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Abstract: A rigorous field analysis of the problem
of two identical perfectly conducting parallel
wedges with dented edges loaded with a dielectric
cylinder, and excited by an electric or magnetic
line current in the upper sector, is given in this
paper. The dielectric medium is assumed to be
linear, homogeneous, isotropic and free from
losses, whereas the mediums of the upper and
lower sectors are free space. A field equivalence
theorem is used to derive, for each excitation, a
system of coupled integral equations for the equiv-
alent magnetic currents on the dielectric interfaces,
which is later solved using Galerkin’s method. The
fields and powers transmitted into the lower
sector, hence the transmission coefficients, for
both polarisations are subsequently determined in
terms of the equivalent magnetic currents on the
lower dielectric interface. The analysis is then
specialised to the problem of a slit loaded with a
dielectric cylinder, as well as to the case of plane
wave excitation. Sample numerical results for the
dielectric-loaded double dented wedge and slit
problems in the case of plane wave excitation are
also given.

1 Introduction

The problem of a line source radiating in the presence of
a perfectly conducting wedge is a classical problem in
electromagnetic field theory. Both the wedge geometry
and its generalisation to two perfectly conducting parallel
wedges, i.e. wedges of parallel axes are actually encoun-
tered in a variety of engineering applications because of
their canonical structures. A closed form solution of the
single wedge problem in the form of an infinite series is
possible due to the separability of the Helmholtz wave
equation for the wedge geometry in cylindrical co-
ordinates [Reference 1 Section 5.10]. On the other hand,
the closed-form solution of the double wedge problem is
not possible, except for the special cases of the flanged
parallel-plate waveguide [2, 3] and the slit [4]. Previous
investigations have therefore almost exclusively relied on
approximate techniques for the solution of this problem.
Teague and Zitron [5] obtained an asymptotic represen-
tation of the diffracted field using the approximation of
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the scattering by two bodies given by Zitron and Karp
[6]. The double wedge problem has also been solved
asymptotically for an incident E-polarised plane wave by
Elsherbeni and Hamid [7] using an approximate tech-
nique developed by Karp and Russek [8] for the diffrac-
tion by a wide slit, and very recently, using the
cylindrical-wave spectrum technique [9]. In addition,
they studied the effect on the transmission coefficient due
to rounded and capped edges and in the presence of a
perfectly conducting or dielectric cylinder asymptotically
in References 10 through 12, and due to truncated edges
using a hybrid numerical technique in Reference 13.

In this paper, a rigorous field analysis of the problem
of diffraction of electromagnetic waves by two similar
perfectly conducting parallel wedges with dented edges is
presented. The wedges are loaded with a dielectric cylin-
der whose circumference coincides with the circular arcs
of the dents, as is shown in Fig. 1. The axis of the cylin-
der is therefore the line of intersection of the two similar
wedges. Furthermore, the dielectric medium is assumed
to be linear, homogeneous, isotropic and frée from losses,
and is therefore characterised by the real scalars permit-
tivity & permeability u, and wave number k. The
mediums of the upper and lower sectors are free spaces
whose constitutive parameters are g,, o and K. In view
of the two-dimensional character of the problem, the
analysis is carried out for the transverse electric (TE) and
magnetic (TM) to z excitations separately. The sources in
the TE and TM cases are, respectively, magnetic and
electric line currents located in the upper sector.

The analysis is based on applying a field equivalence
theorem to divide the problem into three problems for
the upper and lower sectors and dielectric cylinder for
each excitation. The fields in the equivalent problem for
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Fig.1  Two parallel perfectly conducting wedges with dented edges
loaded with dielectric cylinder
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the upper sector are produced by the line current source
and equivalent magnetic currents placed on the dielectric
interface while it is short-circuited, i.e. covered with a
perfect electric conductor. The fields in the equivalent
problem for the lower sector are produced by equivalent
magnetic currents placed on the dielectric interface while
it is short-circuited. The fields in the equivalent problem
for the dielectric cylinder are produced by the negatives
of the magnetic currents in the equivalent problems for
the.upper and lower sectors placed on the dielectric inter-
faces while they are short-circuited. The tangential com-
ponents of the electric field at the perfectly conducting
wedges do vanish in this procedure by construction, and
are continuous across the dielectric interfaces by virtue of
the proper choice of magnetic currents placed on the
opposite sides of the short-circuited dielectric interfaces.
Enforcing the continuity of the tangential components of
magnetic field across these interfaces then results in a
system of two coupled integral equations for the equiva-
lent magnetic currents. The solution of this system of
integral equations is carried out using Galerkin’s method.
The field and power transmitted into the lower sector,
and hence the transmission coefficient, are subsequently
determined in terms of the equivalent magnetic currents
on the lower dielectric interface. Finally, the analysis is
specialised to the problem of a slit loaded with a dielec-
tric cylinder shown in Fig. 2, as well as to the case of
plane wave excitation. Sample numerical results in the
case of plane wave excitation are also given.
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Fig. 2  Slit in perfectly conducting plane loaded with dielectric cylinder
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2 Basic formulation

Let the excitation of the dielectric-loaded double dented
wedge be a line current located in the upper sector at
p = po and ¢ = ¢,. The analysis can be specialised for
plane wave excitation by letting the line current recede to
infinity.

