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Foreword by the Editor

I n the December, 2007, column, the Finite-Difference
Frequency-Domain Method was reviewed, and the issue of

constructing an efficient pre-conditioner for the three-dimensional
case was considered. This issue' s first contribution continues the
FDFD theme, looking at some methods for increasing the
computational efficiency of the algorithm, with particular reference
to memory usage and computation time.

There is also a second, shorter, contribution this month, on
finding multiple roots of polynomials.

As always, we thank all the authors for their contributions.
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Abstract

Finite-Difference Frequency-Domain methods (FDFD) require solution of large linear systems of equations. These large
systems are represented by matrix equations including highly sparse coefficient matrices, and they can often only be solved
by using iterative methods. This paper presents an algorithm in which the matrix-equation solution approach in an iterative
method is replaced by a multi-step solution process. Instead of using a coefficient matrix, the coefficients in the FDFD
formulations are kept as three-dimensional arrays, and they are treated as operators. The algorithm is used together with the
Si-Conjugate Gradients Stabilized (BICGSTAB) method. This is applied to a three-dimensional FDFD method to solve for
scattering from dielectric objects. It is also applied to two other FDFD methods (a single-grid and a double-grid FDFD) to
solve for scattering from chiral objects. It has been shown that the presented algorithm effectively reduces the solution time
and memory requirements.

Keywords: Numerical analysis; algorithms; chiral media; finite difference methods; iterative methods; FORTRAN;
electromagnetic scattering

1. Introduction

A linear system can be expressed in the form of a matrix
equation,

N umerical solution of systems represented by partial
differential equations (PDEs) often requires solution of large

linear systems of equations. The Finite-Difference Frequency­
Domain (FDFD) Method is a numerical-analysis technique based
on the partial-derivative form of Maxwell's curl equations in the
frequency domain. An FDFD formulation can be obtained by
approximating the partial derivatives in the curl equations by finite
differences on a staggered Yee grid (1]. Such FDFD formulations
were used in [2] and [3] to solve for scattering from dielectric
objects, and in [4] and [5] to solve for scattering from chiral
objects. The resulting linear systems of equations are very large
and highly sparse, since only the interactions between the
neighboring field components are considered in the equations. The
solution of such large systems becomes very costly in terms of
computer time and memory, if direct linear-system equation
solvers, such as the Gaussian elimination method, are used. These
large systems can often only be solved by iterative methods.

start

Create matrix A /---7/ A
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b
,,,
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xk
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b'

I x /'t

end

Although a linear system can be expressed by a matrix
equation as in Equation (I ), during the iterative procedure it is not

as the iterations proceed, where Xk is the solution at the kth

iteration. As the residual minimizes, the Xk converge to the

solution, x. This process requires a multiplication of A by xk to

produce the next residual. From the perspective of a user of an
advanced iterative solver such as BICGSTAB, the solver is like a
black box, as illustrated in Figure I. The user only needs to supply
a function that will perform the multiplication of A by xk, and

return the result, b' , to the iterative solver. The iterative algorithm
then internally calculates the new solution vector. The iteration
proceeds until a convergence criterion is met.

excitations. If needed to be described in simple terms, an iterative
solver starts with an initial guess, xo , and tries to minimize the

residual,

( I)Ax = b,

There are several iterative techniques that have been
proposed for solving linear systems [6, 7]. Among these
techniques, the Generalized Minimal Residual (GMRES) Method
[8] and the Bi-Conjugate Gradients Stabilized (BICGSTAB) [9]
method are the most commonly used techniques for numerical
solution of Maxwell's equations. The convergence rates of these
iterative techniques are generally very slow, and some techniques
are applied to speed up the convergence rates. The most common
technique to improve the convergence rate is preconditioning the
sparse linear system. Preconditioners can be derived from
knowledge of the original physical problems from which the linear
system arises [6]. Although several types of preconditioning
techniques are available in the literature [7], determining an
efficient preconditioner for a given system is a complicated topic,
and usually requires extensive research. It should also be noted that
using a preconditioner in an iterative method incurs some extra
cost, both initially, for the setup, and per iteration, for applying it.
There is a tradeoff between the cost of constructing and applying
the preconditioner, and the gain in convergence speed [7]. The
introduction of new preconditioners has been the subject of several
studies dealing with numerical solution of Maxwell's equations.

