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Introduction

LKAB’s Kiruna Mine is located above the Arctic Circle in
northern Sweden, and produces about 24 million tons of
iron ore per year, making it is the second largest
underground mine in the world today. The orebody, a
world-class high-grade magnetite deposit, is approximately
4 km long and 80 m wide on average, and lies roughly in
the north-south direction, with a dip of some 60 degrees.

Surface mining commenced around the turn of the last
century, and half a century later, operations began
underground. Since 1962, mining has been done exclusively
via large-scale sublevel caving. The mine is divided into ten
main production areas, about 400 m to 500 m in length,
each with its own group of ore passes, also known as a shaft
group, located at the centre of each production area and
extending down to the current main 1045 m level (Figure
1). One to two 25-ton-capacity electric Load Haul Dump
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LKAB’s Kiruna Mine, located above the Arctic Circle in northern Sweden, is the second-largest
underground mine in the world today. The orebody is a world-class high-grade magnetite deposit,
from which three raw ore products are extracted. We use mixed integer programming to determine
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to minimize deviation from planned production quantities while adhering to the operational
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Figure 1. Schematic of the orebody being mined at its current level (LKAB, Internal promotional material, 2001)
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Units (LHDs) operating on a sublevel within each
production area transport the ore from the crosscuts to the
ore passes. The site on which each LHD operates is also
referred to as a machine placement. Each machine
placement is usually 200 to 500 m in length and contains
from one to three million tons of ore, equating to between
one and five 100 m production blocks; the machine
placements possess the same height as the mining sublevel
and extend from the hangingwall to the footwall. Once
started, mining restrictions require continuous production of
the blocks within a machine placement until all available
ore has been removed.

From the two main in situ ore types, the mine delivers
three raw ore products used to supply four ore post-
processing plants, or mills. Phosphorus is the main ore
contaminant. The B1 product contains the least amount of
phosphorus and is used to produce high-quality fines. The
other ore types, B2 ore and D3 ore, are processed into
pellets and possess medium- and high-phosphorous content,
respectively.

Scheduling model
Optimization models are commonly used, not only in the
mining sector, to make decisions, represented with decision
variables, so as to attain a goal, specified as an objective
function, while meeting operational l imits, called
constraints. We employ such an optimization model,
specifically, a multi-period mixed integer program, to
provide mine planners with a production schedule that
details when to start mining each production block within
each machine placement in order to satisfy demand for each
ore type at the mills as closely as possible while not
violating any mine sequencing constraints. An optimal
solution would give the minimumdeviation from planned
production quantities and the means by which to attain this
minimum, i.e., for our application, the time at which a
given production block should be mined; a sub-optimal
solution would give a value for the deviation that is higher
than what could theoretically be realized. In either case, the
solution would satisfy all operational constraints. A sub-
optimal solution may still be usable, if its deviation from
optimality is relatively low, e.g., 1–5%.

For ease of presentation, we assume that each production
block requires exactly one time period to mine. The model
follows:

Indices
a machine placement
b,b' production block 
k ore type, i.e., B1, B2, D3
t time period (month)
v shaft group, i.e., 1…10

Sets
Ωb = set of eligible time periods in which

production block b can be mined (restricted
by production block location and the start
time of other relevant production blocks) 

Aa = set of production blocks within machine
placement a

BlockVb = set of production blocks whose access is
restricted vertically by production block b

BlockRb = set of production blocks whose access is
forced by right adjacency to production block
b

BlockLb = set of production blocks whose access is
forced by left adjacency to production block b

Sv = set of machine placements contained in shaft
group v

Parameters
rbk = amount of ore type k in block b (tons)
dkt = demand for ore type k in time period t (tons)
Earlyb = earliest start time for production block b
Lateb = latest start time for production block b
T = length of the planning horizon
LHDv = the maximum number of simultaneously-

operational LHDs in each shaft group v

Decision variables

dukt = amount mined above the desired demand of
ore type k in time period t (tons)

ddkt = amount mined below the desired demand of
ore type k in time period t (tons)

Objective function

Constraints

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

The objective function minimizes the deviation from the
production targets for each ore type so that the mills can
meet their respective production demands. Constraints [1]
calculate the tons of each ore type mined per time period
and the corresponding deviations from the specified
production levels. Constraints [2], the vertical sequencing
constraints between mining sublevels, preclude mining a
production block under a given production block until
operationally feasible. Constraints [3] and [4] enforce
horizontal sequencing constraints between adjacent
production blocks. Constraints [5] limit the number of
LHDs active within a shaft group to the maximum
allowable number.  Constraints [6] place active production
blocks into the production schedule. Constraints [7]
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preclude a production block from starting to be mined more
than once during the time horizon if its late start date occurs
beyond the maximum time horizon. Constraints [8] require
a production block to start being mined at some point
during the time horizon if its late start date falls within the
time horizon. Constraints [9] enforce non-negativity and
integrality of the variables, as appropriate.