The total field, incident plus scattered, must have zero
electric field components tangent to the perfectly con-
ducting wedges and continuous tangential electric and
magnetic fields across the dielectric interfaces. A field
equivalence theorem is used to divide the problem into
three problems for the upper and lower sectors and the
dielectric cylinder as follows. Let the exciting field be the
field produced by the line current while the dielectric
interfaces are short-circuited, i.e. covered with perfect
electric conductors. This field, often referred to as the
short-circuit field, is denoted (E*, H*). Furthermore, let
(E“(M,), H*M,)), and (E{—M,), H{(—M,)) be, respec-
tively, the fields produced in the upper sector and inside
the dielectric cylinder by the magnetic current sheet

M,=E, xa, ¢Y]
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on the dielectric interface p=a, n —a > ¢ >, and let
(E{M,), H(M,)) and (E4(—M,), H(—M.,)) be, respec-
tively, the fields produced in the lower sector and inside
the dielectric cylinder by the magnetic current sheet

M,=E, xa, @

on the dielectric interface p =a, —a2 > ¢ > « — &, while
they are short-circuited. In eqns. 1 and 2, E; and E, are
the total electric fields on the corresponding interfaces.
According to the field equivalence theorem [Reference 1,
Section 3.5], the total field in the upper sector is identical
to (E* + E*(M,), H* + H“(M,)), the field in the dielectric
cylinder is identical to (—E{M, + M,),

—HYM, + M,)), whereas the field in the lower sector is
identical to (E'(M,), H(M,)). The equivalent situations
are shown in Fig. 3.

Fig. 3  Equivalent situations

a Equivalence for upper sector
b Equivalence for dielectric cylinder
¢ Equivalence for lower sector

The tangential components of the electric field do
vanish at the perfectly conducting wedges by construc-
tion, and are continuous across the dielectric interfaces
by virtue of placing magnetic current sheets of equal
amplitudes and opposite signs on the opposite sides of
the short-circuited interfaces. The continuity of the
tangential components of the magnetic field across the
interfaces, however, requires that

a, x (H'M,) + H(M, + M) = —a, x H*
p=an—az¢=a (3)
a, x (H(M,) + H(M, + M,)) =0
p=a, —azdpza—n (4

which are a coupled pair of equations to be solved for the
equivalent magnetic currents M, and M, .

3 TE excitation

The source for the TE excitation is a magnetic line
current of unit amplitude. The field produced by this
current source can only have a z-component of magnetic
field that does not vary with z and no such component of
electric field. It then follows from eqns. 1 and 2 that the
equivalent magnetic currents have only a z-component
that does not vary with z, i.e.

M’i. 2 = M'; A¢)a. &)
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where primed co-ordinates are used to locate source
points. -

Thus, all the sources involved in the equivalent prob-
lems are z-directed distributions of uniform magnetic line
currents. The magnetic field in any of the equivalent
problems can then be derived from a z-directed electric
vector potential F = F_(p, $)a. as [Reference 1 Section
5.1]

H: = —jwso & F:(p’ ¢) - (6)

where the dielectric constant ¢, is unity in the equivalent
problems for the upper and lower sectors, and is an arbi-
trary real scalar in the equivalent problem for the dielec-
tric cylinder. Consequently, the z-components of the
electric vector potentials in the equivalent problems can
be determined in terms of the magnetic Green’s functions
I of a capped wedge of half-angle 0.57 + « and I'™? of a
cylindrical waveguide as .

