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We consider the problem of scheduling trains and containers (or trucks and pallets)

between a depot and a destination. Goods arrive at the depot dynamically over time

and have distinct due dates at the destination. There is a fixed-charge transportation cost for

each vehicle, and each vehicle has the same capacity. The cost of holding goods may differ

between the depot and the destination. The goal is to minimize the sum of transportation

and holding costs.

For the case in which all goods have the same holding costs, we consider two variations:

one in which the holding cost at the destination is less than that at the origin, and one in

which the relationship is reversed. For the first variation, we derive properties of the optimal

solution which provide the basis for an O�T 2� solution procedure. For the second variation,

we introduce a new definition of a regeneration state, derive strong characterizations of the

shipment schedule within a regeneration interval, and develop an O�T 4� procedure.

We also analyze two multi-item scenarios. In the first, for each item, the holding cost at

the origin is less than that at the destination; in the second, the relationship is reversed

for all items. We generalize several of the structural results for the single-item problem to

the corresponding multi-item case. We also show that the optimal vehicle schedule can be

obtained by solving a related single-item problem in which the item demands are aggregated

in a particular way. The optimal assignment of customer orders to vehicles can then be found

by solving a linear program.

Introduction
Our work is motivated by the problem of scheduling

trains or trucks outbound from a single depot and

assigning goods to these vehicles, with the objective

of achieving on-time delivery at minimum cost. We

consider a finite time horizon during which customer

orders dynamically become available at the origin,

and have different due dates at their destinations.

We assume that the demand, distinguished by ori-

gin, arrival date at the origin, destination, and due

date at the destination, is known in advance, or can

be forecasted accurately enough over the time horizon

for planning purposes. We consider direct shipments

between a depot and each of the various destinations.

Assuming there is no dependence among the destina-

tions, we can decompose the problem by destination.

Although our initial motivation was derived from

train scheduling applications, a similar situation also

arises when finished goods must be transported by

truck from a factory to distant markets or break-bulk

warehouses. Customer orders with distinct due dates

and destined for a particular market are produced at

the factory and become available for shipment over

time. The manufacturer faces the decision of when

to dispatch trucks and which customer orders to

assign to each truck. Of course, this problem would
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be simplified if goods destined for a particular mar-

ket were manufactured close together in time. How-

ever, there are often competing and/or overriding

considerations in establishing the production sched-

ule, thus necessitating the solution of the transporta-

tion scheduling problem.

As is typical in rail, trucking, and sea transport

operations, there is a (nearly) fixed charge associated

with the direct movement of the vehicle or vessel

from the origin to the destination which includes the

cost of labor for the movement of the vehicle and any

other costs that are not volume dependent, includ-

ing the portion of fuel and maintenance costs that

do not depend on the volume of goods in the vehi-

cle. Furthermore, the capacity of the transport vehicle

is known. Because we are addressing a short-horizon

problem, we assume that the fixed cost of transporta-

tion per vehicle is constant over time and indepen-

dent of the number of vehicles sent.

In the vast majority of situations, total volume-

dependent costs will differ only slightly, if at all,

as the shipping schedule changes. For example, the

incremental cost for fuel associated with carrying a

given weight or volume of goods via truck from ori-

gin to destination, above and beyond that required

to operate the truck(s) empty, would be roughly the

same irrespective of the allocation of goods among

trucks. It would be more efficient, of course, to ship

all of the goods on as few trucks as possible, pro-

vided their capacity is not exceeded, and this aspect is

captured by the fixed-charge transportation cost. We

assume that total volume-dependent costs are insensi-

tive to the details of the shipping schedule. Similarly,

in many settings the cost of holding the goods at the

origin differs little from the cost at the destination, but

they may differ widely in other settings. For this rea-

son, we also analyze situations in which the holding

costs differ among items and between locations.

Because penalties for tardy delivery may be sub-

stantial, our primary goal is to minimize the sum of

fixed-charge transportation costs while delivering the

goods on time. We will, however, consider the more

general problem in which the holding costs may dif-

fer between the origin and destination to reflect the

relative cost of storage space, as well as the extent to

which the customer is willing to accept early ship-

ments. In some instances, the customer may wish to

receive the shipment as early as possible, while in

other instances a just-in-time shipping schedule may

be preferable. The former situation can be modeled

by imposing a higher holding cost at the origin than

at the destination, while the latter scenario is repre-

sented by the reverse relationship. We note that any

opportunity costs of capital associated with holding

the goods in transit are usually borne by the shipper

or consignee, and not by the transporter. The trans-

porter does, however, bear the opportunity cost of

having equipment, such as trailers and containers,

unavailable for use.

