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Planning United States military procurement commits a significant portion of our nation’s wealth and deter-
mines our ability to defend ourselves, our allies, and our principles over the long term. Our military pioneered
and has long used mathematical optimization to unravel the distinguishing complexities of military capital
planning. The succession of mathematical optimization models we present exhibits increasingly detailed fea-
tures; such embellishments are always needed for real-world, long-term procurement decision models. Two case
studies illustrate practical modeling tricks that are useful in helping decision makers decide how to spend about
a trillion dollars.
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Procurement of materiel has been a concern of
the American military since the Revolution. Most

early procurement requests amounted to not much
more than a field officer’s handwritten letter listing
“what we must have to accomplish this task.” With
the exception of goods uniquely critical to the mili-
tary, such as saltpeter, most supplies were simple, of
the sort civilians would buy, and requests were for
modest quantities. Debate centered on how to pay
for what the military needed, rather than whether its
need was real. (To gain an appreciation of the pre-
dominant role military procurement played in Revo-
lutionary times, read the writings, annotated diaries,
or biographies of those who debated and decided
these issues, for example, McCullough’s John Adams
2001.)
Planning US military procurement remained fairly

short term and simple and motivated by apparent
need but driven by immediate affordability until
after World War II. In 1948, the Hoover Commission
required that the military set forth its defense goals
and the means by which it would achieve them. In the
early 1960s, Secretary of Defense Robert McNamara
tried to mitigate the myopia of the single-year bud-
get plan and accurately represent defense systems too
complex to be procured and fielded in a single year.
He introduced a five-year budget requiring analyti-
cal justification. This foundation underlies our mili-
tary planning today: given a defense requirement that
probably is not encumbered by budget concerns, each
branch of the military forms a strategy, categorizes it

into “mission areas,” and translates them into require-
ments for personnel and materiel. Chambers (1999)
provides a detailed history of military funding and its
consequences.
Despite early simplicity in justifying military

expenditures, US military capital planning has always
involved large amounts of resources from many parts
of the country, extensive research effort and technol-
ogy development, huge amounts of money, and the
attention of political leaders. In 1794, the US Congress
approved the construction of the USS Constitution
(Figure 1) and her five sister frigates, costing $800,000
1794 dollars, or about $2.9 billion 2003 dollars (Field
1999), using the newest technology and resources
from all the colonies, on the condition that the ships
be built exactly as proposed in six different American
constituencies.
Modern procurement planning may concern pro-

grams that require many years to develop and
complete. A program may compete or interact syn-
ergistically with others. The program’s requirements
and costs may change during development. For exam-
ple, in 1999, the US Navy suffered a $100 million cost
overrun in fielding the joint strike fighter (Figure 2)
(Ricks 1999).
Because capital planning is important, complex,

and expensive, it invites careful analysis. Since
the introduction of mathematical programming after
World War II, the military and the private sector
have used it to solve capital-planning problems, and
the resulting decisions have committed trillions of
dollars.
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Figure 1: The USS Constitution incorporated innovative naval architecture
and the latest armament technology; the highest levels of American gov-
ernment planned and approved its construction in 1794, and it required a
huge mobilization of colonial resources. Newport News Shipbuilding, the
sole shipyard in the United States capable of building nuclear-powered
aircraft carriers, is building the USS Ronald Reagan (CVN76). The cost
for the Reagan and her aircraft is expected to be about 10 billion 2004
dollars.
Source, left-hand figure: US Navy, 1997, “USS Constitution, the History,”
http://www.chinfo.navy.mil/navpalib/allhands/ah0697/jun-pg30.html,
June.
Source, right-hand figure: US Navy, 2004, http://www.reagan.navy.mil,
January.

Military Capital Planning and
Civilian Capital Budgeting
In his recollections, Dantzig (1963, Chapter 2, p. 12)
clarifies why the military rushed to develop linear
programming just after World War II: “A nation’s
military establishment, in wartime or in peace, is a
complex of economic and military activities requir-
ing almost unbelievably careful coordination in the

Figure 2: The Lockheed Martin X35 joint strike fighter has a planned
unit cost of about $40 million, with production ramping up to produce
500 planes over fiscal years 2005–2010, deliveries starting in 2008, initial
operational capability in 2011, and a total planned production campaign
of 3,000 aircraft. The X35 will replace the US Air Force’s A-10 and F16, the
US Marine’s AV-8B and F/A-18, and the US Navy’s F/A-18. The three ser-
vices’ long-term capital plans must reflect the influence of this transition
across all these aircraft and their weapon systems.
Source: Lockheed Martin Aeronautics Company, 2004, http://www.
lmaeronautics.com, January.