F£(p, ) =T"(po> $olp, ¢) ™

Fio, $)=a | MU=, $la, &) do ®

Filp, ¢) = —a( f UMY, $la, ¢) de

[ saeaw) o
Fip.9)=a | M@0 dla ¢)ds (10
where
r, 610, $) =552 3 vy Hidalro)

n Jrwa(Ko 9) ,
X (H ﬁ)(a)(’fo p) H_(df;;(—'),(-xi—a_) — Ju(Ko P ))

x cos ny(a)¢ F a) cos nf(x)(¢’ F o) p=p" (11)

R
I™(p, ¢10', ¢) = 7 "‘_;OV,.J..(KP)

H(Z)‘
x (H‘f’(xp') -= (,EZ;’) Jn(xp'))
xcos n(¢ — @) p'>p (12)

In eqns. 11 and 12, H® and J are, respectively, the
Hankel function of the second kind and Bessel function
of the first kind, primes denote derivatives of the func-
tions with respect to their arguments, and v, is the
Neumann’s number (where vo = 1, and v, = 2 for n > 1).
Furthermore, the Hankel and Bessel functions in eqn. 12
are of integral order n, whereas the order of these func-
tions in eqn. 11 is n times Y(x), where

s

Y(z) = (13)

n— 2a
Finally, the minus and plus signs in eqn. 11 correspond,
respectively, to the upper and lower sectors. It is worth
noting that the magnetic Green’s functions of the capped
wedge and cylindrical waveguide given by eqns. 11 and
12, as well as those of the electric type used in the solution
of the TM case, and given by eqns. 18 and 24, are valid
only for p = p’ and p’ > p, respectively. The correspond-
ing expressions for p’ = p and p > p’ can be obtained by
interchanging (p, ¢) and (p’, "), i.e. by interchanging the
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source and field points. The derivations of all these
Green’s functions are given in [Reference 14 Appendices
I and IT]. i

Substituting eqns. 6 and 7 through 10 into the coupled
pair of eqns. 3 and 4 gives the following result:

j TUMAONT™@, dla, @) + & T(a, $a, ¢) o

+e, J“Mé(df)r”g(a, éla, &) d’

1
= —zrcw(po,¢ola,¢) T—az¢za (14

3 J UMY, §la, ) d + f M)
x [T(a, §10, ) + 5 T*(a, §a, $) d¢' = 0

—az¢pza—mn (15)
4 TM excitation

The source for the TM excitation is an electric line
current of unit amplitude. The field produced by this
current source can have only a z-component of electric
field that does not vary with z and no such component of
magnetic field. It then follows from eqns. 1 and 2 that the
equivalent magnetic currents have only a ¢-component
that does not vary with z, i.e.

<, = M3 (@), (16

Thus, the short-circuit field is produced by a z-directed
electric line current, while the remaining part of the field
in the upper sector, as well as the fields inside the dielec-
tric cylinder and in the lower sector, are produced by
¢-directed distributions of uniform magnetic line cur-
rents. Only of interest, for later application in the contin-
uity eqns. 3 and 4 are the ¢-components of the magnetic
field produced by such currents. The ¢-component of the
short-circuit magnetic field can be derived from a z-
directed magnetic vector potential A% = A¥(p, ¢)a. as
[Reference 1 Section 5.1]

0
Hy = — Ep A (p, d) : (17

where A% is the same as the electric Green’s function
G™p, ¢|po, do) of a capped wedge of half-angle
0.5 + a, where

G™(p, 819, 8) = V(@) 5. Hilo )

' Jowi(Ko@)
H® n Jov@®ed 4 )
X < n (1)(x0p) qufb)(a)(xo a) nw(a)(KOp)

x sin nl,[/(a)(qb Fo)sinnp(e)d Fao) p=p (18)

The ¢-components of the magnetic field produced by the
magnetic currents can easily be determined with the help
of a source equivalence theorem [15]. -According to the
theorem, ¢-directed magnetic line currents as given by
eqn. 16 produce a magnetic field identical everywhere,
except in the source region, with the magnetic field pro-
duced by the distribution of electric currents

JS , == V' x Mj§ No(p' — a)a

1.2 oo 1 1,2(¢)(P &
— M1 (9) £ 3p" —a)a (19)

jw#oﬂ, 1,2 6p’ P H
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where the relative permeability p, is unity in the equiva-
lent problems for the upper and lower sectors, and is an
arbitrary real constant in the equivalent problem for the
dielectric cylinder, and § is Dirac’s ‘delta’ function. This
equivalent distribution is readily recognised as a sheet of
z-directed electric line dipoles. The magnetic currents on
the short-circuited dielectric interface in the upper sector
then produce a magnetic vector potential having only a
z-component A% given by

n

At =

-z a+0
Mi(¢) f_o G™(p, 910", 9)

f@#o a

X 61,0' 6p’ —a)dp’ do’

T—a a
=2 M;’(qs')(g; G™(p, $1p, ¢')) d¢’

jwﬂo a p'=a

(20):

The equality in eqn. 20 is a consequence of the well-
known property of the delta function [Reference 16
Section 6.21]

(L&) =—Lf"6) , @n
where <., .} signifies an inner product. The ¢-component
of magnetic field produced in the upper sector by the
magnetic currents is then given by eqn. 17 with 4* repla-
cing A%. Similarly, the ¢-components of magnetic field
produced inside the dielectric cylinder and in the lower
sector by the magnetic currents are given by eqn. 17 with
A¥ replaced, respectively, by A? and A!, where