where A is the matrix of coefficients, x is the vector of
unknowns, and b is the right-hand-side vector related to Figure 1. The procedure for calling an iterative solver.
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Figure 2. The bistatic radar cross section of a dielectric sphere.
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Figure 3. The co-polarized bistatic radar cross section of a
chiral sphere.
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Figure 4. The cross-polarized bistatic radar cross section of a
chiral sphere.
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necessary to use the actual matrix, A, to store coefficients and to
multiply it by xk to calculate b' . It is only required to obtain b' for

a given xk' The aforementioned FDFD formulations [2-5] are

examined in this context, and the AXk matrix-vector product is

replaced by a multi-step algorithm. Due to the new algorithm, a
significant reduction in computational time and memory usage has
been achieved in the iterative solution of these FDFD methods.
Furthermore, instead of one-dimensional arrays of coefficients, the
use of three-dimensional arrays is introduced, which further
improves the time and memory efficiency of the iterative solver.
The details of this new approach are provided in the following
sections.

where OJ is the radian frequency for which a solution is sought,
subscript scat denotes the scattered field, subscript inc denotes
the incident field, index (i,j,k) indicates the cell in which the

component is located, ex is the permittivity associated with Ex'

and eo is the free-space permittivity. Another equation hence has

H x as the pivot component, and it is written as

. ("1. k)~ Escat,z(i,j,k)
jOJf.lx I, j, ~

2.1 FDFD Formulation

2. Improvement of FDFD Method

1 H (" k 1), (., k) A_ scat,y l,j, -JOJex i, j, zaz

+. ("
1

. ) Hscat.z (i, j - 1,k )
jOJex I,J,k fly

where f.lx is the permeability associated with H x' and Po is the

free-space permeability. Similarly, the other four equations have
pivot components of Ey , e., Hy , and u; In these equations, the

scattered-field components are the unknowns.

. ("1 . k )& Escat,y (i,j,k +1) (3)
jOJf.lx t, j,

+. ("1.) Escat,y (i,j,k)
]OJf.lx l,j,k &

f.lx(i,j,k)-f.lo H. (" k)
(, 'k) tnc,x i.], ,

f.lx i.],

One can use the magnetic-field pivot equations in the
electric-field pivot equations, and reduce the number of equations
from six to three. This eliminates the scattered magnetic-field
components from the equations. The resulting equations were
presented in [2]. Each of these equations has 13 terms on its left­
hand side. Only the scattered electric-field components become the
unknowns with this new set of equations. These equations are then
combined to form a matrix equation in the form of Equation (1). If
a three-dimensional problem space is composed of N cells, then
the total number of unknowns becomes 3N, and hence this is the
size of the vectors x and b. The size of the coefficient matrix A
is (3N,3N). Actually, A is a highly sparse matrix, and it has 13

nonzero coefficients in its rows. The real size of A is thus
13x 3N = 39N , which is the number of coefficients that need to be
stored in the computer's memory. Special storage schemes are used
to store such sparse matrices. One of these schemes is referred to
as the coordinate format, and this is the scheme used in [2]. In this
scheme the data structure consists of three arrays: (1) an array
containing all the complex values of the nonzero elements of A;
(2) an integer array containing their row indices; and (3) a second
integer array containing their column indices [6]. All three arrays
are of length 39N. Although two other sparse storage schemes,
called the compressed sparse row (CSR) format and the modified
sparse row (MSR) format, are available and are slightly more
efficient, the memory requirements are still very high for the
storage of A. In this paper, the storage requirements for various
techniques will be compared using the number of coefficients that
need to be stored, without dealing with actual details, due to
brevity.