Literature review
Open pit mining problems1,2 are early applications of
optimization to problems in the mining sector. Some of
these models possess special structures that allow the
optimization problems to be solved despite the primitive
state of hardware and software at the time. Subsequently,
another special class of optimization models, linear
programs, is applied in underground mines, e.g., copper or
coal mines 3–7. Unfortunately, thesemodels lack the ability
to capture discrete decisions, e.g., whether or not to mine a
given production block. In an effort to capture these
discrete decisions, some models combine linear
programming with simulation or manual intervention8–12.
For example, a stochastic dynamic program determines
long-term optimal generation levels for a coal- and gas-
fired power station under a set of scenarios; the authors then
use simulation to determine corresponding mining and
stockpiling strategies13. Researchers recognize the need to
incorporate discrete decisions in their models14–16, but none
of these models provide detailed optimal multi-period mine
schedules. One such multi-period model17 uses discrete
decision variables to determine the location of processing
facilities and whether a mine produces or not, but does not
provide a detailed production schedule. Several prior
models for production planning at Kiruna Mine do not yield
adequate multi-period schedules in an operationally
acceptable amount of time18–20. These models therefore
either provide sub-optimal solutions or production
schedules over a shorter timeframe than required. An
integer-programming model provides a production schedule
for a sublevel stoping operation at Stillwater Mining
Company21. This model is the closest to ours, and yields
near-optimal solutions to maximize revenue from mining
platinum and palladium; however, the authors do not
describe any special techniques to expedite solution time. 

Increasing the efficiency of the optimization
model

The size and structure of our model motivates our current
work. MIP solution time increases exponentially with the
number of integer variables. To determine a three-year
production schedule requires 36 (time periods)*1173
(production blocks) = 42,228 variables. Given the
mathematical structure of our model, especially the
complicating sequencing constraints, the corresponding
solution time can be hours, or even days.  In a separate
research endeavour22, we reduce the number of integer
variables by preprocessing the production data, carefully
formulating the model, and implementing several
algorithms to eliminate unnecessary variables. Relevant to
our current discussion is the formulation of the model to
make decisions for machine placements, rather than for
production blocks.Because all production blocks within a
machine placement must be mined continuously in a
specific order, it suffices to define a binary variable
indicating whether machine placementa starts to be mined

in time period t, i.e., yat, rather than defining a variable for
whether or not each individual production block is mined.
This change of variables requires nontrivial accounting to
consider the amount of time required to mine each
production block, and, given the number of production
blocks in each machine placement, the amount of time to
mine (some portion of) the machine placement. However,
because there are far fewer machine placements than
individual production blocks, using yat, rather than ybt, as
the binary variable reduces the number of binary variables
in our model by an order of magnitude. In the ensuing
discussion, we use these new variables, yat, rather than the
variables that appear in the original formulation.

Despite prior work to expedite solution times, integer
programs are notorious for their lack of robustness with
respect to tractability, and even these advanced techniques
fail to produce a five-year schedule in a timely fashion for
all the mining scenarios we have encountered at Kiruna
Mine. Motivated by new data sets that not only increase the
size of the model, but also introduce symmetry (making
various feasible solutions less distinguishable from one
another), we explore additional techniques to reduce the
search space, i.e., the set of feasible solutions from which
we derive the optimal. 

Specifically, we add redundant, but valid, constraints to
our model. In other words, these constraints are not
necessary to eliminate operationally infeasible solutions
(because the constraints are redundant with those already in
the model), but they are valid, i.e., they are satisfied by
every feasible solution in the original model. Intuitively,
this may appear to exacerbate problem tractability by
(unnecessarily) increasing the size of the model. However,
unlike the addition of variables, which provides more
options (feasible solutions) the solution algorithm must
explore, adding constraints reduces the number of feasible
possibilities, thereby reducing the search space and
expediting solution time. In fact, constraints [7] and [8] in
the existing model already serve this purpose, but we can
also add redundant vertical and horizontal sequencing
constraints.