Ad _ a <J‘n—¢
P jouou \J.
% M) 6o, 615, ¢))  doy
ap p'=a
. .
+ f ] Me’(‘”(a? 6, 910,8)) d¢') @)
.. th
F JG)HO a—n

0
X M§(¢’)<a—p, G™(. d1p, ¢’)> d¢’ (23)

p'=a

In eqn. 22 G* is the electric Green’s function of a cylin-
drical waveguide

1 ©
G*(p, 9|0, @) = ;Z ZOV,, Ju(xp)

(2)
(00 - ZE )
xcosng—¢) p'=p (24)

Substituting eqns. 17, 20, 22, and 23, into the coupled
pair of eqns. 3 and 4 gives the following result:

P n—a o s -a— - , g
%L Ml(qb)(ap,(/.t,G (b, @10, )
+G0.910,4)) o
[ elomanel
o | MO 5700 01009)) e
=iju§_Gcw(Po,¢o|P,¢) p=an—azp=za
P (25)
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a T—a s i a e ) , ,
aL MM)(EEG (p,¢lp,¢)) d¢

¢ o 1P % g cw, ’
+a_p-J;_nM2(¢)<»0\_p,(1urG (ps¢lp’¢,)

+ G, 819, ¢'»> g =0

5 Galerkin’s solution

The solution of the coupled pairs of eqns. 14 and 15 in
the TE case and eqns. 25 and 26 in the TM case, can
readily be carried out using Galerkin’s method
[Reference 17 Section 1.3]. This is accomplished by
expanding the unknown currents in terms of complete
sets of orthogonal functions defined on their respective
domains. The expansion functions need also be chosen so
as to conform with the edge conditions at p =a, ¢ = +«
and +(m — o) [Reference 18 Section 1.4]. At the edges of
the dented wedges the ¢-components of the electric field,
and hence the magnetic currents for the TE excitation,
become infinite, whereas both the z-components of the
electric field and the magnetic currents for the TM excita-
tion vanish. Thus, put

MA0) = T al e cos KUEE F o @)

M; 2(0) = § af ae sin KUGIE F (9)

Substituting eqn. 27 into eqns. 14 and 15 and testing with
cos k()¢ Fa), k=0, 1, ..., the resulting equations,
gives the following system of algebraic equations:

<[D"(a) OJ [X"(a) X"(a)D
0 DT R X'

h h
ay b"()
= 29
x H [ 0 ] @
where 0 is the null matrix and D" and X" are the matrices

D*) = [Die(#)]

1 n—2a HZ) (x00)
=| - ——— —E =5, 30
[ Ko Vi H }(Z'JI(E)(KO a) K ¢0)

X'a) = [(Xh ()]

_ [ L3, da)

2nxa 2" T (ka)
X (Cepn(@)Copn(@) + CSk..(d)CSk',.(d))] (3D

The elements of X* and X* are identical except for a
minus sign replacing the plus sign in the bracketed term
in eqn. 31. Furthermore, the coefficient vectors a* and a%,
and the right-hand side vector b", are given by

aj = [a} ] (32)
a5 =[d5] (33)
b'(a) = [bj(2)]
1 H Ep)(:)("o Po)

= 3 2
["0 a* H Ep)(n(’(o a)

while 0 is the null vector. In eqns. 30, 31 and 34 the non-
angular factors in the magnetic Green’s functions of the

cos ky(afdo — d):’ (34)
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capped wedge and cylindrical waveguide are reduced to
the forms shown with the help of the Wronskian relation-
ship for the Hankel and Bessel functions [Reference 19
Section 5.9]

. 2
HP' (@) y(2) = THP(2) = e B.zeC (33)
Furthermore, J,, is Kronecker’s ‘delta’ function (where

Owe = 1 if k' =k, and zero otherwise) and the functions
Cepq(2) and Cs,, (o) are given by

Cckn(”’) = J

Z

n-a

cos ky(x)(¢ — a) cos n¢ do

n

Tt — (ky(@)?

x (cos kx sin n(n — ) — sin na) (36)
Cso) = Jn_zcos k(@) — a) sin n do
| - "
T n? = (ky(2)?
x (cos km cos n(n — &) — cos na) 37

where, for a > 0, Ccoo(2) = m — 2a and Csgyo(2) = 0, while
for k, n # 0 they take on the following limiting values:

1
Ce(®) = 4(n — 20) cos no — —
n=ki(a) 4n
X (sin 3na + sin na) (38)
Csp() = {(n — 20) sin na — L
n=ki(a) 4n
% (cos 3na — cos na) 39)

