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Abstract: The electromagnetic scattering from an
impedance cylinder embedded in a nonconcentric
dielectric cylinder is derived rigorously by using a
boundary value approach. The two cylinders are
assumed to be infinite in length and of circular
cross-section. The incident electromagnetic field is
in terms of an electric or a magnetic field com-
ponent parallel to both cylinder axes. The
problem is two dimensional and the solution to
either types of polarisation (TM or TE) can be
found independently. Plane wave and line source
excitations are considered in this analysis. The
effects of various geometrical and electrical
parameters (such as the cylinder’s radii, permit-
tivity, surface impedance and eccentricity) on the
near field distribution and the far scattered field
pattern are examined. Bistatic and monostatic
scattering cross-sections of the composite cylinder
which minimise or maximise the radar cross-
section are also investigated.

1 Introduction

Scattering from concentric dielectric loaded cylinders
have been studied by a number of researchers using dif-
ferent techniques [1-7], whereas work on the eccentric
geometry has been less extensive. The motivation for con-
sidering analytical and exact solutions to such problems
arises from their usefulness in the detection of conducting
objects embedded in dielectrics, in the determination of
scattering by impurities in dielectric structures and in the
enhancement of antenna directivity with an eccentric
coating [8]. Scattering data from complex bodies is often
used to obtain information about their internal structure
such as inhomogenities and nonsymmetries. The eccen-
tric coating of scattering objects may also have pro-
nounced effects on the increase or decrease of its
scattering cross-section. Other applications are in the
biomedical area [9-10] and in the modelling of forests
for remote sensing. The scattering from eccentric cylin-
ders and spheres has been investigated by Roumeliotis et
al. [11-13] and the theory of the circular waveguide with
an eccentric metallic conductor has been developed by
Veselov and Semenov [14]. Roumeliotis and Fikioris
have also pursued the eccentric waveguide problem in
detail [15].
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The present paper deals with the scattering character-
istics of an imperfectly conducting cylinder in an eccen-
tric dielectric coating. The usual procedure is similar to
that of Reference 14, the present treatment is much more
general. In Reference 14, the small argument approx-
imation of the Bessel functions has been used to obtain
simple expressions for the scattering cross-section of an
eccentric dielectric loaded conducting cylinder due to an
incident plane wave. However, such an approximation
only gives accurate results for small values of eccentricity.
The present analysis does not suffer from this limitation.
Also, the dielectric coating losses have been accounted
for by allowing the dielectric constants to be complex
and the incident field is from a line source. The plane
wave field is a special case; when the line source recedes
to infinity. The problem is solved for TM to z polarised
wave and it is shown subsequently how the solution to
the corresponding TE to z polarisation can be easily
obtained. The field expressions in the dielectric region
and in the outside free space region are expressed in
terms of sets of cylindrical harmonic functions with
unknown expansion coefficients. To find the unknown
coefficients, the addition theorem of cylindrical functions
is used to transform the field components between the
local co-ordinates of the two cylinders. The continuity of
the tangential electric and magnetic field components on
the surfaces of the two cylinders is then enforced. As a
result, a set of infinite equations is obtained which is
transformed into matrix form and then solved numeri-
cally after proper truncation. The validity of the solution
is verified by comparing the numerical results of special
cases with those based on other well known exact solu-
tions.

2 Formulation

Consider a TM to z wave illuminating a composite cylin-
der, as shown in Fig. 1. The inner cylinder of radius a is
an imperfect conductor characterised by a surface imped-
ance 7, which is coated by a dielectric cylinder of radius
b. The dielectric material is linear, homogeneous, iso-
tropic and characterised by constants ¢,, and u,; or
equivalently by the intrinsic wave impedance #;. The dis-
tance between the axes of the two cylinders, called the
eccentricity, is denoted e and the composite arrangement
is immersed in free space which is characterised by ¢, and
Lo OT 1o. The incident electric field from an infinite elec-
tric line current located at (p,, ¢o) and parallel to the z
axis of a cylindrical co-ordinate system is given by

EX(p, ¢) = Eo H(ko|p — Do) (1)
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I is the strength of the current filament and ko(27/4,) is
the wave number in free space. EY is given in terms of a
series expansion, i.e.

