Linear Transformations
Okay, so we have victors. But whet con we do to then?

First and foremost we can "transform" then, but not in an arbitrary way (otherwise we n ight break. some of the defining properties of vectors).

A linear transformation loperator A on a vector space V assigns to every y vector $x, y \in V$ vectors $A x, A_{y} \in V$ sit.

1. For a, b scalars $A(a x+b y)=a A x+b A y$
2. The "product" of two A and B is defined by, $A B x \equiv A(B x)$
3. $(A+B) x \equiv A x+B x$
a new vector for A to acton
Note that even though the definition
Let's consider some examples: of vectors does not include "hultiplication" for linear transformations it does!
4. For $F^{n}($ the since of n-tuples), then matrix multiplication $M V$ we square a xn matrices works. We know that $M(a x+b y)=a M x+b M y$ for any $x, y \in F^{n}$ from experience. And obviously, $M h^{\prime} x=h\left(M^{\prime} x\right)$ and ($\left.h+h^{\prime}\right) x=M x+M^{\prime} x$ works as well.
5. Consider P_{n} (polynomials up to degree A), and the operator $D^{k} \equiv \frac{d^{k}}{d t^{k}}$.

Consider $D^{k}(a x+b y)=\frac{d^{k}}{d t^{k}}(a x+b y)=a \frac{d^{k} x}{d t^{k}}+b \frac{d^{k} y^{\prime}}{d t^{k}}$ where $\frac{d^{k} x}{d t^{k}}, \frac{d^{k} y}{d t^{k}} \in P_{n}$ as w_{c} (I. Also $D^{k} D^{k^{\prime}} x=\frac{d^{k}}{d t^{k^{2}}}\left(\frac{d^{k}}{d t^{k^{\prime}}} \cdot x\right)=\frac{d^{k+k^{\prime} x}}{d t^{k+k^{\prime}}}$ and $\left(D^{k}+D^{k^{\prime}}\right) x=\frac{d^{k} x}{d t^{k}}+\frac{d^{k} x}{d t^{k^{\prime}} \text {. }}$

Why doesn't $I_{x}=\int x d t$ works? Because for $P_{n}, I t^{n}=t^{n+1} \notin P_{n}$.

Two special linear transformations are $O x=0$ and $I_{x}=x$ where the exact form of these depends on the form of the vectors.

The "product" of linear trangfoinations enjoys a host of properties:
a) $A O=O A=O$
c) $A(B+C)=A B+A C$
e) $(a A)=a(A) \quad a \in F$
b) $A I=I A=A$
d) $A(B C)=(A B) C$

Note: $A B=B A$ is not guciunterd!

Inverses

Okay, so for vectors we know that for any $x \in V$, there hurst exist an $x^{-1} \in V$ sit. $x+x^{-1}=0=t h$ identi-1y, ie. $x+(-x)=0$.
What about linear tranifornctions? Do the have an inverse? Is it additive or "multiplicative"? (Sine L.T.s include addition and "multiplication")

First of all, if we consider a vector space V, then the set of all linear transformations acting on U actually, forms a vector space itself!
That is the set $\{A, B, \cdots\}<U^{\prime}{ }_{\text {sat is }}$ firs:

1. There exists an operation + sit. $\left\{U^{\prime},+\right\}$ forms an abelicn group w/ identity, $=0$
2. For caen $\propto \in F$ there exist a transformation $\propto A \in V^{\prime}$ and
a) $\alpha(B A)=(* 3) A$
c) $I(A)=A$ for all $A \in V^{-}$
b) $\alpha(A+B)=\alpha A+\infty B$
d) $(\alpha+B) A=\alpha A+B A$

So yes, then always exists an additive inverse to any lined, tionsfornation, ie. $A+A_{1}^{-1}=0$.

What about the "product"? $A A_{0}^{-1}=I$ docs A^{-1} exist? First of all let's clean up notation. Since $A_{+}^{-1}=-A$, we con just call $A_{0}^{-1}=A^{-1}$.
$H_{c, r}$ we go...
If o liner transformation A has both the following properties, then A^{-1} exists:
a) $x \neq y \Rightarrow A_{x} \neq A_{y}$ (or $A_{x}=A_{1} \Rightarrow x=y$),
b) For every $y \in V$ there exists an $x \in U$ sit. $A x=y$

Consider the transformation $R_{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \operatorname{cor} \theta\end{array}\right)$ which acts on \mathbb{R}^{2}.
a) $x=\binom{a}{b}, y=\binom{c}{d} \quad R_{\theta} x=\binom{a \cos \theta-b \sin \theta}{a \sin \theta+b \cos \theta}$ and $R_{\theta y}=\binom{c \cos \theta-d \sin \theta}{c \sin \theta+d \cos \theta}$ will use

$$
\begin{aligned}
R_{\theta} x=R_{\theta y} \Rightarrow a \cos \theta-b \sin \theta=c \cos \theta-d \sin \theta \\
a \sin \theta+b \cos \theta=c \sin \theta+d \cos \theta
\end{aligned} \Rightarrow \underbrace{(a-c) \cos \theta=(b-d) \sin \theta}_{\cot \theta=-\tan \theta \text { never tine! }} \begin{aligned}
& (a-c) \sin \theta=-(b-d) \cos \theta
\end{aligned}
$$

b) $y=\binom{a}{b}$ then $x=\binom{a \cos \theta+b \sin \theta}{-a \sin \theta+b \cos \theta}$ sit. $R_{\theta} x=y \quad O f_{\text {conte we already }} k$ new $R_{\theta}^{-1}=\binom{\cos \theta \sin \theta}{-\sin \theta \cos \theta}$