Similarly, substituting eqn. 28 into eqns. 25 and 26 and
testing with sin ky(a)(¢ F o), k=1, 2, ..., the resulting
equations, gives the following system of algebraic equa-
tions:

< [De(a) 0 ] I:X‘*(:z) X""(a))
oo bl T 2w x4
ai | _ | b
[3]-[7] @
where D¢ and X°¢ are the matrices

D¥(e) = [Dix(®)]

7 — 2a HE) (ko q)
- [roe 32 e @

X)) = [Xix(2)]

[ _xa & Jyxa)
"[ 27 2" T wa)

X (S5en(2)Ssea(@) + SCkn(i)Sck'n(a))} (42)

Likewise, the elements of X¢ and X¢ are identical, except
for a minus sign replacing the plus sign in the bracketed
term in eqn. 42, while the coefficient vectors af and a5,
and the right-hand side vector b®, are given by

aj = [a}, ] A (43)
a3 = [a3,,] (44)
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be(2) = [b()]

- [] » H ﬁ)(a)(xo Po)
H fczw)(a)(’co a)

Again, the Wronskian relationship (eqn. 35) is utilised to
reduce the nonangular parts of (6%/8p 8p)G™ and (8%
0p 0p")G™%, p =p' = a, and of (6/0p)G*™, p = a, to the
forms shown in eqns. 41, 42 and 45, respectively. Further-
more, the functions Sc,,(x) and Ss,,(x) in eqn. 42 are given
by

sin ky(a)(po — cz)} (45)

S5,.(d) = '[”‘asin k(@) — @) sin n db
e
n? — (ky/(«))?
% (cos kn sin n(n — &) — sin na) (46)

T

Se,(a) = J. sin k()6 — o) cos ng d
_
n® — (ky(2))?
x (cos kr cos n(n — a) — cos nz) 47)

where Ss;,(¢) and Sc,,(«) take on the following limiting
values fora > 0

1
S5a(20) = 4(n — 2a) cos na + —
n=ky(a) 4n
x (sin 3na + sin na) (48)
1
Scpa() = —i(n — 2¢) sin ne — —
* n=ky(a) : 4n

x (cos 3na — cos na) (49)

The solutions of the systems of eqns. 29 and 40 determine
the expansion coefficients of the equivalent magnetic cur-
rents on the dielectric interfaces, hence the complete field
solutions for the TE and TM excitations, respectively. It
is worth noting that if the parameters of the dielectric
cylinder are so chosen that ka is around the mth root of
the Bessel function J, in eqn. 42, or its derivative in eqn.
31, then the field in the dielectric cylinder is basically that
of the TM,,,, or TE,,, to z mode in a perfectly conduct-
ing cylindrical waveguide of the same medium and
radius. In this case the nth terms of the series in eqns. 31
and 42 become dominant and can therefore be used to
approximate the series, thereby substantially reducing the
amount of work involved in the solution.

6 Transmitted field and power

The field transmitted into the lower sector can easily be
determined in terms of the magnetic currents M3 and
M5 . Substituting eqns. 10, 11 and 27 into eqn. 6, the
transmitted magnetic field for the TE excitation is readily
found to be given by
1.2 HZ) (k0 p)
H!zzj__ ah , kw'(!) [
o k'z=:o Bk ng),(a)(’(o a)
where 7, is the free space wave impedance. Similarly, the
transmitted electric field for the TM excitation has only a
z-component given by [Reference 1 Section 5.1]

EL = —jou, Alp, ¢) (51)
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which, upon using eqns. 18, 23 and 28, becomes
) H(?) X
El= Y a5, —%\f“’i‘L") sin k(@)@ + «) (52)
=1 H wm(’co a)

The complex power transmitted into the lower sector is
of interest as well. The complex power transmitted into
the lower sector just beyond p = a for the TE excitation
is basically : . '

P} = —af M} HI(M?) dg' (53)

where the asterisk “* denotes complex conjugate. Using
eqns. 27 and 50, eqn. 53 becomes

C.a &2 T — 2
P:' =] Z Z a’z'.k
Mo k=0 k'=0 Vi
H f?.i( J(xo a))* . N
X | == §.a" . (54)
(Hw;(a)(’co a) TRk

which can be put in the matrix form

K o\ pe
A (59)

Mo .
where the superscript ‘T’ denotes vector transpose. Simi-
larly, the complex power transmitted into the lower
sector for the TM excitation just beyond p = a is given
by

Pr= —af M3 Hy(M3) dg’ (56)