1 H (" k), (" k) A scat,z l,j,jOJCx l,j, Lly
Escat,x (i,j,k)

+. ("1.) Hscat,y(i,j,k) (2)
jOJCx l,j,k &

cx(i,j,k)-co (, , )

(
, 'k) Einc,x l,j,k ,

ex i.],

An FDFD method solves Maxwell's equations in the
frequency domain. Such an FDFD method was developed and used
in [2] and [3] to solve electromagnetic wave scattering problems
from multiple three-dimensional conducting and dielectric objects.
In this FDFD method, a three-dimensional problem space is
divided into Yee cell's [1] using a Yee grid. The Yee grid is
traditionally used in the Finite-Difference Time-Domain (FDTD)
Method. On each Yee cell, six field components - namely Ex' Ey ,

Ez ' Hx' Hy' and Hz - are located at discrete positions. This is

done such that the electric-field components curl around the
magnetic- field components, and the magnetic-field components
curl around the electric-field components, naturally modeling
Maxwell's curl equations. The derivation of the FDFD formulation
starts with expressing the electric and magnetic fields in Maxwell's
vector curl equations as the sum of incident and scattered fields.
The incident field is the excitation field that propagates in a
medium in which no scatterers exist. Three scalar PDEs are then
obtained for the Cartesian coordinate system from each vector curl
equation, resulting in a total of six equations. The partial
derivatives in these six equations are expressed with finite
differences by using central-difference approximations on a Yee
grid. For instance, one of these equations has Ex as the pivot

component, and it is written as
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2.2 Iterative Solver

The FDFD methods discussed in this paper were all
programmed in the FORTRAN programming language. The
iterative solver used was the "vanilla" version of BICGSTAB [10].
A FORTRAN implementation of the method can be obtained from
the authors' Web site.

As discussed in the previous section, the user of the iterative
solver - BICGSTAB, in this case - needs to supply a function, or a
subroutine in FORTRAN, which will be called by the solver's
program code, perform the operation b' = AXk , and return b' to the

solver. If the coefficient matrix is stored using the coordinate
format, such a function can be implemented as follows:

subroutine matvec(m, X, y)
use global, only: A, row, col, nnz
implicit none
integer mj complex*16 x(*), y(*);
integer ij
do i=l, nnz

y(row(i)) = y(row(i)) + A(i)*x(col(i));
end do
end subroutine matvec

Here, the name of the subroutine is kept as matvec to be
consistent with the implementation of the BICGSTAB. In this
subroutine, X is the input corresponding to xk' and y is the output
corresponding to b'. The parameters X and y are one-dimensional
arrays with a size of m. The parameters A, row, and col are the
one-dimensional arrays used to store the value, row, and column
information of the sparse A matrix, respectively. The parameter
nnz is the number of nonzero coefficients in A, in other terms, the
size of arrays A, row, and col.

BICGSTAB only needs to receive y from the matvec
function. The method of storing the coefficients and calculating y

is completely up to the user, in this case the programmer of the
matvec function. In the given implementation, the coefficient
arrays are stored in a global workspace. Due to the implied
freedom in the method of calculation of y (i.e., b'), the FDFD
formulation is revisited, and a more-efficient algorithm is
developed.

2.3 The New Algorithm

Examining Equation (2), one can notice that the electric-field
pivot equations can be cast in a matrix equation as

(4)

where xe is a vector for scattered electric-field components, xh is

a vector for scattered magnetic-field components, Ae is a

coefficient matrix, and be is the right-hand-side vector. Similarly,

as can be observed in Equation (3), the magnetic-field pivot
equations can be cast in a matrix equation as

(5)

where Ah is a coefficient matrix, and bh is the right-hand-side

vector. The size of vectors xe ' Xh' be' and bh is 3N. The number

of nonzero coefficients in Ae and Ah is 4x 3N = 12N , since there

IEEEAntennasand Propagation MagaZine, Vol. 51, No.6, December 2009

are only four nonzero coefficients per row. After getting Xh from

Equation (5) and using it in Equation (4), one can obtain

(6)

The new algorithm is based on this equation. The right-hand side
of Equation (6) is calculated as b = be - Aebh before the iterative

solver is called. During the iterations, the operation at the left-hand
side is performed at every iteration, for a solution xek at the kth

iteration in multiple steps, as

(7)

where xt is a vector used to store intermediate results. In this

algorithm, the coefficient matrices Ae and Ah are stored

separately, and the total number of coefficients that need to be
stored is reduced to 24N , which is a significant reduction from
39N. A second improvement in the algorithm reduces this number
further, as detailed next.

