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ABSTRACT
In this book, a general frequency domain numerical method similar to the finite difference fre-
quency domain (FDFD) technique is presented. The proposed method, called the multiresolution
frequency domain (MRFD) technique, is based on orthogonal Battle-Lemarie and biorthogonal
Cohen-Daubechies-Feauveau (CDF) wavelets. The objective of developing this new technique is
to achieve a frequency domain scheme which exhibits improved computational efficiency figures
compared to the traditional FDFD method: reduced memory and simulation time requirements
while retaining numerical accuracy.

The newly introduced MRFD scheme is successfully applied to the analysis of a number
of electromagnetic problems, such as computation of resonance frequencies of one and three di-
mensional resonators, analysis of propagation characteristics of general guided wave structures, and
electromagnetic scattering from two dimensional dielectric objects. The efficiency characteristics of
MRFD techniques based on different wavelets are compared to each other and that of the FDFD
method. Results indicate that the MRFD techniques provide substantial savings in terms of execu-
tion time and memory requirements, compared to the traditional FDFD method.

KEYWORDS
multiresolution analysis, wavelets, MRFD, finite difference technique, frequency do-
main, computational electromagnetics
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C H A P T E R 1

Introduction
In the opening chapter, the background and motivation of this work is explained. The organi-
zation of the book is also provided.

1.1 BACKGROUND AND MOTIVATION

Although there seem to be many weapons in an engineer’s or scientist’s arsenal to model and solve
real life problems, these can be categorized into just three classes; namely experimental, analyt-
ical, or numerical techniques. Historically, analytical and experimental techniques have been the
primary tools of scientific progress, but these techniques have their limits. Experiments are usu-
ally very expensive, time consuming, and sometimes hazardous. The range of problems that can be
solved analytically is surprisingly limited due to the complex geometries defining practical problems.
Fortunately, numerical techniques usually deliver when other techniques fail.

After the invention of digital computers, interest in numerical solutions to electromagnetic
problems boomed in the 1960s. Since then, very complex problems have been solved with these
methods, most of which would be impossible to solve by closed form analytical techniques. The
numerical approach is not only able to solve otherwise impossible problems, it also has the advantage
of being low cost and fast.

The performance of modern computers is nowhere close to the early examples of the 1960s.
Advances in semiconductor technology resulted in much faster CPUs and very large data storage
capabilities, which made it feasible to characterize large and sophisticated microwave problems.
However, development of even complex circuits such as monolithic microwave integrated circuits
(MMIC) or multilayer low temperature cofired ceramic (LTCC) circuits increased the burden on
the computational techniques despite the advances in computer technology. It is thus necessary to
improve the efficiency of the currently available computational techniques or develop completely
new techniques which make it possible to utilize computer resources more efficiently.

Computational electromagnetic techniques model microwave circuits either in time domain
or frequency domain. Frequency domain techniques are preferred when information over a narrow
frequency range is pursued. These techniques also became suitable for broadband applications with
the introduction of frequency sweep techniques such as asymptotic waveform equation [1]. This
book focuses on the solution to Maxwell’s equations in frequency domain by developing new schemes
which resemble the finite difference frequency domain (FDFD) method.

The finite difference frequency domain technique provides a mathematically straightforward
analysis method to characterize arbitrary geometries with different material types. The advantages
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of this technique are its simplicity, stability, efficiency, and ease of implementation. However, despite
its advantages, this technique suffers from some limitations while treating electrically large problems
or fine detailed structures, due to the substantial computational resources required. The limitations
are mostly the result of the uniform spacing of grid points in the lattice and second order accuracy
of the central difference approximation. Multiresolution analysis techniques have the potential to
address both problems by offering much more accurate higher order schemes equipped with the
capability of non-uniform gridding.

Over the last decade, multiresolution analysis techniques have successfully been applied to
various computational electromagnetic methods yielding significant computational CPU time and
memory savings, compared to the traditional techniques. Multiresolution analysis has found appli-
cation in the improvement of method of moments (MoM) [2, 3, 4] by generating a sparse linear
system. The transmission line matrix (TLM) method [5] is also improved with multiresolution
analysis techniques.

The finite difference time domain (FDTD) method benefited most from multiresolution
techniques and evolved into the multiresolution time domain (MRTD) technique. Various MRTD
schemes [6, 7, 8, 9] based on a number of different wavelets have been developed which have better
dispersion characteristics compared to the FDTD technique.

The FDFD method, on the other hand, has not yet benefited from the advantages of mul-
tiresolution analysis. In this work, we formulate general 3D frequency domain numerical methods
based on orthogonal and biorthogonal multiresolution analysis from which a special case leads to
the FDFD method.

1.2 BOOK OVERVIEW

The organization of this book is as follows:
In Chapter 2, brief overviews of finite difference schemes and multiresolution analysis are

presented, so that the reader will be better prepared to apprehend the subjects presented in subsequent
chapters.

Chapter 3 presents the derivation of biorthogonal wavelet based multiresolution frequency
domain schemes. Also included are the derivation of the finite difference frequency domain method
from MoM formulation and the selection criteria of the appropriate wavelet bases.

The application of the newly developed MRFD schemes to closed space problems is performed
in Chapter 4. In order to verify and to demonstrate the efficiency of the new MRFD schemes, one,
two and three-dimensional closed space problems are considered in this chapter. The structures that
are analyzed in this chapter are all assumed to be enclosed by a perfect electric conductor (PEC)
boundary; hence the name closed space structures. For the purpose of supporting the claim that
MRFD formulation is inherently more efficient than the FDFD scheme, the closed space problems
are solved with the aid of both methods and the numerical results are compared. The treatment of
PEC boundary conditions in the context of the image principle and the multiple image technique
is also addressed in this chapter.
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The MRFD technique is used to characterize open space problems in Chapter 5. A scattered
field formulation is developed to model open problems. The perfectly matched layer (PML) tech-
nique is employed in order to terminate the computational space. Numerical results of 2D scattering
and radiation problems are presented at the end of the chapter.

In Chapter 6, a new MRFD scheme, called the inhomogeneous MRFD, for analyzing inho-
mogeneous problems, is formulated. A one-dimensional closed space problem is considered in order
to evaluate the new formulation.

The book is concluded in Chapter 7. The contributions of this work are summarized and
some recommendations for future work are provided.
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C H A P T E R 2

Basics of the Finite Difference
Method and Multiresolution

Analysis
In this chapter, brief overviews of finite difference schemes and multiresolution analysis are
presented, so that the reader will be better prepared to apprehend the subjects presented in
subsequent chapters.

2.1 OVERVIEW OF THE FINITE DIFFERENCE METHOD

In general, Maxwell’s equations are used to solve electromagnetic problems. However, only few
problems with simple geometries can be solved satisfactorily by classic analytic techniques. Real life
electromagnetic problems are usually made of complex structures, the materials that are utilized may
be anisotropic and the boundary conditions may be mixed. In such instances, closed form analytic
approaches fail to generate successful solutions. Consequently, one must resort to numerical methods
whenever a problem with such complexity arises.

Numerous numerical methods are available for solving partial differential equations (PDEs),
some of which are the method of moments (MoM) [10], the finite element method (FEM) [11],
the transmission line method (TLM) [12], finite difference time domain method (FDTD) [13],
and the finite difference frequency domain method (FDFD) [14, 15].

Every one of these methods has its own unique strengths and weaknesses, depending on
the problem at hand. One of the strengths of the FDFD scheme is that it has no analytical load,
such as calculation of structure-dependent Green’s functions, and thus it is easy to understand
and implement the method. It is easy to model complex materials such as anisotropic materials or
frequency dependent materials, so material generality of the FDFD technique is considered to be
good.The technique is also very robust and does not suffer from stability problems often encountered
in time domain methods such as FDTD or TLM. A qualitative comparison of the FDFD method
with various numerical methods can be found in Table 2.1 [16].

The finite difference method was first introduced to model nonlinear hydrodynamic equa-
tions [17] in the 1960s and was named “the method of squares.” Initial work of Yee [18] brought the
method into the field of electromagnetic boundary value problems. Yee’s method discretized Max-
ell’s equations such that the values of electric and magnetic fields are sampled at suitable positions
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Table 2.1: Comparison of various computational numerical techniques

of time and space in order to simulate the procedure of electromagnetic propagation. Absorbing
boundaries had not yet been introduced, so Yee made his computational region finite by computing
the scattering from a conducting post in an ideal conducting cavity and used an impulse function as
the incident wave.

Since then, numerous researchers made significant contributions and the method has found
applications in solving many different field problems. Some of these applications are the use of the
finite-difference Green’s function method for solving time-harmonic waveguide scattering problems
involving metallic obstacles [19], the numerical calculations of absorbed energy deposition for a block
model of man [20], the analysis of three-dimensional finite difference frequency domain scattering
computations [14, 21], and scattering from chiral materials [22].

The finite difference techniques are based on approximating the spatial and temporal deriva-
tives by finite difference equations. Finite difference approximations are algebraic in form. They
relate the value of the dependent variable at a point in the solution region to the values at some
neighboring points. Thus, a finite difference solution basically involves three steps [23]:

1. Dividing the solution region into a grid of nodes.

2. Approximating the given differential equation by the finite difference equivalent that relates
the dependent variable at a point in the solution to its values at the neighboring points.
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3. Solving the difference equations subject to the prescribed boundary conditions and/or initial
conditions.

The course of action taken in the three steps is dictated by the nature of the problem being solved,
the solution region, and the boundary conditions. Once the fields within the solution region are
determined, additional steps may be involved such as the calculation of far field radiation or scattering
parameters.

THE FINITE DIFFERENCE APPROXIMATION
The finite difference solution procedure of PDEs is based on the construction of a finite difference
approximation for the derivative of a function. This approximation essentially involves estimating
derivatives numerically.

The derivative of a function f (x) at point x0 can be approximated in different ways. Common
methods of constructing the finite difference approximation are illustrated by the aid of Figure 2.1.
Utilizing the slope of arc BC gives the forward-difference formula:

df (x0)

dx
= f ′(x0) ≈ f (x0 + �x) − f (x0)

�x
. (2.1)

−Δ + Δ−Δ + Δ

Figure 2.1: Finite difference discretization of function f (x).

Estimation via the slope of arc AB results in the backward-difference formula:

df (x0)

dx
= f ′(x0) ≈ f (x0) − f (x0 − �x)

�x
(2.2)
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and employing the slope of arc AC yields the central-difference formula:

df (x0)

dx
= f ′(x0) ≈ f (x0 + �x) − f (x0 − �x)

2�x
. (2.3)

The above explanation of the concept of the finite difference approximation is performed in a
visually intuitive manner. A mathematically correct approach can be developed by employing Taylor
series expansion. Consider the Taylor expansions of f (x0 + �x) and f (x0 − �x):

f (x0 + �x) = f (x0) + �xf ′(x0) + (�x)2f ′′(x0)

2! + (�x)3f ′′′(x0)

3! + · · · (2.4)

f (x0 − �x) = f (x0) − �xf ′(x0) + (�x)2f ′′(x0)

2! − (�x)3f ′′′(x0)

3! + · · · (2.5)

Subtracting (2.5) from (2.4) and dividing by 2�x yields:

f ′(x0) = f (x0 + �x) − f (x0 − �x)

2�x
+ O[(�x)2]. (2.6)

The first term on the right-hand side of (2.6) is the central-difference approximation of
f ′(x) at point x0. The second term represents the error between the approximation and the exact
value of the derivative. It is clear that the error introduced by this estimation is proportional to the
square of the finite difference cell size �x; therefore the central-difference scheme is considered
second order accurate. Using a similar procedure, it can be shown that the forward-difference and
backward-difference schemes are first order accurate. Due to its better accuracy, central-difference
approximation is usually preferred in finite difference methods.

THE YEE CELL
The first step in the construction of the finite difference algorithm is the discretization of the
computational space into unit cells and the definition of the locations of the electric and magnetic
field vectors associated with each cell. Yee [18] developed an algorithm in which the electric and
magnetic field vector components are located in a staggered fashion as shown in Figure 2.2. The
reason for the staggered grid is that when the curl operator is approximated using a difference formula,
the resulting derivative is evaluated at a point that is in between the sample locations used in the
difference formula. In each cell, three electric field components and three magnetic field components
are defined. They do not coincide with the nodes (i, j, k) of the Cartesian grid. The electric field
components are located at the centers of the edges of each cell, and the magnetic field components
are normal to the centers of the faces.This special configuration depicts Faraday’s Law and Ampere’s
Law. In Figure 2.2, it can be seen that each magnetic field vector component is surrounded by four
electric field components forming a loop around it and simulating Faraday’s Law, and each electric
field vector component is surrounded by four magnetic field components forming a loop around
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Figure 2.2: Positions of the field components on a unit cell of Yee lattice.

it and simulating Ampere’s Law. Using this scheme, one can describe the explicit finite difference
approximation of Maxwell’s equations.

Following Yee’s notation for the finite difference procedure, one may denote a space point in
a rectangular lattice as:

(i, j, k)
�= (i�x, j�y, k�z). (2.7)

Here, �x, �y, and �z are the lattice spatial increment steps along x, y, and z-axes, re-
spectively, and i, j, and k are integers. Any function of space evaluated at a lattice point can then
be represented as:

f (i, j, k) = f (i�x, j�y, k�z). (2.8)
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Employing the central-difference approximation and Yee’s notation, the spatial derivatives in
a rectangular coordinate system can be represented by:

∂f (i, j, k)

∂x
= f (i + 1/2, j, k) − f (i − 1/2, j, k)

�x
(2.9a)

∂f (i, j, k)

∂y
= f (i, j + 1/2, k) − f (i, j − 1/2, k)

�y
(2.9b)

∂f (i, j, k)

∂z
= f (i, j, k + 1/2) − f (i, j, k − 1/2)

�z
. (2.9c)

In order to simplify the programming process, the notation of Yee is modified so that half
integral values of i, j, and k are eliminated. For this notation, the spatial location of the fields on
the unit cell and the corresponding numbering scheme are listed in Table 2.2 and illustrated in
Figure 2.3.

Figure 2.3: Spatial locations and numbering scheme of the field components.

The positions of the material parameters (ε and μ) are associated with field components: values
of ε are associated with

−→
E field components; values of μ are associated with

−→
H field components.
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Table 2.2: Actual spatial location of the indexed material and field components

1 1
2 2( , , ), ( , , )x xE i j k i j kε+ +

1 1
2 2( , , ), ( , , )y yE i j k i j kε+ +

1 1
2 2( , , ), ( , , )z zE i j k i j kε+ +

1 1 1 1
2 2 2 2( , , ), ( , , )xxH i j k i j kμ+ + + +

1 1 1 1
2 2 2 2( , , ), ( , , )yyH i j k i j kμ+ + + +

1 1 1 1
2 2 2 2( , , ), ( , , )zzH i j k i j kμ+ + + +

 ( , , ), ( , , )x xE i j k i j kε
 ( , , ), ( , , )y yE i j k i j kε

 ( , , ), ( , , )z zE i j k i j kε

 ( , , ), ( , , )x xH i j k i j kμ
( , , ), ( , , )y yH i j k i j kμ
( , , ), ( , , )z zH i j k i j kμ

The spatial location of the material parameters on the unit cell and the corresponding numbering
scheme are also listed in Table 2.2.

The field placement and numbering schemes used in the MRFD technique are the same
without any changes.

In Cartesian coordinates, Maxwell’s time-harmonic curl equations lead to the following six
scalar equations:

jωεx(x, y, z)Ex(x, y, z) = ∂Hz(x, y, z)

∂y
− ∂Hy(x, y, z)

∂z
(2.10a)

jωεy(x, y, z)Ey(x, y, z) = ∂Hx(x, y, z)

∂z
− ∂Hz(x, y, z)

∂x
(2.10b)

jωεz(x, y, z)Ez(x, y, z) = ∂Hy(x, y, z)

∂x
− ∂Hx(x, y, z)

∂y
(2.10c)

jωμx(x, y, z)Hx(x, y, z) = −∂Ez(x, y, z)

∂y
+ ∂Ey(x, y, z)

∂z
(2.10d)

jωμy(x, y, z)Hy(x, y, z) = −∂Ex(x, y, z)

∂z
+ ∂Ez(x, y, z)

∂x
(2.10e)

jωμz(x, y, z)Hz(x, y, z) = −∂Ey(x, y, z)

∂x
+ ∂Ex(x, y, z)

∂y
. (2.10f )

Using Yee’s lattice and the central-difference approximation, FDFD scheme can be applied
to these equations as:
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jωεx(i, j, k)Ex(i, j, k) = Hz(i, j, k) − Hz(i, j − 1, k)

�y
− Hy(i, j, k) − Hy(i, j, k − 1)

�z

(2.11a)

jωεy(i, j, k)Ey(i, j, k) = Hx(i, j, k) − Hx(i, j, k − 1)

�z
− Hz(i, j, k) − Hz(i − 1, j, k)

�x
(2.11b)

jωεz(i, j, k)Ez(i, j, k) = Hy(i, j, k) − Hy(i − 1, j, k)

�x
− Hx(i, j, k) − Hx(i, j − 1, k)

�y

(2.11c)

jωμx(i, j, k)Hx(i, j, k) = Ey(i, j, k + 1) − Ey(i, j, k)

�z
− Ez(i, j + 1, k) − Ez(i, j, k)

�y
(2.11d)

jωμy(i, j, k)Hy(i, j, k) = Ez(i + 1, j, k) − Ez(i, j, k)

�x
− Ex(i, j, k + 1) − Ex(i, j, k)

�z
(2.11e)

jωμz(i, j, k)Hz(i, j, k) = Ex(i, j + 1, k) − Ex(i, j, k)

�y
− Ey(i + 1, j, k) − Ey(i, j, k)

�x
.

(2.11f )

2.2 OVERVIEW OF MULTIRESOLUTION ANALYSIS
Wavelets are brief oscillating waveforms that usually last a few cycles at most. They provide conve-
nient sets of basis functions for function spaces. The word wavelet originated from the French term
ondelette which literally means “small waves.” Smallness refers to the fact that they are localized in
time, in contrast to Fourier basis functions which are perfectly localized in frequency domain but are
infinite at time domain. Wavelets decay to zero as t → ±∞ and enjoy good localization properties
in frequency space. This leads to the possibility that wavelets are better suited to represent functions
that are localized both in time and frequency. In particular, wavelets can represent functions with
sharp spikes or edges with fewer terms. This efficiency in representing functions has obvious advan-
tages in many applications; for example, in numerical analysis where this sparseness is a huge benefit
in terms of computational speed for certain classes of problems.

The wavelet theory provides the wavelet expansion which can be used to approximate any
function in the Hilbert space of square integrable functions, L2(R), in the form of:

f (t) =
∑

k

ckφ(t − k) +
∑
j

∑
k

dj,kψ(2j t − k) . (2.12)

In (2.12), the first sum represents the projection of f (t) onto a subspace V0 that corresponds to an
approximation of f at a coarse level of resolution. This subspace is called the approximation space.
It is generated by orthogonal translations of φ(t), which is called the scaling function.
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The resolution of V0 is successively refined by the second sum, which consists of projections
of f onto the subspaces Wj , each one being spanned by a wavelet basis

{
ψ(2j t − k)

}
. The function

ψ(t) is called the wavelet function or mother wavelet and the subspace Wj is called the detail space.
The wavelet expansion shows that a function can be viewed as the combination of a coarse

background function and some fine details on top of it. The distinction between the coarse part
and the details is determined by the resolution. At a given resolution, a signal is approximated by
ignoring all details below that scale. It is possible to increase or reduce the resolution by adding or
removing finer details. The word “multiresolution” refers to the simultaneous presence of different
resolutions.

Figure 2.4 shows the successive approximation of an arbitrary function by step functions.
At the first step, the function is approximated by the approximation space V0. Since resolution is
very rough (i.e., the step function is wide), a narrow and sharp spike at the center is skipped and
not included in the approximation. At the second step, components from the detail subspace W0

are added to the approximation. The sharp spike which was missed by the first approximation is
now added to the projection. Note that the resolution is increased only where it is needed, thus the
needed information is added to the approximation without adding too many components to the
expansion. Two resolutions exist simultaneously in the final approximation, and thus using the term
multiresolution is appropriate.

DEFINITION OF MULTIRESOLUTION ANALYSIS
The space of square integrable functions is considered.The subspace of functions that contain signal
information down to scale 1/2j is donated by Vj . The decomposition of the function space into a
collection of subspaces Vj (denoted by {Vj , j ∈ Z}) is called a multiresolution if {Vj , j ∈ Z} satisfies
certain conditions.

