Discrete Symmetries (in Particle Physics)

\[\{ P, C, T \} \]

- Parity, \(P \)
- Charge conjugation, \(C \)
- Time reversal, \(T \)

What are they?
Are these symmetries observed?

So \(g \) could be \(C, P, T \) or \(CPT \)

First:
All examples of \(\mathbb{Z}_2 \): \(\{ I, g \} \) where \(g^2 = I \)
 a) closure \(I \cdot I = I \), \(I \cdot g = g \cdot I = g \), \(g \cdot g = I \)
 b) Identity \(g \cdot g = g \)
 c) Inverse \(g \cdot g = E \Rightarrow g = g^{-1} \)
 d) Associativity Can be faithfully represented by \(\mathbb{Z}_2, \mathbb{Z}_3 \) with
 multiplication and this is obviously associative.

Parity

\[\text{rotation on vectors} \]

Recall \(O(3) = SO(3) \times \mathbb{Z}_2 \)

- Inversion of coordinates \((P) \)

\[SO(3): \{ n \} \text{ such that } n^T n = I, \text{ det } n = 1 \]
\[O(3): \{ n \} \text{ such that } n^T n = I, \text{ det } n = \pm 1 \]

Can get any element of \(O(3) \) by combining an \(\in SO(3) \) with \(P \).

Some call parity “mirror” symmetry:

\[\begin{array}{c}
\text{This would be true if we defined } \\
\text{as } P: \{ I, (-I) \}, \text{ but } \\
\text{this treats } x \text{ preferentially.}
\end{array} \]

Instead we will work with \(P: \{ I, (-I) \} \) which sends \(x \rightarrow -x, y \rightarrow y, z \rightarrow z \) (all on equal footing)

But remember that to get the “other” 1 signs we can invert \(x \), then do a 180° in the
\(y-z \) plane:

\[\text{Note that you can't get the result of } P \text{ by } \\
\text{rotating alone!} \]

NOTE: In many cases we will just reflect in \(x \) to make visualization easier!
Okay, so we know that physics over small length scales is invariant under rotations (actually under the Lorentz group).

Is it invariant under P? For a long time the assumed answer was yes.

2 ways to answer:

a) Consider all SM processes and their parity transformed versions. If all quantities (lifetimes, reaction rates, etc.) are the same then P is "good." If any differ then P is "bad."

b) Assign a "parity" label to particles and see if processes "conserve" parity.

Answer: Nope! The SM violates P.
We will see evidence in both ways.
Experimental test suggested by Lee & Yang and carried out by “dragon lady” Wu.

Cadmium 60 decay: \(^{60}\text{CO} \rightarrow ^{60}\text{Ni} + e + \overline{\nu}\)

Nuclear spin picks out a preferred direction
(N+5 poles of magnetic dipole moment)

\(\uparrow N \quad \downarrow N\)
\(\uparrow S \quad \downarrow S\)
\(\uparrow e \quad \downarrow e\)

The electron always emerges opposite the nuclear spin.

Now let’s consider the \(P\)-transformed version of this:

\(\uparrow P_x \quad \downarrow P_y \quad \uparrow e\)

So in the \(P\)-transformed version of this process, the electron emerges along the nuclear spin.

This is never observed to happen!!

Okay so maybe \(P\)-violation only occurs in this one single interaction. But wait...