Ej Z HP(ko po)d (ko p)e™® =% p < p,
n —; o (3)
Eo Y, HP(kop) (kopo)e™® %9 p>p,

n=—oaoo

il _
E; =

where J, and H, are the Bessel function of the first kind
and Hankel function of the second kind, respectively. The
time dependence e’ is tacitly assumed. The superscripts
i and | represent the incident and line source type of exci-
tation, respectively. The z component of the total electric
field in free space region is expressed with respect to the
x0y reference frame as follows:

O

El(p,¢) = Eo Y. [HP(kopo,lkop)

n= — oo

+a,HP(kop)Je™* ™% p<py (4)

The electric field in the dielectric region with respect to
the x'0'y’ reference frame is

EXp’, &) = Eo ). [b,J.kip) + ¢, HiP(kip)]e™  (5)

n

where a,, b, and c, are the unknown coefficients and k, is
the wave number in the dielectric region. Therefore, the ¢
component of the magnetic field in the dielectric region is
given by

] ©

E i
Hiyp, ¢) = ]7 [b,Ji(kyp') + ¢, H? (k,p')]e*

(6)

where primes denote derivatives with respect to the argu-
ments. The impedance boundary condition [16] at p’ = a
is

Eda, ¢) = n,Hy(a, ¢') (7
170

which leads to

Y [b,Jk.a) + c, HD(k a)]e™’

= —j% Y [bJikya) + ¢, H? (k,a)]e™  (8)
1 n=—-wo

Multiplying eqn. 8 by e/'*" and integrating with respect to
¢ from 0 to 27, gives

¢ =Tbh )
where

_ n1Jik,a) + jns Jik,a)
Tl‘ - - 2) . 2)’ (10)
nHi”(kya) + jn Hi” (ka)

To apply the boundary conditions at p = b, E4p’, ¢') has
to be referred to the x0Oy co-ordinate system. This is pos-
sible using the addition theorem for cylindrical Bessel
and Hankel functions [17], i.e.

Y. Bn_.ke) (kp)e’™® p<e
B,(kp)e™™ = " (1)
Y J-dke)B,(kp)e™  p > e

m= — o

where B,(x) is a Bessel function or a Hankel function of
order n and argument x. Applying the above addition
theorem to eqn. 5 results in

Epd)=E S 3 Joikro)

x [b, J(kip) + ¢, H(k,p)le™® (12)

The second term on the right hand side of eqn. 12 has
been translated for p > e. This is because the applica-
tion of the boundary condition at p = b implies that
p >e. The continuity of the tangential electric field
component at p = b yields

Y. [HP(kopo)Julkob) + a, HP (ko b)]e @~

n

=Y Y Juke

x [b, J(kb) + ¢, HP(k,b)]e™  (13)

The orthogonality of the exponential functions in eqn. 13
is now used to extract a,, viz

1
%= Hkob) ( —H{P(ko po)J ko b)

+elo ¥ Ji(kie)lb, kD) +c, Hfz’(klb)]> (14)
The ¢ component of the magnetic field in free space and
dielectric regions referred to the xOy co-ordinate system
is, respectively,

El [+ ]
H{(p, ¢) = ]7 Y. [HP(kopo)ikop)
0O n=-w
+ a, HP (ko p)e@ 40 (15)
’ Eg @ ©
Hy(p, ¢) = in,t _Z_: ; Jm—nkie)
x [b, Jo(kip) + c, HY (kyp)]e’™? (16)
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The continuity of the above H, components at p =b
together with the orthogonality of exponential functions
results in

1 2 ’ No jlp
a; = HP (kg b) <—H§ ko polJilko b) + " e’

X io:Jlfn(kle)[bn‘];(klb)"l'CnHEZ)I(klb)]> (17)

n

Combining eqn. 9 with eqns. 14 and 17, an expression
solely in terms of b, is obtained, i.e.

