General Relativity HW3 Problems

1. Three events A, B, C are seen by an observer O to occur in the order ABC. Another Observer O’ sees the same three events occur in the order CBA. Is it possible that a third observer O” could see the events in the order ACB? Support your conclusions by drawing a spacetime diagram.

2. On a ct-x spacetime diagram, draw four events A, B, C and D such that A can cause B and C, B can cause D but not C, and C cannot cause D. Is such a situation possible in Galilean Relativity?

3. Prove that in special relativity $(\Lambda^0)^2 \geq 1$.

4. Consider objects N_{ij} and M^{ij} in 2D with components:

 \[
 N_{11} = a, N_{12} = b, N_{21} = c, N_{22} = d \\
 M^{11} = e, M^{12} = f, M^{21} = g, M^{22} = h
 \]

 Evaluate the following using index notation:
 a) $N_{ij}M^{ki}$
 b) $N_{ij}M^{kj}$
 c) $N_{ij}M^{ji}$
 d) $N_{ij}M^{ij}$

 For each of the above, rewrite and evaluate using matrix operations when possible.

Bonus problem:

Consider a Galilean boost from (ct, x, y, z) to (ct', x', y', z') which corresponds to a boost along +x with a speed v. Find the matrix Λ which enacts this transformation and then show that it satisfies $\Lambda^T g_1 \Lambda = g_1$ and $\Lambda \bar{g}_2 \Lambda^T = \bar{g}_2$ for $g_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ and $\bar{g}_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.