So let's cunsider a less fortunate example. How a bout D on Pr?
$\left.\begin{array}{l}\text { a) } x=t^{2}+\alpha, y=t^{2}+3 \Rightarrow D x=2 t=D y \text { but } x t y \\ \text { b) For } y=t^{n}+\cdots \text { then there exist, no } x \text { sit. } D x=y\end{array}\right\} \begin{aligned} & \text { So } D \text { on } D_{n} h a s \\ & \text { no inverse. }\end{aligned}$

Conditions (a) and (b) correspond to injectivit, and swjectivit) of the rap A.
al injective (one-to-one)
Infective Mops

b) Subjective (onto)

Suspective Maps

Non-injective Maps

\sqrt{x}

Non-surjective Maps

Well it turns out that if the two spaces you ore napping between have the some number of elements, then injective \Leftrightarrow surjective! (This is the for finite n)

Surientive and Injective

$N_{\text {on-surjective cad }} N_{01}$-iajective

Just think a bout why the inverse loesn't exist!

So fora finite dimensional vector space we con choose either condition (a) or (b) to checks for an inverse.
So consider the following:
[If $A x=0 \Rightarrow x=0$, then A is invertible.
To show why, just start al the first post of the definition, iii. if $A x=A y \Rightarrow x=y$ then A is invertible. Then $A_{x}-A_{y}=0=A(x-y)$, but if A is invertible th: peans $x-y=0$. using liaterity of A

It turns out that if A^{-1} exists, then it satisfies the linearity, conditions as well. Furthermore, there is computativit, between A and A^{-1}, ie. $A A^{-1}=A^{-1} A=I$.
(Now hold up, if we consider D on P_{n}, and introduce $S x=\int_{0}^{t} x(u) d u$ then for example:
O. Pu,

$$
\begin{aligned}
x=t^{2}+t \Rightarrow D S x & =D \int_{0}^{t}\left(u^{2}+u\right) d u=D\left(\frac{1}{3} t^{3}+\frac{1}{1} t^{2}\right) \\
& =\frac{d}{d t}\left(\frac{1}{3} t^{3}+\frac{1}{2} t^{2}\right)=t^{2}+t \text { so } D S=I
\end{aligned}
$$

Skip in class moreover

$$
\begin{aligned}
51) x & =5 \frac{d}{d t}\left(t^{2}+t\right)=5(d t+1) \\
& \left.=\int_{0}^{t}(2+1) d u=t^{2}+t \text { so } 51\right)=I
\end{aligned}
$$

But consider $x=t+1 \Rightarrow D S x=D \int_{0}^{t}(u+1) d u=D\left(\frac{1}{2} t^{2}+t\right)$

Gut $\quad 51) x=\int \frac{d}{d t}(t+1)=5(1)$

$$
=\int_{0}^{t} 1 d u=t
$$

so $S D \neq I$

Moreover for $x=t^{4}+\cdots, 5 x \notin V$ since this will be Fifth order which is not on P_{4}.

So again, just as we promised before, S is not a good inverse to D, because O doesn't have one!

To finish -p we have:

1. If A and B are invertible, than so is $A B \mathrm{w} /(A B)^{-1}=B^{-1} A^{-1}$.
2. If A is invertible and $\propto \neq 0$, then $(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1}$.
3. If A is invertible then so is A^{-1} and $\left(A^{-1}\right)^{-1}=A$.

Note: Please don't take the notation A^{-1} to interpret as division b, A. For numbers it is, ie. $\alpha^{-1}=\frac{1}{\alpha}$, but not for matrices or other complicated operators.

Isomorphisms
Let's go bade to groups for a moment. We can have 2 (or nome) groups which are specific examples of a common underlying stinature. This neon) that for coach element in group A, there is a cormpponding element in group B, and vice versa. Moreover, both sets satisfy the sone algebraic structure If this is the case, there groups an called isomorphic.

To sa the algebrecie structure of a finite group, we need only, its "multiplication" table.

Note that these all have the same algebraic structure (in fact so does cay α element group).
Bat it has to go both ways, so even though we con rap rotations in 21 to a sabres of rotations in 31 , we cannot map all of the rotations in 31 to rotations in $2 D$. Then fore rotations in $2 D$ and 30 are not isomorphic.

Now back to vectors. What is intarsting about vectors is that they have a well-defined algbbeaie stincture. This will have a consequence in just a moment.

Two vector spices U and V (over the sane field) are isomorphic if then is a $\mid-t_{0}-1$ correspondence between $x^{(i)} \in U$ and $y^{(i)} \in V$ (and vice versal) so that we can say $y^{(i)}=f\left(x^{(i)}\right)$ such that $f\left(\alpha_{1} x^{(1)}+\alpha_{\alpha} x^{(2)}\right)=\alpha_{1} f\left(x^{(1)}\right)+\alpha_{2} f\left(x^{(d)}\right)$.

Bat this implies (via proof) something powerful due to the conner al gebicie stinature: [Every n-dimensional vector space U_{n} over F is isomorphic to $F \hat{?}$ That is, any n-dimensional vector space our a field F is isonorphic to the vector space composed of n-tuples with their elements coming from F.

An imnediate consequence of this is that any two vector spaces w/ the some dimension and ever the some field are both isomorphic to F^{\wedge} and therefore isomorphic to each other.

