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basic computational cost of GPR is ����� [12], due to the fact that
an � � � matrix needs to be inverted for both the gradient calcula-
tions required for hyperparameter optimization [12, eq. (5.9)]; and in-
ference (13). This computational expense may become prohibitive for
large �. In contrast, even though hyperparameter optimization under
BSVR likewise requires matrix inversion for computing the gradient
of the evidence [11, eqs. (39)–(41)]), this involves the � �� matrix
�� (cf. (12)), where� usually is considerably smaller than � [11]. To
make predictions, BSVR does not require matrix inversion, but rather
solving of the convex quadratic optimization problem (10), for which
multiple efficient techniques exist [7]. Second, the sparseness property
of BSVR can be used towards adaptive data selection when training
data is expensive to generate. The sparseness property alludes to the
fact that the predictive function can be expressed as a weighted sum
of kernel functions centered at the support vectors (SVs), where the
SVs are a (usually significantly) reduced subset of the training input
vectors. Suppose that a “coarse” regression model using many inex-
pensive coarsely simulated training data points is set up, and that SVs
are identified. It has been shown that the SVs, re-simulated at a high
meshing density, can form a sufficient training set for an accurate “fine”
model [17]—resulting in substantial computational savings compared
to when the full original training set is simulated at the high meshing
density. Finally, BSVR’s soft insensitive loss function (9) is not overly
sensitive to outliers that might arise if training data were obtained from
noisy measurements. In contrast, outliers contribute disproportionally
to the quadratic loss function in GPR—to the extent that relatively few
outliers could adversely affect the solution [11].

It is anticipated that BSVR might be applied with good effect to
other antenna-related regression problems that involve non-linear
input-output relationships and multi-dimensional inputs.
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Dispersive Periodic Boundary Conditions for
Finite-Difference Time-Domain Method

Khaled ElMahgoub, Atef Z. Elsherbeni, and Fan Yang

Abstract—A dispersive periodic boundary condition (DPBC) is devel-
oped for the finite-difference time-domain method to analyze periodic
structures with dispersive media on the boundaries of a unit cell. The
formulation is based on the auxiliary differential equation (ADE) method
with a two-term Debye model and the constant horizontal wavenumber
approach. The developed formulation is easy to implement and is efficient
in both memory usage and computational time. The validity of this for-
mulation is verified through several numerical examples such as infinite
dispersive slab and sandwiched composite frequency selective surface
(FSS) structure.

Index Terms—Auxiliary differential equation, Debye model, dispersive
media, finite-difference time-domain (FDTD), periodic boundary condi-
tions (PBC).

I. INTRODUCTION

Periodic structures are of great importance in electromagnetics due
to their wide range of applications. The finite-difference time-domain
(FDTD) technique has been utilized to analyze these structures, and
various periodic boundary conditions (PBC) have been developed such
that the computations are performed on only one unit cell instead of the
entire structure [1]. Meanwhile, simulation of dispersive media is es-
sential in many applications such as medical telemetries, metamaterials
designs, nano plasmonic solar cells, and shielding materials. FDTD
also provides an efficient means to simulate these media, and various
methods have been developed to model the frequency dependence of
the material parameters. The recursive convolution (RC) method [2]
and the auxiliary differential equation (ADE) method [3] are the two
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most well known approaches. The piecewise linear recursive convolu-
tion [4] and the �-transform [5] are also used to model the dispersive
media.

It’s worthwhile to point out that most of the previous PBCs for
FDTD technique are developed to analyze periodic structures where
dispersive materials are not located on the boundary of the unit cells.
However, there are numerous applications where dispersive media
exist on the boundaries of a unit cell. In this communication, a dis-
persive periodic boundary condition (DPBC) for the FDTD technique
is developed to solve the above challenge. The algorithm is based
on the ADE technique with a two-term Debye relaxation equation to
simulate general dispersive media. In addition, the constant horizontal
wavenumber approach [6]–[9] is modified accordingly to implement
the PBCs. Compared to other FDTD/PBC techniques such as field
transformation methods, the constant horizontal wavenumber algo-
rithm offers many advantages, including the implementation simplicity
and good stability condition for incidences near grazing angles [7].