Substituting eqns. 17, 23 and 28 into eqn. 56 results in the
following:

a & & HEZ) (ko a)\* .
Pi= —j— a n—2a)<d’““-— S A5 &
! 214 k;l. k’z=:1 2. Hiz'u),(a)("o a)) HTRE
1 b
= —j a§’D%(w)as (57)
_J Ko Tlo 2 )as

The time-average power transmitted into the lower sector
can be obtained from the transmitted complex power
according to [Reference 1 Section 1.10] '

(P> =Re (P) (58)

where Re (P) denotes the real part of P e C. Thus, substi-
tuting eqn. 54 for P%, and eqn. 57 for P; into eqn. 58, and
using the Wronskian relationship (eqn. 35), the time-
average powers transmitted into the lower sector, respec-
tively, for the TE and TM excitations are readily found
to be

Py=—»i 3 2| _Gix (59)
! KoMoW(®) «Zo i | H, ;;;u),‘(z)(’fo a)
1 as v
Py = : 60
F Koo ‘l’(“) =1 | HE)y(xo 0) ©0)

7 Transmission coefficient

A parameter conveniently characterising the penetration
of electromagnetic field into the lower sector is the trans-
mission coefficient. By definition [Reference 1 Section
7.12], the transmission coefficient T of the dielectric-
loaded double dented wedge is the ratio of the time-
average power transmitted through the dielectric
interface at p = a, —g > ¢ = o« — m, into the lower sector
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to the time-average power produced by the line current
source.

The time-average power produced by the line current
source is basically

(P> =Re(P) (61)

where P; is the complex power produced by the line
current source in free space. The time-average power pro-
duced by the magnetic line current for the TE excitation
is then given by

2n 1
(P> = —RGL H} 3 op = pod(¢ — do)p db  (62)

where HY is the magnetic field produced by a magnetic
line current of unit strength in free space, i..

K
Hi= = - HEcolp = pol)
o

X O . . :
= = ans L Va0 H o po) cos (e — o)
Mo n=0

p<po (63)

The equality in eqn. 63 is a statement of the addition
theorem for the Hankel function of the second kind and
zeroth order [Reference 1 Section 5.8]. Substituting eqn.
63 into eqn. 62, and using the identity 9.1.76 of Reference
20 gives :

Jiz) +2 i JAz)=1 zeC (64)

the time-average power produced by the magnetic line
current in free space for the TE excitation is readily
found to be

(Phy=—2 (65)

The time-average power produced by the electric line
current in free space for the TM excitation can be
obtained in a similar fashion, or more simply, by using
duality [Reference 1 Section 3.2] as follows:

(PEY = %K, Mo (66)

Finally, using eqns. 59, 60, 65 and 66 the transmission
coefficients T* and T¥, respectively, for the TE and TM
excitations become

) 4 > 2 at .
h 2.k
= — | = 67)
KoY () k=0 Vir Hﬁi(z)(’fo a)
4 ki v as .
€= : (68)
K% ’7<2> (@) 2 Hg;’a(u)(’\'o a)

8 Specialisation to dielectric-loaded slit

The analysis of the dielectric-loaded double dented wedge
structure can be specialised to the problem of a slit
loaded with a dielectric cylinder. Evidently, the special-
isation is immediately realised by setting o = 0.

The solution of the problem of the dielectric-loaded
slit can then be obtained by solving the systems of eqns.
29 and 40 with a set equal to zero. In this case, only
Bessel and Hankel functions of integral orders are
involved in the Galerkin's matrices. Furthermore, the
functions Cc,,(0) and Cs,,(0) for the TE excitation and
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S5;.,(0) and Sc,,(0) for the TM excitation become

Cenl0) = = by (69)
k
Cs1(0) = Se0)
_ 0, forn=k (70)
T (I —cos km cos nn), forns#k
n - N
S5l0) = 5 dun (1)

The field and power transmitted into the lower sector, as
well as transmission coefficients, are given by the formu-
las of the previous two Sections with « set equal to zero.

9 Plane wave excitation

As has already been indicated the case of plane wave
excitation can be treated by letting the line sources recede
to infinity. The solutions for TE and TM plane wave
excitation are then readily obtained by replacing the
Hankel functions in the right-hand side vectors b* and b®
by their large argument approximation [Reference 19
Section 5.11], i.e.