implementation of plans produced in its many
departments.”
In some of the earliest papers in the journals of the

new discipline of operations research, authors address
military capital planning, for example, Bailey (1953)
and Stanley et al. (1954). More recently, Taylor et al.
(1983) analyze military aircraft procurement, Brown
et al. (1991) develop a large-scale linear integer model
for modernizing the US Army’s helicopter fleet over
a multidecade planning horizon, Brown et al. (1994)
describe a nonlinear optimization model the US Air
Force used for more than 20 years to recommend
purchases of conventional gravity bombs, and Brown
et al. (2003) describe a linear integer model the US Air
Force has used to select and schedule investments in
space-based assets over a 25-year horizon. Salmeron
et al. (2002) describe a decision-support system the
US Navy can use to decide on capital outlays of
about a trillion dollars for navy force structure over a
25-year horizon.
Reports of optimizing civilian capital budgets

appear as early as the 1950s (Gunther 1955, Lorie and
Savage 1955). In their surveys, Weingartner (1966),
Bernhard (1969), and Weingartner (1977) discuss lin-
ear and nonlinear models and the use of discount
rates. Papers in the civilian literature rarely con-
cern actual applications, with some exceptions. Rychel
(1977) presents a multiple-time-period linear integer
program to maximize net worth for Cities Service
Company. Bradley (1986) describes a model for max-
imizing short- and long-term net present value for
General Telephone and Electronics Corporation sub-
ject to financial, resource, and service constraints.
In addition, a body of academic literature focuses

more on solution techniques than on solutions of spe-
cific capital-budgeting problems: Everett (1963) and
Mamer and Shogan (1987) demonstrate the use of
Lagrangian relaxation, Kimms (2001) describes the
use of Benders decomposition, and Meier et al. (2001)
discuss ways to estimate portfolio value uncertainty
from samples of real options, with both a heuristic
solution and a heuristic bound on solution quality.
Brown et al. (2004) highlight differences between

military capital planning and civilian capital budget-
ing, offering about 75 military and civilian citations.
For instance, a military purchase creates no tax event;
the government has no concept of depreciation, book
value, amortization, or residual return on owners’
equity; and there are no external encumbrances on the
financial leverage or tax exposure of a military acqui-
sition. Of course, the government operates under a
dizzying myriad of self-inflicted political and regula-
tory restrictions that the private sector does not suffer.
While the differences are numerous, the underlying
issues are similar, and the private sector can learn a
great deal from the military’s decades of experience
with optimization-based capital planning.
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Elements of Optimization Models for
Capital Planning
Models for optimizing military capital planning pre-
scribe which weapon systems to procure, when to
procure them, and how many to procure.

Portfolio Selection, aka the Knapsack Model
One of the simplest optimization models for military
capital planning is a binary knapsack. Given a fixed
budget and a set of binary acquisition options, where
each option has a value and a cost associated with
the procurement of one or more weapon systems, we
seek the set of options that has the maximum total
value at a portfolio cost no greater than our budget.
This model is a linear integer program with a linear
objective and a single linear inequality constraint with
nonnegative coefficients.
For this simple model, we make standard linear-

programming assumptions: additive objective values
and additive costs, constant returns to scale, separa-
ble options, and deterministic data. In terms of real-
world acquisitions, this means that the total portfolio
value is just the sum of its component values, and no
synergism exists among selected options. The model
includes no returns to scale, no volume discounts,
and no mutually exclusive or inclusive options, and
we have absolutely perfect knowledge a priori of
the exact consequences of any action we might
choose.

Acquisition Options
In the real world of capital planning, important
embellishments go beyond the textbook binary knap-
sack problem. In particular, we frequently must
decide whether or not to buy any units of a weapon
system and then decide how many to buy. We may
also have several options available for procuring a
weapon system. For this generalization, we can use
a bounded integer knapsack model (Bertsimas and
Tsitsiklis 1997, Chapter 6), with one measure of effec-
tiveness (MOE). Keeney (1992) provides guidance on
developing MOEs and on scoring a system’s contri-
bution towards an MOE, and Parnell et al. (1998)
describe an application. Loerch (1999) presents a lin-
ear integer program for the instance in which contri-
bution (or cost) decreases nonlinearly as the integer
quantity of the system procured increases. (Such
phenomena arise with quantity discounts, learning
curves, and diminishing returns.) We can capture this
nonlinear contribution (or cost) with a piecewise lin-
ear function by using binary selection variables, each
of which assumes a value of one if the model chooses
the acquisition option in the associated quantity range
or a value of zero otherwise.