The communication is organized as follows: In Section II, brief
descriptions of the ADE technique and the constant horizontal
wavenumber approach are provided, FDTD updating equations are
derived, and the DPBC is described. In Section III, numerical exam-
ples proving the validity of the approach are presented. Section IV
provides the conclusion.

II. DISPERSIVE PERIODIC BOUNDARY CONDITIONS

In this section an algorithm to implement the DPBC in FDTD is
developed. The algorithm is based on the ADE method and the constant
horizontal wavenumber approach.

A. Auxiliary Differential Equation Approach

In the ADE method, an additional differential equation relating the
electric displacement vector � to the electric field vector � is used in
addition to Maxwell’s equations. For a dispersive material, the electric
displacement vector can be written as

���� � �������� (1)

where � is the permittivity. The dispersive characteristics of ���� can
be described by a two-term Debye relaxation equation as
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��� � ��

� � ����
�

��� � ��

� � ����
(2)

where �� is the free space permittivity, ��� and ��� are the static relative
permittivities, �� is the relative permittivity at infinite frequency, and
�� and �� are the relaxation times. From (1) and (2)���� can be written
as follows:
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where �� � ��� � ��� � ��. Equation (3) is a frequency-domain
equation of �, and it can be transformed to the following time-domain
differential equation
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Solving this additional (4) simultaneously with the Maxwell’s equa-
tions will lead to simulating the dispersive property of the medium [10].

B. Constant Horizontal Wavenumber Approach

For periodic structure with periodicity 
� along the �-direction, the
PBC of the electric field in frequency domain can be written according
to Floquet theory as

��� � �� 
� �� �� � ��� � 
�� 
� �� ��� �
�� � (5)

where

�� � �� �	
 � �
���

�
�	
 � (6)

and � is wave velocity in free speed.
Instead of fixing the incidence angle �, the constant horizontal

wavenumber approach fixes the value of the horizontal wavenumber
�� in FDTD simulation. Thus, the term ��� � is constant in (5).
Using a direct frequency domain to time domain transformation, the
electric field in time domain can be represented as follows:

��� � �� 
� �� �� � ��� � 
�� 
� �� ��� �
�� �

	 (7)

In this approach, conventional Yee’s scheme [11] is used to update the
� and � fields, which offer several advantages such as: implemen-
tation simplicity, the same stability condition and numerical errors as
conventional FDTD [6]. Thus, the constant horizontal wavenumber ap-
proach is a good choice for the periodic structure analysis. More details
about the approach could be found in [6].

C. The FDTD/DPBC Algorithm

The computational domain is shown in Fig. 1. Different to the con-
ventional FDTD method, the proposed algorithm uses the ADE tech-
nique to update the non-boundary electric field components. In addi-
tion, a modified version of the constant horizontal wavenumber ap-
proach is derived to update electric field components on the boundaries.
The algorithm can be summarized as follows.

1. Update � from � using conventional FDTD;
2. Update � from � (non-boundary components) using the ADE

technique;
3. Update � from � (boundary components) using DPBC;
4. Update � from � using the ADE technique.

Steps 1, 2 and 4 do not need any further modification compared to the
conventional FDTD and the ADE technique. Only for step 3, the con-
stant horizontal wavenumber approach should be modified to include
the dispersive feature on the boundary.

The Floquet theory in frequency domain is represented as follows:

���� 
 � �� �� �� � ���� 
 � 
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	 (8)

Multiplying both sides of (8) by the complex permittivity will result in
the following equation:
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Equation (9) represents Floquet theory for the displacement electric
field vector �. Using the constant horizontal wavenumber approach,
(9) can be directly transformed to the time domain as follows:
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Fig. 1. Computational domain (unit cell geometry).

For the �-direction, the updating equation for the � components on the
boundary (� � �) can be written as follows:
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where ��, �	 are the unit cell size in �- and 	-directions respectively,
and �� is the time step. From (11) it can be noticed that updating the
� components on the boundary (� � �) need the knowledge of mag-
netic field components outside our unit cell of interest (unit A in Fig. 2).
However, due to the periodicity and using the Floquet theory, the mag-
netic field components �� inside the unit A can be used to replace the
outside magnetic field component as follows:

�
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�����
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�� ��� �

�� � (12)

where 
� is the total number of FDTD cell in the �-direction. Using
(11) and (12), all the displacement electric field vectors on the boundary
(� � �) can be updated. As for the boundary (� � ��) the updating
equation can be represented as follows:
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Similar to the �-direction, all the fields in both the �- and 	- direc-
tions can be updated. The FDTD/DPBC algorithm can also be easily
extended to implement dispersive permeability media. In addition, it
can be simply used with other dispersive models such as the Lorentz
and Drude models. Also, the DPBC can be used with other dispersive
simulation techniques such as the RC and 
-transform methods.

