Particle Physics HW5

Show that at least one of the nonzero momentum solutions presented in class actually solves
the Dirac equation. Hint: It is easier to do this with the Dirac equation written in momentum
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space, i.e. -y Py + . P =0.
To find helicity eigenstates class we cheated and aligned our coordinates so that the z-axis

pointed along the momentum. In this problem you will show that helicity eigenstates can be
constructed for an arbitrary orientation of the coordinates. Explicitly construct the helicity

projection operators P, = %(1 + %Sﬁ). Evaluate P,y where 1 is the first nonzero
momentum solution shown in class. Then explicitly show that the result of P+1/J(1) is an
eigenstate of S with eigenvalue + g Hint: Once you have constructed the explicit form of S5,
the rest is plug and chug. Remember that each component of S;; should be weighted by the

nonzero momentum in that direction, e.g. the z-component should include a factor of% where

here p is the magnitude of the spatial momentum. Also, remember that we are not dealing with
chirality here, so y° should not be part of your work!

Using the definition of y° (not the explicit matrix form), show that % (1 + y®) are projection

operators. Hint: You can use any result that you proved in your last homework set.
Show that Dirac Lagrangian for a massive field, expressed in terms of Weyl spinors ¥, and y_,
takes the form shown in class.
| want you to work through another example of gauging an abelian symmetry in order to create
an interacting theory. In this case, instead of starting with fermions and the Dirac Lagrangian, |
want you to consider the free Klein-Gordon Lagrangian, but take the scalar field ¢ (x*) to be
complex, i.e. ¢p(xH*) = p(x*) + igpg(x*). The only modification needed for the Lagrangian is
that in each term one of the fields should be ¢ (x#) and the other ¢*(x*), so that the entire
Lagrangian is real. So your starting point should be:
L=Lto,p 0me+ 1(E)2 o
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For this free Lagrangian, you should be able to identify a global symmetry that is strikingly
similar to the example we discussed in class.
a) Identify the global symmetry and verify that this Lagrangian is invariant under it.
b) Promote this to a local symmetry as we did in class. In order to do this you will need to define
a new covariant derivative which will require the addition of a new gauge field. Determine the
required transformation rule for the new gauge field. Hints: It might help to remember just how
far the first derivative acts and where exactly you can complex conjugate (remember that d,, is
real). | find it easier to remember if we write the Lagrangian as
1 * 1 /mc\2
£=2(8.9) @) +5(5) ¢°¢
c) Allow the new gauge field to propagate by adding in the appropriate kinetic term and verify
that the new term is also invariant.
d) Well, you know what to do next. Cheers!



6. Consider the Proca equation with zero mass. If we look for plane-wave solutions of the form
PpxH
AY = Ae" ® €Y where €V is a polarization vector and P* is the four-momentum, show that the
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four -momentum and polarization are “orthogonal” in the 4D sense.