Y. Fiub,=D, (18)
where
eﬂ¢o
F,=—5——J,_ke)\ J,(k;b) + T, H®(k,b
1 ng)(kopo) - 1e)< 1(kb) i(kb)
ne H®(ko b) ,
— =" [Ji(kb) + T,H® (kb 19
D D) T THP () 19)
2
D= ——— (20)
Jjmko bH{? (ko b)

Eqn. 18 represents a set of infinite equations which is
transformed into matrix form and then solved numeri-
cally after proper truncation to retrieve the unknown
coefficient b,. The remaining unknown coefficients, c,
and a,, are evaluated using eqns 9 and 14 or 17, respec-
tively. Plane wave excitation is obtained by letting the
line source recede to infinity. The electric field component
of the incident plane wave is then given by

E(p, §) = EB el 056 ~40 1)

where

2i .
Ef = E} \/(nk; >e (22)
[4]

and the incident angle ¢, is measured in the anti-
clockwise direction from the positive x axis. The field
expressions for the case of plane wave excitation are
obtained by simply replacing H{*(k, p,) by j' in eqns. 14,
17 and 19.

The scattered electric field in free space is given by

Eip, ¢) = E§ ). a,HP(kople™ ¢ % (23)
where the superscript g is equal to p or I for plane wave
or line source incident field, respectively. The far scat-
tered field pattern is determined after using the large
argument approximation of the Hankel function and
normalising the resulting expression by the factor
E% \/[2j/(nkp)]e **. Thus the scattered field pattern
F9(¢, ¢,) reduces to

@

FA(, ¢ = 3 aeme @4

The properties of a plane wave scattered by cylindrical
objects of infinite length along one of the co-ordinate
axes are usually described in terms of the scattering
cross-section which is denoted by ¢ and defined as

EFp, ¢, ¢0)
EP
where ESP and E? are the scattered and incident z com-
ponents of the electric field. The scattering cross-section

o(¢) = lim 2np ’

p—

(25)
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of the composite cylinder is then given by

2
o(¢) = | F*(, o) 2 (26)

The solution of the same problem due to an incident field
from an infinite magnetic line current parallel to the z
axis or from a plane wave with a magnetic field com-
ponent parallel to the z axis (TE excitation) is straightfor-
ward and similar to the foregoing analysis. However,
application of the duality principle [18], yields the
unknown coefficients for the TE case by replacing »; by
1/n; in eqns. 10 and 19, where i denotes O for the free
space region, 1 for the dielectric region or s for the inner
cylinder surface impedance.

3 Numerical results and discussion

The expressions developed above can easily be special-
ised to simple geometries such as a perfectly conducting
cylinder in free space. By setting ¢; = ¢, and 5, =0, an
exact expression for the scattered field from a perfectly
conducting cylinder in free space, similar to the one in
standard textbooks, can be obtained after some mathe-
matical manipulation. For such a case, the analytical
expression for the unknown coefficient b, is reduced to

HE (ko po)el*”
jlejl¢o

line source excitation

b, = 27

plane wave excitation

which then yields the following expression for the
unknown scattering coefficient a,

Jikoa . o
— H}Z)(ko Po) % line source excitation
a =
Jyk o
—jt % plane wave excitation

(28)

The exact expression for a dielectric coated concentric
conducting cylinder can also be obtained in a fairly
straightforward manner.

The above analysis has been implemented in a
Fortran program from which sample numerical results
are presented in the following sections and the values of
n, are normalised to 7, .