III. NUMERICAL RESULTS

In this section, numerical results generated using the FDTD/DPBC
algorithm are presented. The FDTD code was developed using
MATLAB [12] and executed on a computer with an Intel Core-2
2.66 GHz with 2 GB RAM. These results demonstrate the validity of
the algorithm by determining reflection and transmission properties
of periodic structures with general dispersive media. The results are
compared with results obtained from analytical solution and Ansoft
high frequency structural simulator (HFSS) which is based on the
finite element method (FEM) [13].

Fig. 2. Geometry of a general periodic structure.

Fig. 3. Reflection coefficient for infinite water slab of thickness 6 mm under
normal incidence (� � � � ).

A. An Infinite Water Slab

The algorithm is first used to analyze an infinite water slab with a
thickness of 6 mm. The slab is illuminated by ��� and �
� plane
waves in two different simulations. The parameters of water permit-
tivity are obtained from [10] as: �	� � ��, �	� � �
�, �� � �
�,
�� � �
� � ����� and �� � �. The geometry of the slab is shown in
Fig. 1. The FDTD grid cell size is�� � �� � �	 � �
�����, and
the slab is represented by 2� 2 cells (due to the homogeneity of the
infinite slab, it can be considered as a periodic structure with any peri-
odicity). In the FDTD code 10,000 time steps are used. Convolutional
Perfect Matched Layer (CPML) is used as the absorbing boundaries at
the top and the bottom of the computational domain as implemented
in [14]. The slab is excited using a cosine modulated Gaussian pulse
centered at 10 GHz and with a 20 GHz bandwidth for the normal in-
cident case (�� � � ���), and it is excited using a cosine modulated
Gaussian pulse centered at 12.75 GHz and with a 14.5 GHz bandwidth
for the oblique incident case (�� � ���
� ���). Here, the bandwidth
is defined as the frequency band where the magnitude of the excitation
decays to 10% of its maximum. The angle span for �� � ���
� ���

and the frequency range from 5.5 to 20 GHz is from 65.5� to 14.5�. The
results are compared with analytical results. From Figs. 3 and 4, good
agreements between analytical solutions and FDTD results can be no-
ticed for both ��� and �
� cases (normal and oblique incidence).

B. Sandwiched Composite FSS

The algorithm is then used to analyze a sandwich composite-FSS
structure. The composite materials have been investigated for their po-
tential applications as shielding materials to protect electronics system
from electromagnetic pulse or electromagnetic interferences.
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Fig. 4. Reflection coefficients for infinite water slab of thickness 6 mm under
�� and �� oblique incidence (� � ����� 	 ).

Fig. 5. Geometry of the sandwiched composite-FSS structure (all dimensions
are in mm).

To enhance the shielding effectiveness, one possible solution is to
introduce additional layer or layers of FSS structures between the in-
terfaces of composite materials [15]. The sandwiched structure studied
here is shown in Fig. 5. An infinite thin metal film is inserted between
two composite material layers with a thickness of 2.5 mm each, the
metal film has a periodic array of cross-shaped slots with a 2 mm peri-
odicity in both �- and �-directions. The parameters of the permittivity
of composite medium can be stated as [14]: ��� � ���, ��� � ���,
�� � ���, �� � ����� ����� and �� � �. The structure is simulated
using FDTD grid cell size �� � �� � �� � ��� 		, and CPML
is used as the absorbing boundaries at the top and the bottom of the
computational domain.

The structure is first illuminated by a normally incident 
�� plane
wave (� � �

� and � � �
�) using a cosine modulated Gaussian pulse

centered at 5 GHz with a bandwidth of 10 GHz. Then the structure is
illuminated by an obliquely incident 
�� plane wave (� � ��

� and
� � ��

�). Multiple runs of the code are needed to generate results for
many frequencies and a specific oblique incident angle. To study the
shielding enhancement provided by adding the FSS layer, the trans-
mission coefficient without the presence of the FSS is provided as a
reference.