Examining Equation (2), one can notice that although there
are four coefficients in the equation, there are actually two
coefficient pairs, in which the pairs are different only by their
signs. Equation (2) can be rewritten as

Escat,x (i,},k)

+Cexhz ii.], k) [ H scat.z (i,) - 1,k) - H scat.z (i,),k)]

(8)

+Cexhy (i,},k ) [Hscat,y (i,},k) - Hscat,y (i,},k -1)]

_ Ex(i,},k)-EO ( .. )
- - (.. k) Einc,x l,J,k ,

Ex i.],

where Cexhz (i,},k) and Cexhy (i,},k) are coefficients. This form

of the equation implies that the number of coefficients can be
reduced to two per equation, and the total number of coefficients
that need to be stored is 12N . These coefficients are indexed with
(i,},k) for a three-dimensional problem. It is therefore natural to

store them as three-dimensional arrays in the computer's memory,
instead of three one-dimensional arrays as is required by the
coordinate format. The use of three-dimensional arrays provides
the following main advantages:

The number of coefficients is reduced by half: 12N
coefficients instead of 24N .

The use of one-dimensional row and column arrays is
eliminated. These arrays store integer data, while the
coefficient arrays store complex data. If 16 bytes are
used for a complex datum and four bytes are used for an
integer datum, the amount of memory needed per
coefficient will reduce to 16 bytes from 24 bytes. The
total memory saving then becomes almost 80% for
storing the coefficients, compared to the unmodified
FDFD.

147



The code listing for matvec shows that the matrix­
vector product is performed using a for loop. It is well
known that a FORTRAN program will provide superior
performance if the program uses array operations rather
than f or loops. As will be illustrated next, the electric­
field components are also stored in three-dimensional
arrays, and matvec is implemented completely using
array operations.

As mentioned before, the input and output arrays, x and y, of
the matvec function are stored and used as one-dimensional arrays
in the BICGSTAB code. The array x includes the solution for

scattered-field components Escat,x' Escat,y, and Escat,z' arranged

as the vector xek' In order to use it in three-dimensional array

operations, the x array should be converted to three-dimensional

arrays corresponding to the Escat,x' Escat,y, and Escat,z field

components in the matvec function. A one-dimensional to three­
dimensional array transformation is therefore required. Actually,
since the x array includes the data for three field-component types,
each of which is a three-dimensional array, a one-dimensional to
four-dimensional array transformation is performed in the modified
matvec function for the new algorithm. If a problem space is
composed of Nx x Ny x Nz = N cells, where Nx, Ny, and Nz are

the numbers of cells in the x, y, and z directions, respectively,
then the x is cast into a four-dimensional array as x (Nx, Ny,

Nz , 3 ) from a one-dimensional array x ( 3 *N) . This
transformation is performed by defining x as a four-dimensional
array, as illustrated in the following modified matvec subroutine.
This transformation operation does not bring any additional
computational cost, since in either form of x, the data allocation in
the physical memory is the same: only the way it is being
interpreted by the compiler is different. By also representing the
field-component arrays as three-dimensional arrays embedded in a
four-dimensional array, the implementation of the matvec

subroutine is modified, based on the algorithm in Equation (7). A
section of the code is shown in the following listing.

subroutine matvec(n,x,y)
use global
implicit none
integer n;
complex*16 x(Nx,Ny,Nz,3), y(Nx,Ny,Nz,3);
tmpx(:,l:Ny-l,l:Nz-l) = &