Table 1 lists some values of the forward and back scat-
tering cross-sections (o, and o,, respectively) as a func-
tion of the integer k which is the absolute value of the
upper limit of the index of summation in the series

Table 1: Scattering cross-section against k for a = 0.3},
b =0.5), e =0.2), ¢,, = 4.37 — j0.16, n, = 0.5 — 0.5 and ¢, =
180°

TM polarisation TE polarisation

x

g, g, g, gy

1.736381 0.844243 1.361709 0.766243
5.902783 0.883719 2.440005 0.868401
7.651909 0.241823 6.358829 0.152940
9.181424 0.288197 7.966280 0.287813
9.755219 0.280164 8.662320 0.243955
9.882924 0.270770 8.572824 0.250221
9.860407 0.272214 8.575802 0.249465
9.861811 0.272097 8.575277 0.249482
9.861092 0.272112 8.575312 0.249479
10 9.861053 0.272114 8.575312 0.249479
11 9.861019 0.272114 8.575331 0.249480
12 9.861019 0.272114 8575321 0.249480
13 9.861019 0.272114 8575331 0.249480
14 9.861010 0.272114 8.575321 0.249480

CONOUTRWN-=
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expressions. It is clear that not many terms yield a con-
vergent solution for both TE and TM excitation.

Figs. 2 and 3 display o, as a function of ¢, for an
incident TM polarised wave on a coated, perfectly con-
ducting and capacitive cores, respectively. In the former
case, o, for e = 0.14, and 0.24, stays well below the cor-
responding values for e = 0 and in the latter case, o,
exhibits the opposite behaviour. The parameters in Figs.
4 and 5 are similar to those in Figs. 2 and 3 but for a TE

231
18f
0%
I o
. -
N Z
1 3 L // \§‘ ’,—~\\ /r-\\~’/ \\
/ \
! X \\ I’ / \
/ \ \ / \
/ -\\ \ / / \
_// \._’\—:—;I\_/ N
8 30 60 30 720 750 180
%o
Fig.2 o, against ¢ with a =034y, b= 052y, ¢, = 4.37 — j0.I6

and n, = 0 (T M polarisation)

e=0 —-— e=0.14, -—-—-- e=024,
12 /,\\ 77N
/ \ / \
/ \ / Y
/ \ / \\
/ \ , \
/ N—- \\
/ \ N
// /'/ it \‘\ \\
\
Ot /I ,/' * \\
ot S/ Noo N
-— ’ \\ ~——
/‘/ N,
___/'/ \‘\_~
8 . . . A . )
0 30 60 90 120 150 180
Zo
Fig. 3 o, against ¢, with a=034,, b=054,, ¢, =437 —j0.16
and ng = 0.5 — j0.5 (TM polarisation)
e=0 —-— e=0.14, -——- e=024,
N -~
. /
144 \‘ /'
\ /
\ /
\ /
SN /e
AN p— 7 7
10F v\ - . ’ /
\ N~ ~_.7 //
oy \ ~ /
\ / \ /
\ / \ I/
6r \ / \ /
/ \
\ / \ /
\ / \ /
\ / \ /
\ / \ /
\ / \ J
\\_// \\_,’
2 1 1 1 1 1 J
0 30 60 950 120 150 180
Po
Fig. 4 o, against ¢, with a=0.34,, b=054,, ¢,, =437 — j0.I6

and n, = 0 (TE polarisation)
e=0 ——— e=01J,

= =024,

172

polarised wave. With a capacitive core (Fig. 5), o, for
e = 0.1, and 0.2, is always less than that for e = 0 but
this is not always the case with a perfectly conducting
core as shown in Fig. 4.
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Fig. 5 o, against ¢, with a =034y, b = 0.54,, &,, = 4.37 — j0.16 and n,= 0.5

— j0.5 (TE polarisation)
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———— =024,