The first condition is that the subspace Vj be contained in all the higher subspaces. If we denote
the approximation of f (t) at level j by fj (t), then fj (t) ∈ Vj . Since information at resolution level
j is necessarily included in the information at a higher resolution,Vj must be contained in Vj+1, that
is, mathematically, Vj ⊂ Vj+1 for all j . The difference between fj+1(t) and fj (t) is the additional
information about details at scale 1/2j+1 which is denoted by dj (t), so fj+1(t) = fj (t) + dj (t).

Subspaces can be decomposed accordingly:

Vj+1 = Vj ⊕ Wj . (2.13)

In (2.13), the detail space Wj is the orthogonal complement of Vj in Vj+1 which means that
the inner product between any element in Wj and any element in Vj vanishes. Clearly, both Vj and
Wj are subspaces of Vj+1, and Vj+1 corresponds to a level of resolution twice that of Vj .

Recursively,

Vj+1 = Vj ⊕ Wj = Vj−1 ⊕ Wj−1 ⊕ Wj = · · · · · · = V0 ⊕ W0 ⊕ W1 ⊕ · · · ⊕ Wj . (2.14)
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Figure 2.4: Projections of a function f (x) onto subspaces V0 and V0 + W0.
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It is also worthwhile to mention that two detail spaces at different resolutions are orthogonal,
and the detail space Wj is orthogonal to an approximation space Vj ′ only when the detail space has
higher resolution.

The second condition for multiresolution analysis is that at the finest resolution, all square
integrable functions are included and at the coarsest resolution, only the zero function exists. When
the resolution is increased, more and more details are included in the approximation and as the
resolution goes to infinity, the entire initial space L2(R) should be recovered, that is, limj→∞ Vj =
L2R or ∪Vj = L2 (R).

As the resolution gets coarser, more details are removed, and at the coarsest resolution, j →
−∞, only a constant function can survive and since it has to be square integrable, it can only be the
zero function. Therefore, as a third condition, limj→−∞ Vj = {0} or ∩ Vj = {0}.

The fourth condition is the scaling condition which states that a function f (x) belongs to Vj

if and only if f (2x) belongs to Vj+1.
The fifth condition is the shift invariance of the space Vj . If f (t) is a function defined in Vj ,

its translates by integers, f (t − k), can also be defined in Vj .
The final requirement is the function φ belongs to V0 and the set {φ(t − k), k ∈ Z} is an

orthonormal basis (using the L2 inner product) for V0. Similarly, if we define φjk(t) = φ(2j t − k),
then

{
φjk(t)

}
forms an orthonormal basis for Vj .

In summary, a multiresolution analysis of L2(R) is a nested sequence of subspaces Vj such
that:

1. ... ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ... ⊂ L2(R) (nested)

2. ∩Vj = {0} (separation)

3. ∪Vj = {0} (density)

4. f (t) ∈ Vj ⇔ f (2t) ∈ Vj+1 (scaling)

5. f (t) ∈ Vj ⇒ f (t − k) ∈ Vj (shifting)

6. There exists a function φ(t), called the scaling function, such that {φ(t − k)} forms an or-
thonormal basis of V0.

V0 ⊂ V1, so any function in V0 can be expanded in terms of the basis functions of V1. Since
the scaling function is in V0 it also can be expanded in terms of {φ1k(t)}:

φ(t) =
∑

k

hkφ1k(t) =
∑

k

hkφ(2t − k) . (2.15)

This equation is called the scaling relation or dilation relation. It relates the scaling function
at two successive scales, and, hence, it is also referred to as the two-scale equation or refinement
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equation. {φ1k(t)} are orthonormal, thus, the coefficients hk can be calculated by the aid of inner
product:

hk = 〈φ1k, φ〉 =
∞∫

−∞
φ(t)φ(2t − k)dt . (2.16)

Some properties of hk are listed below:∑
k∈Z

|hk|2 = 2 (2.17a)

∑
k∈Z

hk = 2 (2.17b)

∑
k∈Z

h2k = 1 and
∑
k∈Z

h2k+1 = 1 (2.17c)

∑
k∈Z

hk+2lhk = 2δ0,l . (2.17d)

Since {ψ(t − k)} is in W0 and W0 ⊂ V1, mother wavelet can be written as a superposition of
the basis functions for V1:

ψ(t) =
∑

k

gkφ1k(t) =
∑

k

gkφ(2t − k) . (2.18)

This equation is called the wavelet relation. It relates the mother wavelet to the scaling func-
tion at the next finer scale. Again, using the orthonormality of {φ1k(t)}, the coefficients gk can be
computed by the aid of the inner product:

gk = 〈φ1k, ψ〉 =
∞∫

−∞
ψ(t)φ(2t − k)dt . (2.19)

CONSTRUCTION OF WAVELETS
It is possible to construct wavelets according to certain specifications. As a simple example, the
construction of a smooth wavelet with compact support is presented. In order for the wavelet to
have smoothness and compact support, the corresponding mother wavelet needs to have vanishing
moments: ∞∫

−∞
ψ(t)tpdt = 0, p = 0, 1 . (2.20)

This implies that: ∑
k∈Z

(−1)khL−k−1k
p = 0, p = 0, 1 . (2.21)
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Here, L is the number of filter coefficients. For a four-coefficient scaling function (L = 4),
the conditions imposed by (2.17a), (2.17b), and (2.21) translate into four equations:

h0 + h1 + h2 + h3 = 2 (2.22a)

h2
0 + h2

1 + h2
2 + h2

3 = 2 (2.22b)

−h0 + h1 − h2 + h3 = 0 (2.22c)

−3h0 + 2h1 − h2 = 0 (2.22d)

leading to:
h0 = 1+√

3
4 , h1 = 3+√

3
4 ,

h2 = 3−√
3

4 , h3 = 1−√
3

4 .
(2.23)

Then, using the dilation relation, the scaling function becomes:

φ(t) = h0φ(2t) + h1φ(2t − 1) + h2φ(2t − 2) + h3φ(2t − 3). (2.24)

In general, it is not possible to solve this equation directly to find the scaling function φ(t).
An iterative solution is possible when φ(t) is approximated as

φj (t) = h0φj−1(2t) + h1φj−1(2t − 1) + h2φj−1(2t − 2) + h3φj−1(2t − 3) , (2.25)

and the iteration is started with a pulse function (φ0(t) = 1 for 0 < t < 1 ).The iteration is executed
until φj (t) is indistinguishable from φj−1(t). It is clear that the resulting wavelet does not have a
closed form expression. The wavelet constructed above is called the Daubechies D4 wavelet, as
the method and wavelet is developed by Daubechies. In practice however, the wavelet construction
conveniently takes place in Fourier domain and the subject is rather complex to mention in a short
introduction. The reader is referred to [24] for more details.

BIORTHOGONAL WAVELETS
There exists a large selection of wavelet families depending on the choice of the mother wavelet.
However, desirable properties such as symmetry, compactness of support, rapid decay, and smooth-
ness impose a variety of restrictions. The selection criteria of the optimal choice of the wavelet basis
depend on the application at hand and will be addressed later in the following chapter. A biorthog-
onal wavelet basis is mainly used in this work, so the subject of biorthogonal wavelets is also briefly
explained here.

A basis that spans a space does not have to be orthogonal. In order to gain more degrees
of freedom in the construction of wavelet bases, the orthogonality condition is relaxed, allowing
the development of nonorthogonal wavelet bases. One additional degree of freedom introduced
by nonorthogonal wavelets is the possibility to construct symmetric, compact, and smooth wavelet
functions.
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The introduction of a dual basis and a dual space makes it possible to decompose a function as
a linear combination or superposition of nonorthogonal basis functions. For a nonorthogonal basis{
φi(t)

}
of a function space, one can introduce a dual basis

{
φ̃i(t)

}
such that these two are orthogonal

to each other: 〈
φ̃i(t)φj (t)

〉
=

∞∫
−∞

φ̃i(t)φj (t)dt = δi,j . (2.26)

A function f (t) can be decomposed as a superposition of the nonorthogonal basis {φ(t)}:
f (t) =

∑
k

ckφk(t) . (2.27)

Here, the coefficients ck can be calculated by the inner product incorporating the dual scaling
function:

ck =
〈
φ̃k(t), f (t)

〉
. (2.28)

It is assumed that the function space and its dual are the same, a condition satisfied in L2.
Therefore, the roles of dual basis and the original basis can be interchanged:

f (t) =
∑

k

〈φk(t), f (t)〉 φ̃k(t) . (2.29)

The dilations and translations of the scaling functions {φjk(t)} and {φ̃jk(t)} constitute a basis
for dual approximation spaces Vj and Ṽj , respectively. Similarly, one can generate dual detail spaces
Wj and W̃j from the dilations and translations of dual mother wavelets, {ψjk(t)} and {ψ̃jk(t)}. With
the dual scaling and wavelet functions, a biorthogonal multiresolution analysis can be defined, which
satisfies the biorthogonality conditions given as:

Vj⊥W̃j , Ṽj⊥Wj and Wj⊥W̃j ′ for j �= j ′. (2.30)

By definition, a scaling function and a mother wavelet satisfy the dilation relation and the
wavelet relation, respectively. So we have:

φ(t) =
∑

k

hkφ(2t − k) and ψ(t) =
∑

k

gkφ(2t − k) (2.31)

and similarly
φ̃(t) =

∑
k

h̃kφ̃(2t − k) and ψ̃(t) =
∑

k

g̃kφ̃(2t − k) . (2.32)

The coefficients in the above equations can be obtained by taking the inner product with the
appropriate dual function. For example,

hk =
〈
φ̃1k, φ

〉
and gk =

〈
φ̃1k, ψ

〉
. (2.33)

Note that in addition to φ and φ̃, the roles of ψ and ψ̃ can also be interchanged.
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C H A P T E R 3

Formulation of the
Multiresolution Frequency

Domain Schemes
This chapter presents the derivation of the biorthogonal wavelet based Multiresolution Fre-
quency Domain scheme for homogeneous problems. Also included are the derivation of the Finite
Difference Frequency Domain method from MoM formulation and the selection criteria of the
appropriate wavelet bases.

3.1 DERIVATION OF THE FINITE DIFFERENCE
FREQUENCY DOMAIN SCHEME BY THE METHOD OF
MOMENTS

It has been observed in [25] that the finite difference time domain scheme can be derived by applying
method of moments [10] to Maxwell’s curl equations while using pulse functions as a basis for the
expansion of unknown fields.This observation and the fact that MoM can use any orthonormal set of
functions as basis functions lead to the development of numerous multiresolution based time domain
schemes [6, 7, 8, 9]. It will be shown here that the finite difference frequency domain technique can
also be derived by the aid of the method of moments.

Similar to the procedure in [26], a one-dimensional, one-way wave equation is considered as
a simple example:

∂E(z)

∂z
= jω

c
E(z). (3.1)

This wave equation can be modeled by the FDFD method using the central difference ap-
proximation:

Ek+1 − Ek−1

2�z
= jω

c
Ek (3.2)

where Ek corresponds to the electric field located at the grid node z = k�z and �z is the distance
between two neighboring grid nodes.

However, there is an alternative approach which will enable us to acquire the same result.
This approach, which is based on the method of moments, provides the basis for the development
of multiresolution frequency domain formulations.
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Let us apply MoM to the wave equation (3.1). For the discretization of (3.1) by the method
of moments, the electric field is expanded in terms of pulse functions:

E(z) =
∑
k′

Ek′φk′(z) . (3.3)

φk′(z) is the pulse function defined as:

φk′(z) =
{

1, k′�z ≤ z < (k′ + 1)�z

0, otherwise
(3.4)

where k′ is an integer.
Substituting (3.3) into (3.1) yields:

∑
k′

Ek′
dφk′(z)

dz
= jω

c

∑
k′

Ek′φk′(z) . (3.5)

Following the method of moments procedure, (3.5) is sampled by the complex conjugate of
the testing functions. During the sampling procedure, the following integrals are utilized [26]:

∞∫
−∞

dφk′(z)

dz
φk(z)dz = 1

2
(δk′,k+1 − δk′,k−1) (3.6)

∞∫
−∞

φk′(z)φk(z)dz = δk′,k�z (3.7)

where δk′,k is the Kronecker’s delta described by:

δk′,k =
{

1, if k′ = k

0, otherwise .
(3.8)

Sampling the left-hand side of (3.5) yields:

∞∫
−∞

∑
k

Ek′
dφk′(z)

dz
φk(z)dz =

∑
k′

Ek′

∞∫
−∞

dφk′(z)

dz
φk(z)dz

= 1

2

∑
k′

Ek′(δk′,k+1 − δk′,k−1) (3.9)

= Ek+1 − Ek−1

2
.

Similarly, sampling the right-hand side of (3.5) yields:
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∞∫
−∞

jω

c

∑
k′

Ek′φk′(z)φk(z)dz = jω

c

∑
k′

Ek′

∞∫
−∞

φk′(z)φk(z)dz

= jω

c

∑
k′

Ek′δk′,k�z (3.10)

= jω

c
Ek�z.

Finally, in view of (3.5), the right-hand sides of (3.9) and (3.10) are equal to each other so
that

Ek+1 − Ek−1

2�z
= jω

c
Ek (3.11)

which reveals that the FDFD formulation given by (3.2) is obtained again. Therefore, it is acknowl-
edged that discretizing the wave equation by FDFD and MoM is identical.

3.2 SELECTION OF THE APPROPRIATE WAVELET FAMILY
In the previous section, it has been proved that the FDFD formulation is a special case of the method
of moments where the unknown field functions are expanded in terms of pulse functions. The pulse
function is also known as the scaling function of the Haar wavelet base. Thus, the FDFD technique
can also be considered a multiresolution analysis based scheme.

The Haar wavelet is not a smooth function; hence approximating smooth functions like
electromagnetic fields with this wavelet family is inefficient. This is the fundamental reason for the
main limitation of FDFD scheme: numerical dispersion. It is a well-known fact that the method
of moments permits the use of any set of orthonormal functions as a basis of expansion; hence it
is possible to replace the Haar scaling function with the scaling function of another wavelet base
that can approximate electromagnetic fields more efficiently. The performance characteristics of the
resulting multiresolution scheme will be determined by the new wavelet base, so the choice of wavelet
family is critical.

In order to develop an efficient finite difference formulation based on multiresolution anal-
ysis, one should carefully choose the appropriate wavelet family from an ever-increasing number
of wavelets available. The appropriate wavelet base should have certain properties, such as com-
pact support, symmetry, interpolation property, regularity (smoothness), and maximum number of
vanishing moments.

Probably the most useful class of scaling functions is those that have compact support or finite
support. A function has finite support if it is identically zero outside of a finite interval and is said
to have compact support if this interval is narrow. The Haar scaling function is a good example of a
compactly supported function. The support of the wavelet basis is directly related to the number of
terms in the update equations. Since a great number of terms in each update equation will increase
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the computational burden and complicate the coding process, it is preferable to have a compactly
supported wavelet base.

Symmetric wavelet functions will ensure the symmetry of the formulation and in return will
simplify the modeling of symmetry and boundary planes [27].

Compact support and symmetry are incompatible aspects of orthogonal wavelet systems, with
the Haar wavelets being the exception. Unfortunately, Haar wavelets are not smooth, so they cannot
approximate a smooth function effectively. However, a biorthogonal wavelet base can sustain smooth,
compact, and symmetric wavelets, which is the main reason for the choice of biorthogonal wavelets
over orthogonal ones.

In a wavelet expansion, the field value at a certain point is generally reconstructed by a weighted
sum of related neighboring basis function coefficients, which requires a complex reconstruction
algorithm. However, the reconstruction algorithm is not essential if the basis function satisfies the
interpolation property, as in such cases the basis function coefficients represent the field components
at the corresponding position of the grid [28].Thus, a basis function equipped with the interpolation
property eliminates the use of the weighted sum and thus yields a more efficient MRFD algorithm.

Two of the most desired properties of a wavelet family are high regularity and maximum
number of vanishing moments, owing to their great effect on how well the wavelet expansion
approximates a smooth function. Unfortunately, wavelets do not accommodate both high regularity
and high number of vanishing moments concurrently and it is not always clear which property is
more important [24]. Biorthogonal wavelets accommodate two scaling functions, which may have
different regularity properties. It is mentioned in [24] that it is beneficial to reserve the high regularity
to the synthesis scaling function and maximum vanishing moments to the analysis scaling function.

The Battle-Lemarie wavelet functions [29, 30] are symmetric and smooth. However, these
wavelet functions do not have finite support. This results in an infinite number of terms in MRFD
update equations. Fortunately, these wavelets decay exponentially, so truncating the MRFD scheme
with respect to space is a possible solution with negligible error.

The Cohen-Daubechies-Feauveau (CDF) family of wavelets [31] are symmetric biorthogonal
wavelets that accommodate the interpolation property and compact support. The dual scaling func-
tion of this family has high regularity whereas the scaling function has a large number of vanishing
moments. Considering the desired attributes mentioned above, the CDF family of wavelets, in par-
ticular the CDF(2,2) wavelet, is mainly adopted for this work due to its minimal support. Another
argument worth mentioning is the successful application of these wavelets in time-domain mul-
tiresolution analysis schemes [6, 28, 32, 33, 34]. The wavelet and scaling functions of the considered
wavelet families are sketched in Figures 3.1–3.5 by the aid of the Matlab Wavelet Toolbox.

3.3 DERIVATION OF THE MULTIRESOLUTION
FREQUENCY DOMAIN SCHEME

In this section, derivation of the biorthogonal wavelet based multiresolution frequency domain
method for lossless homogeneous media is presented. The procedure followed is similar to the one



3.3. DERIVATION OF THE MULTIRESOLUTION FREQUENCY DOMAIN SCHEME 23

Figure 3.1: Scaling and wavelet functions of the CDF(2,2) wavelet base.

presented in Section 3.1, however this time the fields are expanded in terms of biorthogonal wavelets
instead of the Haar wavelets, and Maxwell’s time-harmonic curl equations are discretized instead
of the simple 1D wave equation. Thus, a more general formulation that can model arbitrary 3D
structures is developed. The derivation of orthogonal wavelet-based MRFD schemes is similar to
the derivation presented below.

We consider a lossless homogeneous medium. In this medium, electric and magnetic fields
are governed by the following time-harmonic Maxwell’s equations:

⎡
⎣ 0 −∂/∂z ∂/∂y

∂/∂z 0 −∂/∂x

−∂/∂y ∂/∂x 0

⎤
⎦
⎡
⎣ Hx

Hy

Hz

⎤
⎦ = jω

⎡
⎣ εx 0 0

0 εy 0
0 0 εz

⎤
⎦
⎡
⎣ Ex

Ey

Ez

⎤
⎦ (3.12a)

⎡
⎣ 0 −∂/∂z ∂/∂y

∂/∂z 0 −∂/∂x

−∂/∂y ∂/∂x 0

⎤
⎦
⎡
⎣ Ex

Ey

Ez

⎤
⎦ = −jω

⎡
⎣ μx 0 0

0 μy 0
0 0 μz

⎤
⎦
⎡
⎣ Hx

Hy

Hz

⎤
⎦ . (3.12b)
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Figure 3.2: Scaling and wavelet functions of the CDF(2,4) wavelet base.

In the Cartesian coordinate system, these curl equations lead to six scalar equations:

jωεxEx(x, y, z) = ∂Hz(x, y, z)

∂y
− ∂Hy(x, y, z)

∂z
(3.13a)

jωεyEy(x, y, z) = ∂Hx(x, y, z)

∂z
− ∂Hz(x, y, z)

∂x
(3.13b)

jωεzEz(x, y, z) = ∂Hy(x, y, z)

∂x
− ∂Hx(x, y, z)

∂y
(3.13c)

jωμxHx(x, y, z) = −∂Ez(x, y, z)

∂y
+ ∂Ey(x, y, z)

∂z
(3.13d)

jωμyHy(x, y, z) = −∂Ex(x, y, z)

∂z
+ ∂Ez(x, y, z)

∂x
(3.13e)

jωμzHz(x, y, z) = −∂Ey(x, y, z)

∂x
+ ∂Ex(x, y, z)

∂y
. (3.13f )

For the discretization of these equations by the method of moments, the field components
should be first expanded in terms of the basis functions. Biorthogonal wavelets accommodate two
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Figure 3.3: Scaling and wavelet functions of the CDF(2,6) wavelet base.

scaling functions, either of which can be picked as a basis of expansion. However, as mentioned
previously, it is beneficial to reserve the high regularity to the synthesis scaling function and maximum
vanishing moments to the analysis scaling function.The dual scaling functions of CDF wavelet bases
(φ̃(x)) employ higher regularity, so they will be used for the expansion of the unknown fields.