We analyze the case in which goods have homoge-

neous holding costs, where the holding cost is more

expensive at the destination than at the origin. The

opposite holding cost relationship can be addressed

by the same approach using an appropriate transfor-

mation of the problem. We also model versions of

the problem with item-dependent holding costs. We

present results for the case in which, for each item,

the holding cost at the destination is higher than

that at the origin. If the reverse relationship holds

for all items, a transformation similar to that men-

tioned above can be used to solve the problem. We

do not consider the most general case in which it is

less expensive to hold some items at the origin than

at the destination, and the reverse holds for the other

items. The latter situation may arise, for example,

if the freight has different temperature requirements;

storage costs will depend upon the ambient weather.

Our problem is similar to other capacitated fixed-

charge network flow problems but contains three

important complicating features: (i) not all goods are

available at the beginning of the horizon, i.e., goods

arrive dynamically, (ii) it may be necessary and/or

optimal to send more than one vehicle in a given

period, i.e., to incur “multiple setups,” and (iii) goods

are not homogeneous and have distinct due dates at

the destination, and thus must be treated as distinct

customer orders. We assume, however, that the goods

are homogeneous in their use of transport capacity.

Although there is a large body of literature on lot-

sizing problems with a fixed-charge structure, little

work has been done on problems in which there is a
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Table 1 Comparison of Our Model to Related Literature

Nature of No. of Dynamic Multiple
Paper Demand Items Arrivals? Setups?

Florian & Klein (1971) deterministic, dynamic one no no
Lippman (1969) deterministic, dynamic one no yes
Lippman (1971) constant one no yes
Iwaniec (1979) stochastic, dynamic one no yes
Lee (1989) deterministic, dynamic one no yes
Ben-Kheder (1990) deterministic, dynamic multiple no yes
Our paper deterministic, dynamic one or more yes yes

capacity associated with each fixed charge incurred.

Florian and Klein (1971) consider a single-item capac-

itated lot-sizing problem where all materials are avail-

able for processing (or, alternately, for shipment) at

the beginning of the horizon, and there is a fixed

charge for each production run with fixed capacity. At

most, one production run is allowed in each period.

They show that when capacity is constant over time,

the optimal solution has a production level equal

either to zero or to the capacity in all periods except

at most one between two consecutive regeneration

points. (For Florian and Klein’s problem, a regenera-

tion point is defined as a point in time with no on-

hand inventory.) This result provides the basis for an

efficient solution procedure based on an underlying

shortest path problem. Lippman (1969) addresses the

single-product problem with static arrivals and mul-

tiple setups. He derives several properties of the opti-

mal solution and develops an O�T 3� algorithm for the

problem. We relate his characterization of the opti-

mal solution to our structural results as our discus-

sion proceeds. In a later paper, Lippman (1971) treats

a continuous-time, constant-demand version of the

problem. Iwaniec (1979) studies a base stock policy,

rounded up to the next full vehicle, in the context of

a discrete-time version of the problem with stochas-

tic demand. Lee (1989) addresses the multiple setup

problem where all materials are available for ship-

ment at the beginning of the horizon and there is a

separate setup cost per order. He presents an O�T 4�

procedure for the problem.

All of the aforementioned articles consider only a

single product. The only research of which we are

aware that treats the multi-item case (where the items

have different holding costs) in Ben-Kheder (1990).

He studies the case with dynamic demands under the

assumption that the holding cost at the destination

is higher than at the origin. He presents a solution

procedure with an underlying shortest path network,

where the path costs are computed using a branch-

and-bound algorithm. Table 1 contrasts our models

with others in the literature. Note that none of the

models in the literature allows for dynamic arrivals

of goods.

The remainder of the paper is organized as fol-

lows. In §1, we present a dynamic programming

formulation of the problem. In §2, we characterize the

optimal solution and present an optimal O�T 4� algo-

rithm for the case in which all goods have the same

holding costs, and the holding cost is larger at the

destination than at the origin. We also explain how

the reverse holding cost relationship can be handled

by an appropriate transformation of the network. In

§3, we extend these results to allow for items with

different holding cost rates. Section 4 concludes the

paper with a discussion of the relationship between

our results and those for related models with static

arrivals.

1. Problem Formulation
Because of the dynamic arrivals and the nonhomoge-

niety of the goods, we need to distinguish the goods

by arrival date at the depot and due date at the

destination. For simplicity, we assume that shipment

quantities can be treated as if they were continuous.

