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AN EFFKCIENT FINITE DIFFERENCE METHOD FOR FINDING THE
ELECTRIC POTENTIAL IN REGIONS WTTH SMALL PERTURBATIONS

Richard K. Gordon®, Mark [J. Tew, and Atef Z. Blsherbeni
Department of Ehectrical Pngineering
University of Missistippi
University, MS 38677

INFRODUCTION

Ahernarive derivative formulas [ 1] are used in the finite difference method
with a nonuniform mesh to determine the difference field that arises as the result of
the introchuction of 2 smali cbstacle into a region in which an electric field 1 pregeet.
Unlike provious technig nploying integral equation formulations [2-3], this is

peortind differential aquation approach

DIFFERENCE POTENTIAL TECHNIQUE

We consider a situation such as that shown in Figs. 1 and 2. The electric
potential along the sides and top of a rectangular region is zero; akong the bottom of
the rectangle il satisfies the boundary condition, ¥W(x.0)=sin(3m/2). Before the
adcition of any obstacle, the criginal potential existing in the rectangular region can
be determined analytically. After the introduction of an obatacle such as the small
rectangular piece of perfect electric conductor (PEC) shown in Fig. 1 or the
diefectric cross shown in Fig. 2, the pernirbed potential iy determined oumerically.
One way of doing this is to sotve for the pernrbed potential directly using the
conventional finite diffs thod. Since the perturived potsntial is varying
ignificantly throughout the problem domain, this approach would require the ase
of a finite diffevence mesh that is rather denss everywhere in the recangular region.
In order o avoid this ruther costly calculation, we congider a diffarent approach.
We instead solve f0f V gitfermce defined 23 Vg forwcs ™ Vpartnrbed - Vorigind- Here,
Vorigina) is the potential in the rectangular region before the introduction of the
obstacle a0d ¥ purturbad 13 the potentiz] afterwards. Because this diffenence potential
is insignificant away from the obstacle, it is possible to numerically determine
V difference Uting a mesh that is dense nesr the obstacle but sparse away from it
‘That is, Vam ¢an be 1y d ined using a finite difference mesh
having far fewer nodes than the mesh that must be used in the direct pumerical
determingtion of Vpgpebed. Thus, the use of this method results in a significant
reduction in the amount of cotrputer time and memory required. Once ¥ i oo
has been determined, Vperrurbed i3 found by adding ¥originat, which can be
comrversenily dewermined amalytically, ko ¥ diffeveace.
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NUMERICAL RESULTS

[n Fig. |, the kength and height of the PEC gbstacle are 1728 the length and
height of the rectangular region. The perturbed problem was sotved directly using a
dense mesh having 1653 nodes. The numerical results oblzined for the perturbed
potential along the horizcntal Line abutting the bottom of the obstacie are plotted as
the dotted line in Figs. 3(a) and 3{b). The difference technique described above
was employed viing a sparse mesh baviog 231 nodes. The numernical results
chtained for the sum of the original and difference potentials along the horizoatal
line abutting the bottom of the obstacle are plotted as the solid line in Fig. 3(a).
There ia excellent agresment with the results cbmined from the direct solution of the
perturbed problem using (he: denser mesh. The resulis obtained from an attempt to
directly solve the perturbed problem with the same sparse mesh used in the
determination of the diffevential potential in the technique described above are
plotted as the solid line in Fig. Xb). Clearly, the mesh is 100 sparse to be used in
the direct solution of the perturbed potential. Thus, the wse of the method described
ahove has permitted the desermination of the perurhed potential with a sparser finite
difference mesh than the one that must be used in a direct selution technique.

In Fig. 2, the center of the dielectric cross is at the censer of Lhe rectangutar
region. The lengths of the entire horizontal and vertical segments of the dielectric
cross are the sams and are squal to 1/7 the length of the reclangular region. The
thickness of each segment is 128 the length of the rectangular region. The relative
permittivity i3 4.0. The perturbed problem was solved directly using a dense mesh
having 1653 nodes, The numerical results obtained for the perturbed potential
along the horizontal line through the center of the cross are plotted as the doited line
in Figs. 4{a) and 4{b). The technique described above was employed using a
sparse mesh baving 399 nodes. The numerical nesulis oblained for the sum of the
original and difference potentials along the horizontal line through the center of the
cross are plotted a3 the solid ling in Fig. 4(a). As in the case of the PEC cbsincle,
there is excelbent agreement with the results obtained from the direct solutica of the
perturbed problem using the denser mesh. The results obaained from an attenpt 1o
directly solve the perturbed problem with (he same sparse mesh used in the
determination of the differential potential in the technique described above are
plotted as the solid line in Fig. 4(b}. Once again, although the mesh is adequate for
the determination of the difference potential, it is boo sparse to be used in the direct

{ution of the perturbed potential. So, again, the use of the method described
above has parmitied the determination of the perturbed posential with 2 sparser finite
difference mesh than the one that must be used in & direct solution technique.,
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CONCLUSIONS

The elecric potendal in a region containing small perturbations can be
efficiently determined by using a finite difference technique with a nonumiform
mesh plus knowledge of the original potential in the unpernobed problem. This can
be applied to PEC obstacles, dielactric obstacies, or combinations of b
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Figure 1. Geometry for FEL obsiacle
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Figure 2. Geometry for diclectric obstacle
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Figures 3{a) amd 3(b). Numerical results for the potential along the
Torizontal ine abutting the botiorn of the PEC obstacle
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Figures 4(2) and 4(b). Numerical results for the potential along the
horizontal line through the center of the diciectric obstacle