Ex(x, y, z) =
∑

i′,j ′,k′
Ex(i

′, j ′, k′)φ̃i′+1/2(x)φ̃j ′(y)φ̃k′(z) (3.14a)

Ey(x, y, z) =
∑

i′,j ′,k′
Ey(i

′, j ′, k′)φ̃i′(x)φ̃j ′+1/2(y)φ̃k′(z) (3.14b)

Ez(x, y, z) =
∑

i′,j ′,k′
Ez(i

′, j ′, k′)φ̃i′(x)φ̃j ′(y)φ̃k′+1/2(z) (3.14c)

Hx(x, y, z) =
∑

i′,j ′,k′
Hx(i

′, j ′, k′)φ̃i′(x)φ̃j ′+1/2(y)φ̃k′+1/2(z) (3.14d)
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Figure 3.4: Scaling and wavelet functions of the Haar wavelet base.

Hy(x, y, z) =
∑

i′,j ′,k′
Hy(i

′, j ′, k′)φ̃i′+1/2(x)φ̃j ′(y)φ̃k′+1/2(z) (3.14e)

Hz(x, y, z) =
∑

i′,j ′,k′
Hz(i

′, j ′, k′)φ̃i′+1/2(x)φ̃j ′+1/2(y)φ̃k′(z) . (3.14f )

Here, the indexes i′, j ′, k′ indicate the discrete space lattice related to the space grid through
x = i′�x, y = j ′�y and z = k′�z.This notation is basically the same as Yee’s notation.There is a
strong relation between these field expansions and the Yee cell.The scaling functions are placed such
that they are centered at the location of the corresponding field component on the Yee cell. Similar
to the FDFD notation, half integral values of i, j, and k in the expansion coefficients (such as
Ex(i, j, k), Hx(i, j, k)) are represented by integer indices, as explained in Table 2.2.

The function φ̃n(x) is the scaled and dilated dual scaling function (φ̃(x)) defined as:

φ̃n(x) = φ̃

(
x − n�x

�x

)
. (3.15)
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Figure 3.5: Scaling and wavelet functions of the Battle-Lemarie wavelet base.

For the discretization of Eq. (3.12b), one of the corresponding scalar equations, (3.13d), is
considered as an example. First, the field expansions are inserted into (3.13d) and both sides are
tested with the scaling function according to MoM.

Testing the left-hand side of (3.13d) yields:

jωμx

∞∫
−∞

∞∫
−∞

∞∫
−∞

Hx(x, y, z)φi(x)φj+1/2(y)φk+1/2(z)dxdydz

= jωμx

∞∫
−∞

∞∫
−∞

∞∫
−∞

[ ∑
i′,j ′,k′

Hx(i
′, j ′, k′)φ̃i′(x)φ̃j ′+1/2(y)φ̃k′+1/2(z)

]

φi(x)φj+1/2(y)φk+1/2(z)dxdydz

= jωμx

∑
i′,j ′,k′

Hx(i
′, j ′, k′)�xδi′,i�yδj ′+1/2,j+1/2�zδk′+1/2,k+1/2

= jωμxHx(i, j, k)�x�y�z.

(3.16)
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Here, φn(x) is the scaled and dilated scaling function (φ(x)) defined by:

φn(x) = φ

(
x − n�x

�x

)
. (3.17)

During the testing, the following integral which is the direct result of biorthogonality condi-
tions has been employed:

∞∫
−∞

φ̃i′(x)φi(x)dx = �xδi′,i . (3.18)

Testing the first term of the right-hand side of (3.13d) yields:

∞∫
−∞

∞∫
−∞

∞∫
−∞

∂Ez(x, y, z)

∂y
φi(x)φj+1/2(y)φk+1/2(z)dxdydz

=
∞∫

−∞

∞∫
−∞

∞∫
−∞

∂

∂y

⎡
⎣ ∑

i′,j ′,k′
Ez(i

′, j ′, k′)φ̃i′(x)φ̃j ′(y)φ̃k′+1/2(z)

⎤
⎦

φi(x)φj+1/2(y)φk+1/2(z)dxdydz (3.19)

=
∑

i′,j ′,k′
Ez(i

′, j ′, k′)
∞∫

−∞
φ̃i′(x)φi(x)dx

∞∫
−∞

∂φ̃j ′(y)

∂y
φj+1/2(y)dy

∞∫
−∞

φ̃k′+1/2(z)φk+1/2(z)dz

=
∑

i′,j ′,k′
Ez(i

′, j ′, k′)�xδi′,i�zδk′+1/2,k+1/2

[· · · + a(−2)δj ′,j−2 + a(−1)δj ′,j−1 + a(0)δj ′,j
+a(1)δj ′,j+1 + a(2)δj ′,j+2 + a(3)δj ′,j+3 + · · · ]

= �x�z

na∑
l=−na+1

a(l)Ez(i, j + l, k)

In order to establish the above equations, biorthogonal relation (3.18) and the following
integral were employed [35]:

a(l) =
∞∫

−∞

∂φ̃i+l(x)

∂x
φi+1/2(x)dx. (3.20)

Similarly, testing the second term of the right-hand side of (3.13d) yields:

∞∫
−∞

∞∫
−∞

∞∫
−∞

∂Ey(x,y,z)

∂z
φi(x)φj+1/2(y)φk+1/2(z)dxdydz

= �x�y
na∑

l=−na+1
a(l)Ey(i, j, k + l).

(3.21)
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Here,na is the number of non-zero a(l) coefficients and is called the stencil size of the wavelet
base. The value of the stencil size depends solely on the support of the wavelet base. A wide support
means a big stencil size and many elements in the update equations, whereas a narrow support means
few elements.

The a(l) coefficients of different wavelet families are presented in Table 3.1 [6]. Note that
the Battle-Lemarie wavelet family, which occupies the last column of the table, has infinite support,
and thus the number of coefficients is also infinite. However, the values of the coefficients decay
exponentially and get negligible beyond the 9th coefficient.

If the wavelet base functions are symmetric, then the symmetry relation given by a(−l) =
−a(l + 1) [36] holds. Using the symmetry relation, and equating (3.16), (3.19) and (3.21), (3.13d)
leads to the MRFD update equation:

jωμxHx(i, j, k) =

⎛
⎜⎜⎜⎝

na∑
l=1

a(l)[Ey(i,j,k+l)−Ey(i,j,k−l+1)]

�z

−
na∑
l=1

a(l)[Ez(i,j+l,k)−Ez(i,j−l+1,k)]

�y

⎞
⎟⎟⎟⎠ . (3.22)

Table 3.1: a(l) coefficients of various wavelets
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Maxwell’s curl equation (3.12a) is discretized in a similar fashion. The scalar equation (3.13a)
is considered as an example. Again, the field expansions are inserted into the scalar equation and
both sides are tested with the scaling function according to MoM. First, the left-hand side of (3.13a)
is tested:

jωεx

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ex(x, y, z)φi+1/2(x)φj (y)φk(z)dxdydz

= jωεx

∞∫
−∞

∞∫
−∞

∞∫
−∞

⎡
⎣ ∑

i′,j ′,k′
Ex(i

′, j ′, k′)φ̃i′+1/2(x)φ̃j ′(y)φ̃k′(z)

⎤
⎦φi+1/2(x)φj (y)φk(z)dxdydz

= jωεx

∑
i′,j ′,k′

Ex(i
′, j ′, k′).�xδi′+1/2,i+1/2.�yδj ′,j .�zδk′,k

= jωεxEx(i, j, k)�x�y�z. (3.23)

Then the first term of the right-hand side of (3.13a) is tested:

∞∫
−∞

∞∫
−∞

∞∫
−∞

∂Hz(x, y, z)

∂y
φi+1/2(x)φj (y)φk(z)dxdydz

=
∞∫

−∞

∞∫
−∞

∞∫
−∞

∂

∂y

⎡
⎣∑

i,j,k

Hz(i
′, j ′, k′)φ̃i′+1/2(x)φ̃j ′+1/2(y)φ̃k′(z)

⎤
⎦

φi+1/2(x)φj (y)φk(z)dxdydz

=
∑

i′,j ′,k′
Hz(i

′, j ′, k′)
∞∫

−∞
φ̃i′+1/2(x)φi+1/2(x)dx (3.24)

∞∫
−∞

∂φ̃j ′+1/2(y)

∂y
φj (y)dy

∞∫
−∞

φ̃k′(z)φk(z)dz

=
∑

i′,j ′,k′
Hz(i

′, j ′, k′).�xδi′+1/2,i+1/2.�zδk′,k .

[
... + a(−2)δj ′,j−3 + a(−1)δj ′,j−2 + a(0)δj ′,j−1

+a(1)δj ′,j + a(2)δj ′,j+1 + a(3)δj ′,j+2 + ...
]

= �x�z

na∑
l=−na+1

a(l)Hz(i, j + l − 1, k).
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Finally, the second term of the right-hand side of (3.13a) can similarly be sampled to yield:

∞∫
−∞

∞∫
−∞

∞∫
−∞

∂Hy(x, y, z)

∂z
φi+1/2(x)φj (y)φk(z)dxdydz

= �x�y

na∑
l=−na+1

a(l)Hy(i, j, k + l − 1). (3.25)

Using the symmetry relation and use of (3.23)–(3.25) in the tested (3.13a) results in the
MRFD update equation:

jωεxEx(i, j, k) =

⎛
⎜⎜⎜⎝

na∑
l=1

a(l)[Hz(i,j+l−1,k)−Hz(i,j−l,k)]

�y

−
na∑
l=1

a(l)[Hy(i,j,k+l−1)−Hy(i,j,k−l)]

�z

⎞
⎟⎟⎟⎠ . (3.26)

During the sampling process, the following integral is employed:

a(l) =
∞∫

−∞

∂φ̃i+l−1/2(x)

∂x
φi(x)dx. (3.27)

Two scalar equations, each corresponding to one of Maxwell’s time-harmonic curl equations,
were discretized by using a MRFD scheme. The derivation of the remaining four update equations
can be executed similarly.

Since the MRFD formulation is derived for homogeneous mediums, no relationship was
established between the material properties (ε, μ) and the discretization lattice. We would like to
model inhomogeneous mediums with the MRFD formulation. For the sampling of material pa-
rameters, the point-wise sampling technique of FDFD is adopted. The positions of the material
parameters are associated with the field components: values of ε are associated with

−→
E field com-

ponents whereas values of μ are associated with
−→
H field components. The spatial location of the

material parameters on the unit cell and the corresponding numbering scheme are listed in Table 2.2.
The pointwise sampling is mathematically valid only for the homogeneous materials but the

error introduced by modeling inhomogeneous mediums by pointwise sampling can be neglected [28],
especially if the support of the wavelet base is minimal. With the point-wise sampling applied, the
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complete set of update equations can be listed as:

jωεx(i, j, k)Ex(i, j, k) =

⎛
⎜⎜⎜⎝

na∑
l=1

a(l)[Hz(i,j+l−1,k)−Hz(i,j−l,k)]

�y

−
na∑
l=1

a(l)[Hy(i,j,k+l−1)−Hy(i,j,k−l)]

�z

⎞
⎟⎟⎟⎠ (3.28a)

jωεy(i, j, k)Ey(i, j, k) =

⎛
⎜⎜⎜⎝

na∑
l=1

a(l)[Hx(i,j,k+l−1)−Hx(i,j,k−l)]

�z

−
na∑
l=1

a(l)[Hz(i+l−1,j,k)−Hz(i−l,j,k)]

�x

⎞
⎟⎟⎟⎠ (3.28b)

jωεz(i, j, k)Ez(i, j, k) =

⎛
⎜⎜⎜⎝

na∑
l=1

a(l)[Hy(i+l−1,j,k)−Hy(i−l,j,k)]

�x

−
na∑
l=1

a(l)[Hx(i,j+l−1,k)−Hx(i,j−l,k)]

�y

⎞
⎟⎟⎟⎠ (3.28c)

jωμx(i, j, k)Hx(i, j, k) =

⎛
⎜⎜⎜⎝

na∑
l=1

a(l)[Ey(i,j,k+l)−Ey(i,j,k−l+1)]

�z

−
na∑
l=1

a(l)[Ez(i,j+l,k)−Ez(i,j−l+1,k)]

�y

⎞
⎟⎟⎟⎠ (3.28d)

jωμy(i, j, k)Hy(i, j, k) =

⎛
⎜⎜⎜⎝

na∑
l=1

a(l)[Ez(i+l,j,k)−Ez(i−l+1,j,k)]

�x

−
na∑
l=1

a(l)[Ex(i,j,k+l)−Ex(i,j,k−l+1)]

�z

⎞
⎟⎟⎟⎠ (3.28e)

jωμz(i, j, k)Hz(i, j, k) =

⎛
⎜⎜⎜⎝

na∑
l=1

a(l)[Ex(i,j+l,k)−Ex(i,j−l+1,k)]

�y

−
na∑
l=1

a(l)[Ey(i+l,j,k)−Ey(i−l+1,j,k)]

�x

⎞
⎟⎟⎟⎠ . (3.28f )

For the purpose of comparison of the FDFD and MRFD schemes, update equations for the
Ex component using these two techniques are provided below, respectively. One can easily conclude
that the FDFD formulation is the special case of the MRFD formulation with a(1) = 1 and na = 1.

jωεx(i, j, k)Ex(i, j, k) =
( [Hz(i,j,k)−Hz(i,j−1,k)]

�y

− [Hy(i,j,k)−Hy(i,j,k−1)]
�z

)
(3.29)

jωεx(i, j, k)Ex(i, j, k) =

⎛
⎜⎜⎜⎝

na∑
l=1

a(l)[Hz(i,j+l−1,k)−Hz(i,j−l,k)]

�y

−
na∑
l=1

a(l)[Hy(i,j,k+l−1)−Hy(i,j,k−l)]

�z

⎞
⎟⎟⎟⎠ . (3.30)
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C H A P T E R 4

Application of MRFD
Formulation to Closed Space

Structures
In order to verify and demonstrate the efficiency of the new MRFD schemes, one, two, and
three-dimensional closed space problems are considered in this chapter. The structures that are
analyzed in this chapter are all assumed to be enclosed by a perfect electric conductor (PEC)
boundary; hence the name “closed space structures.” For the purpose of supporting the claim
that MRFD formulation is inherently more efficient than the FDFD scheme, the closed space
problems are solved with the aid of both methods and the numerical results are compared. The
treatment of PEC boundary conditions in the context of the image principle and the multiple
image technique is also addressed.

4.1 1D APPLICATION: THE FABRY-PEROT RESONATOR

The Fabry-Perot resonator structure is picked as an appropriate example of a one-dimensional
closed space problem. A Fabry-Perot resonator is a resonant cavity formed by two parallel metal
plates separated by a medium such as air or dielectric. A simple depiction of this structure is shown
in Figure 4.1.

Figure 4.1: One-dimensional cavities.
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When two air-separated metal plates are aligned perfectly parallel to each other, they can
support a TEM standing wave described by:

Ez = E0 sin k0x (4.1a)

Hy = −jE0

η0
cos k0x (4.1b)

These standing waves resonate at frequencies:

fn = n

2d
√

μ0ε0
f or n = 1, 2, 3, . . . . (4.2)

where d is the distance between the two plates and n is the mode number.

FORMULATION
Since the standing wave between the plates is only a one-dimensional function, the structure can be
reduced to a 1D problem by assuming ∂

/
∂y = 0 and ∂

/
∂z = 0. In this case, Maxwell’s vector curl

equations can be reduced to two scalar equations:

∂Ez

∂x
− jωμyHy = 0 (4.3a)

∂Hy

∂x
− jωεzEz = 0. (4.3b)

Using the one-dimensional grid shown in Figure 4.2, the MRFD update equations for (4.3)
can be simplified from (3.28c) and (3.28e) as:

ωEz(i) =

na∑
l=1

a(l)
[
Hy(i + l − 1) − Hy(i − l)

]
jε(i)�x

(4.4a)

ωHy(i) =

na∑
l=1

a(l)
[
Ez(i + l) − Ez(i − l + 1)

]
jμ(i)�x

. (4.4b)

Equation (4.4) can be used to produce an eigenvalue problem:

ω.x = A.x. (4.5)

Here, A is the sparse coefficient matrix and x is the unknown field vector. The eigenvalues
of A are the resonant frequencies of the structure. The eigenvectors of A provide the corresponding
electromagnetic fields.
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Figure 4.2: One-dimensional grid.

TREATMENT OF THE BOUNDARIES AND DIELECTRIC INTERFACES
At the PEC boundary, the tangential electric and normal magnetic fields are equal to zero. A
conventional FDFD scheme can model the PEC boundary simply by setting the coefficient of
tangential electric and normal magnetic fields to zero, owing to the localized scaling function.
Multiresolution schemes,however, are non-localized in nature because of the wider support of scaling
functions, so they cannot support localized boundary conditions. This aspect of multiresolution
schemes is caused by the fact that the update equations of the grid nodes in the vicinity of the
boundary include the field components outside of the computational domain.

For the truncation of the PEC boundary, the image principle [9] is adopted. In this method,
the scaling coefficients of the fields on the boundary are set to zero and even or odd symmetry is
used to generate the fields outside the computational domain. For the 1D case study at hand, the
electric and magnetic fields are both tangential to the boundary, so the electric field and magnetic
field components are forced to have odd and even symmetry across the PEC boundary, respectively.
For example, if the PEC boundary coincides with MRFD lattice at the grid point x = 0, than
E(−1) = −E(1) and H(−1) = H(0).

At the interface between two materials, averaging of material parameters is used. An interface
between two mediums is depicted in Figure 4.2. For this interface, averaging of dielectric constant
requires ε(n − 1) = ε1, ε(n) = ε1+ε2

2 , and ε(n + 1) = ε2.

NUMERICAL RESULTS
In order to compare the efficiency and accuracy of FDFD and MRFD schemes, the resonant fre-
quencies of the one-dimensional resonator structures shown in Figure 4.1 are calculated with FDFD
and various MRFD methods.

The source codes are written in Matlab and executed using a laptop PC equipped with a
Pentium M processor at 1.6 GHz and 1 GB of memory.The coefficient matrices are stored in sparse
matrices and Matlab function eigs is employed during the calculation of eigenvalues and eigenvectors
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of matrix A. The execution time is the actual time required to fill and solve the coefficient matrix
A. Additional steps, such as processing or visualizing the calculated data, are not included in the
execution time. The same approach is applied for the examples in the following sections.

The first example considered is the air-filled resonator shown in Figure 4.1a. This structure
is analyzed with finite difference and three different multiresolution methods. The multiresolution
methods are based on CDF(2,2), CDF(2,4), and CDF(2,6) wavelets. MRFD analyses are executed
with a mesh that has three times lower resolution compared to the FDFD lattice. In this case, the cell
size of the MRFD grid equals λmin/4, whereas the cell size of the FDFD grid is equal to λmin/12.

Simulated results are compared to the analytical values based on (4.2), and the results are
summarized inTable 4.1.Results indicate that, for a one-dimensional homogeneous case, the MRFD
methods manage to perform like the of FDFD method in terms of accuracy while reducing the grid
resolution by a factor of 3:1. Memory requirements, simulation time, and accuracy for different
MRFD techniques vary based on the stencil size of the wavelets that are used. MRFD methods
with higher stencil sizes achieve higher accuracy at the expense of higher memory requirements and
simulation times.

Table 4.1: Calculated resonance frequencies, calculation error, and simulation time of the
air-filled resonator

More comprehensive conclusions can be attained by analyzing the calculation error with
respect to discretization points per wavelength. For this purpose, the higher order modes of the
structure are simulated using a much higher grid density with a cell size of 1 cm.The errors introduced
by MRFD methods as a function of number of cells per wavelength are presented in Figure 4.3. For
comparison, FDFD results are also provided.



4.1. 1D APPLICATION: THE FABRY-PEROT RESONATOR 37

 

 

 

 

Figure 4.3: Error comparison of MRFD and FDFD methods, 1D uniform cavity.
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The Battle-Lemarie-based scheme generally has the best accuracy for medium sized grids,
however finer grids with this scheme result in higher errors. The truncation of the higher order
MRFD coefficients beyond the 9th coefficient is to blame for this abnormality.This error is expected
to be reduced if more than 9 coefficients are included in the formulation.

The CDF wavelet-based schemes generally have similar performance at high resolution, and
all perform better than Battle-Lemarie and Haar-based schemes. On the other hand, the CDF
wavelet schemes with higher stencil size provide better performance at lower resolutions.

The second example is generated by inserting a dielectric slab at the center of the resonator,
as illustrated in Figure 4.1b. The dielectric slab is 0.2 m wide and has a relative dielectric con-
stant of 4. By inserting the dielectric slab, a problem with three regions and two discontinuities is
generated. Computation of the exact resonant frequencies of this configuration is summarized in
Appendix A [37].