Practically speaking, this means that shipments occur

in increments of standard pallet loads for truck travel,

or standard container sizes for rail shipments. Assum-

ing that all shipments are in multiples of the standard
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load size, and the capacity of the transport vehicle is

expressed as an integer multiple of the standard load,

we can treat the shipment quantities as if they were

continuous without loss of generality. We also assume

that the transportation times are deterministic and

constant over time, and therefore, without loss of gen-

erality, can be treated as if they were instantaneous

by an appropriate reindexing of the time periods.

We formulate the problem as a dynamic program.

We define the state of the system by a pair of vec-

tors. One vector represents the containers available to

be shipped, and contains as many entries as there are

remaining due dates in the horizon. The other vec-

tor represents the inventory at the destination with

an entry corresponding to each remaining due date in

the horizon. For ease of exposition, in the remainder

of the paper, we use the rail terminology of trains and

containers to represent the vehicle and the unit ship-

ment load, respectively. Let us define the following

notation:

t = time period index, t = 1� � � � �T
S = fixed charge per shipment

C = capacity of each train (expressed as number of

containers)

ho = holding cost for one container for one period

at the origin

hd = holding cost for one container for one period

at the destination

Dt�d�= quantity of containers arriving at the origin
in period t that are due at the destination in period d,

d ≥ t
Dt = �Dt�t��Dt�t+1��Dt�t+2�� � � � �Dt�T ��
D̂t = �

∑
u≤t Du�t��0� � � � �0�� i.e., a vector in which

the first element is the total quantity of containers due

in period t and the remaining T − t elements are zero

At�d�= quantity of containers available to be shipped
from the origin in period t that are due in period d,

d ≥ t
At = �At�t��At�t+1��At�t+2�� � � � �At�T ��
It�d� = inventory of containers due in period d

held at the destination at the end of period t� d ≥ t
It = �It�t+1�� It�t+2�� � � � � It�T ��
xt�d�= number of containers shipped in period t

that are due in period d�d ≥ t
xt = �xt�t�� xt�t + 1�� xt�t + 2�� � � � � xt�T ��� decision

(row) vector

f ∗
t �At� It−1� = the minimum cost for periods

t� � � � �T given container availability vector At and

container inventory vector It−1 if the optimal number

of containers, x∗t , is shipped at time t.
The dynamic programming recursion equations are:

f ∗
t �At�It−1� = min

xt

{
S

⌈∑
d≥t

xt�d�

C

⌉
+ho

∑
d>t

�At�d�−xt�d��

+hd

∑
d>t

[
It−1�d�+xt�d�

]

+f ∗
t+1

(
At+Dt+1−xt�It−1+xt−D̂t

)}

where

f ∗
T+1�·�= 0� (1)

xt�t�=At�t�� ∀ t (2)

xt�d�≤At�d�� ∀d ≥ t (3)

xt�d�≥ 0� ∀d� t (4)

Equation (1) is the boundary condition. Constraints

(2) and (3) ensure that demand is satisfied on time

and that only available containers are shipped, respec-

tively. Constraints (4) ensure nonnegative shipment

quantities.

We present a complete analysis for the case in

which the holding cost is more expensive at the desti-

nation than at the origin. This cost structure provides

motivation for sending containers as late as possible

while accounting for economies of scale in transporta-

tion. In §2, we derive properties of the optimal solu-

tion and present an O�T 4� algorithm. Following our

analysis, we explain how the case with the opposite

holding cost relationship can be treated by a reversal

of the multicommodity network in time and space.

2. Analysis and Algorithm
for hd ≥ ho

The main economic tradeoff in this problem is

between the economies of scale associated with send-

ing full trains and the additional inventory holding

cost incurred if containers are shipped early.

To develop an efficient solution procedure for this

case, we employ the concept of a regeneration interval,
as has been used for similar problems. However, our
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definition of a regeneration state differs significantly

from the traditional one. The traditional regeneration

state in a lot-sizing setting is defined as a state with no

on-hand inventory. In the context of our problem, this

would correspond to having nothing remaining to be

shipped. This state would rarely occur in our prob-

lem due to the economic incentive to ship as late as

possible. Using the traditional definition would often

lead to regeneration points only at the beginning and

end of the horizon, and the solution procedure would

degenerate to the enumerative dynamic programming

procedure described earlier.