Fig. 6 provides results for a normal incidence (� � �
� and � �

�
�). Good agreement can be noticed between the FDTD/DPBC results

and the HFSS results. The computational time for FDTD is equal to
9.56 minutes while for HFSS for 40 frequency point the computational
time is 12.34 minutes which proves efficiency and validity of the al-
gorithm. Fig. 7 provides results for an oblique incidence (� � ��

�

and � � ��
�), and good agreement is obtained between FDTD/DPBC

and HFSS simulations. The computational time for FDTD is equal to
13.6 minutes while for HFSS the computational time is 14.8 minutes. It

Fig. 6. Transmission coefficient for sandwiched composite-FSS structure
under normal incident �� plane wave (� � � , � � � ).

Fig. 7. Transmission coefficient for sandwiched composite-FSS structure
under oblique incident �� plane wave (� � 
� , � � �� ).

could be noticed from Figs. 6 and 7 that the transmission coefficient is
dramatically decreased due to the presence of the FSS which enhance
the shielding effect.

IV. CONCLUSION

This communication introduces an FDTD/DPBC algorithm to an-
alyze the scattering properties of periodic structures with dispersive
media on the boundaries. The approach is developed based on both the
constant horizontal wavenumber technique and the ADE technique. It
is simple to implement and efficient in terms of both computational
time and memory usage. The algorithm is capable of calculating re-
flection and transmission coefficients in the case of normal and oblique
incidences, for both 
�� and 

� cases. Numerical examples for po-
tential applications such as dispersive slabs and sandwiched composite
FSS were provided. The results show good agreement with results ob-
tained from the analytical solution for a dispersive slab and the fre-
quency domain solutions for a dispersive periodic structure.
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A Memory-Efficient Implementation of TLM-Based
Adjoint Sensitivity Analysis

Osman S. Ahmed, Mohamed H. Bakr, and Xun Li

Abstract—We present a memory efficient algorithm for the estimation of
adjoint sensitivities with the 2D transmission line modeling (TLM) method.
The algorithm is based on manipulating the local scattering matrices to re-
duce the required storage for the original structure simulation associated
with lossy dielectric discontinuities. Only one value per cell is stored for
two dimensional simulations. Moreover, the connection step for the scat-
tered sensitivity storage is embedded during the adjoint simulation and the
sensitivity estimates are calculated on the fly. The required memory storage
for our implementation is only 10% of the original implementation of AVM
sensitivity with TLM.

Index Terms—Computer-aided design (CAD), transmission line mod-
eling (TLM), adjoint variable method (AVM).

I. INTRODUCTION

Adjoint variable methods (AVM) has opened a way for significant
acceleration of derivative-based optimization of microwave structures
[1]–[5]. The AVM estimates the sensitivity of the objective function
with respect to all parameters using at most one extra simulation. AVM
approaches can be contrasted with finite difference approaches where at
least� extra simulations are calculated where � is the number of pa-
rameters. The AVM approach has been successfully developed for both
time and frequency domain numerical techniques [4]–[8]. Recently the
AVM algorithm has found early implementation in commercial soft-
ware such as HFSS [9] and CST [10].

The development of the AVM approach for transmission line mod-
eling (TLM) has been achieved in several stages. The AVM was first
developed for 2D time-domain TLM problems with perfect conducting
discontinuity where the shape of a metallic object is the optimizable
design parameter [3]. An efficient mapping algorithm is developed in
order to avoid the simulation of a perturbed adjoint structure. In this
approach only the perturbed transmission line links connected to the
metallic object needs to be stored.

TLM-based AVM approaches for lossy dielectric discontinuities re-
quire huge memory storage during both the original and the adjoint
simulation [11]. For these problems, the perturbation is volumetric and
thus the entire discontinuity domain is perturbed. All the TLM links in-
side the dielectrically perturbed domain are stored during the original
and adjoint simulation at all time steps.

In this communication, we present a novel memory efficient imple-
mentation of the AVM algorithm with TLM. We show that the memory
requirement is reduced to only 10% of that required for original 2D
TLM-based AVM algorithm [11]. A mathematical manipulation of the
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