This structure is again analyzed with finite difference and multiresolution methods based on
CDF and Battle-Lemarie wavelets. The resolutions of the grids are increased in order to model the
discontinuities better.

The results summarized in Table 4.2 appear to show comparable percentage of error with
time savings relative to the FDFD. Similar to the previous example, the higher order modes of the
structure are simulated using a cell size of 1 cm. The errors introduced by MRFD methods as a
function of number of cells per wavelength are presented in Figure 4.4.

Table 4.2: Calculated resonance frequencies, calculation error, and simulation time of the
dielectric loaded resonator

Results are similar to the homogeneous case except that the CDF(2,2) wavelet based formu-
lation provides the best cost/performance ratio. This is mainly attributed to fact that this wavelet
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Figure 4.4: Error comparison of MRFD and FDFD methods, 1D non-uniform cavity.
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has the narrowest support, so the error introduced by pointwise sampling is minimal compared to
wavelets with wider support.

In conclusion, the CDF(2,2) wavelet-based MRFD scheme is found to offer the best com-
promise between performance and computational cost, especially for the inhomogeneous problems.
During the rest of the book, only the MRFD formulation based on the CDF(2,2) wavelet is con-
sidered.

It is interesting to note that different formulations have different memory and simulation
time requirements even if they utilize the same grid resolution. This phenomenon is caused by the
different number of components in the update equations for different schemes. The FDFD update
equations are composed of two terms, whereas the MRFD update equations are composed of six to
eighteen terms, depending on the support of the utilized wavelet base. In turn, the coefficient matrix
A in MRFD techniques become denser, compared to the FDFD coefficient matrix. We use sparse
matrices to store the coefficients, so a denser matrix occupies more memory. Similarly, a denser
matrix requires more computer time to fill and solve the matrix, so the MRFD schemes based on
wavelets with wide support demand more computer time.

The sparsity pattern of matrix A for FDFD and MRFD techniques is shown in Figure 4.5.
These matrices are generated for a 1D grid with a total of 20 grid cells. In this case, the total numbers
of nonzero elements in the sparse matrices are 76, 216, 340, and 540 for Haar, CDF(2,2), CDF(2,4),
and Battle-Lemarie based systems, respectively.

4.2 2D APPLICATION: PROPAGATION CHARACTERISTICS
OF GENERAL GUIDED WAVE STRUCTURES

The determination of the dispersion characteristics of waveguiding structures is a fundamental
problem in microwave engineering applications. Furthermore, these characteristics (mode patterns,
propagation constant, characteristic impedance, etc.) can be used as port data for 3D simulation of
microwave devices [38].

Several efforts were made by researchers to solve the problem by using three-dimensional finite
difference techniques [39, 40]. However, these techniques consume too much computational power
and can only calculate single mode characteristics and patterns. Later efforts were able to improve
these techniques into two-dimensional formulations called the Compact 2D FDTD method [41,
42, 43] that later led to methods that were able to solve multimode patterns [44, 45]. Despite having
computational efficiency, the compact 2D FDTD method requires propagation constant β as an
input and depends on signal processing techniques to calculate multimode parameters. It is also
prone to stability problems [46].

A recently introduced [47] and further improved [48,49,50,51] compact 2D FDFD technique
is more suited for the problem at hand, since it does not require the propagation constant as an input,
calculates multimode characteristics without signal processing techniques, and is immune to stability
considerations. In this section, characterization of guided wave structures is considered for validation
of the proposed MRFD method.
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Figure 4.5: Sparsity pattern of coefficient matrices for various MRFD schemes.

FORMULATION
Capitalizing on the compact 2D FDFD method [47], the compact 2D MRFD formulation is derived.
Assuming that the waveguiding structure is uniform along the z axis and the wave is propagating in
the positive z direction, the electric and magnetic fields inside guided wave structure can be expressed
as:

−→
E (x, y, z) = [

Ex(x, y)x̂ + Ey(x, y)ŷ + Ez(x, y)ẑ
]
e−jβz (4.6a)

−→
H (x, y, z) = [

Hx(x, y)x̂ + Hy(x, y)ŷ + Hz(x, y)ẑ
]
e−jβz (4.6b)
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where β is the propagation constant.
The time-harmonic Maxwell’s equations for simple dielectric media are:

∇ × −→
E = −jωμ

−→
H (4.7a)

∇ × −→
H = jωε

−→
E (4.7b)

∇ .
−→
D = 0 (4.7c)

∇ .
−→
B = 0 (4.7d)

in which the space derivatives with respect to z can be replaced by −jβ (i.e., ∂
/
∂z = −jβ). Sub-

stituting (4.6) into Maxwell’s curl equations (4.7), the following scalar equations are obtained:

βEx(x, y) = ωμyHy(x, y) + j
∂Ez(x, y)

∂x
(4.8a)

βEy(x, y) = −ωμxHx(x, y) + j
∂Ez(x, y)

∂y
(4.8b)

jωεzEz(x, y) = ∂Hy(x, y)

∂x
− ∂Hx(x, y)

∂y
(4.8c)

βHx(x, y) = −ωεyEy(x, y) + j
∂Hz(x, y)

∂x
(4.8d)

βHy (x, y) = ωεxEx(x, y) + j
∂Hz(x, y)

∂y
(4.8e)

jωμzHz(x, y) = −∂Ey(x, y)

∂x
+ ∂Ex(x, y)

∂y
. (4.8f )

Equations (4.8c) and (4.8f) don’t include β, so they are useless for the purpose of calculating
β. The remaining four equations are insufficient to solve the six unknown fields. The needed two
additional equations can be supplied by substituting (4.6) into Maxwell’s divergence equations,which
in return yields:

βεzEz(x, y) = −jεx

∂Ex(x, y)

∂x
− jεy

∂Ey(x, y)

∂y
(4.9a)

βμzHz(x, y) = −jμx

∂Hx(x, y)

∂x
− jμy

∂Hy(x, y)

∂y
. (4.9b)

The obtained six scalar equations (4.8a), (4.8b), (4.8d), (4.8e), (4.9a), and (4.9b) are sufficient
to solve the problem at hand.

The discretization of these equations is not feasible by simplifying the 3D-MRFD update
equations (3.28) previously introduced, because new terms such as ∂Ex

/
∂x are not provided by these
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equations. It is necessary to derive the compact 2D-MRFD formulation. MRFD formulations for
equations (4.8a) and (4.9a) are derived here for the sake of illustration.

The derivation again starts with the expansion of the unknown fields in terms of the dual
scaling functions, such that:

Ex(x, y) =
∑
i′,j ′

Ex(i
′, j ′)φ̃i′+1/2(x)φ̃j ′(y) (4.10a)

Ey(x, y) =
∑
i′,j ′

Ey(i
′, j ′)φ̃i′(x)φ̃j ′+1/2(y) (4.10b)

Ez(x, y) =
∑
i′,j ′

Ez(i
′, j ′)φ̃i′(x)φ̃j ′(y) (4.10c)

Hx(x, y) =
∑
i′,j ′

Hx(i
′, j ′)φ̃i′(x)φ̃j ′+1/2(y) (4.10d)

Hy(x, y) =
∑
i′,j ′

Hy(i
′, j ′)φ̃i′+1/2(x)φ̃j ′(y) (4.10e)

Hz(x, y) =
∑
i′,j ′

Hz(i
′, j ′)φ̃i′+1/2(x)φ̃j ′+1/2(y) . (4.10f )

The locations of the scaling functions in the above expansions correspond to the locations of
the field components on the compact 2D grid shown in Figure 4.6. This grid structure is obtained
simply by collapsing the 3D Yee cell in the z direction.

Figure 4.6: 2D compact unit cell.
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The sampling procedure starts with testing the left-hand side of Eq. (4.8a) with
φi+1/2(x)φj (y):

∞∫
−∞

∞∫
−∞

βEx(x, y)φi+1/2(x)φj (y)dxdy

= β

∞∫
−∞

∞∫
−∞

∑
i′,j ′

Ex(i
′, j ′)φ̃i′+1/2(x)φ̃j ′(y)φi+1/2(x)φj (y)dxdy (4.11)

= βEx(i, j)�x�y.

Next, the first term on the right-hand side of (4.8a) is tested:

∞∫
−∞

∞∫
−∞

ωμyHy(x, y)φi+1/2(x)φj (y)dxdy

= ωμy

∞∫
−∞

∞∫
−∞

∑
i′,j ′

Hy(i
′, j ′)φ̃i′+1/2(x)φ̃j ′(y)φi+1/2(x)φj (y)dxdy (4.12)

= ωμyHy(i, j)�x�y,

and finally, the second-term on the right-hand side of (4.8a) is sampled to yield:

∞∫
−∞

∞∫
−∞

j
∂Ez(x, y)

∂x
φi+1/2(x)φj (y)dxdy

= j

∞∫
−∞

∞∫
−∞

∂

∂x

⎡
⎣∑

i′,j ′
Ez(i

′, j ′)φ̃i′(x)φ̃j ′(y)

⎤
⎦φi+1/2(x)φj (y)dxdy

= j
∑
i′,j ′

Ez(i
′, j ′)

∞∫
−∞

∂φ̃i′(x)

∂x
φi+1/2(x)dx

∞∫
−∞

φ̃j ′(y)φj (y)dy

= j�y

3∑
l=1

a(l)
[
Ez(i + l, j) − Ez(i − l + 1, j)

]
. (4.13)

Substituting (4.11), (4.12), and (4.13) into (4.8a) yields the MRFD update equation:

βEx(i, j) = ωμHy(i, j) + j

3∑
l=1

a(l)
[
Ez(i + l, j) − Ez(i − l + 1, j)

]
�x

. (4.14)
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The update equation for (4.9a) is similarly derived, first by testing the left-hand side:
∞∫

−∞

∞∫
−∞

βεzEz(x, y)φi(x)φj (y)dxdy

=
∞∫

−∞

∞∫
−∞

βεz

⎡
⎣∑

i′,j ′
Ez(i

′, j ′)φ̃i′(x)φ̃j ′(y)

⎤
⎦φi(x)φj (y)dxdy (4.15)

= βεzEz(i, j)�x�y.

Testing the first term on the right-hand side of (4.9a) yields:
∞∫

−∞

∞∫
−∞

−jεx

∂Ex(x, y)

∂x
φi(x)φj (y)dxdy

= −jεx

∞∫
−∞

∞∫
−∞

∂

∂x

⎡
⎣∑

i′,j ′
Ex(i

′, j ′)φ̃i′+1/2(x)φ̃j ′(y)

⎤
⎦φi(x)φj (y)dxdy (4.16)

= −jεx

∑
i′,j ′

Ex(i
′, j ′)

∞∫
−∞

∂φ̃i′+1/2(x)

∂x
φi(x)dx

∞∫
−∞

φ̃j ′(y)φj (y)dy

= −jεx�y

3∑
l=1

a(l) [Ex(i + l − 1, j) − Ex(i − l, j)] .

Similarly, the second term on the right-hand side of (4.9a) is sampled to give:
∞∫

−∞

∞∫
−∞

−jεy

∂Ey(x, y)

∂y
φi(x)φj (y)dxdy

= −jεy

3∑
l=1

a(l)
[
Ey(i, j + l − 1) − Ey(i, j − l)

]
. (4.17)

Finally, substituting (4.15), (4.16), and (4.17) into (4.9a) yields the MRFD update equation:

βεzEz(i, j) = − j

3∑
l=1

a(l)εx [Ex(i + l − 1, j) − Ex(i − l, j)]

�x

− j

3∑
l=1

a(l)εy

[
Ey(i, j + l − 1) − Ey(i, j − l)

]
�y

. (4.18)
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The remaining update equations can be generated similarly. The complete set of equations of
the compact 2D MRFD formulation is listed below:

βEx(i, j) =ωμyHy(i, j) + j

3∑
l=1

a(l)
[
Ez(i + l, j) − Ez(i − l + 1, j)

]
�x

(4.19a)

βEy(i, j) = − ωμxHx(i, j) + j

3∑
l=1

a(l)
[
Ez(i, j + l) − Ez(i, j − l + 1)

]
�y

(4.19b)

βεz(i, j)Ez(i, j) = − j

3∑
l=1

a(l)εx [Ex(i + l − 1, j) − Ex(i − l, j)]

�x

− j

3∑
l=1

a(l)εy

[
Ey(i, j + l − 1) − Ey(i, j − l)

]
�y

(4.19c)

βHx(i, j) = − ωεyEy(i, j) + j

3∑
l=1

a(l)
[
Hz(i + l − 1, j) − Hz(i − l, j)

]
�x

(4.19d)

βHy(i, j) =ωεxEx(i, j) + j

3∑
l=1

a(l)
[
Hz(i, j + l − 1) − Hz(i, j − l)

]
�y

(4.19e)

βμz(i, j)Hz(i, j) = − j

3∑
l=1

a(l)μx [Hx(i + l, j) − Hx(i − l + 1, j)]

�x

− j

3∑
l=1

a(l)μy

[
Hy(i, j + l) − Hy(i, j − l + 1)

]
�y

. (4.19f )

The material properties can be sampled pointwise similar to the previous cases. After assigning
the material properties and arranging the terms, the finalized compact 2D MRFD formulation
becomes:

βEx(i, j) =ωμy(i, j)Hy(i, j) + c1xEz(i + 1, j) − c1xEz(i, j)

+ c2xEz(i + 2, j) − c2xEz(i − 1, j)

+ c3xEz(i + 3, j) − c3xEz(i − 2, j) (4.20a)
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βEy(i, j) = − ωμx(i, j)Hx(i, j) + c1yEz(i, j + 1) − c1yEz(i, j)

+ c2yEz(i, j + 2) − c2yEz(i, j − 1)

+ c3yEz(i, j + 3) − c3yEz(i, j − 2) (4.20b)

βEz(i, j) = − c1x

εx(i, j)

εz(i, j)
Ex(i, j) + c1x

εx(i − 1, j)

εz(i, j)
Ex(i − 1, j)

− c2x

εx(i + 1, j)

εz(i, j)
Ex(i + 1, j) + c2x

εx(i − 2, j)

εz(i, j)
Ex(i − 2, j)

− c3x

εx(i + 2, j)

εz(i, j)
Ex(i + 2, j) + c3x

εx(i − 3, j)

εz(i, j)
Ex(i − 3, j)

− c1y

εy(i, j)

εz(i, j)
Ey(i, j) + c1y

εy(i, j − 1)

εz(i, j)
Ey(i, j − 1)

− c2y

εy(i, j + 1)

εz(i, j)
Ey(i, j + 1) + c2y

εy(i, j − 2)

εz(i, j)
Ey(i, j − 2)

− c3y

εy(i, j + 2)

εz(i, j)
Ey(i, j + 2) + c3y

εy(i, j − 3)

εz(i, j)
Ey(i, j − 3) (4.20c)

βHx(i, j) = − ωεy(i, j)Ey(i, j) + c1xHz(i, j) − c1xHz(i − 1, j)

+ c2xHz(i + 1, j) − c2xHz(i − 2, j)

+ c3xHz(i + 2, j) − c3xHz(i − 3, j) (4.20d)

βHy(i, j) =ωεx(i, j)Ex(i, j) + c1yHz(i, j) − c1yHz(i, j − 1)

+ c2yHz(i, j + 1) − c2yHz(i, j − 2)

+ c3yHz(i, j + 2) − c3yHz(i, j − 3) (4.20e)

βHz(i, j) = − c1x

μx(i + 1, j)

μz(i, j)
Hx(i + 1, j) + c1x

μx(i, j)

μz(i, j)
Hx(i, j)

− c2x

μx(i + 2, j)

μz(i, j)
Hx(i + 2, j) + c2x

μx(i − 1, j)

μz(i, j)
Hx(i − 1, j)

− c3x

μx(i + 3, j)

μz(i, j)
Hx(i + 3, j) + c3x

μx(i − 2, j)

μz(i, j)
Hx(i − 2, j)

− c1y

μy(i, j + 1)

μz(i, j)
Hy(i, j + 1) + c1y

μy(i, j)

μz(i, j)
Hy(i, j)
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− c2y

μy(i, j + 2)

μz(i, j)
Hy(i, j + 2) + c2y

μy(i, j − 1)

μz(i, j)
Hy(i, j − 1)

− c3y

μy(i, j + 3)

μz(i, j)
Hy(i, j + 3) + c3y

μy(i, j − 2)

μz(i, j)
Hy(i, j − 2). (4.20f )

The update coefficients listed below are introduced in order to simplify the above formulation.

c1x = ja(1)/�x, c1y = ja(1)/�y,

c2x = ja(2)/�x, c2y = ja(2)/�y, (4.21)

c3x = ja(3)/�x, c3y = ja(3)/�y.

The compact 2D MRFD update equations given by (4.20) can be used to form an eigenvalue
problem:

β.x = A.x. (4.22)

Here, A is the sparse coefficient matrix and x is the unknown field vector. The eigenvalues
of A deliver the propagation constant and the eigenvectors of A deliver the corresponding mode
patterns.

THE MULTIPLE IMAGE TECHNIQUE
In Section 4.1, the treatment of PEC boundary conditions in the context of image principle was
successfully utilized. Image principle was used to extend the electromagnetic fields beyond the
computational domain by forcing odd symmetry for tangential electric fields and normal magnetic
fields, whereas even symmetry was forced for normal electric fields and tangential magnetic fields.

The material parameters are part of the update equations,and thus they should also be extended
beyond the boundary. The concept of multiple image technique (MIT) was developed in order to
handle the extension of material parameters [52]. This technique assumes a mirror image of the
materials along the PEC boundary. For a boxed microstrip line, the multiple image technique can be
applied as depicted in Figure 4.7. In this figure, the original problem to be analyzed is at the center,
whereas the mirrored images are generated on the top, bottom, and sides of the original problem.
Note that this technique does not increase memory consumption.

The field symmetries that are forced on the boundary of the microstrip line are listed in
Table 4.3.

NUMERICAL RESULTS
Several waveguiding structures are analyzed by both FDFD and MRFD methods.The first example
is a dielectric filled waveguide shown in Figure 4.8 with dimensions a = 0.6 cm and b = 1.5 cm.
The propagation constants of the TE01 and TE02 modes of this waveguide structure are analyzed
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Figure 4.7: Cross section of the boxed microstrip line with its images.

with the aid of FDFD and MRFD methods. Obtained numerical results are compared to analytical
values [53] in Figure 4.9. Computation of the exact propagation constants of TE01 and TE02 modes
of this waveguide structure is summarized in Appendix B.

For the MRFD simulation of the waveguide, a cell size of 0.3 cm, which is three times larger
than the FDFD cell size, is chosen, reducing the total number of grid points by a factor of 9. Accuracy
of both methods is found to be similar for the first propagation mode. For the second mode, the
MRFD scheme returned slightly more accurate results.

The computer resources consumed by both methods are summarized in Table 4.4, which
shows that the MRFD method improves on the FDFD by 86.44% in terms of memory efficiency
and 82.70% in terms of simulation time.

The second example is a partially dielectric loaded waveguide shown in Figure 4.10. The
physical dimensions of this structure are a = 0.6 cm,b = 1.5 cm , and h = 0.3 cm. The propagation
constants of the TMX01 and TMX02 modes of the structure are calculated by FDFD and MRFD
methods. Obtained numerical results are compared to analytical values [53] in Figure 4.11. Compu-
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Table 4.3: Fields symmetries across the PEC boundaries

ε =ε =

Figure 4.8: Dielectric filled rectangular waveguide.

tation of the exact propagation constants of TMX01 and TMX02 modes of this waveguide structure
is summarized in Appendix B.

Similar to the homogeneously filled waveguide case, accuracy of both methods is found to be
similar for the first propagation mode, whereas the MRFD scheme returned slightly more accurate
results for the second propagation mode.

The efficiency of both methods is compared in Table 4.5. In this case, the MRFD method
provides improvements of 64.13% in terms of memory efficiency and 62.87% in terms of simulation
time, over the FDFD method.

The last example considered is a boxed microstrip line depicted in Figure 4.12. The physical
dimensions of this structure are a = 0.6 cm, b = 1.5 cm, h = 0.3 cm, and w = 0.3 cm. The propa-
gation constant and effective dielectric constant of the dominant mode of this structure is calculated
by FDFD and MRFD methods together with CST Microwave Studio, a commercial 3D solver.
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Figure 4.9: Propagation constant of the dielectrice filled rectangular waveguide.

Table 4.4: Consumed computer resources by FDFD and MRFD methods, di-
electric filled rectangular waveguide case

The calculated propagation constant and effective dielectric constant are presented in Fig-
ure 4.13 and Figure 4.14, respectively. Accuracy of both methods is found to be similar, except at
the lower frequency where the MRFD method is found to be more accurate.