Definition 1. We say that a regeneration occurs at

the beginning of period t (equivalently, at the end

of period t − 1) if no containers due in periods t,

t+1� � � � �T have been shipped in periods 1�2� � � � ,

t−1, i.e., not containers due in period t or later have

been shipped before period t.
Such a state clearly defines a point in time such

that the problem can be separated into two dis-

tinct problems: (i) shipping containers due in peri-

ods 1�2� � � � � t−1, and (ii) shipping containers due in

periods t, t+1� � � � �T . Thus, this definition provides

the same type of decomposition as in earlier models.

Our definition of a regeneration interval affords the

advantage of permitting multiple regenerations dur-

ing the horizon, which, in turn, reduces the compu-

tational effort required. Note that in addition to any

regeneration points that may occur between periods

2 and T −1� regenerations occur at the beginning and

end of the horizon. Hence, the optimal solution for the

entire horizon can be obtained by finding the optimal

solution for each potential regeneration interval, and

then solving a shortest path problem over the entire

horizon to determine the optimal set of regeneration

intervals.

2.1. Characteristics of the Optimal Solution
Using our definition of a regeneration interval, we

derive several properties of the optimal solution.

We note that if hd = ho� the optimal solution gen-

erally is not unique, so alternate schedules con-

sidered in our proofs may not be strictly domi-

nant but may instead represent alternate optimal

solutions.

Proposition 1. There exists an optimal solution in
which the number of containers sent ahead of schedule in
any individual time period is strictly less than C. In other
words, items are shipped early only for the purpose of fill-
ing up a train either completely or partially.

Proof. Omitted. A proof appears in Yano and

Newman (1998).

Note that Proposition 1 does not necessarily imply

that the cumulative number of containers shipped

early must be less than C. It may be optimal for the

cumulative number of containers shipped early to be

greater than C, especially when transportation costs

dominate holding costs, making it desirable to send

trains full or nearly full.

Proposition 2. There exists an optimal schedule in
which, whenever containers are shipped early, they are
shipped in increasing order of their due dates among the
containers available to be shipped.

Proof. We briefly sketch the proof here. The proof

relies on two observations with respect to feasible

solutions: (i) the cost in the current period depends

only on the total number of containers shipped

(assuming that all containers due in the current

period are included among the shipped containers),

and (ii) the “cost to go” for the remaining periods is

the same or smaller for an earliest due date (EDD)

container shipping schedule than for any non-EDD

shipping schedule. Part (i) is self-evident. Part (ii)

can be proved by showing that an arbitrary change

toward an (EDD) shipping schedule in the current
period reduces the quantities in the vector of cumu-

lative shipments required to ensure on-time delivery

for the remaining periods, which, in turn, reduces the

cost to go. See Yano and Newman (1998) for a com-

plete proof.

Proposition 3. There exists an optimal schedule in
which, if any containers due in period t are shipped in
period t′ < t, trains sent in periods t′ +1� t′ +2� � � � � t are
full.

Proof. Suppose that we have an optimal solution

in which we ship containers that are due in period

t′ < t� and that all trains (if any) sent in periods t′ +1,

t′ +2� � � � � t are not full. Then, because these contain-

ers are not due until period t, a feasible shipment
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plan exists in which some or all of these early con-

tainers are sent in some period(s) in t′ +1� t′ +2� � � � � t.

Furthermore, because ho ≥ hd, a lower- or equal-

cost shipment plan exists in which some or all of

these containers are sent in these subsequent periods.

Hence, the schedule cannot be optimal, which contra-

dicts our original hypothesis. �

Theorem 1. The optimal schedule within a regenera-
tion interval has full trains in every period, except possibly
the first.

Proof. Let s be the first period in the regeneration

interval and � be the last period in the regeneration

interval. Let t be a period such that s < t ≤ �� i.e., an

arbitrary period either in the middle of, or at the end

of, the regeneration interval. Because the system does

not regenerate at the beginning of t by assumption,

we must have:

∑
d≥t

It−1�d� > 0

by our definition of a regeneration interval. Suppose

that if any trains are sent in period t, they are not full.

Then it would be possible to delay some or all of the

earlier-sent containers with due date t or later, and

thereby reduce the holding costs without increasing

the transportation cost. Thus, if any trains are sent in

period t, they must be sent full. Because t is an arbi-

trary period between s+ 1 and � , the result follows

for all periods except the first. �

Theorem 1 provides a stronger characterization of

shipment quantities during a regeneration interval

than that given by Lippman (1969), and it does so for

the more general case in which dynamic arrivals are

permitted. It also generalizes the result of Florian and

Klein (1971) to the case of multiple setups.