Chxez(:,l:Ny-l,l:Nz-l) &
*(+x(:,2:Ny,1:Nz-l,3) &
-x(:,1:Ny-l,1:Nz-l,3))&

+ Chxey(:,l:Ny-l,l:Nz-l) &
*(-x(:,1:Ny-1,2:Nz,2) &
- x ( : , 1 : Ny-1 , 1 : Nz -1, 2) ) ;

y(1:Nx,2:Ny,2:Nz,1) = &
x(1:Nx,2:Ny,2:Nz,1) &

-(Cexhz(1:Nx,2:Ny,2:Nz) &
*(-tmpz(1:Nx,2:Ny,2:Nz) &
+tmpz(1:Nx,1:Ny-1,2:Nz)) &

+ Cexhy(1:Nx,2:Ny,2:Nz) &
*(+tmpy(1:Nx,2:Ny,2:Nz) &
-tmpy(1:Nx,2:Ny,1:Nz-l))) ;

end subroutine matvec

Here, tmpx, tmpy, and tmpz are three-dimensional arrays storing
the intermediate results as implied by Xt in Equation (7).
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2.4 Validation of the New Algorithm

In order to check the performance of the proposed algorithm
in terms of computation time, a scattering problem was solved
using the old and the new algorithms. A dielectric sphere with a
dielectric constant of 4.0 was illuminated by an x -polarized plane
wave at 1 GHz, traveling in the z direction. The radius of the
sphere was 10 cm. The bistatic radar cross section due to the
incident wave was calculated using both algorithms, and the results
were compared to the analytical solution [11] of the same problem.
Figure 2 shows that there was good agreement between the FDFD
solutions and the analytical solution.

In the FDFD calculations, the problem space was composed

of (Nx =100, N y = 100, Nz =100) = 106 cells. The total number

of the scattered electric-field components - thus, the unknowns ­

was 3x l 06
. The number of coefficients in the old algorithm was

39 x l 06 , and in the new algorithm it was 12x 106
. The calculation

time for the old algorithm was recorded as 61 minutes, while for
the new algorithm it was 46 minutes. The FDFD calculation time
was reduced by 25% using the new algorithm. It should be noted
that the simulation times for problems with the same size may vary
significantly between different problems, since the convergence
rate of the iterative solver may depend on some other factors, as
well.

The FDFD calculations referenced in this paper were all
performed on a computer with the Microsoft XP Professional x64
edition operating system and an Intel Xeon CPU E5405 at 2 GHz.

3. Improvement of the Chiral FDFD Method

The FDFD formulation discussed in the previous section was
developed to calculate scattering from three-dimensional dielectric
and conducting objects, [2] and [3]. In [4], the use of the FDFD
method was extended to solve for scattering from chiral objects.
The derivation of the chiral FDFD formulation is very similar to
the FDFD formulation. The main difference is in the constitutive
relations on which they are based: the FDFD is based on
constitutive relations for dielectric media, while the chiral FDFD
formulation is based on the constitutive relations for chiral media,
which are given as

D=eE- jK~eo,uoH,
(9)

where K is the chirality of the medium under consideration. The
FDFD formulation is derived for a Yee grid on which the electric­
and magnetic-field components are located at different discrete
positions. However, as can be seen in Equation (9), the electric­
and magnetic-field components are directly coupled to each other
through the constitutive relations. This coupling requires the
coexistence of electric- and magnetic-field components at the same
spatial locations. To overcome this problem, electric-field
components were averaged at the positions of the magnetic-field
components, and magnetic-field components were averaged at the
positions of the electric-field components, in [4]. Six equations,
each of which is pivoted by Ex, E y, e., u., n., or u., are
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then obtained for a cell. For instance, the equation for which Ex is

a pivot reads

Escat,x (i, J., k) (1) Hscat z (i, J., k). .. k A ,JOJ8X I,J, oy

1
+. C.) Hseat,z (i,j -l,k)

jOJ8x I,J,k ~

+ 1 H ( .. k). (.. k) A.. scai.y i.],JOJ8X I,J, zaz

1 H ( .. k 1). (.. k) A.. scat.y I,J, -JOJ8X I,J, ~

Kx(i,j,k) [H ( .. k) H ( .. k 1)
+. (..) X scat,x I,J, + scat,x t.], -

JOJ8x I,J,k c8

+Hscat,x (i,j,k)+ Hscat,x (i + l,j,k -1)
+Hscat,x (i,j -1,k) + Hscat,x (i,j -1,k -1)