The efficiency figures of both methods are shown inTable 4.6. In this case, the MRFD method
improved on the FDFD method by 17.68% in terms of memory efficiency and 35.04% in terms of
simulation time.
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=ε

ε =

=ε

ε =

Figure 4.10: Partially filled rectangular waveguide.

Table 4.5: Consumed computer resources by FDFD and MRFD methods, par-
tially filled rectangular waveguide case

It appears that the increasing complexity of the problem has a negative effect on the efficiency
of the MRFD technique. In reality, as the complexity increases, we have chosen finer grids to match
the FDFD results.The complexity of the problem has no relative effect on matrix size or computation
time needed to solve the matrix.

4.3 3D APPLICATION: THE RECTANGULAR CAVITY
RESONATOR

The rectangular cavity resonator structure is the choice of the three-dimensional example, again
because this kind of structure is best suited to a frequency domain application. In this section,
homogeneously and inhomogeneously filled cavity resonators are simulated by both MRFD and
FDFD methods.
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Figure 4.11: Propagation constant of the partially filled rectangular waveguide.

Table 4.6: Consumed computer resources by FDFD and MRFD methods, boxed
microstrip line

FORMULATION
The 3D general MRFD update equations (3.28) can be directly used to generate an eigenvalue
problem. After the expansion of summations, the MRFD update equations can be expressed as:
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=ε

ε =

=ε

ε =

Figure 4.12: Boxed microstrip line.

Figure 4.13: Propagation constant of the boxed microstrip line.
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Figure 4.14: Effective dielectric constant of the boxed microstrip line.

jωεx(i, j, k)Ex(i, j, k) = (4.23a)

+ a(1)

(
Hz(i, j, k) − Hz(i, j − 1, k)

�y

)
− a(1)

(
Hy(i, j, k) − Hy(i, j, k − 1)

�z

)

+ a(2)

(
Hz(i, j + 1, k) − Hz(i, j − 2, k)

�y

)
− a(2)

(
Hy(i, j, k + 1) − Hy(i, j, k − 2)

�z

)

+ a(3)

(
Hz(i, j + 2, k) − Hz(i, j − 3, k)

�y

)
− a(3)

(
Hy(i, j, k + 2) − Hy(i, j, k − 3)

�z

)
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jωεy(i, j, k)Ey(i, j, k) = (4.23b)

+ a(1)

(
Hx(i, j, k) − Hx(i, j, k − 1)

�z

)
− a(1)

(
Hz(i, j, k) − Hz(i − 1, j, k)

�x

)

+ a(2)

(
Hx(i, j, k + 1) − Hx(i, j, k − 2)

�z

)
− a(2)

(
Hz(i + 1, j, k) − Hz(i − 2, j, k)

�x

)

+ a(3)

(
Hx(i, j, k + 2) − Hx(i, j, k − 3)

�z

)
− a(3)

(
Hz(i + 2, j, k) − Hz(i − 3, j, k)

�x

)

jωεz(i, j, k)Ez(i, j, k) = (4.23c)

+ a(1)

(
Hy(i, j, k) − Hy(i − 1, j, k)

�x

)
− a(1)

(
Hx(i, j, k) − Hx(i, j − 1, k)

�y

)

+ a(2)

(
Hy(i + 1, j, k) − Hy(i − 2, j, k)

�x

)
− a(2)

(
Hx(i, j + 1, k) − Hx(i, j − 2, k)

�y

)

+ a(3)

(
Hy(i + 2, j, k) − Hy(i − 3, j, k)

�x

)
− a(3)

(
Hx(i, j + 2, k) − Hx(i, j − 3, k)

�y

)

jωμx(i, j, k)Hx(i, j, k) = (4.23d)

+ a(1)

(
Ey(i, j, k + 1) − Ey(i, j, k)

�z

)
− a(1)

(
Ez(i, j + 1, k) − Ez(i, j, k)

�y

)

+ a(2)

(
Ey(i, j, k + 2) − Ey(i, j, k − 1)

�z

)
− a(2)

(
Ez(i, j + 2, k) − Ez(i, j − 1, k)

�y

)

+ a(3)

(
Ey(i, j, k + 3) − Ey(i, j, k − 2)

�z

)
− a(3)

(
Ez(i, j + 3, k) − Ez(i, j − 2, k)

�y

)

jωμy(i, j, k)Hy(i, j, k) = (4.23e)

+ a(1)

(
Ez(i + 1, j, k) − Ez(i, j, k)

�x

)
− a(1)

(
Ex(i, j, k + 1) − Ex(i, j, k)

�z

)

+ a(2)

(
Ez(i + 2, j, k) − Ez(i − 1, j, k)

�x

)
− a(2)

(
Ex(i, j, k + 2) − Ex(i, j, k − 1)

�z

)

+ a(3)

(
Ez(i + 3, j, k) − Ez(i − 2, j, k)

�x

)
− a(3)

(
Ex(i, j, k + 3) − Ex(i, j, k − 2)

�z

)
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jωμz(i, j, k)Hz(i, j, k) = (4.23f )

+ a(1)

(
Ex(i, j + 1, k) − Ex(i, j, k)

�y

)
− a(1)

(
Ey(i + 1, j, k) − Ey(i, j, k)

�x

)

+ a(2)

(
Ex(i, j + 2, k) − Ex(i, j − 1, k)

�y

)
− a(2)

(
Ey(i + 2, j, k) − Ey(i − 1, j, k)

�x

)

+ a(3)

(
Ex(i, j + 3, k) − Ex(i, j − 2, k)

�y

)
− a(3)

(
Ey(i + 3, j, k) − Ey(i − 2, j, k)

�x

)
.

These equations can be organized into an eigenvalue problem as follows:

ωEx(i, j, k) = (4.24a)

− Cexy1(m)
[
Hz(i, j, k) − Hz(i, j − 1, k)

] + Cexz1(m)
[
Hy(i, j, k) − Hy(i, j, k − 1)

]
− Cexy2(m)

[
Hz(i, j + 1, k) − Hz(i, j − 2, k)

] + Cexz2(m)
[
Hy(i, j, k + 1) − Hy(i, j, k − 2)

]
− Cexy3(m)

[
Hz(i, j + 2, k) − Hz(i, j − 3, k)

] + Cexz3(m)
[
Hy(i, j, k + 2) − Hy(i, j, k − 3)

]
ωEy(i, j, k) = (4.24b)

− Ceyz1(m) [Hx(i, j, k) − Hx(i, j, k − 1)] + Ceyx1(m)
[
Hz(i, j, k) − Hz(i − 1, j, k)

]
− Ceyz2(m) [Hx(i, j, k + 1) − Hx(i, j, k − 2)] + Ceyx2(m)

[
Hz(i + 1, j, k) − Hz(i − 2, j, k)

]
− Ceyz3(m) [Hx(i, j, k + 2) − Hx(i, j, k − 3)] + Ceyx3(m)

[
Hz(i + 2, j, k) − Hz(i − 3, j, k)

]
ωEz(i, j, k) = (4.24c)

− Cezx1(m)
[
Hy(i, j, k) − Hy(i − 1, j, k)

] + Cezy1(m) [Hx(i, j, k) − Hx(i, j − 1, k)]

− Cezx2(m)
[
Hy(i + 1, j, k) − Hy(i − 2, j, k)

] + Cezy2(m) [Hx(i, j + 1, k) − Hx(i, j − 2, k)]

− Cezx3(m)
[
Hy(i + 2, j, k) − Hy(i − 3, j, k)

] + Cezy3(m) [Hx(i, j + 2, k) − Hx(i, j − 3, k)]

ωHx(i, j, k) = (4.24d)

− Chxz1(m)
[
Ey(i, j, k + 1) − Ey(i, j, k)

] + Chxy1(m)
[
Ez(i, j + 1, k) − Ez(i, j, k)

]
− Chxz2(m)

[
Ey(i, j, k + 2) − Ey(i, j, k − 1)

] + Chxy2(m)
[
Ez(i, j + 2, k) − Ez(i, j − 1, k)

]
− Chxz3(m)

[
Ey(i, j, k + 3) − Ey(i, j, k − 2)

] + Chxy3(m)
[
Ez(i, j + 3, k) − Ez(i, j − 2, k)

]
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ωHy(i, j, k) = (4.24e)

− Chyx1(m)
[
Ez(i + 1, j, k) − Ez(i, j, k)

] + Chyz1(m) [Ex(i, j, k + 1) − Ex(i, j, k)]

− Chyx2(m)
[
Ez(i + 2, j, k) − Ez(i − 1, j, k)

] + Chyz2(m) [Ex(i, j, k + 2) − Ex(i, j, k − 1)]

− Chyx3(m)
[
Ez(i + 3, j, k) − Ez(i − 2, j, k)

] + Chyz3(m) [Ex(i, j, k + 3) − Ex(i, j, k − 2)]

ωHz(i, j, k) = (4.24f )

− Chzy1(m) [Ex(i, j + 1, k) − Ex(i, j, k)] + Chzx1(m)
[
Ey(i + 1, j, k) − Ey(i, j, k)

]
− Chzy2(m) [Ex(i, j + 2, k) − Ex(i, j − 1, k)] + Chzx2(m)

[
Ey(i + 2, j, k) − Ey(i − 1, j, k)

]
− Chzy3(m) [Ex(i, j + 3, k) − Ex(i, j − 2, k)] + Chzx3(m)

[
Ey(i + 3, j, k) − Ey(i − 2, j, k)

]
with the field update coefficients of:

Cexyi(m) = ja(i)
εx(m)�y

Cexzi(m) = ja(i)
εx(m)�z

Ceyzi(m) = ja(i)
εy(m)�z

Ceyxi(m) = ja(i)
εy(m)�x

Cezxi(m) = ja(i)
εz(m)�x

Cezyi(m) = ja(i)
εz(m)�y

Chxyi(m) = ja(i)
μx(m)�y

Chxzi(m) = ja(i)
μx(m)�z

Chyxi(m) = ja(i)
μy(m)�x

Chyzi(m) = ja(i)
μy(m)�z

Chzxi(m) = ja(i)
μz(m)�x

Chzyi(m) = ja(i)
μz(m)�y

(4.25)

where m = (i, j, k).
The MRFD update equations given by (4.24) can be used to form an eigenvalue problem,

such as:
ω.x = A.x. (4.26)

Again, A is the sparse coefficient matrix and x is the unknown field vector. The eigenvalues
of A deliver the resonance frequencies, and the eigenvectors of A deliver the corresponding mode
patterns.

NUMERICAL RESULTS
The first example considered is an air-filled cavity resonator shown in Figure 4.15. The dimensions
of this resonator are selected to be a = 10 cm, b = 15 cm, and c = 20 cm. A cell size of �x = �y =
�z = 2.5 cm is used for the FDFD discretization, giving a total number of 192 cells. The MRFD
scheme on the other hand, used a mesh with the cell size of �x = �y = �z = 5 cm which results
in a total of 24 cells.



4.3. 3D APPLICATION: THE RECTANGULAR CAVITY RESONATOR 59

Figure 4.15: Air-filled rectangular cavity resonator.

The resonance frequencies obtained by FDFD and MRFD simulations are compared to the
analytical resonance frequencies [53] in Table 4.7. Computation of the exact resonance frequencies
of this cavity structure is summarized in Appendix C.

The results are obtained by using a sparse matrix solver and a full matrix solver, both of which
are Matlab solvers. The sparse matrix solver is executed by the Matlab eigs function and uses the
Arnoldi Iteration technique [54]. The full matrix solver is executed by the Matlab eig function and
uses LAPACK routines [55]. The sparse matrix solver reduced the simulation time and memory
requirement by the factors 97.5 and 8, respectively.The full matrix solver, on the other hand, reduced
the simulation time by the factor 181.8 and the memory requirement by the factor of 130.9.

The second example considered is a cavity resonator half loaded with dielectric material,
depicted in Figure 4.16. Computation of the exact resonance frequencies of this cavity structure is
summarized in Appendix C.

The dimensions of the resonator are kept unchanged from the previous example. The cell size
for the FDFD mesh also remains unchanged while the cell size for the MRFD mesh in the direction
of the discontinuity is set to half of that of the previous case.
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Figure 4.16: Dielectrice loaded cavity resonator.

Table 4.7: Resonance frequencies of the air-filled rectangular cavity

Numerical results presented inTable 4.8 show that the MRFD scheme provides better accuracy
despite using a much smaller mesh. Using a sparse matrix solver, the simulation time and memory
requirement are reduced by the factors 52.7 and 3.2, respectively. If a full matrix solver were utilized,
the savings changed to the factor 61.7 for simulation time and the factor 27.7 for the memory
requirement.
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Table 4.8: Resonance frequencies of the rectangular cavity half filled with dielectric
material
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C H A P T E R 5

Application of MRFD
Formulation to Open Space

Structures
The MRFD technique is used to characterize open space problems in this chapter. A scattered
field formulation is developed and implemented for this purpose. The perfectly matched layer
(PML) technique is employed in order to terminate the computational space. Numerical results
of two-dimensional scattering problems are presented at the end of the chapter.

5.1 GENERAL SCATTERED FIELD FORMULATION

In the previous chapter, the MRFD method is applied to closed space eigenvalue problems where
the use of a source field is not necessary. Our objective in this chapter is to investigate the accuracy
and efficiency of the MRFD technique that is applicable to the determination of the electromagnetic
field distribution in two-dimensional radiation and scattering field problems.

In order to solve scattering and radiation problems, incident electromagnetic waves should
be excited in the computation space. The total field/scattered field formulation [13] and the pure
scattered field formulation [56] are the two approaches applied to solve these problems. The FDFD
and MRFD formulations utilized in this study are based on the scattered field approach. This
approach evolves from the linearity of Maxwell’s equations and the decomposition of the total

−→
E

and
−→
H fields into an incident field and a scattered field, that is:

−→
E total = −→

E inc + −→
E scat (5.1a)

−→
H total = −→

H inc + −→
H scat . (5.1b)

The incident field is the field that would exist in the computational domain in which no
scatterers exist and therefore can be calculated analytically for every cell in the computational domain.
The scattered field is the difference between the total field and the incident field in the presence of
the scatterer.
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If the background of the computational domain is free space, then the incident field satisfies:

∇ × −→
E inc = −jωμo

−→
H inc (5.2a)

∇ × −→
H inc = +jωεo

−→
E inc . (5.2b)

The total fields satisfy the Maxwell’s equations by definition:

∇ × −→
E total = −jωμ

−→
H total (5.3a)

∇ × −→
H total = +jωε

−→
E total . (5.3b)

Using the scattered field decomposition (5.1), the curl equations can be combined to yield:

∇ × −→
E scat + jωμ

−→
H scat = jω (μo − μ)

−→
H inc (5.4a)

∇ × −→
H scat − jωε

−→
E scat = jω (ε − εo)

−→
E inc . (5.4b)

By decomposing the vector equations into x, y, and z components, the following six scalar
equations can be obtained:

∂Escat,z

∂y
− ∂Escat,y

∂z
+ jωμxHscat,x = jω (μo − μx) Hinc,x (5.5a)

∂Escat,x

∂z
− ∂Escat,z

∂x
+ jωμyHscat,y = jω

(
μo − μy

)
Hinc,y (5.5b)

∂Escat,y

∂x
− ∂Escat,x

∂y
+ jωμzHscat,z = jω (μo − μz) Hinc,z (5.5c)

∂Hscat,z

∂y
− ∂Hscat,y

∂z
− jωεxEscat,x = jω (εx − εo) Einc,x (5.5d)

∂Hscat,x

∂z
− ∂Hscat,z

∂x
− jωεyEscat,y = jω

(
εy − εo

)
Einc,y (5.5e)

∂Hscat,y

∂x
− ∂Hscat,x

∂y
− jωεzEscat,z = jω (εz − εo) Einc,z . (5.5f )

We will deal with 2D problems, so it is necessary to assume that there is no variation in
one direction, the z direction in this case. With this in mind, equations (5.5) can be rewritten for
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∂
/
∂z = 0 as:

∂Escat,z

∂y
+ jωμxHscat,x = jω (μo − μx) Hinc,x (5.6a)

− ∂Escat,z

∂x
+ jωμyHscat,y = jω

(
μo − μy

)
Hinc,y (5.6b)

∂Escat,y

∂x
− ∂Escat,x

∂y
+ jωμzHscat,z = jω (μo − μz) Hinc,z (5.6c)

∂Hscat,z

∂y
− jωεxEscat,x = jω (εx − εo) Einc,x (5.6d)

− ∂Hscat,z

∂x
− jωεyEscat,y = jω

(
εy − εo

)
Einc,y (5.6e)

∂Hscat,y

∂x
− ∂Hscat,x

∂y
− jωεzEscat,z = jω (εz − εo) Einc,z . (5.6f )

(5.6) can be arranged to yield two sets of equations, the TMZ equations given by:

Hscat,x + 1

jωμx

∂Escat,z

∂y
= μo − μx

μx

Hinc,x (5.7a)

Hscat,y − 1

jωμy

∂Escat,z

∂x
= μo − μy

μy

Hinc,y (5.7b)

Escat,z + 1

jωεz

∂Hscat,x

∂y
− 1

jωεz

∂Hscat,y

∂x
= εo − εz

εz

Einc,z . (5.7c)

and the TEZ equations given by:

Escat,x − 1

jωεx

∂Hscat,z

∂y
= εo − εx

εx

Einc,x (5.8a)

Escat,y + 1

jωεy

∂Hscat,z

∂x
= εo − εy

εy

Einc,y (5.8b)

Hscat,z + 1

jωμz

∂Escat,y

∂x
− 1

jωμz

∂Escat,x

∂y
= μo − μz

μz

Hinc,z (5.8c)

5.2 PERFECTLY MATCHED LAYER

In Chapter 4, the considered problems were all terminated by PEC boundary conditions. However,
in this chapter, the problem is to calculate the scattering from a body in free space, which requires
that no boundaries exist. This would require the entire space to be meshed. We cannot extend the
computation space to infinity, as this would require an infinite number of cells, which is impossible.
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In fact, the objective is to keep the computation space as small as possible. The smaller the compu-
tation space, the smaller the number of cells and the required CPU time and memory to perform
the calculations. So, in order to make the computational space finite, the introduction of artificial
boundaries that simulate the open space is necessary. The absorbing boundary conditions (ABC)
simulate the open space by permitting waves propagating outward from the object to be modeled
without reflection artifacts. ABC’s should absorb waves with wavefronts incident at all angles and
should be computationally simple.

Various absorbing boundary conditions [57, 58, 59, 60, 61] have been used in finite difference
calculations, but the boundary condition called the perfectly matched layer (PML) [61, 62, 63],
proposed by Berenger,provides the best performance of the bunch in terms of flexibility and efficiency.
PML technique requires that the computation space is surrounded by a matched material which has
both electrical and magnetic conductivities. These conductivities are specially designed to absorb
electromagnetic waves without reflection for all incident angles and at any frequency. Thus, it is said
to be a perfectly matched layer.

The PML technique is applied by constructing an anisotropic PML absorber just outside
the original computational domain. Properties of the PML layer have been chosen to effectively
absorb all outgoing waves. The extended computational domain for a 2D problem is illustrated in
Figure 5.1. Maxwell’s equations are solved by the FDFD or MRFD technique inside the extended
computational domain which is terminated by a perfectly conducting (PEC) boundary condition. In
the two dimensional case, on the left and right side of the computational domain, the absorbing layers
only have nonzero conductivity in the x direction, i.e., σe

y = 0, σm
y = 0. Similarly, the conductivity

in the y direction is nonzero on the top and bottom sides. In the four corners both σ
e,m
x and σ

e,m
y

are nonzero.
The theoretical reflection from the PML layer should be zero; however some reflection may

occur due to numerical discretization. To reduce this reflection, both electric and magnetic conduc-
tivities are chosen to increase from zero at the vacuum-PML interface to a value σmax at the outer
layer of the PML. σmax can be determined from [61] as:

σmax = −ε0c (n + 1) ln [R(0)]

2δPML

(5.9)

with n being 1 for a linear conductivity or 2 for a parabolic conductivity profile.The parameter δPML

is the PML layer thickness, c is the speed of light in vacuum, and R(0) is the theoretical reflection
factor at normal incidence.

The conductivity distribution inside the absorbing layers can be determined as

σ(h) = σmax

(
h

δPML

)n

(5.10)

where h is the distance from the vacuum-PML interface to a point inside the PML media. These
relations make the PML layers absorb all waves propagating from the computational domain toward
the PEC boundary.
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Figure 5.1: Extended computational domain with PML layers for 2-D problems.

