Mathematical Methods in Physics HW1

- 1. Which of these form a group? If they do, identify which element acts as the identity. If they do not, specify which group criteria they do not meet.
 - Integers with addition
 - Integers with multiplication
 - Rationals with addition
 - Rationals with multiplication
 - 3x3 matrices with arbitrary real elements with matrix multiplication
 - 3x3 matrices with arbitrary real elements with addition
 - Imaginary numbers with addition
 - Imaginary numbers with multiplication
- 2. Which of these form a field? If they do then identify the field ingredients. If they do not, identify which ingredients go wrong.
 - 2D rotations matrices with matrix addition and matrix multiplication
 - 2D diagonal matrices with real elements with matrix addition and matrix multiplication
 - 2D arbitrary with real elements with matrix addition and matrix multiplication
- 3. Which of these constitute a vector space? If they do, show that they do. If they don't, show why they don't.
 - An n-tuple of complex numbers over the field of real numbers
 - An n-tuple of imaginary numbers over the field of real numbers
 - An n-tuple of imaginary numbers over the field of complex numbers
 - An n-tuple of complex numbers over the field of imaginary numbers
- 4. Show that even and odd integers do not form a group under multiplication.
- 5. Consider \mathbb{R}^3 and a usual set of orthonormal basis vectors, $\hat{\imath},\hat{\jmath},\hat{k}$. Show that the set $\hat{a}=\hat{\imath},\hat{b}=\hat{\jmath},\hat{c}=\frac{1}{3}(\hat{\imath}+\hat{\jmath}+\hat{k})$ forms a basis, though not an orthonormal one (well at least it is normalized though not orthogonal).
- 6. Show that all groups with only three elements are isomorphic. How many different (non-isomorphic) variations of four element groups are there?
- 7. Prove that if the set of vectors $\{x_i\}$ is a basis for a vector space V, then for c_i arbitrary nonzero scalars, so is the set $\{c_ix_i\}$.