Problem 2.23

(a)
\[(-2)^3 - 3(-2)^2 + 2(-2) - 1 = -8 - 12 - 4 - 1 = -25. \]

(b)
\[\cos(3\pi) + 2 = -1 + 2 = 1. \]

(c)
\[0 \] (x = 2 is outside the domain of integration).
Problem 2.27

(a)

(b) From Problem 2.1(c) the solutions are even or odd. Look first for even solutions:

\[\psi(x) = \begin{cases}
 Ae^{-\kappa x} & (x < a), \\
 B(e^{\kappa x} + e^{-\kappa x}) & (-a < x < a), \\
 Ae^{\kappa x} & (x < -a).
\end{cases} \]

Continuity at \(a \): \(Ae^{-\kappa a} = B(e^{\kappa a} + e^{-\kappa a}) \), or \(A = B(e^{2\kappa a} + 1) \).

Discontinuous derivative at \(a \), \(\Delta \frac{d\psi}{dx} = -\frac{2m\alpha}{\hbar^2} \psi(a) \):

\[-\kappa Ae^{-\kappa a} - B(\kappa e^{\kappa a} - \kappa e^{-\kappa a}) = -\frac{2m\alpha}{\hbar^2} A e^{-\kappa a} \Rightarrow A + B(e^{2\kappa a} - 1) = \frac{2m\alpha}{\hbar^2} A; \text{ or} \]

\[B(e^{2\kappa a} - 1) = A \left(\frac{2m\alpha}{\hbar^2 \kappa} - 1 \right) = B(e^{2\kappa a} + 1) \left(\frac{2m\alpha}{\hbar^2 \kappa} - 1 \right) \Rightarrow e^{2\kappa a} - 1 = e^{2\kappa a} \left(\frac{2m\alpha}{\hbar^2 \kappa} - 1 \right) + \frac{2m\alpha}{\hbar^2 \kappa} - 1. \]

This is a transcendental equation for \(\kappa \) (and hence for \(E \)). I'll solve it graphically: Let \(z = 2\kappa a \), \(c = \frac{\hbar^2}{2ma} \), so \(e^{-z} = cz - 1 \). Plot both sides and look for intersections:
From the graph, noting that \(c \) and \(z \) are both positive, we see that there is one (and only one) solution (for even \(\psi \)). If \(\alpha = \frac{h^2}{2ma} \), so \(c = 1 \), the calculator gives \(z = 1.278 \), so \(\kappa^2 = -\frac{2mc}{h^2} = \frac{z^2}{(2a)^2} \Rightarrow E = -\frac{(1.278)^2}{8} \left(\frac{h^2}{ma} \right) = -0.204 \left(\frac{h^2}{ma} \right) \).

Now look for odd solutions:

\[
\psi(x) = \begin{cases}
 Ae^{-\kappa x} & (x < a), \\
 B(e^{\kappa x} - e^{-\kappa x}) & (-a < x < a), \\
 -Ae^{\kappa x} & (x < -a).
\end{cases}
\]

Continuity at \(a \): \(Ae^{-\kappa a} = B(e^{\kappa a} - e^{-\kappa a}) \), or \(A = B(e^{2\kappa a} - 1) \).

Discontinuity in \(\psi' \): \(-\kappa Ae^{-\kappa a} - B(\kappa e^{\kappa a} + \kappa e^{-\kappa a}) = -\frac{2m\alpha}{h^2} Ae^{-\kappa a} \Rightarrow B(e^{2\kappa a} + 1) = A \left(\frac{2m\alpha}{h^2} - 1 \right) \),

\[
e^{2\kappa a} + 1 = (e^{2\kappa a} - 1) \left(\frac{2m\alpha}{h^2} - 1 \right) = e^{2\kappa a} \left(\frac{2m\alpha}{h^2} - 1 \right) - \frac{2m\alpha}{h^2} + 1,
\]

\[
1 = \frac{2m\alpha}{h^2} - 1 - \frac{2m\alpha}{h^2} e^{-2\kappa a} \frac{h^2 K}{m\alpha} = 1 - e^{-2\kappa a}, \quad \frac{h^2 K}{m\alpha} = 1 - e^{-2\kappa a} = 1 - \frac{h^2 K}{m\alpha}, \text{ or } e^{-z} = 1 - cz.
\]

This time there may or may not be a solution. Both graphs have their \(y \)-intercepts at 1, but if \(c \) is too large (\(\alpha \) too small), there may be no intersection (solid line), whereas if \(c \) is smaller (dashed line) there will be. (Note that \(z = 0 \Rightarrow \kappa = 0 \) is not a solution, since \(\psi \) is then non-normalizable.) The slope of \(e^{-z} \) (at \(z = 0 \)) is \(-1\); the slope of \((1 - cz)\) is \(-c\). So there is an odd solution \(\Leftrightarrow c < 1 \), or \(\alpha > h^2/2ma \).

Conclusion: One bound state if \(\alpha < h^2/2ma \); two if \(\alpha > h^2/2ma \).