In a split PML, Cartesian field components are split into two terms [64]. For example, a
field component such as the x component of the field

−→
F , denoted Fx , has been split into subfields

as Fx = Fxy + Fxz. In three dimensions, the resulting PML modification of the time-harmonic
Maxwell’s equations yields twelve equations, as follows:

Hxy = − 1(
jωμo + σm

y

) ∂
(
Ezx + Ezy

)
∂y

(5.11a)

Hxz = 1(
jωμo + σm

z

) ∂
(
Eyz + Eyx

)
∂z

(5.11b)

Hyz = − 1(
jωμo + σm

z

) ∂
(
Exy + Exz

)
∂z

(5.11c)

Hyx = 1(
jωμo + σm

x

) ∂
(
Ezx + Ezy

)
∂x

(5.11d)
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Hzx = − 1(
jωμo + σm

x

) ∂
(
Eyz + Eyx

)
∂x

(5.11e)

Hzy = 1(
jωμo + σm

y

) ∂
(
Exy + Exz

)
∂y

(5.11f )

Exy = 1(
jωεo + σe

y

) ∂
(
Hzx + Hzy

)
∂y

(5.11g)

Exz = − 1(
jωεo + σe

z

) ∂
(
Hyz + Hyx

)
∂z

(5.11h)

Eyz = 1(
jωεo + σe

z

) ∂
(
Hxy + Hxz

)
∂z

(5.11i)

Eyx = − 1(
jωεo + σe

x

) ∂
(
Hzx + Hzy

)
∂x

(5.11j)

Ezx = 1(
jωεo + σe

x

) ∂
(
Hyz + Hyx

)
∂x

(5.11k)

Ezy = − 1(
jωεo + σe

y

) ∂
(
Hxy + Hxz

)
∂y

(5.11l)

where μo and εo are assumed to be the free space permeability and permittivity, and σm and σe are
the magnetic and electric conductivities, respectively.

The split field algorithm has some disadvantages, such as a relatively large memory requirement
and the difficulty to match lossy media. In order to overcome the mentioned disadvantages, an
unsplitted field algorithm [65] can be used in the time-harmonic cases. This technique is based
on a Maxwellian formulation which makes the technique easier to use and more computationally
efficient. According to this technique, the field components can be unified such that

Ex = Exy + Exz Hx = Hxy + Hxz

Ey = Eyz + Eyx Hy = Hyz + Hyx (5.12)

Ez = Ezx + Ezy Hz = Hzx + Hzy .

Therefore, in the time-harmonic case, certain pairs of equations, e.g., (5.11a) and (5.11b), can be
added together to obtain (5.13a). This gives us an equivalent system of scalar equations called the
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unsplit field PML equations:

Hx = 1(
jωμo + σm

z

) ∂Ey

∂z
− 1(

jωμo + σm
y

) ∂Ez

∂y
(5.13a)

Hy = 1(
jωμo + σm

x

) ∂Ez

∂x
− 1(

jωμo + σm
z

) ∂Ex

∂z
(5.13b)

Hz = 1(
jωμo + σm

y

) ∂Ex

∂y
− 1(

jωμo + σm
x

) ∂Ey

∂x
(5.13c)

Ex = 1(
jωεo + σe

y

) ∂Hz

∂y
− 1(

jωεo + σe
z

) ∂Hy

∂z
(5.13d)

Ey = 1(
jωεo + σe

z

) ∂Hx

∂z
− 1(

jωεo + σe
x

) ∂Hz

∂x
(5.13e)

Ez = 1(
jωεo + σe

x

) ∂Hy

∂x
− 1(

jωεo + σe
y

) ∂Hx

∂y
. (5.13f )

2D TMZ FORMULATION
Assuming that there is no variation in the z-direction, the 2D TMZ PML equations can be obtained
from (5.13):

Hx + 1(
jωμo + σm

y

) ∂Ez

∂y
= 0 (5.14a)

Hy − 1(
jωμo + σm

x

) ∂Ez

∂x
= 0 (5.14b)

Ez + 1(
jωεo + σe

y

) ∂Hx

∂y
− 1(

jωεo + σe
x

) ∂Hy

∂x
= 0. (5.14c)

If we compare the TMZ equations (5.14) to (5.7), it can be seen that they are similar. Instead
of two separate sets of equations for the PML region and the non-PML region, we can work with
one set of equations which is valid in the entirety of the computation space:
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Hscat,x + 1

jωμxy

∂Escat,z

∂y
= μo − μxi

μxi

Hinc,x (5.15a)

Hscat,y − 1

jωμyx

∂Escat,z

∂x
= μo − μyi

μyi

Hinc,y (5.15b)

Escat,z + 1

jωεzy

∂Hscat,x

∂y
− 1

jωεzx

∂Hscat,y

∂x
= εo − εzi

εzi

Einc,z . (5.15c)

The material parameters are distributed differently in the PML and non-PML regions. In the
non-PML region (original computational domain) the material parameter distribution is described
by:

μxy = μx εzx = εz

μyx = μy εzy = εz (5.16)

μxi = μx εzi = εz

μyi = μy

while the material parameters inside the PML region are:

μxy = μo + σm
y

jω
εzx = εo + σe

x

jω

μyx = μo + σm
x

jω
εzy = εo + σe

y

jω
(5.17)

μxi = μo εzi = εo

μyi = μo .

Note that if the medium is lossy then the real part of ε represents the dielectric constant,
and the imaginary part of ε represents the electric loss of the medium. Similarly, the real part of μ

represents the magnetic permeability, and the imaginary part of it represents the magnetic loss of
the medium.
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2D TEZ FORMULATION
2D TEZ PML equations can be obtained from (5.13) assuming that there is no variation in the
z-direction:

Ex − 1(
jωεo + σe

y

) ∂Hz

∂y
= 0 (5.18a)

Ey + 1(
jωεo + σe

x

) ∂Hz

∂x
= 0 (5.18b)

Hz + 1(
jωμo + σm

x

) ∂Ey

∂x
− 1(

jωμo + σm
y

) ∂Ex

∂y
= 0 (5.18c)

Similar to the TMZ case, the TEZ equations (5.18) and (5.8) can be reduced to one set of
equations which is valid in the entirety of the computation space:

Escat,x − 1

jωεxy

∂Hscat,z

∂y
= εo − εxi

εxi

Einc,x (5.19a)

Escat,y + 1

jωεyx

∂Hscat,z

∂x
= εo − εyi

εyi

Einc,y (5.19b)

Hscat,z + 1

jωμzx

∂Escat,y

∂x
− 1

jωμzy

∂Escat,x

∂y
= μo − μzi

μzi

Hinc,z (5.19c)

Again, the material parameters are distributed differently in the PML and non-PML regions.
In the non-PML region the material parameter distribution is given by:

εxy = εx μzx = μz

εyx = εy μzy = μz

εxi = εx μzi = μz (5.20)
εyi = εy

while the material parameters inside the PML region are:

εxy = εo + σe
y

jω
μzx = μo + σm

x

jω

εyx = εo + σe
x

jω
μzy = μo + σm

y

jω
(5.21)

εxi = εo μzi = μo

εyi = εo .
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5.3 SCATTERING FROM TWO-DIMENSIONAL OBJECTS
UPDATE EQUATIONS
The multiresolution frequency domain technique can be used to solve the 2D TMZ scattering
problem governed by the equations (5.15). For this purpose, on the extended PML computational
domain, the field components and material properties are placed on the 2D lattice as shown in
Figure 5.2.

Figure 5.2: Positions of the TMZ field components and material parameters on the 2D Yee cell.
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Utilizing the MRFD scheme for TMZ case, equations (5.15) can be discretized as:

Hscat,x(i, j) + a(1)

jωμxy(i, j)�y

[
Escat,z(i, j + 1) − Escat,z(i, j)

]

+ a(2)

jωμxy(i, j)�y

[
Escat,z(i, j + 2) − Escat,z(i, j − 1)

]
(5.22a)

+ a(3)

jωμxy(i, j)�y

[
Escat,z(i, j + 3) − Escat,z(i, j − 2)

]

= μo − μxi(i, j)

μxi(i, j)
Hinc,x(i, j)

Hscat,y(i, j) − a(1)

jωμyx(i, j)�x

[
Escat,z(i + 1, j) − Escat,z(i, j)

]

− a(2)

jωμyx(i, j)�x

[
Escat,z(i + 2, j) − Escat,z(i − 1, j)

]
(5.22b)

− a(3)

jωμyx(i, j)�x

[
Escat,z(i + 3, j) − Escat,z(i − 2, j)

]

= μo − μyi(i, j)

μyi(i, j)
Hinc,y(i, j)

− Escat,z(i, j) + a(1)

jωεzx(i, j)�x

[
Hscat,y(i, j) − Hscat,y(i − 1, j)

]

+ a(2)

jωεzx(i, j)�x

[
Hscat,y(i + 1, j) − Hscat,y(i − 2, j)

]
(5.22c)

+ a(3)

jωεzx(i, j)�x

[
Hscat,y(i + 2, j) − Hscat,y(i − 3, j)

]

− a(1)

jωεzy(i, j)�y

[
Hscat,x(i, j) − Hscat,x(i, j − 1)

]

− a(2)

jωεzy(i, j)�y

[
Hscat,x(i, j + 1) − Hscat,x(i, j − 2)

]

− a(3)

jωεzy(i, j)�y

[
Hscat,x(i, j + 2) − Hscat,x(i, j − 3)

]

= εzi(i, j) − εo

εzi(i, j)
Einc,z(i, j)

where the a(l) coefficients are again given in Table 3.1.
Utilizing the 2D lattice as shown in Figure 5.3, MRFD update equations for the 2D TEZ

scattering problem governed by the equations (5.19) can be obtained:
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Figure 5.3: Positions of TEZ field components and material parameters on the 2D Yee cell.

Escat,x(i, j) − a(1)

jωεxy(i, j)�y

[
Hscat,z(i, j) − Hscat,z(i, j − 1)

]

− a(2)

jωεxy(i, j)�y

[
Hscat,z(i, j + 1) − Hscat,z(i, j − 2)

]
(5.23a)

− a(3)

jωεxy(i, j)�y

[
Hscat,z(i, j + 2) − Hscat,z(i, j − 3)

]

= εo − εxi(i, j)

εxi(i, j)
Einc,x(i, j)

Escat,y(i, j) + a(1)

jωεyx(i, j)�x

[
Hscat,z(i, j) − Hscat,z(i − 1, j)

]

+ a(2)

jωεyx(i, j)�x

[
Hscat,z(i + 1, j) − Hscat,z(i − 2, j)

]
(5.23b)

+ a(3)

jωεyx(i, j)�x

[
Hscat,z(i + 2, j) − Hscat,z(i − 3, j)

]

= εo − εyi(i, j)

εyi(i, j)
Einc,y(i, j)
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Hscat,z(i, j) + a(1)

jωμzx(i, j)�x

[
Escat,y(i + 1, j) − Escat,y(i, j)

]

+ a(2)

jωμzx(i, j)�x

[
Escat,y(i + 2, j) − Escat,y(i − 1, j)

]
(5.23c)

+ a(3)

jωμzx(i, j)�x

[
Escat,y(i + 3, j) − Escat,y(i − 2, j)

]

− a(1)

jωμzy(i, j)�y

[
Escat,x(i, j + 1) − Escat,x(i, j)

]

− a(2)

jωμzy(i, j)�y

[
Escat,x(i, j + 2) − Escat,x(i, j − 1)

]

− a(3)

jωμzy(i, j)�y

[
Escat,x(i, j + 3) − Escat,x(i, j − 2)

]

= μo − μzi(i, j)

μzi(i, j)
Hinc,z(i, j)

The tangential
−→
E and normal

−→
H field components on the boundary of the extended com-

putational boundary are set to zero (i.e., a PEC wall is assumed at the outer side of the PML layers
as shown in Figure 5.1). Image principle is again used to extend the electromagnetic fields beyond
the computational domain by forcing odd symmetry for tangential electric fields and normal mag-
netic fields. The three field components at the interior nodes can be computed by solving the linear
system of equations (5.22) for the TMZ case and (5.23) for the TEZ case. These equations can be
arranged in matrix form as [A][EH ] = [B] where [A] is a (N × N) coefficient matrix, [EH ] is the
unknown vector containing scattered

−→
E and

−→
H field components, and [B] is the excitation vector

representing the right-hand sides of (5.22) or (5.23). The excitation vector depends on all incident
field components. The matrix system defined by (5.22) or (5.23) is again very sparse, since each row
of the matrix has at most thirteen nonzero elements.

The parameters that are used to set up the computational domain are listed in Table 5.1.

INCIDENT FIELD EXPRESSIONS
The TMZ incident plane wave presented in Fig. 5.4a can be expressed as:

−→
E inc(

−→
r ) = E0ẑe

−j �k.
⇀
r (5.24)
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where E0 specifies the amplitude of the plane wave.The propagation vector �k and the position vector
⇀
r can be written as:

−→
k = −k(cos φincx̂ + sin φincŷ) (5.25a)
−→
r = xx̂ + yŷ (5.25b)

φ φφ φ

Figure 5.4: Incident plane waves in a 2D space: (a) TMZ; (b) TEZ.

Table 5.1: Parameters used in the extended computational domain

PMLN

AIRN

_OBJ XN and _OBJ YN

_2 ( ) 1x PML AIR OBJ XN N N N= × + + +

_2 ( ) 1y PML AIR OBJ YN N N N= × + + +

x yN N×

( 1)x yN N× −

( 1)y xN N× −
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Since the incident field is assumed to be propagating in free space, k = k0 = ω
√

μ0ε0. After
performing the dot product of (5.25a) and (5.25b), (5.24) becomes:

−→
E inc(

−→
r ) = E0ẑe

jk(x cos φinc+y sin φinc) (5.26)

The
−→
H field components can be extracted as:

−→
H inc(

−→
r ) = 1

η

[
k̂ × −→

E (
−→
r )

]
(5.27)

= 1

η
E0 cos φincŷejk(x cos φinc+y sin φinc) − 1

η
E0 sin φincx̂ejk(x cos φinc+y sin φinc)

The incident field components for 2D TMZ problems are:

Einc,z = E0e
jk(x cos φinc+y sin φinc) (5.28a)

Hinc,x = −1

η
E0 sin φince

jk(x cos φinc+y sin φinc) (5.28b)

Hinc,y = 1

η
E0 cos φince

jk(x cos φinc+y sin φinc). (5.28c)

In a similar fashion, the incident field components for the TEZ case shown in Fig. 5.4b can
be extracted. The

−→
H field can be expressed as:

−→
H inc(

−→
r ) = H0ẑe

−j �k.
⇀
r = H0ẑe

jk(x cos φinc+y sin φinc) (5.29)

The electric field components can be extracted as:

−→
E inc(

−→
r ) = −η

[
k̂ × −→

H inc(
−→
r )

]
(5.30)

= −ηH0 cos φincŷejk(x cos φinc+y sin φinc) + ηH0 sin φincx̂ejk(x cos φinc+y sin φinc)

The incident field components for 2D TEZ problems are:

Hinc,z = H0e
jk(x cos φinc+y sin φinc) (5.31a)

Einc,x = ηH0 sin φince
jk(x cos φinc+y sin φinc) (5.31b)

Einc,y = −ηH0 cos φince
jk(x cos φinc+y sin φinc). (5.31c)

NUMERICAL RESULTS
In this section, the finite difference and multiresolution approaches are applied to the two-
dimensional problems of scattering of a plane wave from dielectric and PEC cylinders. The fields
in the computational domain and in the far field region are calculated and presented. The far field
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calculation procedure is summarized in Appendix D. The problems are solved with both methods
for the purpose of comparison.

The source codes are written in Matlab and executed using a laptop PC equipped with a
Pentium M processor at 1.6 GHz and 1 GB of memory.The coefficient matrices are stored in sparse
matrices to reduce memory requirements. For all of the problems, number of air layers (NAIR)

and PML layers (NPML) is set to 4 and 8, respectively, and a parabolic variation of conductivity
with R(0) = 10−17 is used in the PML. For each example, simulation parameters and consumed
computer resources are summarized in Table 5.2.

Table 5.2: Simulation parameters and computer resources consumed by the two
methods

First, the problem of scattering from a circular dielectric cylinder with εr = 4, illustrated in
Figure 5.5b, is considered. The cylinder is illuminated by an incident 3 GHz TMZ plane wave with
180◦ incidence angle off the x-axis. The MRFD sampling rate (�x = �y = 5 mm = λmin/10) is
kept low compared to the higher one in the FDFD (�x = �y = 2 mm = λmin/25).The magnitude
of Hy along y = 0 is calculated and plotted in Figure 5.6. The far field distribution for the problem
is also calculated. The scattered far field represented by bistatic echo width is shown in Figure 5.7.
Both graphs show that there is a good agreement between MRFD and FDFD results. For this case,
the memory and processing time savings of the multiresolution technique are 44.8% and 74.8%,
respectively.

The second example considered is the problem of scattering from a square dielectric cylinder
with εr = 4, depicted in Figure 5.5a. The width of the square cylinder is 25 cm. The cylinder is
illuminated by a 3 GHz incident TEZ plane wave with 0◦ incidence angle off the x-axis. Compared
to the FDFD grid with (�x = �y = 2.5 mm = λmin/20), the MRFD grid is coarser (�x = �y =
6.25 mm = λmin/8), where λmin is the wavelength inside the scatterer. The scattered co-polarized
far field, represented by bistatic echo width, is presented in Figure 5.8. Both methods yield similar
results, however compared to the finite difference technique, memory and processing time savings
of the multiresolution technique are 37.8% and 59.6%, respectively, for the case at hand.
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φ φφφ φ

Figure 5.5: 2D dielectric cylinders illuminated by plane waves: (a) square cylinder; (b) circular cylinder.

 

 

Figure 5.6: Magnitude of Hy along y = 0, scattering from circular cylinder.
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Figure 5.7: Co-polarized bistatic echo width (σ/λ0 in dB) of the circular cylinder illuminated by an
incident TMZ plane wave.

The last example considered is the problem of scattering from two bodies with different
material formation: a square dielectric cylinder with εr = 4 and a square PEC cylinder, as illustrated
in Figure 5.9. The computational domain is excited by a 3 GHz incident TMZ plane wave with 90◦
incidence angle off the x-axis.

Again, the far field distribution for the problem is calculated with the MRFD and FDFD
techniques. The cell sizes are set to 6.25 mm and 2.5 mm for the MRFD and FDFD lattice, respec-
tively. The scattered co-polarized far field for the problem is shown in Figure 5.10. Both methods
yielding comparable accuracy, memory, and simulation time requirements of the multiresolution
technique is 47% and 73% lower than the FDFD.
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Figure 5.8: Co-polarized bistatic echo width (σ/λ0 in dB) of the square cylinder illuminated by an
incident TEZ plane wave.

Besides the grid resolution, the numbers of air layers and PML layers also have an effect on the
efficiency of the method. The effect of changing the number of PML layers on simulation accuracy
is investigated. For this purpose, the square dielectric cylinder shown in Figure 5.5a is considered.
The cylinder is illuminated by a 3 GHz incident TMZ plane wave with 0◦ incidence angle off the
x-axis. First, a standard set of values of the parameters are selected. The number of air layers is
chosen to be 16, cell size is chosen to be 5 mm, and a parabolic variation of conductivity in the PML
with R(0) = 10−17 is chosen. The magnitude of total electric field along x = 0 is calculated via the
MRFD scheme for different number of PML layers and plotted in Figure 5.11. It is clear from the
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ε =ε =

Figure 5.9: 2D dielectric and PEC cylinders illuminated by TMZ plane wave.

results that 8 layers of PML provide good accuracy, similar to the finite difference technique which
also requires at least 8 layers of PML to obtain almost the same accuracy [68].

The effect of changing the number of air layers is also investigated. Again, a standard set of
values of the parameters are selected which is the same as the previous problem except that NPML

is fixed at 16. Similarly, the magnitude of total electric field along x = 0 is calculated via MRFD
and plotted in Figure 5.12 for a different number of air layers. It is clear from the results that the
number of air layers does not affect the results significantly, and 4 layers of air is good enough to
achieve acceptable accuracy, similar to the finite difference technique.
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Figure 5.10: Co-polarized bistatic echo width (σ/λ0 in dB) for the dielectric PEC square cylinders
illuminated by an incident TMZ plane wave.
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Figure 5.11: Magnitude of EZ along x = 0 for various NPML.
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Figure 5.12: Magnitude of EZ along x = 0 for various NAIR .
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C H A P T E R 6

A Multiresolution Frequency
Domain Formulation for
Inhomogeneous Media

Multiresolution schemes for modeling homogeneous mediums are introduced in Chapter 3. In
this chapter, an MRFD scheme for analyzing inhomogeneous problems is formulated.

