_{6x}, u_xu_{7x}, uu_{8x}] \rightarrow [u^2_{4x}]$

and $[u_{10x}] \rightarrow [\]$
Gather the terms:

\[\rho_6 = u^6 + c_1 u^3 u_x^2 + c_2 u_x^4 + c_3 u^2 u_{2x}^2 + c_4 u_{2x}^3 + c_5 u u_{3x}^2 + c_6 u_{4x}^2 \]

where the constants \(c_i \) must be determined

(ii) Compute \(\frac{\partial}{\partial t} \rho_6 \)

Replace \(u_t, u_{xt}, \ldots, u_{nx,t} \) by \(- (u u_x + u_{xxx}), \ldots\)

(iii) Integrate the result with respect to \(x \)

Carry out all integrations by parts

Require that non-integrable part vanishes

Set to zero all the coefficients of the independent combinations involving powers of \(u \) and its derivatives with respect to \(x \)

Solve the linear system for unknowns \(c_1, c_2, \ldots, c_6 \)

Result:

\[\rho_6 = u^6 - 60u^3 u_x^2 - 30u_x^4 + 108u^2 u_{2x}^2 + \frac{720}{7} u_{2x}^3 - \frac{648}{7} u u_{3x}^2 + \frac{216}{7} u_{4x}^2 \]

(iv) Flux \(J_6 \) can be computed by substituting the constants into the integrable part of \(\rho_6 \)
• Further Examples

* Conservation laws of generalized Schamel equation

\[n^2 u_t + (n + 1)(n + 2)u^{2n}u_x + u_{xxx} = 0 \]

\(n \) positive integer

\[
\begin{align*}
\rho_1 &= u \\
\rho_2 &= u^2 \\
\rho_3 &= \frac{1}{2}u_x - \frac{n^2}{2}u^{2+\frac{2}{n}}
\end{align*}
\]

no further conservation laws

* Conserved densities of modified vector derivative nonlinear Schrödinger equation

\[
\frac{\partial B_{\perp}}{\partial t} + \frac{\partial}{\partial x}(B^2_{\perp}B_{\perp}) + \alpha B_{\perp0}B_{\perp0} \cdot \frac{\partial B_{\perp}}{\partial x} + e_x \times \frac{\partial^2 B_{\perp}}{\partial x^2} = 0
\]

Replace vector equation by

\[
\begin{align*}
u_t + (u(u^2 + v^2) + \beta u - v_x)_x &= 0 \\
v_t + (v(u^2 + v^2) + u_x)_x &= 0
\end{align*}
\]

\(u \) and \(v \) denote the components of \(B_{\perp} \) parallel and perpendicular to \(B_{\perp0} \) and \(\beta = \alpha B^2_{\perp0} \).
The first 5 conserved densities are:

\[\rho_1 = u^2 + v^2 \]

\[\rho_2 = \frac{1}{2}(u^2 + v^2)^2 - uv_x + u_x v + \beta u^2 \]

\[\rho_3 = \frac{1}{4}(u^2 + v^2)^3 + \frac{1}{2}(u_x^2 + v_x^2) - u^3 v_x + v^3 u_x + \frac{\beta}{4}(u^4 - v^4) \]

\[\rho_4 = \frac{1}{4}(u^2 + v^2)^4 - \frac{2}{5}(u_x v_{xx} - u_{xx} v_x) + \frac{4}{5}(u u_x + v v_x)^2 \]

\[\quad + \frac{6}{5}(u^2 + v^2)(u_x^2 + v_x^2) - (u^2 + v^2)^2(u v_x - u_x v) \]

\[\quad + \frac{\beta}{5}(2u_x^2 - 4u^3 v_x + 2u^6 + 3u^4 v^2 - v^6) + \frac{\beta^2}{5}u^4 \]
\[
\rho_5 = \frac{7}{16}(u^2 + v^2)^5 + \frac{1}{2}(u_{xx}^2 + v_{xx}^2)
\]
\[
- \frac{5}{2}(u^2 + v^2)(u_x v_{xx} - u_{xx} v_x) + 5(u^2 + v^2)(u u_x + v v_x)^2
\]
\[
+ \frac{15}{4}(u^2 + v^2)^2(u_x^2 + v_x^2)^2 - \frac{35}{16}(u^2 + v^2)^3(u v_x - u_x v)
\]
\[
+ \frac{\beta}{8}(5u^8 + 10u^6v^2 - 10u^2v^6 - 5v^8 + 20u^2u_x^2
\]
\[
- 12u^5v_x + 60uv^4v_x - 20v^2v_x^2)
\]
\[
+ \frac{\beta^2}{4}(u^6 + v^6)
\]
• Coupled Systems