We add constraints between pairs of machine placements
if both the early and the late start of each machine
placement lie within the time horizon. Specifically, if we
define a as a machine placement and a′ as a machine
placement whose mining start date is affected by a, ES(a)
and LS(a) as the early and late start dates, respectively, for
machine placement a, and assume that ES(a) ≥ ES (a′), we
can add a (redundant) vertical sequencing constraint of the
form:

[10]

In other words, given machine placement a starts to be
mined in some time period t (where t lies between the
earliest and latest possible times that a can start to be
mined), machine placement a′ can start to be mined no
earlier than at some time period t′ (where t′ lies between the
earliest and latest possible times that a′ can start to be
mined) less the difference between the early start times
between the two production blocks, a and a′ , i.e., the
required lag time after a starts being mined and before a′
starts to be mined. 

We can construct similar (redundant) horizontal
sequencing constraints as follows, where the first set of
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constraints corresponds to left adjacency constraints and the
second set to right adjacency constraints: 

[11]

[12]

where lagl(a) and lagr(a) represent the maximum amount of
time between when machine placement a starts to be mined
and when machine placement a′ must correspondingly start
to be mined for machine placements to the left and to the
right of machine placement a, respectively. Analogous to
the first set of constraints, these two constraints require
machine placement a′ to be mined within the required
amount of time after machine placement a starts to be
mined.

All three of these sets of constraints are met by using the
original horizontal and vertical sequencing constraints, i.e.,
constraints [2]–[4] of the formulation shown earlier.
However, the addition of constraints [10]–[12] to this
original formulation helps expedite solution time.

Numerical results
We illustrate the effect on the solution time of imposing
constraints [10]–[12] of our model by providing results for
three separate scenarios. The first scenario uses the original
model presented earlier. The second scenario replaces the
sequencing constraints ([2]–[4]) in the original model with
constraints [10]–[12]. The third scenario combines the
original constraints with our redundant constraints,
[10]–[12]. We use both actual data from LKAB’s Kiruna
Mine, and other data sets for which we modify demand data
and the available number of LHDs to reflect realistic
changes given the availability of each ore type in each
machine placement and the availability of load haul dump
units, respectively. The first four data sets possess a three-
year time horizon and the fifth data set a five-year horizon.
As is common with integer programming algorithms, our
algorithm provides both the best objective function value it
has found at any point in its search, and the best bound on
the optimal objective function value, i.e., an objective
function value at least as good as the optimal solution (and
perhaps better). In our numerical study here, we attempt to
solve all instances within a 4-hour time limit to within 5%
of optimality, i.e., to within 5% of what is guaranteed to be
the ‘best possible’ solution.

We implement our mixed integer program using the
AMPL programming language23,24, and the CPLEX solver,

Version 7.025. We run our model instances on a Sun Ultra
10 machine with 256 MB RAM.  We report results in 
Table I.

Results are inconclusive as to whether adding constraints
[10]–[12] or replacing [2]–[4] in the original model with
constraints [10]–[12] produces faster solution times.
However, the run time of the original model is clearly
dominated by the introduction of the new constraints.
While the run times for the model with the first two data
sets exhibit modest improvements with the addition of the
redundant constraints, the solution times for the model with
the third data set are significantly reduced by adding the
redundant constraints. We were unable to obtain a solution
provably within 5% of optimality for the scenario with the
fourth data set. However, the optimality gap is much lower
with, than without, the redundant constraints. The most
significant improvement occurs with the fifth data set.
Without the redundant constraints, the algorithm fails to
find a solution provably within 5% of optimality within the
4-hour time limit we impose. By contrast, using the new
constraints, the algorithm finds a solution within 5% of
optimality in less than 30 minutes.

Conclusions and extensions
We use integer programming to generate production
schedules at LKAB’s Kiruna Mine; however, the size of our
model requires that we develop techniques to expedite
solution time. By reformulating the model to reduce the
number of integer variables, and by employing tightening
constraints, in all but one case we test, we generate near-
optimal three- to five-year schedules in less than an hour.
Extensions to our research include continuing to evaluate
our current solution methodology, and generating new
techniques to even further reduce solution times for other
types of data sets. We note that Kiruna Mine has adopted
schedules that we have produced with our optimization
model, and is now using optimization to aid in its schedule
generation. We present a complete comparison of current
practice and production scheduling at Kiruna Mine prior to
the introduction of this optimization model elsewhere26.
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