Observation 1. From our definition of a regenera-

tion interval, the first period of the regeneration inter-

val satisfies:

∑
d≥s

Is−1�d�= 0�

i.e., there are no containers due in period s or later

that have been shipped prior to period s. Thus, we

may have a less-than-full train.

The following corollary generalizes a result of

Lippman (1969) to the case of dynamic arrivals.

Corollary 1. There exists an optimal solution in
which for all t,[∑

d≥t

It−1�d�

]
∗
[∑

d≥t

xt�d� mod C

]
= 0�

Proof. The result follows from Theorem 1 and

Observation 1. �

2.2. Test for Feasibility of a Period as the
End of a Regeneration Interval

The results in the previous subsection can be used

to determine whether a period is eligible to be the

last period in a regeneration interval, and could

substantially reduce computation times in practical

applications. We first describe the logic underlying

the procedure, and then describe the procedure.

Recall that in the last period of any regeneration

interval, � , the trains must be full. Because it is opti-

mal to delay containers as much as possible, the opti-

mal shipment quantity in period � is:

x∗
� ���=

⌊∑
u≤� Du���

C

⌋
∗C�

The balance of period � ′s demand is given as

follows:

∑
u≤�

Du���−
⌊∑

u≤� Du���

C

⌋
∗C = ∑

u≤�

Du��� mod C�

This balance must be shipped early, that is, in period

�−1 or earlier. If this quantity is not available at the

beginning of period � − 1 because all or nearly all of

the demand for period � arrives in � , then we cannot

have all trains full in period � and have some of its

demand shipped early.

If

�−1∑
u=1

Du��� <
�∑

u=1

Du���−
⌊∑�

u=1 Du���

C

⌋
∗C�

� cannot be the last period in any regeneration inter-

val, because we cannot send all trains full in period � .

In addition to the infeasibilities noted above, some

regeneration intervals may not be feasible because

container arrivals may not allow full-train shipments
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according to the pattern described in Theorem 1.

Although we can test for this in advance, it also can be

done as efficiently within the context of the procedure

for finding the optimal schedule within a regenera-

tion interval. If no feasible schedule exists, we assign

an infinite cost to the corresponding arc in the short-

est path network.

2.3. Algorithm for Determining the
Optimal Schedule: hd ≥ ho

For any potentially feasible regeneration interval, the

optimal schedule can be constructed as follows:

Step 1. Let [s� �] denote a regeneration interval,

where s is the first period in the interval, and � is the

last period in the interval. Compute the quantity (if

any), L, to be sent in the less-than-full train in the first

period of the regeneration interval:

L=
�∑

d=s

∑
u≤d

Du�d� mod C�

Step 2. In period s, send �
∑

u≤s Du�s�

C
� trains if

�
∑

u≤s Du�s� mod C�≤ L� Otherwise, send �
∑

u≤s Du�s�

C
�+

1 train(s). Fill all but one train; the last train will be

filled with L < C containers. Containers should be

assigned to the trains in increasing order of due date.

If there are insufficient containers available, terminate

the algorithm. The regeneration interval is infeasible.

Otherwise, go to Step 3.

Step 3. For t = s+1 to � 	
(a) Update At.

(b) Send �At�t�
C

� trains, filling them with containers

in increasing order of due date. If there are insufficient

containers available to ship the trains full, terminate

the algorithm. The regeneration interval is infeasible.

Otherwise, continue Step 3 (incrementing t).
This procedure has a complexity of O�T 2� and must

be performed for each possible regeneration interval,

of which there are O�T 2�. Hence, the computation

of arc costs for the shortest path problem is O�T 4�.
The shortest path problem itself is O�T 2�. Thus, the

overall procedure has complexity O�T 4�. Note that in

computing the cost of each arc in the shortest path

network, one needs to include the origin holding cost

for containers that are due during the regeneration

interval but arrive at the origin before the beginning

of the regeneration interval.

If few containers arrive early, many regeneration

intervals will be infeasible. On the other hand, for the

static case in which all containers are available to be

shipped at the beginning of the horizon, all regener-

ation intervals are feasible because the availability of

goods does not limit the shipments in Steps 2 and 3(b)

above.

2.4. Modification for hd < ho

We can solve the case in which holding costs are

higher at the origin than at the destination by revers-

ing the network in time and space. That is, we treat

the problem as if goods arrive at the destination at

their respective due dates and are due at their origins

on their respective arrival dates. Trains and contain-

ers flow from destination to origin and backward in

time. Costs on all arcs remain the same. The solution

procedure described in the previous section can be

applied to this problem.