6.1 DERIVATION OF THE INHOMOGENEOUS
MULTIRESOLUTION FREQUENCY DOMAIN SCHEME

Multiresolution frequency domain techniques for modeling problems with homogeneous media
are formulated in Chapter 3; however, these formulations are easily extended to apply to problems
with inhomogeneous media. Satisfactory results are achieved with the aid of pointwise sampling
of material properties and averaging of material parameters at the interfaces between neighboring
mediums. These approaches introduce some errors which may increase if the contrast ratio of the
material properties of the neighboring mediums is high. In this section, we formulate a CDF(2,2)
wavelet based MRFD technique to model inhomogeneous mediums in a mathematically correct
way, which from now on we call the inhomogeneous MRFD formulation. In addition, magnetic
and electric conductivities are taken into consideration in the Maxwell’s curl equations for a more
general approach.

Considered Maxwell’s curl equations in matrix form are:⎡
⎣ 0 −∂/∂z ∂/∂y

∂/∂z 0 −∂/∂x

−∂/∂y ∂/∂x 0

⎤
⎦
⎡
⎣ Hx

Hy

Hz

⎤
⎦ (6.1a)

= jω

⎡
⎣ εx 0 0

0 εy 0
0 0 εz

⎤
⎦
⎡
⎣ Ex

Ey

Ez

⎤
⎦ +

⎡
⎣ σe

x 0 0
0 σe

y 0
0 0 σe

z

⎤
⎦
⎡
⎣ Ex

Ey

Ez

⎤
⎦



88 6. A MULTIRESOLUTION FREQUENCY DOMAIN FORMULATION

⎡
⎣ 0 ∂/∂z −∂/∂y

−∂/∂z 0 ∂/∂x

∂/∂y −∂/∂x 0

⎤
⎦
⎡
⎣ Ex

Ey

Ez

⎤
⎦ (6.1b)

= jω

⎡
⎣ μx 0 0

0 μy 0
0 0 μz

⎤
⎦
⎡
⎣ Hx

Hy

Hz

⎤
⎦ +

⎡
⎣ σm

x 0 0
0 σm

y 0
0 0 σm

z

⎤
⎦
⎡
⎣ Hx

Hy

Hz

⎤
⎦ .

These curl equations lead to six scalar equations in a Cartesian coordinate system:

jωεx(x, y, z)Ex(x, y, z) + σe
x (x, y, z)Ex(x, y, z) = ∂Hz(x, y, z)

∂y
− ∂Hy(x, y, z)

∂z
(6.2a)

jωεy(x, y, z)Ey(x, y, z) + σe
y (x, y, z)Ey(x, y, z) = ∂Hx(x, y, z)

∂z
− ∂Hz(x, y, z)

∂x
(6.2b)

jωεz(x, y, z)Ez(x, y, z) + σe
z (x, y, z)Ez(x, y, z) = ∂Hy(x, y, z)

∂x
− ∂Hx(x, y, z)

∂y
(6.2c)

jωμx(x, y, z)Hx(x, y, z) + σm
x (x, y, z)Hx(x, y, z) = −∂Ez(x, y, z)

∂y
+ ∂Ey(x, y, z)

∂z
(6.2d)

jωμy(x, y, z)Hy(x, y, z) + σm
y (x, y, z)Hy(x, y, z) = −∂Ex(x, y, z)

∂z
+ ∂Ez(x, y, z)

∂x
(6.2e)

jωμz(x, y, z)Hz(x, y, z) + σm
z (x, y, z)Hz(x, y, z) = −∂Ey(x, y, z)

∂x
+ ∂Ex(x, y, z)

∂y
. (6.2f )

For the discretization of these equations by the method of moments, the field components
should be first expanded in terms of the basis functions, which for this case is the dual scaling
function of the CDF(2,2) wavelet base:

Ex(x, y, z) =
∑

i′,j ′,k′
Ex(i

′, j ′, k′)φ̃i′+1/2(x)φ̃j ′(y)φ̃k′(z) (6.3a)

Ey(x, y, z) =
∑

i′,j ′,k′
Ey(i

′, j ′, k′)φ̃i′(x)φ̃j ′+1/2(y)φ̃k′(z) (6.3b)

Ez(x, y, z) =
∑

i′,j ′,k′
Ez(i

′, j ′, k′)φ̃i′(x)φ̃j ′(y)φ̃k′+1/2(z) (6.3c)
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Hx(x, y, z) =
∑

i′,j ′,k′
Hx(i

′, j ′, k′)φ̃i′(x)φ̃j ′+1/2(y)φ̃k′+1/2(z) (6.3d)

Hy(x, y, z) =
∑

i′,j ′,k′
Hy(i

′, j ′, k′)φ̃i′+1/2(x)φ̃j ′(y)φ̃k′+1/2(z) (6.3e)

Hz(x, y, z) =
∑

i′,j ′,k′
Hz(i

′, j ′, k′)φ̃i′+1/2(x)φ̃j ′+1/2(y)φ̃k′(z) . (6.3f )

Like the homogeneous case, the indexes i′, j ′, k′ indicate the discrete space lattice related to the
space grid through x = i′�x, y = j ′�y, and z = k′�z, and the locations of the scaling functions
are selected such that they are centered at the location of the corresponding field component on the
Yee cell.

The procedure for deriving the update equations of all six scalar equations is similar.Therefore,
for the sake of illustration, we derive the update equations only for the x components of the electric
and magnetic fields.

The update equation for (6.2a) is considered first. In order to obtain relatively simple update
equations, we define the functions εrx(x, y, z) and σe

x (x, y, z) following the procedure of [67], such
that:

εx(x, y, z) = ε0 [1 + εrx(x, y, z)] (6.4a)

εrx(x, y, z) = εrx(x)εrx(y)εrx(z) (6.4b)

σe
x (x, y, z) = σe

x (x)σ e
x (y)σ e

x (z). (6.4c)

The outline of the derivation is similar to the homogeneous case. The field expansions (6.3)
are substituted into (6.2a) and tested with φi+1/2(x)φj (y)φk(z), following the Galerkin’s method.
The first term of the left-hand side of (6.2a) is tested as follows:

jω

∞∫
−∞

∞∫
−∞

∞∫
−∞

εx(x, y, z)Ex(x, y, z)φi+1/2(x)φj (y)φk(z)dxdydz

= jωε0

∞∫
−∞

∞∫
−∞

∞∫
−∞

[1 + εrx(x, y, z)] Ex(x, y, z)φi+1/2(x)φj (y)φk(z)dxdydz
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= jωε0

∞∫
−∞

∞∫
−∞

∞∫
−∞

⎡
⎣ ∑

i′,j ′,k′
Ex(i

′, j ′, k′)φ̃i′+1/2(x)φ̃j ′(y)φ̃k′(z)

⎤
⎦φi+1/2(x)φj (y)φk(z)dxdydz

+ jωε0

∞∫
−∞

∞∫
−∞

∞∫
−∞

⎛
⎜⎝ εrx(x, y, z)

[ ∑
i′,j ′,k′

Ex(i
′, j ′, k′)φ̃i′+1/2(x)φ̃j ′(y)φ̃k′(z)

]

.φi+1/2(x)φj (y)φk(z)dxdydz

⎞
⎟⎠

= jωε0

∑
i′,j ′,k′

Ex(i
′, j ′, k′)

∞∫
−∞

φ̃i′+1/2(x)φi+1/2(x)dx

∞∫
−∞

φ̃j ′(y)φj (y)dy

∞∫
−∞

φ̃k′(z)φk(z)dz

+ jωε0

∑
i′,j ′,k′

(6.5)

⎛
⎝ Ex(i

′, j ′, k′).
∞∫

−∞
εrx(x)φ̃i′+1/2(x)φi+1/2(x)dx

∞∫
−∞

εrx(y)φ̃j ′(y)φj (y)dy
∞∫

−∞
εrx(z)φ̃k′(z)φk(z)dz

⎞
⎠

= jωε0Ex(i, j, k)�x�y�z + jωε0�x�y�z
∑

i′,j ′,k′

(
Ex(i

′, j ′, k′)εi′+1/2,i+1/2
rx ε

j ′,j
rx εk′,k

rx

)

where

ε
i′+1/2,i+1/2
rx = 1

�x

∞∫
−∞

εrx(x)φ̃i′+1/2(x)φi+1/2(x)dx (6.6a)

ε
j ′,j
rx = 1

�y

∞∫
−∞

εrx(y)φ̃j ′(y)φj (y)dy (6.6b)

εk′,k
rx = 1

�z

∞∫
−∞

εrx(z)φ̃k′(z)φk(z)dz. (6.6c)
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Next, the second term of the left-hand side of (6.2a) is tested:

∞∫
−∞

∞∫
−∞

∞∫
−∞

σe
x (x, y, z)Ex(x, y, z)φi+1/2(x)φj (y)φk(z)dxdydz (6.7)

=
∞∫

−∞

∞∫
−∞

∞∫
−∞

σe
x (x, y, z)

⎡
⎣ ∑

i′,j ′,k′
Ex(i

′, j ′, k′)φ̃i′+1/2(x)φ̃j ′(y)φ̃k′(z)

⎤
⎦φi+1/2(x)φj (y)φk(z)dxdydz

=
∑

i′,j ′,k′
Ex(i

′, j ′, k′)
∞∫

−∞

∞∫
−∞

∞∫
−∞

σe
x (x, y, z)φ̃i′+1/2(x)φ̃j ′(y)φ̃k′(z)φi+1/2(x)φj (y)φk(z)dxdydz

=
∑

i′,j ′,k′
Ex(i

′, j ′, k′)
∞∫

−∞
σe

x (x)φ̃i′+1/2(x)φi+1/2(x)dx

∞∫
−∞

σe
x (y)φ̃j ′(y)φj (y)dy

∞∫
−∞

σe
x (z)φ̃k′(z)φk(z)dz

= �x�y�z
∑

i′,j ′,k′
Ex(i

′, j ′, k′)σ i′+1/2,i+1/2
ex σ

j ′,j
ex σ k′,k

ex

where

σ
i′+1/2,i+1/2
ex = 1

�x

∞∫
−∞

σe
x (x)φ̃i′+1/2(x)φi+1/2(x)dx (6.8a)

σ
j ′,j
ex = 1

�y

∞∫
−∞

σe
x (y)φ̃j ′(y)φj (y)dy (6.8b)

σk′,k
ex = 1

�z

∞∫
−∞

σe
x (z)φ̃k′(z)φk(z)dz. (6.8c)
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Then, the first term of the right-hand side of (6.2a) is tested:

∞∫
−∞

∞∫
−∞

∞∫
−∞

∂Hz(x, y, z)

∂y
φi+1/2(x)φj (y)φk(z)dxdydz (6.9)

=
∞∫

−∞

∞∫
−∞

∞∫
−∞

∂

∂y

⎡
⎣∑

i,j,k

Hz(i
′, j ′, k′)φ̃i′+1/2(x)φ̃j ′+1/2(y)φ̃k′(z)

⎤
⎦

φi+1/2(x)φj (y)φk(z)dxdydz

=
∑

i′,j ′,k′
Hz(i

′, j ′, k′)
∞∫

−∞
φ̃i′+1/2(x)φi+1/2(x)dx

∞∫
−∞

∂φ̃j ′+1/2(y)

∂y
φj (y)dy

∞∫
−∞

φ̃k′(z)φk(z)dz

= �x�z

3∑
l=1

a(l)
[
Hz(i, j + l − 1, k) − Hz(i, j − l, k)

]
.

Finally, the second term of the right-hand side of (6.2a) can similarly be sampled to yield:

∞∫
−∞

∞∫
−∞

∞∫
−∞

∂Hy(x, y, z)

∂z
φi+1/2(x)φj (y)φk(z)dxdydz (6.10)

= �x�y

3∑
l=1

a(l)
[
Hy(i, j, k + l − 1) − Hy(i, j, k − l)

]
.

Using (6.5), (6.7), (6.9), and (6.10), the tested (6.2a) becomes the MRFD update equation
for Ex :

jωε0

∑
i′,j ′,k′

Ex(i
′, j ′, k′)

[
δi′+1/2,i+1/2δj ′,j δk′,k + ε

i′+1/2,i+1/2
rx ε

j ′,j
rx εk′,k

rx

]
(6.11)

+
∑

i′,j ′,k′
Ex(i

′, j ′, k′)σ i′+1/2,i+1/2
ex σ

j ′,j
ex σ k′,k

ex

=
3∑

l=1

a(l)
Hz(i, j + l − 1, k) − Hz(i, j − l, k)

�y
−

3∑
l=1

a(l)
Hy(i, j, k + l − 1) − Hy(i, j, k − l)

�z
.

Now, we consider the update equation for Hx .The derivation is conducted by substituting the
field expansions (6.3) into (6.2d) and testing with φi(x)φj+1/2(y)φk+1/2(z), according to MoM.
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We define the functions μrx(x, y, z) and σm
x (x, y, z) to obtain simple update equations, such that

μx(x, y, z) = μ0 [1 + μrx(x, y, z)] (6.12a)

μrx(x, y, z) = μrx(x)μrx(y)μrx(z) (6.12b)

σm
x (x, y, z) = σm

x (x)σm
x (y)σm

x (z). (6.12c)

First, we test the first term of left-hand side of (6.2d):

jω

∞∫
−∞

∞∫
−∞

∞∫
−∞

μx(x, y, z)Hx(x, y, z)φi(x)φj+1/2(y)φk+1/2(z)dxdydz (6.13)

= jωμ0

∞∫
−∞

∞∫
−∞

∞∫
−∞

[1 + μrx(x, y, z)] Hx(x, y, z)φi(x)φj+1/2(y)φk+1/2(z)dxdydz

= jωμ0

∞∫
−∞

∞∫
−∞

∞∫
−∞

⎡
⎣ ∑

i′,j ′,k′
Hx(i

′, j ′, k′)φ̃i′(x)φ̃j ′+1/2(y)φ̃k′+1/2(z)

⎤
⎦

φi(x)φj+1/2(y)φk+1/2(z)dxdydz

+ jωμ0

∞∫
−∞

∞∫
−∞

∞∫
−∞

⎛
⎜⎝ μrx(x, y, z)

[ ∑
i′,j ′,k′

Hx(i
′, j ′, k′)φ̃i′(x)φ̃j ′+1/2(y)φ̃k′+1/2(z)

]

.φi(x)φj+1/2(y)φk+1/2(z)dxdydz

⎞
⎟⎠

= jωμ0

∑
i′,j ′,k′

Hx(i
′, j ′, k′)

∞∫
−∞

φ̃i′(x)φi(x)dx

∞∫
−∞

φ̃j ′+1/2(y)φj+1/2(y)dy

∞∫
−∞

φ̃k′+1/2(z)φk+1/2(z)dz

+ jωμ0

∑
i′,j ′,k′

⎛
⎜⎜⎝

Hx(i
′, j ′, k′)

∞∫
−∞

μrx(x)φ̃i′(x)φi(x)dx

∞∫
−∞

μrx(y)φ̃j ′+1/2(y)φj+1/2(y)dy
∞∫

−∞
μrx(z)φ̃k′+1/2(z)φk+1/2(z)dz

⎞
⎟⎟⎠

= jωμ0Hx(i, j, k)�x�y�z + jωμ0�x�y�z∑
i′,j ′,k′

Hx(i
′, j ′, k′)μi′,i

rx μ
j ′+1/2,j+1/2
rx μ

k′+1/2,k+1/2
rx
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where

μi′,i
rx = 1

�x

∞∫
−∞

μrx(x)φ̃i′(x)φi(x)dx (6.14a)

μ
j ′+1/2,j+1/2
rx = 1

�y

∞∫
−∞

μrx(y)φ̃j ′+1/2(y)φj+1/2(y)dy (6.14b)

μ
k′+1/2,k+1/2
rx = 1

�z

∞∫
−∞

μrx(z)φ̃k′+1/2(z)φk+1/2(z)dz . (6.14c)

Testing the second term of the left-hand side of (6.2d) yields:

∞∫
−∞

∞∫
−∞

∞∫
−∞

σm
x (x, y, z)Hx(x, y, z)φi(x)φj+1/2(y)φk+1/2(z)dxdydz (6.15)

=
∞∫

−∞

∞∫
−∞

∞∫
−∞

⎛
⎜⎝

σm
x (x, y, z)[ ∑
i′,j ′,k′

Hx(i
′, j ′, k′)φ̃i′(x)φ̃j ′+1/2(y)φ̃k′+1/2(z)

]
φi(x)φj+1/2(y)φk+1/2(z)dxdydz

⎞
⎟⎠

=
∑

i′,j ′,k′

⎛
⎜⎜⎝

Hx(i
′, j ′, k′)

∞∫
−∞

σm
x (x)φ̃i′(x)φi(x)dx

∞∫
−∞

σm
x (y)φ̃j ′+1/2(y)φj+1/2(y)dy

∞∫
−∞

σm
x (z)φ̃k′+1/2(z)φk+1/2(z)dz

⎞
⎟⎟⎠

= �x�y�z
∑

i′,j ′,k′
Hx(i

′, j ′, k′)σ i′,i
mx σ

j ′+1/2,j+1/2
mx σ

k′+1/2,k+1/2
mx

where

σ i′,i
mx = 1

�x

∞∫
−∞

σm
x (x)φ̃i′(x)φi(x)dx (6.16a)

σ
j ′+1/2,j+1/2
mx = 1

�y

∞∫
−∞

σm
x (y)φ̃j ′+1/2(y)φj+1/2(y)dy (6.16b)

σ
k′+1/2,k+1/2
mx = 1

�z

∞∫
−∞

σm
x (z)φ̃k′+1/2(z)φk+1/2(z)dz. (6.16c)
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Testing the first term of the right-hand side of (6.2d) yields:

∞∫
−∞

∞∫
−∞

∞∫
−∞

∂Ez(x, y, z)

∂y
φi(x)φj+1/2(y)φk+1/2(z)dxdydz (6.17)

=
∞∫

−∞

∞∫
−∞

∞∫
−∞

∂

∂y

⎡
⎣ ∑

i′,j ′,k′
Ez(i

′, j ′, k′)φ̃i′(x)φ̃j ′(y)φ̃k′+1/2(z)

⎤
⎦φi(x)φj+1/2(y)φk+1/2(z)dxdydz

=
∑

i′,j ′,k′
Ez(i

′, j ′, k′)
∞∫

−∞
φ̃i′(x)φi(x)dx

∞∫
−∞

∂φ̃j ′(y)

∂y
φj+1/2(y)dy

∞∫
−∞

φ̃k′+1/2(z)φk+1/2(z)dz

= �x�z

3∑
l=1

a(l)
[
Ez(i, j + l, k) − Ez(i, j − l + 1, k)

]
.

Finally, testing the second term of the right-hand side of (6.2d) similarly yields:

∞∫
−∞

∞∫
−∞

∞∫
−∞

∂Ey(x, y, z)

∂z
φi(x)φj+1/2(y)φk+1/2(z)dxdydz (6.18)

= �x�y

3∑
l=1

a(l)
[
Ey(i, j, k + l) − Ey(i, j, k − l + 1)

]
.

