Teaching

GEOL593 Lithogeochemistry of ore forming processes


Course description: Lithogeochemistry is the study of fluid-rock interaction in hydrothermal systems from a mineralogical perspective. Practical course on numerical modeling of fluid-rock interaction combined with observations of mineral assemblages in rocks and thin sections taking hydrothermal ore deposits as test examples including pegmatites and veins, greisen alteration, porphyry systems and REE deposits. Mechanisms of metal complexation, transport and mineralization processes in hydrothermal fluids are connected to mineral alteration textures, mineral/rock geochemistry and mineral paragenesis.

Course objectives

GEGN330 Thermodynamics for geoscientists


Course description: Introduction to fundamental principles of thermodynamics applied to geosciences and geoengineering. Thermodynamics are used as a tool for evaluating the stability and chemical transformation of minerals and rocks, evolution of vapors and liquids and their reaction paths when subjected to different P-T geological regimes. The course will focus on basic principles of thermodynamics and make use of examples relevant to geoscientists encompassing: i) calculation of thermodynamic properties (volume, heat capacity, enthalpy and entropy) as a function of pressure, temperature and composition, ii) the study of heat transfer and volume change associated to chemical reactions and iii) evaluation of phase stabilities using Gibbs energy minimization and law of mass action. Introduction to pure phase properties, ideal and non-ideal solutions, activities, equilibrium constants, chemical potential, electrolytes, phase rule and Gibbs energy function.

Course objectives

GEGN206 Earth materials


Course description: Introduction to Earth Materials, emphasizing the structure, composition, formation, and behavior of minerals. Laboratories emphasize the recognition, description, and engineering evaluation of earth materials. 2 hours lecture, 3 hours lab; 3 semester hours.