When solving the problem “forward” rather than

“backward,” the regeneration state is defined as a

state in which there are no further containers avail-

able to be shipped. All trains are full, except possibly

in the last period of the regeneration interval.

3. Multiple Items with Different
Holding Costs

A great deal of literature treats multi-item lot-sizing

problems with either fixed-charge joint replenishment

costs or a single capacity constraint. However, little

research has been done on multi-item problems with

multiple setup costs. The only work of which we are

aware is that of Ben-Kheder (1990), who considers the

case of hdi
≥ hoi

for all items i, given static arrivals.

He employs the traditional definition of a regener-

ation state and characterizes properties of the ship-

ment schedule within a regeneration interval, such as

the timing of full and partially full trains within the

regeneration interval. From this, he develops an O�T 3�
solution procedure.

We generalize our results in §2 to the case of mul-

tiple items, each with different holding costs. The

dynamic programming formulation is essentially the

same as that given earlier, except that items are also

distinguished by holding cost. Thus, the state and

Transportation Science/Vol. 35, No. 2, May 2001 187



YANO AND NEWMAN
Scheduling with Due Dates and Dynamic Arrivals

decision vectors in the single-item case become a state

matrix and decision matrix, respectively, in the multi-

item case. We first treat the case in which hdi
≥ hoi

for all items i, and then explain how to adapt our

results to the case in which hdi
< hoi

for all items i.

In most practical settings, the goods being shipped

are owned by either the shipper or consignee, so the

value of the goods does not play an important role

in the determination of holding costs borne by the

transporter. However, the holding costs incurred by

the transporter may be location related. For exam-

ple, the cost of electricity may be more expensive at

one location than another, leading to higher costs for

holding refrigerated containers. For such realistic sit-

uations, we show that within a regeneration interval,

the following characteristics developed for the single-

item case do not change when multiple items are con-

sidered: (i) the structure of the train schedule with

respect to full versus partial loads; and (ii) the optimal

solution regarding how many trains to send in each

period. We also show that given (i) and (ii), the prob-

lem of allocating containers to trains can be solved

using linear programming. In the interest of brevity,

we state some results without detailed proofs; in all of

these instances, the logic follows in a straightforward

manner from that of the single-item case.

The case in which hdi
≥ hoi

for some items and

hdi
< hoi

for other items proves to be very difficult

because the construction of an optimal train schedule

is much more complex. We elaborate on these impli-

cations in the concluding section.

3.1. Multiple Items with hdi
≥ hoi

∀i
Although we do not use these results directly, we note

that Propositions 1 through 3 and Theorem 1 all gen-

eralize to the case of multiple items. If the holding

cost at the destination is greater than that at the ori-

gin for each item, the proofs can be constructed in a

similar way.

We now extend the definition of a regeneration

state:

Definition 2. We say that a regeneration occurs at

the beginning of period t (equivalently, at the end

of period t− 1) if no containers of any type due in

period t� t+ 1� � � � �T have been shipped in periods

1�2� � � � � t− 1� i.e., no containers of any type due in

period t or later have been shipped before period t.
We first construct a solution consisting of a train

schedule derived from an adaptation of the single-

item solution procedure combined with an opti-

mal allocation of containers for this train schedule

obtained by solving a linear program. We first show

how to construct this solution, then demonstrate that

it is optimal for the multi-item problem.

Consider a variant of the multi-item problem in

which, for each (arrival date, due date) pair, we aggre-

gate demands across holding costs. For this aggre-

gate item, choose an arbitrary positive holding cost

at the destination and assume, without loss of gen-

erality, that the inventory holding cost at the origin

is zero. We now use the algorithm described in §2.3

to find the optimal solution for this revised problem

within the regeneration interval. From the solution

to the revised problem, we can construct a feasible

schedule for the original problem with the same train

schedule and the same aggregate shipment quantities.

We show how to construct an optimal detailed, multi-

item schedule from this aggregate schedule.

Consider an assignment of (available-to-ship) con-

tainers in which containers are assigned to trains

starting in the first period of the regeneration interval

in increasing order of their due dates. Such a sched-

ule would be comparable to the single-item schedule

in that differences in holding costs among the items

are ignored. Clearly, we can improve the solution

by maintaining the same train schedule and modify-

ing the shipment of containers to minimize inventory

holding costs subject to satisfying on-time delivery.

This can be done by solving a linear program for each

regeneration interval.