Figs. 6 and 7 display o, with e = 0.24, for different
values of n,. As 5, approaches the intrinsic impedance of
the dielectric coating (~0.478%,), 6, tends to ‘flatten out’.
This may be because of an impedance matching between
the core and the coating material.
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4.37 — j0.16 (T M polarisation)

n,=0 —-— n,=02

---=- n,=04

Ob

Fig. 7 o, against ¢, witha = 034, b =051y, e =024y, and ¢,, =
4.37 — j0.16 (TE polarisation)

n,=0 —=— n,=02

-=-=-=- n,=04

IEE PROCEEDINGS-H, Vol. 138, No. 2, APRIL 1991



Figs. 8 and 9 show o, against the real part of ¢,,(e,) for
n, =0 and 0.5 — jO.5, respectively, for an incident TM
plane wave with ¢, = 180°, a = 0.34,, b = 0.54, and the
imaginary part of ¢,; equal to —0.16. The corresponding
curves of ¢, against ¢, are also shown in Figs. 10 and 11.
Sharp values for o, are observed (Fig. 8) when the core is
perfectly conducting, however for an impedance core
(Fig. 9), the variations in o, are relatively smoother and
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Fig. 8 o, against ¢ with ¢, = 180°, a = 0.3%y, b = 0.54y, n, = 0 and
&,y = &, — jO.16 (T M polarisation)
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do not show any resonance behaviour for the composite
cylinder. The examination of Figs. 10 and 11 indicates

3r

b

Fig. 11 o, against ¢, with ¢, = 180°, a = 0.3, b = 054y, n,= 0.5
—j0.5 and ¢,, = ¢, — jO.16 (T M polarisation)

—— e=0 ———— e=024,

that the offset parameter e significantly changes ,. For
the case of an impedance core shown in Figs. 9 and 11,
o, increases with no corresponding changes in o, as
shown for e = 0 in the range 10 < ¢,; < 16 and o, can be
maximised with no significant change in o, as shown for
e=024,.

Figs. 12 and 13 show ¢, and o, against e, respectively,
due to a TM incident plane wave at ¢, = 180° witha =

23r
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Fig. 13
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o, against e with = 180°,a=0.34,,b=0.54,,and ¢, =
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034,, b=0.51, and ¢, =4.37—j0.16 for different
values of #,. These figures indicate that o, and o, are
very sensitive for e variations when the core is perfectly
conducting. However for an impedance core, it is possible
to maximise or minimise ¢, without significant change in
o;.

The near field components are also computed to inves-
tigate the effect of the parameters e and 5,. As an
example, Figs. 14 and 15 are for the normalised electric
field component due to a TM plane wave incident at an
angle ¢, = 180° with a = 0.34,, b = 0.54, and ¢,; = 4.37
—j0.16. Fig. 14 is for a perfectly conducting core and
Fig. 15 is for an impedance core where , = 0.5 — j0.5. It
is obvious that the offset parameter e reduces the field
values in the shadow region for both perfectly conducting
and impedance cores whereas the capacitive core reduces
the field values in all directions around the composite
cylinder.
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Fig. 14  Normalised near electric field component with a perfectly con-
ducting core for ¢, = 180°, a =0.31,, b =0.54, and ¢,, =4.37 — j0.16
(T M polarisation)

ae=0
b e=024,

4 Conclusion

This paper has given a rigorous analysis of the scattering
from an impedance cylinder embedded eccentrically in a
dielectric cylinder due to either a line source field or an
incident plane wave. Both transverse electric and mag-
netic types of excitations are considered. The presented
numerical results show the effect of different parameters
on the scattering cross-section and how these parameters
may be used to maximise or minimise the radar cross-
section by proper selection of the electric and geometrical
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parameters. The generalisation of the present formulation
to an arbitrary number of eccentric cylinders is currently
being investigated by the authors. These geometries have
useful biomedical applications as well as applications in
the modelling of forests for remote sensing.
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Fig. 15  Normalised near electric field component with an impedance
core for ¢, = 180°, a = 0.34y, b =054,, ¢,, = 437 — jO.16 and n, = 0.5
— j0.5 (TM polarisation)
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5 References

—

TANG, C.C.: ‘Backscattering from dielectrically coated infinite

cylindrical obstacles’, J. Appl. Phys., 1957, 28, pp. 628-633

BHARTIA, P, SHAFAI L., and HAMID, M.: ‘Scattering by an

imperfectly conducting cylinder with a radially inhomogeneous

dielectric coating’, Int. J. of Electron., 1971, 31, pp. 531-535

RAO, T.C, and HAMID, M.: ‘Scattering by multi-layered

dielectric-coated conducting cylinder’, Intl. J. Electron., 1975, 38, pp.