; 2 kw(a) , = jx
Hai’(,)(xopo):\/(f mcgpo)f“ Yo~ iroso (1)

Furthermore, for the z-component of field of the incident
plane wave to be of unit amplitude, the following normal-
isation is utilized:

G\/(j 2 >e""‘°"°=1 (73)
TKoPo

where

for TE plane wave
G= 1’70 (74)
=7 Koo for TM plane wave

1
— 2 %o

The solutions of the systems of eqns. 29 and 40 with the
right-hand side vectors modified according to eqns. 72 to
74 determine the expansion coefficients of the equivalent
magnetic currents on the dielectric interfaces of the
dielectric-loaded double dented wedge structure when
excited, respectively, by TE and TM plane waves of unit
amplitude. The electromagnetic field and power transmit-
ted into the lower sector are still given by the formulas in
Section 6. Only the transmission coefficients need to be
modified. Specifically, since the time-average power inci-
dent is 1/n, for a TE plane wave of unit amplitude and #,
for a TM plane wave of unit amplitude, the transmission
coefficients become

o152 _ax [ (75)
Kong () k=0 Yk H§s7u)z<a)('<o a)
1 hd as .
T = ‘ (76)
KoW(2) 21 | H gu),(a)("o a)

10 Numerical results

The analysis presented has been implemented in the form
of a computer program. Only a sample of the results
obtained for the problems of two dented wedges and a
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slit, loaded with a nonmagnetic (u, = 1.0) dielectric cylin-
der and excited by a plane wave are presented here. More
results can be found in Reference 14.

The actual solution of the problem involves determin-
ing the order of the Galerkin’s matrices or the number of
orthogonal functions needed in the expansions of the cur-
rents. These latter numbers have simply been determined
as the indices of the first elements of the right-hand side
vectors b* and b® of magnitude less than 10™*2. To this
end convergence tests for a wide range of parameter
values have been conducted and the number of orthog-
onal functions needed for the convergence of the solution
has been found to conform with the adopted policy. An
example of the convergence characteristics of the solution
is shown in Fig. 4 for the transmission coefficients for the
unloaded slit (¢, = 1.0) for koa = 0.5, 5.0 and 10.0 in the
case of normally incident TE and TM plane waves. As
can be seen only a few expansion functions are needed
even for large values of k, a. The stair-like behaviour dis-
played in Fig. 4 can be attributed to the fact that for
a =0, every other element in the right-hand vectors b*
and b® is zero.

Furthermore, as a check of the accuracy of the solu-
tion, the results obtained for the unloaded slit have been
compared with the exact solution of Skavlem [4]. The

1:2r
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Fig. 4 Convergence characteristics of transmission coefficient for
unloaded slit in the case of normal incidence as number of expansion func-
tions increases

a TE excitation

b TM excitation
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agreement between the two sets of data has been found
to be excellent, as can be inferred from Fig. 5. The
changes of the transmission coefficients for the dielectric-
loaded slit with frequency for g, = 1.0, 5.0 and 9.0 and
with dielectric constant for xya = 0.5, 1.0 and 1.5 in the
case of normal incidence are shown in Figs. 5 and 6,
respectively. In Fig. 5 data has been collected for values
of kg a up to 10.0, but no plots of the data are given in
the region 6.0 < xya < 10.0, as their rapidly increasing
oscillations make it difficult to distinguish between them.
It is worth mentioning that the results obtained for the
loaded slit have also been compared with the quasistatic
solution for the TM excitation by Hurd and Sachdeva
[21] with equal success. For instance, an examination of
Fig. 5b shows that the first three resonances for the TM
excitation occur at 2xa = 2.7, 4.5 and 7.65 for e, =90,
compared to 2.7, 4.5 and 7.6 as determined by Hurd and
Sachdeva.

The changes of the transmission coefficients with x,a

for different values of « for the dielectric-loaded double

2.0

o

[
1
1
1
1
1
1
1
1
1)
1

transmission coefficient, TE case
o

dented wedge are shown in Fig. 7 for ¢, = 1.0 in the case
of normal incidence, whereas the corresponding transmit-
ted far field patterns are shown in Fig. 8 for kya = 5.0.
Here, it is important to recall that o = 0 corresponds to
the unloaded slit problem. As can be seen, the wedge
angle does not have a pronounced effect on the transmis-
sion coefficient for either excitation. F urthermore, the
transmission coefficients for « = 15° and 30° and Koa>6
are always less than the geometrical optics value of unity
for any two wedges of large separation [5, 11]. On the
other hand, the beamwidth of the transmitted far field
patterns oscillates as the wedge angle is increased. Also,
in the case of TM excitation, the pattern for a = 15°, 30°
and 45° is characterised by a single beam that almost
covers the whole lower sector. F: inally, the transmitted far
field patterns for a dielectric-loaded double dented wedge
of half-angle « = 25° for kya = 7.0 and e, = 1.0, 5.0 and
9.0 in the case of normal incidence, and for Koa =170
and ¢, = 5.0 for different angles of incidence are shown in
Figs. 9 and 10, respectively. .

ar
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—_
T

transmission coefficient, TM case
N
¥
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a b
Fig. 5  Change of transmission coefficient Jor loaded slit with iy a in the case of normal incidence

a TE excitation

b TM excitation
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Change of transmission coefficient for loaded slit with &, in the case of normal incidence
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Fig. 8  Transmitted far field pattern for unlcaded double dented wedge in the case of normal incidence for koa = 5.0
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Fig. 9  Transmitted far field pattern for dielectric-loaded double dented wedge a = 25° in the case of normal incidence for xqa = 7.0
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11 Summary

A rigorous field analysis of the problem of two identical
perfectly conducting parallel wedges with dented edges
loaded with a dielectric cylinder has been given in this
paper for both TE and TM excitations. The analysis has
then been specialised to the problem of a dielectric-
loaded slit. Numerical results for the two problems have
also been given in the case of plane wave excitation.