Define:

s = first period in the regeneration interval

� = last period in the regeneration interval

zt = number of trains scheduled in period t

L = ∑
i

�∑
d=s

∑
u≤d

Diu�d� mod C

N =
⌊∑

i

∑
u≤s Diu�s�

C

⌋
if

∑
i

∑
u≤s

Diu�s� mod C ≤ L

=
⌈∑

i

∑
u≤s Diu�s�

C

⌉
otherwise�
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Note that N represents the number of full trainloads

and L is the fractional trainload sent in the first period

of the regeneration interval. The remaining notation

parallels that of the single-item case, with i denoting

the item (or container) type.

Omitting the sunk inventory holding costs from

the objective function, the problem for fixed zt ,
t = s� � � � � � , can be formulated as:

min
∑
i

�hdi
−hoi

�
�∑

t=s

∑
d>t

xit�d�

subject to:∑
i

∑
d≥s

xis�d� = N ∗C+L� (5)

∑
i

t∑
u=s

∑
d≥u

xiu�d� = N ∗C+L+C ∗
t∑

u=s+1

zu�

t ∈ �s+1� �� (6)∑
u≤t

xiu�d� ≤
∑
u≤t

Diu�d�� ∀i� d ∈ �s� ��� t < d (7)

∑
u≤d

xiu�d� =
∑
u≤d

Diu�d�� ∀i� d ∈ �s� �� (8)

xit�d� ≥ 0� ∀ i� t� d� (9)

The objective is to minimize total inventory hold-

ing costs. The objective function represents the hold-

ing cost incurred by the containers shipped early,

summed across all items and periods. Constraints (5)

and (6) ensure that no more containers are shipped

than the capacity of the scheduled trains will allow.

Constraints (7) ensure that for each due date, cumula-

tive shipments in each period do not exceed cumula-

tive arrivals. Constraints (8) ensure that all containers

are shipped on time. Constraints (9) ensure nonnega-

tivity of shipment quantities.

The linear program simply reorganizes the con-

tainers within the confines of a fixed train sched-

ule to minimize the combined holding costs incurred

at the origin and at the destination. We note that

the problem has the structure of a minimum cost

network-flow problem, and thus, there exists an opti-

mal integral solution. The total quantity shipped in

each period is the same as in the related single-item

problem, but the mix of containers now differs. For

convenience, let us refer to the optimum solution from

the linear program, along with the associated train

schedule, as the reference schedule.
In the reference schedule all trains are full in each

regeneration interval, except possibly one train in the

first period. Thus, within each regeneration interval,

the transportation cost cannot be reduced. Because

the train schedule for the related single-item problem

is feasible for the multi-item problem, it is also the

minimum transportation cost schedule for the multi-

item problem. We show that no other train sched-

ule, along with its optimal allocation of containers to

trains (from the linear program), with the same or

greater number of trains in the regeneration interval,

yields lower overall (transportation and inventory)

costs. In doing so, we also show that the optimal train

schedule within a regeneration interval has the same

properties for the multi-item case as for the single-

item case.

Theorem 2. For each regeneration interval, the refer-
ence schedule produces an optimal solution to the multi-
item problem in which hdi

≥ hoi
for all i.

Proof. The proof contains three parts. We show

that (a) it is not feasible to reduce the cumula-

tive number of trains in any period in the reference

schedule while maintaining the same total number

of trains in the regeneration interval; (b) increasing

the cumulative number of trains in any period while

maintaining the same total number of trains in the

regeneration interval increases costs; and (c) increas-

ing the total number of trains in the regeneration

interval, which requires increasing the cumulative

number of trains in at least one period, increases costs.

Together, these results demonstrate that the number

and timing of trains in the reference schedule is opti-

mal for the multi-item problem.

Part (a). Let us consider reducing the cumulative

number of trains in some period, retaining the same

total number of trains in the regeneration interval. In

the reference schedule, the containers are sent as late

as possible while maintaining the full-train property

in all but the first period of each regeneration interval,

and while satisfying on-time delivery. Thus, it is not

possible to reduce the cumulative number of trains in

any time period without causing some containers to

be tardy.
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Part (b). We now consider the case in which the

cumulative number of trains sent on or before some

arbitrary period increases but the total number of

trains during the regeneration interval remains the

same. Suppose that in some period t there are suffi-

cient containers available to increase the cumulative

number of train movements, e.g., to ship one train

one period earlier. Then, the revised linear program

will have the same structure as that above, except

that the right-hand side of (5) or (6) for the given

period t is increased accordingly. The holding costs

are higher at the destination than at the origin; thus all

coefficients on the xit(d) terms in the objective func-

tion are positive. Hence, we can replace the equalities

in Constraints (5) and (6) with greater than or equal

to relations. Increasing the right-hand side of any of

these revised constraints (i.e., increasing the cumula-

tive number of trains) would increase the objective

function value. Thus, it is not possible to modify the

train schedule to reduce inventory costs by increasing

the cumulative number of trains in one period while

retaining the same total number of trains.