* Conserved densities for the Coupled KdV Equations (Hirota-Satsuma system)

\[u_t - a(u_{xxx} + 6uu_x) - 2bv v_x = 0 \]
\[v_t + v_{xxx} + 3uv_x = 0 \]

\[\rho_1 = u \]
\[\rho_2 = u^2 + \frac{2}{3} bv^2 \]
\[\rho_3 = (1 + a)(u^3 - \frac{1}{2}u^2_x) + b(u v^2 - v^2_x) \]

and e.g.

\[\rho_4 = u^4 - 2uu^2_x + \frac{1}{5}u^2_{xx} \]
\[+ \frac{4}{5}b(u^2v^2 + \frac{2}{3}uvv_{xx} + \frac{8}{3}uv^2_x - \frac{2}{3}v^2_{xx}) + \frac{4}{15}b^2v^4 \]

provided \(a = \frac{1}{2} \)

There are infinitely many more conservation laws
* Conserved densities for the Ito system

\[u_t - u_{xxx} - 6uu_x - 2vv_x = 0 \]
\[v_t - 2u_xv - 2uv_x = 0 \]

\[\rho_1 = \frac{1}{2}u \]
\[\rho_2 = \frac{1}{2}(u^2 + v^2) \]
\[\rho_3 = u^3 - \frac{1}{2}u_x^2 + uv^2 \]

and infinitely many more conservation laws
A Class of Fifth-order Evolution Equations

\[u_t + \alpha u^2 u_x + \beta u_x u_{2x} + \gamma uu_{3x} + u_{5x} = 0 \]

Special cases:

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\gamma)</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>20</td>
<td>10</td>
<td>Lax</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>Sawada Kotera or Caudry–Dodd–Gibbon</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>10</td>
<td>Kaup–Kuperschmidt</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3</td>
<td>Ito</td>
</tr>
<tr>
<td>Density</td>
<td>Sawada-Kotera equation</td>
<td>Lax equation</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>ρ_1</td>
<td>u</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>ρ_2</td>
<td>----</td>
<td>$\frac{1}{2}u^2$</td>
<td></td>
</tr>
<tr>
<td>ρ_3</td>
<td>$\frac{1}{3}u^3 - u_x^2$</td>
<td>$\frac{1}{3}u^3 - \frac{1}{6}u_x^2$</td>
<td></td>
</tr>
<tr>
<td>ρ_4</td>
<td>$\frac{1}{4}u^4 - \frac{9}{4}u_x^2 + \frac{3}{4}u_{2x}^2$</td>
<td>$\frac{1}{4}u^4 - \frac{1}{3}u_x^2 + \frac{1}{20}u_{2x}^2$</td>
<td></td>
</tr>
<tr>
<td>ρ_6</td>
<td>----</td>
<td>$\frac{1}{5}u^5 - u_x^2 + \frac{1}{5}u_{2x}^2 - \frac{1}{70}u_{3x}^2$</td>
<td></td>
</tr>
<tr>
<td>ρ_6</td>
<td>$\frac{1}{6}u^6 - \frac{25}{4}u_x^3 + \frac{17}{8}u_x^4 + 6u_{2x}^2 + 2u_x^3 - \frac{21}{8}u_xu_{3x}^2 + \frac{3}{8}u_{4x}^2$</td>
<td>$\frac{1}{6}u^6 - \frac{1}{3}u_x^3 + \frac{5}{36}u_x^4 + \frac{1}{2}u_{2x}^2$</td>
<td></td>
</tr>
<tr>
<td>ρ_7</td>
<td>$\frac{1}{7}u^7 - 9u_x^4u_x^2 - \frac{54}{5}u_xu_x^4 + \frac{57}{5}u_x^3u_{2x}^2$</td>
<td>$\frac{1}{7}u^7 - \frac{5}{3}u_x^4u_x^2 - \frac{5}{36}u_x^4 + \frac{1}{2}u_{2x}^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ \frac{648}{35}u_x^2u_{2x}^2 + \frac{489}{35}u_x^3u_{3x}^2 - \frac{261}{35}u_x^2u_{3x}^2$</td>
<td>$+ \frac{1}{2}u_x^2u_{2x}^2 + \frac{10}{21}u_xu_{3x}^2 - \frac{3}{14}u_{2x}^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- \frac{288}{35}u_x^2u_{3x}^2 + \frac{81}{35}u_xu_{4x}^2 - \frac{9}{35}u_{5x}^2$</td>
<td>$- \frac{5}{42}u_xu_{3x}^2 + \frac{1}{21}u_{2x}u_{4x}^2 - \frac{1}{942}u_{5x}^2$</td>
<td></td>
</tr>
<tr>
<td>ρ_8</td>
<td>----</td>
<td>$\frac{1}{8}u^8 - \frac{7}{2}u_x^5u_x^2 - \frac{35}{12}u_x^2u_{2x}^4 + \frac{7}{4}u_{4x}^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$+ \frac{7}{3}u_x^2u_{2x}^2 + \frac{5}{3}u_x^3u_{2x}^2 + \frac{7}{24}u_{2x}^4 + \frac{1}{2}u_{3x}^2$</td>
<td>$+ \frac{7}{3}u_x^2u_{2x}^2 - \frac{5}{6}u_{2x}u_{3x}^2 + \frac{1}{12}u_{2x}^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$- \frac{1}{3}u_x^2u_{3x}^2 - \frac{5}{6}u_xu_{4x}^2 + \frac{1}{12}u_{2x}^2$</td>
<td>$+ \frac{7}{15}u_xu_{4x}^2 - \frac{1}{15}u_{3x}^2 + \frac{1}{34}u_{6x}^2$</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>Kaup-Kuperschmidt equation</td>
<td>Ito equation</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>ρ_1</td>
<td>u</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>ρ_2</td>
<td>$\frac{u^2}{2}$</td>
<td>$\frac{u^2}{2}$</td>
<td></td>
</tr>
<tr>
<td>ρ_3</td>
<td>$\frac{u^3}{3} - \frac{1}{8} u_x^2$</td>
<td>$\frac{u^3}{3} - \frac{1}{8} u_x^2$</td>
<td></td>
</tr>
<tr>
<td>ρ_4</td>
<td>$\frac{u^4}{4} - \frac{9}{20} u u_x^2 + \frac{3}{64} u_x^4$</td>
<td>$\frac{u^4}{4} - \frac{9}{20} u u_x^2 + \frac{3}{64} u_x^4$</td>
<td></td>
</tr>
<tr>
<td>ρ_5</td>
<td>$\frac{u^5}{5} - \frac{27}{8} u^4 u_x - \frac{369}{320} u u_x^4 + \frac{69}{40} u_y^3 u_x^2$</td>
<td>$\frac{u^5}{5} - \frac{27}{8} u^4 u_x - \frac{369}{320} u u_x^4 + \frac{69}{40} u_y^3 u_x^2$</td>
<td></td>
</tr>
<tr>
<td>ρ_6</td>
<td>$\frac{u^6}{6} - \frac{35}{16} u^3 u_x^2 - \frac{31}{256} u_x^4 + \frac{51}{64} u_x^2 u_x^2$</td>
<td>$\frac{u^6}{6} - \frac{35}{16} u^3 u_x^2 - \frac{31}{256} u_x^4 + \frac{51}{64} u_x^2 u_x^2$</td>
<td></td>
</tr>
<tr>
<td>ρ_7</td>
<td>$\frac{u^7}{7} - \frac{27}{8} u^4 u_x + \frac{369}{320} u u_x^4 + \frac{69}{40} u^3 u_x^2$</td>
<td>$\frac{u^7}{7} - \frac{27}{8} u^4 u_x + \frac{369}{320} u u_x^4 + \frac{69}{40} u^3 u_x^2$</td>
<td></td>
</tr>
<tr>
<td>ρ_8</td>
<td>$\frac{u^8}{8}$</td>
<td>$\frac{u^8}{8}$</td>
<td></td>
</tr>
</tbody>
</table>