+Hscat,x (i +1,j -I,k) + Hscat,x (i +I,j -I,k -1)]

8x(i,j,k)-80 ( .. )

(
. . ) Einc,x I,J,k

ex l,j,k

Kx(i,j,k) [H (. ·k) H (··k 1)
. (..) x inc,x Z,J, + inc,x l,j, -

JOJ6x i.f.k c8

+Hinc,x ( i +1, j, k) + Hinc,x (i +1,j, k -1)

+Hinc,x (i, j -1, k ) +Hinc,x (i, j -1, k -1)

+Hinc,x (i + l,j -l,k) + Hinc,x (i+1,j -l,k -1)J,
(10)

where c is the speed of light in free space. The other five
equations read similarly. These equations are arranged to form a
matrix equation as shown by Equation (1), where the vector x

includes all of the scattered electric- and magnetic-field
components. The size of the vectors x and b is 6N. The sparse
coefficient matrix A has 13 nonzero coefficients per row, so the
total number of nonzero coefficients that need to be stored is
13x 6N = 78N. It is possible to use the magnetic-field pivot
equations in the electric-field pivot equations and to obtain a
matrix equation in which only the scattered electric-field
components are unknowns, but this is not feasible, since the
number of coefficients per row of A would become 52.

The new algorithm described in the previous section was
applied to the chiral FDFD formulation derived in [4]. The
procedure in Equation (7) was used to calculate b' for a given xek

vector, which includes only the scattered electric-field components
as unknowns. In [4], the coordinate format was used to store the
coefficients of A, for which the number of coefficients was 78N.
Examining Equation (10), one can see that the number of
coefficients that are different from each other is actually three.
Using three-dimensional arrays to store the coefficients, the total
number of coefficients is reduced to 3x 6N = 18N. With the
elimination of the integer row and column arrays, the memory
reduction becomes almost 85%.

In order to check the computational time reduction, a
scattering problem was solved using the old and the new
algorithms. The scattering problem was the same as the one
presented in the previous section, except that the sphere had a
nonzero chirality, K = 0.3. The eo- and cross-polarized bistatic
radar cross sections due to the incident wave were calculated using
both algorithms, and the results were compared to the analytical

IEEEAntennas and Propagation Magazine, Vol. 51, No. 6, December 2009

solution [11] of the same problem. Figure 3 shows the eo-polarized
radar cross sections, whereas Figure 4 shows the cross-polarized
radar cross sections. Due to the optical-activity property of the
chiral medium, the scattered field includes cross-polarization as
well in the x-z plane. The results showed good agreement between
the chiral FDFD solutions and the analytical solution.

In the chiral FDFD calculations, the problem space was

composed of 106 cells. The total number of the scattered electric

field components, and thus the unknowns, was 3xl 06
. The

number of coefficients in the old algorithm was 78 x 106
, and in

the new algorithm it was 18x 106 . The calculation time for the old
algorithm was recorded as 307 minutes, while for the new
algorithm it was 57 minutes. The FDFD calculation time was
reduced by 80% using the new algorithm.

4. Improvement of the Double-Grid Chiral
FDFD Method

As discussed in the previous section, the chiral constitutive
relations require the coexistence of electric- and magnetic-field
components, and this problem was overcome in [4] by averaging
the fields on the Yee grid. As an alternative solution, a double-grid
approach, referred to as the DG-FDFD, was presented in [5].
Instead of a single grid, a Yee grid and a transverse Yee grid are
used, where like components of electric and magnetic fields from
these grids coexist at the same spatial positions. The field
components of these fields are coupled to each other. Due to the
introduction of a second grid, the total number of field components
has increased two-fold.