Part (c). The proof for the case in which the cumu-

lative number of trains shipped on or before some

arbitrary period increases while the total number of

trains in the regeneration interval increases parallels

that in Part (b). �

The procedure described above produces an opti-

mal solution for a given regeneration interval. The

test for determining the feasibility of a period as the

end of a regeneration interval for the single-item case

(described in §2.2) also can be applied to the multi-

item case using the aggregate item data. After the

container shipment schedule is determined using the

linear program for each potential regeneration inter-

val, a shortest path problem must be solved to find

the best set of regeneration intervals.

The linear program allows the tradeoff between

urgency of the containers and their holding costs to

be made optimally in assigning containers to trains. It

may seem intuitive to follow a naive approach with

respect to a container shipment order, i.e., ship con-

tainers in such a way that the holding costs are min-

imized. However, because of the competing factor of

due-date requirements, such an approach may result

in more train shipments. The fixed costs associated

with these shipments may more than offset any inven-

tory holding costs saved. In general, neither urgency

nor costs can be considered alone.

3.2. Modification for hdi
< hoi

∀i
The multi-item problem with hdi

< hoi
for all i can

be solved by (i) aggregating the demands across

items for each (arrival date, due date) combination,

(ii) reversing the network in time and space to find

the optimal train schedule for the aggregated single-

item problem, then (iii) using a linear program analo-

gous to the one described for the case of hdi
≥ hoi

for

all i to assign containers to trains.

4. Conclusions and Discussion
We now relate the results in this paper to the special

case in which arrivals are static, i.e., all containers are

available at the beginning of the horizon.

1. Single-item case with hd ≥ ho: The special case

of static arrivals reduces to the problem considered

by Lippman (1969), who provides an O�T 3� algorithm

for the cost structure that we use here (in addition

to more complex algorithms for more general cost

structures). We extend certain properties of the opti-

mal solution to the case of dynamic arrivals, present

tests that eliminate some periods as the last period in

a regeneration interval, and devise an optimal algo-

rithm with O�T 4� complexity. The static-arrival ver-

sion of our problem is also a special case of Lee (1989),

who includes an order setup cost in addition to the

multiple setup cost for transportation. His algorithm

has O�T 4� complexity.

2. Single-item case with hd <ho: In the case of static

arrivals, the problem is trivial; everything is sent in

the first period. When arrivals are dynamic, the prob-

lem is more complicated and can be solved with a

variant of the algorithm presented for the case in

which hd ≥ ho.

3. Multiple items with hdi
≥ hoi

∀i: The special case

of static arrivals reduces to a problem discussed in

Ben-Kheder (1990). He shows that within a regenera-

tion interval, the structure of the optimal policy has

full trains in all periods except possibly the first. He

presents an O�T 3� solution procedure. We extend this

structural result to the case of dynamic arrivals, and
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show that the optimal train schedule can be obtained

by solving a related single-item problem in place of

the more complex multi-item problem. Due to the

dynamic arrival pattern, however, the allocation of

containers to the trains requires the solution of a lin-

ear program.

4. Multiple items with hdi
< hoi

∀i: We are not aware

of any prior work on this problem. Most work on

lot sizing is motivated by manufacturing applica-

tions where inventory holding costs typically increase

as the product becomes more complete. However,

location-dependent holding costs arise frequently in

transportation applications. In the static case, the

problem is trivial as all containers are shipped in the

first period. For the case of dynamic arrivals, the prob-

lem can be solved with a variant of the algorithm pre-

sented for the case in which hdi
≥ hoi

for all i.

The ability to find an optimal train schedule using

an aggregate item can provide considerable reduc-

tions in computation time when there are many types

of items and/or many trains to be scheduled. We

are not aware of any prior observations of this phe-

nomenon. Of course, the result applies only when

hdi
< hoi

, or hdi
> hoi

for all i. When the relationships

are mixed, both the train schedule and the container

shipment schedule may be quite complex. Some items

should be shipped as soon as possible while others

should be shipped just in time, making it difficult to

characterize when full and partial trainloads should

be sent. This remains a topic for future research.
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