12 References

—

HARRINGTON, R.F.: ‘Time-harmonic electromagnetic fields’
(McGraw-Hill Book Company, New York, USA, 1961)
NUSSENZVEIG, H.M.: ‘Solution of a diffraction problem, I. the
wide double wedge’, Philos. Trans. R. Soc. Lon., 1959, 252, pp. 1-30
3 NUSSENZVEIG, H.M.: ‘Solution of a diffraction problem, II. the
narrow double wedge", ibid., 1959, 252, pp. 31-5130

SKAVLEM, S.: ‘On the diffraction of scalar plane waves by a slit of
infinite length’, Arch. Math. Naturvidenskab, 1952, 51, pp. 61-80
TEAGUE, B.R, and ZITRON, N.R.: ‘Diffraction by an aperture
between two wedges’, Appl. Sci. Res., 1972, 26, pp. 127-137

6 ZITRON, NR, and KARP, S.N.: ‘Higher order approximation in
multiple scattering, I. two-dimensional scalar case’, J. Math. Phys.,
1961, 2, pp. 394402

ELSHERBENI, A.Z., and HAMID, M.: ‘Diffraction by a wide
double wedge’, IEEE Trans., 1984, AP-32, pp. 1262-1265

8 KARP, S.N,, and RUSSEK, A.: ‘Diffraction by a wide slit’, J. Appl.
Phys., 1956, 27, pp. 886-894

(8]

E

wn

~

234

9 ELSHERBENI, A.Z, and HAMID, M.: ‘Novel cylindrical-wave
spectrum for analysis of scattering by multiple bodies’, IEE Pro-
ceedings, H, Microwaves, Antenna & Propag., 1987, 134, pp. 3544
ELSHERBENI, A.Z., and HAMID, M.: ‘Diffraction by a wide
double wedge with rounded edges’, IEEE Trans., 1985, AP-33,
pp. 1012-1015

1 ELSHERBENI, A.Z, and HAMID, M.: ‘Diffraction by a wide

double wedge with capped edges’, ibid., 1986, AP-34, pp. 947-951

2 ELSHERBENI, A.Z, and HAMID, M.: ‘Scattering by a double

wedge and a parallel cylinder’, Int. J. Electron., 1986, 60, pp. 367—

380

ELSHERBENI, A.Z, and HAMID, M.: ‘Diffraction properties of a

class of double wedges’, Can. J. Phys., 1987, 65, pp. 16-22

4 ELSHERBENI, A.Z, and AUDA, HA.: ‘Electromagnetic diffrac-

tion by two perfectly conducting wedges with dented edges loaded
with a dielectric cylinder’. Technical Report, Department of Electri-
cal Engineering, University of Mississippi, November 1988

15 MAYES, P.E.: ‘The equivalence of electric and magnetic sources’,
IRE Trans., 1985, AP-6, pp. 295-296

16 KOLMOGOROV, AN, and FOMIN, S.V.: ‘Introductory real
analysis’ (Dover Publications, Inc., New York, USA, 1970)

17 HARRINGTON, R.F.: ‘Field computation by moment methods’
(Macmillan Company, New York, USA, 1968, reprinted by Krieger
Publishing Company, Melbourne, Florida, USA, 1982)

18 COLLIN, R.E.: ‘Field theory of guided waves’ (McGraw-Hill Book
Company, New York, USA, 1960)

19 LEBEDEV, N.N.: ‘Special functions and their applications’,
SILVERMAN R.A, (Ed): (Dover Publications, Inc., New York,
1972)

20"ABRAMOWITZ, M., and STEGUN, I.A.: ‘Handbook of mathe-
matical functions’ (Dover Publications, Inc., New York, 1970)

21 HURD, R.A, and SACHDEVA, BXK.: ‘Scattering by a dielectric-
loaded slit in a conducting plane’, Rad. Sci., 1975, 10, pp. 565-572

—
o

—

—

-
w

—

IEE PROCEEDINGS, Vol. 136, Pt. H, No. 3, JUNE 1989