For the equation of the first grid in which the electric-field
component, Ex, is the pivot, we have

1
Eseat,xa (i,j,k)- . C. k).1'1 Hseat,za (i,j,k)

jOJ8xa Z,J, ~

+ . /.) Hscat,za (i,j -l,k)
JOJ6xa I,J,k ~y

+ . /.) Hseat,ya (i,j,k)
jW8xa I,J,k I1z

. /.) Hseat,ya (i,j,k-l)
jW8xa 1, J, k I1z

jKxa H ( .. k)
(. . k) scat,xb 1, J,

8xa I,J,

8 xa(i,j,k )-80 E. ( .. k)
(. . k) inc.xa I,J,

8 xa I,J,

~~xa. k) Hine,xb (i, t. k ) , (11)
6 xa i.],

where the subscript a denotes the components on the first grid,
and b denotes the components on the second grid. The other 11
equations read similarly for the field components in both grids [5].
These equations are combined to form a matrix equation as in
Equation (1). The vectors x and b each have a size of 12N , and
the sparse matrix A has 6 x 12N = 72N nonzero coefficients.

The new algorithm was then applied to improve the
efficiency of the DG-FDFD method, where the procedure in
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Equation (7) was employed. The vector xe includes the scattered

electric-field components in both grids: the number of unknowns
thus becomes 6N. Since there are three distinct coefficients in
Equation (11), the number of coefficients that needs to be stored
reduces to 36N, from 72N . With the elimination of integer arrays
of the coordinate format, the actual memory requirement for the
coefficients is reduced by 66%.

In order to check the computational time reduction, the same
scattering problem as the one presented in the previous section was
used. The co- and cross-polarized bistatic radar cross sections due
to the incident wave were calculated using the unmodified and
modified DG-FDFD algorithms, and the results were compared to
the analytical solution [11] of the same problem. Figure 3 shows
the eo-polarized radar cross sections, whereas Figure 4 shows the
cross-polarized radar cross sections. The results showed good
agreement among the DG-FDFD, chiral FDFD, and the analytical
solutions.

In the DG-FDFD calculations, the problem space was

composed of 106 cells. The total number of scattered electric-field

components, and thus the unknowns, was 6 x l 06
. The number of

coefficients using the coordinate format was 72 x 106
, and using

the three-dimensional arrays it was 36 x l 06 . The calculation time
for the new algorithm in Equation (7) using the coordinate-format
storage scheme was recorded as 200 minutes, while for the new
algorithm using three-dimensional arrays it was 155 minutes. The
FDFD calculation time was reduced by 22%, just by changing the
data-storage scheme.

5. Conclusion

An algorithm to improve the time and memory efficiency of
the iterative solution of FDFD methods has been presented. It has
been shown that up to 80%, 85%, and 66% memory reductions can
be achieved for the storage of coefficients arising in the FDFD,
chiral FDFD, and DG-FDFD methods, respectively. The memory
reductions achieved by the new algorithm are tabulated in Table 1.
Meanwhile, very significant computational time reductions have
also been observed with the test cases. The calculation times of the
test cases are tabulated in Table 2. The use of efficient

Table 1. The memory reduction achieved by using three­
dimensional arrays instead of coordinate format for storing the

coefficients.

Method Memory Reduction
FDFD 80%
Chiral FDFD 85%
DG-FDFD 66%

Table 2. The recorded calculation times of the tests (minutes).

Method Time
FDFD old algorithm 61
FDFD new algorithm 46
Chiral FDFD old algorithm 307
Chiral FDFD new algorithm 57
DG-FDFD new algorithm (coordinate format) 200
DG-FDFD new algorithm (three-dimensional arrays) 155
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preconditioners could improve the simulation times even more.
The prescribed algorithm also has the potential to improve the
efficiency of other FDFD-like frequency-domain methods, such as
the Finite-Element Method (FEM).
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