Use of (6.13), (6.15), (6.17), and (6.18) in the tested (6.2d) results in the MRFD update
equation for Hx :

jωμ0

∑
i′,j ′,k′

Hx(i
′, j ′, k′)

[
δi′,iδj ′+1/2,j+1/2δk′+1/2,k+1/2 + μi′,i

rx μ
j ′+1/2,j+1/2
rx μ

k′+1/2,k+1/2
rx

]

+
∑

i′,j ′,k′
Hx(i

′, j ′, k′)σ i′,i
mx σ

j ′+1/2,j+1/2
mx σ

k′+1/2,k+1/2
mx (6.19)

= −
3∑

l=1

a(l)
Ez(i, j + l, k) − Ez(i, j − l + 1, k)

�y
+

3∑
l=1

a(l)
Ey(i, j, k + l) − Ey(i, j, k − l + 1)

�z
.
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The update equations for the rest of the field components can be developed by following the
same procedure. These equations are summarized as:

⎛
⎜⎜⎝

jωε0
∑

i′,j ′,k′
Ex(i

′, j ′, k′)
[
δi′+1/2,i+1/2δj ′,j δk′,k + ε

i′+1/2,i+1/2
rx ε

j ′,j
rx ε

k′,k
rx

]
+ ∑

i′,j ′,k′
Ex(i

′, j ′, k′)σ i′+1/2,i+1/2
ex σ

j ′,j
ex σ

k′,k
ex

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

3∑
l=1

a(l)
Hz(i,j+l−1,k)−Hz(i,j−l,k)

�y

−
3∑

l=1
a(l)

Hy(i,j,k+l−1)−Hy(i,j,k−l)

�z

⎞
⎟⎟⎟⎠ (6.20a)

⎛
⎜⎜⎝

jωε0
∑

i′,j ′,k′
Ey(i

′, j ′, k′)
[
δi′,iδj ′+1/2,j+1/2δk′,k + ε

i′,i
ry ε

j ′+1/2,j+1/2
ry ε

k′,k
ry

]
+ ∑

i′,j ′,k′
Ey(i

′, j ′, k′)σ i′,i
ey σ

j ′+1/2,j+1/2
ey σ

k′,k
ey

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

3∑
l=1

a(l)
Hx(i,j,k+l−1)−Hx(i,j,k−l)

�z

−
3∑

l=1
a(l)

Hz(i+l−1,j,k)−Hz(i−l,j,k)
�x

⎞
⎟⎟⎟⎠ (6.20b)

⎛
⎜⎜⎝

jωε0
∑

i′,j ′,k′
Ez(i

′, j ′, k′)
[
δi′,iδj ′,j δk′+1/2,k+1/2 + ε

i′,i
rz ε

j ′,j
rz ε

k′+1/2,k+1/2
rz

]
+ ∑

i′,j ′,k′
Ez(i

′, j ′, k′)σ i′,i
ez σ

j ′,j
ez σ

k′+1/2,k+1/2
ez

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

3∑
l=1

a(l)
Hy(i+l−1,j,k)−Hy(i−l,j,k)

�x

−
3∑

l=1
a(l)

Hx(i,j+l−1,k)−Hx(i,j−l,k)
�y

⎞
⎟⎟⎟⎠ (6.20c)

⎛
⎜⎜⎝

jωμ0
∑

i′,j ′,k′
Hx(i

′, j ′, k′)
[
δi′,iδj ′+1/2,j+1/2δk′+1/2,k+1/2 + μ

i′,i
rx μ

j ′+1/2,j+1/2
rx μ

k′+1/2,k+1/2
rx

]
+ ∑

i′,j ′,k′
Hx(i

′, j ′, k′)σ i′,i
mx σ

j ′+1/2,j+1/2
mx σ

k′+1/2,k+1/2
mx

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

3∑
l=1

a(l)
Ey(i,j,k+l)−Ey(i,j,k−l+1)

�z

−
3∑

l=1
a(l)

Ez(i,j+l,k)−Ez(i,j−l+1,k)
�y

⎞
⎟⎟⎟⎠ (6.20d)
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⎛
⎜⎜⎝

jωμ0
∑

i′,j ′,k′
Hy(i

′, j ′, k′)
[
δi′+1/2,i+1/2δj ′,j δk′+1/2,k+1/2 + μ

i′+1/2,i+1/2
ry μ

j ′,j
ry μ

k′+1/2,k+1/2
ry

]
+ ∑

i′,j ′,k′
Hy(i

′, j ′, k′)σ i′+1/2,i+1/2
my σ

j ′,j
my σ

k′+1/2,k+1/2
my

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

3∑
l=1

a(l)
Ez(i+l,j,k)−Ez(i−l+1,j,k)

�x

−
3∑

l=1
a(l)

Ex(i,j,k+l)−Ex(i,j,k−l+1)
�z

⎞
⎟⎟⎟⎠ (6.20e)

⎛
⎜⎜⎝

jωμ0
∑

i′,j ′,k′
Hz(i

′, j ′, k′)
[
δi′+1/2,i+1/2δj ′+1/2,j+1/2δk′,k + μ

i′+1/2,i+1/2
rz μ

j ′+1/2,j+1/2
rz μ

k′,k
rz

]
+ ∑

i′,j ′,k′
Hz(i

′, j ′, k′)σ i′+1/2,i+1/2
mz σ

j ′+1/2,j+1/2
mz σ

k′,k
mz

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

3∑
l=1

a(l)
Ex(i,j+l,k)−Ex(i,j−l+1,k)

�y

−
3∑

l=1
a(l)

Ey(i+l,j,k)−Ey(i−l+1,j,k)

�x

⎞
⎟⎟⎟⎠ . (6.20f )

The following coefficients are utilized in the update equations (6.20):

εi′,i
rα = 1

�x

∞∫
−∞

εrα(x)φ̃i′(x)φi(x)dx μi′,i
rα = 1

�x

∞∫
−∞

μrα(x)φ̃i′(x)φi(x)dx

ε
j ′,j
rα = 1

�y

∞∫
−∞

εrα(y)φ̃j ′(y)φj (y)dy μ
j ′,j
rα = 1

�y

∞∫
−∞

μrα(y)φ̃j ′(y)φj (y)dy (6.21)

εk′,k
rα = 1

�z

∞∫
−∞

εrα(z)φ̃k′(z)φk(z)dz μk′,k
rα = 1

�z

∞∫
−∞

μrα(z)φ̃k′(z)φk(z)dz
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and

σ i′,i
eα = 1

�x

∞∫
−∞

σe
α(x)φ̃i′(x)φi(x)dx σ i′,i

mα = 1

�x

∞∫
−∞

σm
α (x)φ̃i′(x)φi(x)dx

σ
j ′,j
eα = 1

�y

∞∫
−∞

σe
α(y)φ̃j ′(y)φj (y)dy σ

j ′,j
mα = 1

�y

∞∫
−∞

σm
α (y)φ̃j ′(y)φj (y)dy (6.22)

σk′,k
eα = 1

�z

∞∫
−∞

σe
α(z)φ̃k′(z)φk(z)dz σ k′,k

mα = 1

�z

∞∫
−∞

σm
α (z)φ̃k′(z)φk(z)dz

where α is x, y, or z.

6.2 1D APPLICATION: DIELECTRIC SLAB LOADED
FABRY-PEROT RESONATOR

To keep the presentation simple, a 1D problem is preferred as a numerical example. The considered
1D problem is the dielectric slab loaded Fabry-Perot resonator structure depicted in Figure 6.1. The
dielectric slab is assumed to have zero magnetic and electric conductivity.

ε ε= ε ε ε= ε ε=ε ε= ε ε ε= ε ε=

Figure 6.1: Dielectric loaded Fabry-Perot resonator.
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FORMULATION
Inside the resonator, Maxwell’s vector curl equations can be reduced into two scalar equations:

∂Hy

∂x
− jωεzEz = 0 (6.23a)

∂Ez

∂x
− jωμyHy = 0. (6.23b)

Using the one-dimensional grid shown in Figure 4.2, the 1D MRFD update equations
for (6.23) can be derived by simplifying (6.20):

jω
∑
i′

Ez(i
′)αi′,i =

3∑
l=1

a(l)

[
Hy(i + l − 1) − Hy(i − l)

]
�x

(6.24a)

jωμ0Hy(i) =
3∑

l=1

a(l)

[
Ez(i + l) − Ez(i − l + 1)

]
�x

(6.24b)

where

αi′,i = ε0

[
δi′,i + εi′,i

rz

]
(6.25)

εi′,i
rz = (εr − 1)

�x

x2∫
x1

φ̃i′(x)φi(x)dx (6.26)

Some cross terms between MRFD update equations will appear around the vicinity of the
discontinuity. Consider Figure 6.2 where there is an air-dielectric interface coinciding with the grid
line at x = n�x.The discretization of (6.23a) in the vicinity of the interface results in three coupled
MRFD update equations:

jωE(n − 1)αn−1,n−1 + jωE(n)αn−1,n =
3∑

l=1

a(l)

[
Hy(n + l − 2) − Hy(n − l − 1)

]
�x

(6.27a)

jωE(n)αn,n =
3∑

l=1

a(l)

[
Hy(n + l − 1) − Hy(n − l)

]
�x

(6.27b)

jωE(n + 1)αn+1,n+1 + jωE(n)αn+1,n =
3∑

l=1

a(l)

[
Hy(n + l) − Hy(n − l + 1)

]
�x

(6.27c)
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with the α coefficients given by:

αn−1,n−1 = ε1 (6.28a)

αn,n = ε1 + ε2

2
(6.28b)

αn+1,n+1 = ε2 (6.28c)

αn−1,n = 0.00037(ε1 − ε2) (6.28d)

αn+1,n = 0.00037(ε2 − ε1). (6.28e)

ε ε= ε ε ε=

Figure 6.2: Interface between two different dielectric mediums.

Notice that ignoring the αn−1,n and αn+1,n coefficients leads to the homogeneous MRFD
formulation with the averaging of material parameters.

NUMERICAL RESULTS
The dielectric loaded Fabry-Perot resonator depicted in Figure 6.1 with l = 1 m, x1 = 0.4 m, and
x2 = 0.6 m is analyzed for two different dielectric constants. The first two resonance frequencies of
the resonator are calculated with both homogeneous (with pointwise sampling of material parameters
and averaging of material parameters at interfaces) and inhomogeneous MRFD formulations with
a cell size of �x = 4 cm, and the results are compared to the analytical values in Table 6.1.

Results show insignificant differences between the two formulations even if the contrast ratio
of the dielectric constants of two neighboring mediums is a high value like 64:1. This is simply a
result of the two formulations being identical except for the non-diagonal α coefficients (αn−1,n and
αn+1,n), which are very small compared to the diagonal α coefficients.
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In conclusion, the homogeneous MRFD formulation based on the CDF(2,2) wavelet,utilizing
the use of pointwise sampling and averaging of material parameters, is found to be accurate enough
to replace the inhomogeneous MRFD formulation.

Table 6.1: Resonance frequencies of the dielectric loaded resonator
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C H A P T E R 7

Conclusion
This chapter concludes the book. The contributions of the work are summarized and future
work to further improve the MRFD technique is suggested.

The primary focus of this research was to develop new frequency domain computational elec-
tromagnetic techniques based on multiresolution analysis. It was anticipated that the new formula-
tions exhibit superior efficiency characteristics compared to the finite difference frequency domain
scheme. The new general formulation, named the multiresolution frequency domain technique, is
based on Battle-Lemarie and biorthogonal CDF scaling functions.

The memory and simulation time requirements of various MRFD schemes based on dif-
ferent wavelet bases are compared by calculating the resonance frequency of homogeneous and
inhomogeneous one-dimensional resonators. It was concluded that the CDF(2,2) wavelet-based
MRFD scheme exhibits the highest efficiency among other schemes based on CDF wavelets and
Battle-Lemarie wavelets.

The CDF(2,2) wavelet-based MRFD formulation is also implemented for two and three-
dimensional closed space problems. The propagation characteristics of various waveguiding struc-
tures are analyzed and the resonance frequencies of three-dimensional resonators are computed.
In a one-dimensional case, the MRFD method showed significant savings in terms of computer
memory and simulation time compared to the FDFD method; however extension to two and three-
dimensional problems produced even more pronounced savings.

In order to emphasize the versatility of the MRFD technique, scattering problems are also
characterized with the new formulation. An unsplit scattering field formulation is developed to
model open problems, and the perfectly matched layer (PML) technique is employed in order to
truncate the computational space. Similar to the closed space problems, MRFD technique produced
improved efficiency figures.

Finally, a new multiresolution technique is proposed in order to model inhomogeneous medi-
ums in a mathematically correct way, which is called the inhomogeneous MRFD formulation. This
formulation is compared to the simple MRFD formulation to conclude that the simple MRFD
formulation provides enough accuracy even for inhomogeneous problems.

The current research can be extended in many directions. The following suggestions are only
a few:

The introduced MRFD formulations are based on only the scaling functions. The MRFD
algorithm based on both scaling and wavelet functions promises a multigrid formulation which can
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be used to introduce finer resolutions around discontinuities. This could especially be used to model
very thin layers or sub-cell size discontinuities.

Finite difference or multiresolution modeling of PEC objects that do not conform to the
rectangular grid has proven to be a challenge. The MRFD method can be extended to model non-
conformal PEC-dielectric interfaces.

Extending the formulation to model complex mediums such as chiral or gyrotropic mediums
can be another research direction.
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A P P E N D I X A

Resonance Frequencies of a
Dielectric Loaded Fabry-Perot

Resonator
The Fabry-Perot resonator with a dielectric slab inserted between its plates is shown in Figure A.1. If
plane wave propagation and lossless medium inside the plates is assumed, the propagation constant
β can be calculated from:

k cot β1S1 (cot βS2 + cot βx1) + cot βS2 cot βx1 − k2 = 0 (A.1)

where β is the propagation constant inside the air regions, β1 is the propagation constant inside the
dielectric slab, and

k =
√

μ1/ε1

μ2/ε2
=
√

μ1ε2

μ2ε1
. (A.2)

ε ε
μ μ

=
=

ε ε ε
μ μ

=
=

ε ε
μ μ

=
=

ε ε
μ μ

=
=

ε ε ε
μ μ

=
=

ε ε
μ μ

=
=

Figure A.1: Dielectric loaded Fabry-Perot resonator.
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If a non-magnetic dielectric slab, as shown in Figure A.1, is assumed,k and β1 can be simplified
as:

k = √
εr (A.3a)

β1 = √
εrβ . (A.3b)

Substituting (A.3) into (A.1) yields:

√
εr cot

(√
εrβS1

)
(cot βS2 + cot βx1) + cot βS2 cot βx1 − εr = 0 . (A.4)

(A.4) can be solved to calculate β. Note that (A.4) is a transcendental equation and many
values of β, each corresponding to a resonant mode, can satisfy it.

Once β values are obtained, the corresponding resonance frequencies can be calculated by:

f = β

2π
√

ε0μ0
. (A.5)
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A P P E N D I X B

Propagation Constant of
Rectangular Waveguide

Structures
The uniform rectangular waveguide structure is shown in Figure B.1a. The propagation constants
of the TEZ,m,n modes of this structure can be calculated by:

βm,n = 2π

√
με

(
f 2 − f 2

C,m,n

)
(B.1)

where fC is the cut-off frequency given by

fC,m,n = 1√
με

√(m

a

)2 +
(n

b

)2
. (B.2)

The propagation constants of the TMX,m,n modes of the partially filled rectangular waveguide
structure (Figure B.1b) can be calculated by:

kx1

ε1
tan kx1d = −kx2

ε2
tan [kx2(a − h)] (B.3)

where

kx1 =
√

ω2ε1μ1 −
(nπ

b

)2 − β2 (B.4a)

kx2 =
√

ω2ε2μ2 −
(nπ

b

)2 − β2 (B.4b)
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Figure B.1: Rectangular waveguide structures.
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A P P E N D I X C

Resonance Frequencies of
Rectangular Cavity Resonators

The resonance frequencies of the uniform cavity resonator shown in Figure C.1a are given by:

fr,m,n,p = 1

2
√

εμ

√(m

a

)2 +
(n

b

)2 +
(p

c

)2
(C.1)

The m, n, p coefficients for the T Em,n,p modes are

m = 0, 1, 2, ...

n = 0, 1, 2, ...

p = 1, 2, 3, ... (C.2)
m = n = 0 excepted

and the m, n, p coefficients for the T Mm,n,p modes are

m = 1, 2, 3, ...

n = 1, 2, 3, ... (C.3)
p = 0, 1, 2, ...

The resonance frequencies of the partially filled cavity resonator shown in Figure C.1b can
be calculated by:

kx1

ε1
tan kx1d = −kx2

ε2
tan [kx2(a − h)] (C.4)

kx1

μ1
cot kx1d = −kx2

μ2
cot [kx2(a − h)] (C.5)

where

kx1 =
√

ω2ε1μ1 −
(nπ

b

)2 −
(pπ

c

)2
(C.6a)

kx2 =
√

ω2ε2μ2 −
(nπ

b

)2 −
(pπ

c

)2
(C.6b)
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and

n = 0, 1, 2, ...

p = 0, 1, 2, ... (C.7)
n = p = 0 excepted

Figure C.1: Rectangular cavity resonators.



111

A P P E N D I X D

Near to Far Field
Transformation

Scattering problems usually deal with far field electromagnetic responses such as bistatic radar cross
sections or radiation patterns. Therefore, the fields at far distances need to be calculated. For this
calculation, extending the computational domain to far distances is impractical because the required
computer resources will increase rapidly as the computational domain is physically enlarged. A
very attractive alternative is to calculate the far fields from the near fields by the use of the surface
equivalence theorem [68].

For electromagnetic field problems, the uniqueness theorem states that when the sources and
the tangential electric or magnetic fields are specified over the whole boundary surface of a given
region, then the solution within this region is unique. Based on the uniqueness theorem, if the
tangential electric and magnetic fields are completely known over a closed surface that bounds it,
the fields in a source-free region can be uniquely determined. So, a problem can be replaced by
another problem if the tangential electric and magnetic fields are the same on the boundaries of
both problems. As shown in Figure D.1, the fields in the outer regions (regions of interest) of these
two schematics are the same since the electric (J̄S) and magnetic (MS) currents on the surface of
the object in the second problem will produce the tangential electric and magnetic fields which are
equivalent to the fields on the boundaries of the first problem.

The equivalence theorem described above is used to calculate far fields in the MRFD method.
First the scatterer is bounded by an imaginary closed contour in the computational space. Since the
MRFD technique employs a Cartesian coordinate system, the closed contour is assumed to be a box
for the sake of convenience. Secondly, the electric and magnetic currents (J̄ and M̄) on the imaginary
surface are calculated from the scattered magnetic and electric fields tangent to this surface. The
currents J̄ and M̄ produce the scattered fields only outside of the imaginary surface.

For the scattered field formulation we can write

J̄total = n̂ × H̄total = n̂ × (
H̄inc + H̄scat

) = J̄inc + J̄ (D.1a)

M̄total = −n̂ × Ētotal = −n̂ × (
Ēinc + Ēscat

) = M̄inc + M̄ (D.1b)

The currents J̄inc and M̄inc produce zero field everywhere outside of the imaginary surface,
hence they are not used in the scattered field formulation.

If the internal space of the imaginary surface is assumed to have zero electric and magnetic
fields in the absence of the source of the incident fields, then the fictitious currents will be J̄s =
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ε μ

ε μ

ε μ

= =
ε μ

= ×
= − ×

Figure D.1: Two-dimensional equivalent problems in the outer regions.

n̂ × H̄o and M̄s = −n̂ × Ēo where H̄o and Ēo are the scattered fields on the imaginary surface in the
grid and n̂ is the unit normal vector that points outward from the surface. These fictitious currents
were then transformed to the far field using vector potentials:

Er = 0 (D.2a)

Eθ = −jke−jkr

4πr

(
Lφ + ηoNθ

)
(D.2b)

Eφ = +jke−jkr

4πr

(
Lθ − ηoNφ

)
(D.2c)

Hr = 0 (D.2d)

Hθ = +jke−jkr

4πr

(
Nφ − Lθ

ηo

)
(D.2e)

Hφ = −jke−jkr

4πr

(
N̄θ + Lφ

ηo

)
(D.2f )

where (r, θ, φ) is the location of the observation point in spherical coordinates, ηo =
√

μo

/
εo is the

intrinsic impedance of free space, and

Nθ =
∫∫
s

(
Jx cos θ cos φ + Jy cos θ sin φ − Jz sin θ

)
e+jkr ′ cos ψds′ (D.3a)
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Nφ =
∫∫
s

(−Jx sin φ + Jy cos φ
)
e+jkr ′ cos ψds′ (D.3b)

Lθ =
∫∫
s

(
Mx cos θ cos φ + My cos θ sin φ − Mz sin θ

)
e+jkr ′ cos ψds′ (D.3c)

Lφ =
∫∫
s

(−Mx sin φ + My cos φ
)
e+jkr ′ cos ψds′ . (D.3d)

Here, r is the magnitude of the observation point vector from the origin in the vicinity of
the scatterer, r ′ is the magnitude of the source point vector, and ψ is the angle between �r and �r ′ as
shown in Fig. D.2.

Figure D.2: Far field observation point and source point.

In many scattering problems, calculation of the radar cross section is the main goal. For a
θ-polarized incident plane wave, the co-polarized and cross-polarized bistatic radar cross sections,
σθθ and σφθ , are defined as
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σθθ = lim
r→∞ 4πr2

∣∣Es
θ

∣∣2∣∣Ei
θ

∣∣2 (D.4a)

σφθ = lim
r→∞ 4πr2

∣∣∣Es
φ

∣∣∣2∣∣Ei
θ

∣∣2 (D.4b)

where Es and Ei are scattered and incident electric fields, respectively.
Similarly, for a two-dimensional case, the co-polarized and cross-polarized bistatic echo

widths can be written as:

SWσzz = lim
ρ→∞

[
2πρ

∣∣Es
z

∣∣2∣∣Ei
z

∣∣2
]

(D.5a)

SWσφz = lim
ρ→∞

⎡
⎢⎣2πρ

∣∣∣Es
φ

∣∣∣2∣∣Ei
z

∣∣2
⎤
⎥⎦ (D.5b)

where ρ is the distance from the origin in the vicinity of the scatterer to the observation point.
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