667-673

4 ELSHERBENI, A.Z., and HAMID, M.: ‘Scattering by a cylindrical
dielectric shell with inhomogeneous permittivity profiles’, Intl. J.
Electron., 1985, 58, (6), pp. 559-562

S ELSHERBENI, A.Z., RAGHEB, H.A., and HAMID, M.: ‘Rigorous
solution of the scattering by two multilayered dielectric cylinders’.
IEEE/AP-S 1986, Symp., Philadelphia, PA, pp. 65-68

6 LEVIATAN, Y, BOAG, A, and BOAG, A.: ‘Analysis of electro-

magnetic scattering from dielectrically coated conducting cylinders

using a multifilament current model’, I[EEE Trans., 1988, AP-36, pp.

1602-1607

KIM, H.T., and WANG, N.: ‘UTD solutions for electromagnetic

scattering by a circular cylinder with thin lossy coatings’, IEEE

Trans., 1989, AP-37, pp. 1463-1472

WU, T.T,, SHEN, L.C, and KING, R.W.P.: ‘A dipole antenna with

eccentric coating in a relatively dense medium’, IEEE Trans., 1975,

AP-23, pp. 57-62

9 WU, TK., and TSAI, L.L. ‘Electromagnetic fields induced inside

arbitrary cylinders of biological tissue’, IEEE Trans., 1977, MTT-25,

pp. 61-56

N

[9%)

~

oo

IEE PROCEEDINGS-H, Vol. 138, No. 2, APRIL 1991



10

1

—

12

13

GUY, AW, CHOU, C, and LUK, K.: ‘915-MHz phased-array
system for treating tumors in cylindrical structures’, IEEE Trans.,
1986, MTT-34, pp. 502-507

ROUMELIOTIS, J.A., FIKIORIS, J.G.,, and GOUNARIS, G.P.:
‘Electromagnetic scattering from an eccentrically coated infinite
metallic cylinder’, J. Appl. Phys., 1980, 51, (8), pp. 4488-4493
ROUMELIOTIS, J.A,, and KOPIDIS, P.D.: ‘Scattering of plane
electromagnetic waves from an eccentrically coated infinite dielectric
cylinder’. ICAP 83, 1983, pp. 186-188

ROUMELIOTIS, J.A, and FIKIORIS, J.G.: ‘Scattering of plane
waves from an eccentrically coated metallic sphere’, J. Franklin
Institute, 1981, 312, pp. 41-59

IEE PROCEEDINGS-H, Vol. 138, No. 2, APRIL 1991

17

18

VESELOYV, G.I,, and SEMENOV, S.G.: ‘Theory of circular wave-
guide with eccentrically placed metallic conductor’, Radio Engg. and
Electron. Phys., 1970, 15, pp. 687-690

ROUMELIOTIS, J.A,, and FIKIORIS, J.G.: ‘Cutoff wavenumbers
and the field of surface wave modes of an eccentric circular Goubau
waveguide’, J. of Franklin Institute, 1980, 309, pp. 309-325

SENIOR, T.B.A.: ‘Impedance boundary conditions for imperfectly
conducting surfaces’, App. Sci. Rec., 1961, Section B, 8, pp. 418-436
STRATTON, J.A.: ‘Electromagnetic theory’ (McGraw-Hill, New
York, 1941)

HARRINGTON, R.: ‘Time harmonic electromagnetic fields’
(McGraw-Hill, New York, 1961)

175