An embellished knapsack model follows:

1. Indices and Index Sets
a= acquisition option.
w=weapon system.
w�a�= set of weapons system(s) procured under

acquisition option a.
2. Parameters [units]
law �uaw� = lower (upper) limit on quantity of

weapon system w ∈w�a� available for purchase under
acquisition option a [w-units].

fixedcontra = fixed contribution of acquisition op-
tion a towards the MOE [value units].

varcontraw = variable contribution per unit of
weapon system w ∈w�a� purchased under acquisition
option a towards the MOE [value units/w-unit].

fixedcosta = fixed cost incurred by selecting acqui-
sition option a [$].

varcostaw = variable cost per unit of weapon sys-
tem w ∈ w�a� purchased under acquisition option a
[$/w-unit].

budget= available budget [$].
3. Decision Variables
SELECTa = 1 if any units are purchased under

acquisition option a�= 0 otherwise [binary].
QUANTITYaw = number of units of weapon sys-

tem w ∈ w�a� purchased under acquisition option a
[w-units].

4. The Corresponding Linear Integer Program

max
∑
a

(
fixedcontraSELECTa

+ ∑
w∈w�a�

varcontrawQUANTITYaw

)

s.t.
∑
a

(
fixedcostaSELECTa

+ ∑
w∈w�a�

varcostawQUANTITYaw

)
≤ budget�

lawSELECTa ≤QUANTITYaw ≤ uawSELECTa

∀a�w ∈w�a��

SELECTa ∈ �0�1	 ∀a�
QUANTITYaw ∈ �0�1�2� 
 
 
 �uaw	 ∀a�w ∈w�a�


Restating the effect of the above model, either
SELECTa = 0 and QUANTITYaw = 0 for all w ∈ w�a�,
or SELECTa = 1 and law ≤ QUANTITYaw ≤ uaw for all
w ∈w�a�. If purchase quantities are sufficiently high,
we can reasonably relax the integrality requirement
on QUANTITYaw. For example, Salmeron et al. (2002)
use integer annual quantities of navy ships (for about
three ships per year) but continuous annual navy air-
craft quantities (for about 100 aircraft per year). For
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Figure 3: The US Department of the Navy total obligation authority (TOA, a
grand total spending limit) was extracted from the Defense Department’s
future years defense program (FYDP: the multiyear spending plan) as
of the January 2003 submission of the president’s budget for fiscal year
2004. Shown are fiscal year accounts in constant 2003 billions of dollars
and five earmarked colors of money (APN is Aircraft Procurement, Navy,
MPN is Military Personnel, Navy, OMN is Operation and Maintenance,
Navy, SCN is Shipbuilding and Conversion, Navy, and other represents
an aggregation of 20 additional categories). In capital-planning parlance,
fiscal year 2003 is the current year, 2004 and 2005 are budget years,
2006 and beyond are out years. In this case, the 2004 Department of Navy
spending is as submitted for congressional approval following reviews
by the Office of the Secretary of Defense and Office of Management and
Budget.

simplicity, we will consider only continuous quanti-
ties hereafter.

Colors of Money
Money spent on military assets is often restricted
to a specific funding category, or “color of money”
(Figure 3). For example, navy money for aircraft
is categorized as “Air Procurement, Navy,” and
ship money is called “Shipbuilding and Conversion,
Navy.” Each category of money is associated with its
own restrictions, such as the time by which and the
way in which the money must be spent; additional
restrictions may include the rate at which and the
assets on which the money can or must be spent. We
account for these categories by adding an index for
funding category c and modify our budget constraint
slightly:

∑
a

(
fixedcostacSELECTa+

∑
w∈w�a�

varcostacwQUANTITYaw

)

≤budgetc ∀c


Interactions Among Decisions
Some acquisition options may require or preclude
others. For example, the US Army may have 10 acqui-
sition options for a new tank (weapon system) and
may have to select at most one. Newman et al. (2000)
give examples, such as a satellite that, if funded,
requires a launch vehicle. The options governing the

satellite and the launch vehicle are otherwise com-
pletely independent.
We define a coercion set as a group of acquisition

options that share some restriction associated with
selecting each of them.
Common coercion sets include
“select at most, exactly, or at least k of these acqui-

sition options”;
“select this acquisition option to be able to select

any option in that set”; and
“if you select any acquisition option in this set, then

you must also select at least one in that set.”
We need these coercions, for example, to keep a

shipyard open, maintain redundant sources, exercise
a contract option, or limit the number of simultaneous
selections.

Synergy
The effects of weapon system contributions are varied
and often interact. Given weapon system w pro-
cured under acquisition option a and weapon sys-
tem w′ procured under acquisition option a′, we can
model pairwise interactions that do not depend on
the quantity procured. We use an additional binary
variable BOTHaa′ that has value one when both a
and a′ are purchased, along with the following linear
constraints:

BOTHaa′ ≤ SELECTa�

BOTHaa′ ≤ SELECTa′� and

BOTHaa′ ≥ SELECTa +SELECTa′ − 1

Such interactions may be synergistic. For instance,

a precision weapon and a target designator may
each exhibit marginal improvements on their own but
together offer dramatically improved effectiveness.

Multiple-Year Planning Horizon
Most capital planning for major weapon systems
extends at least over the budget planning horizon of
six or eight years or so, if not over the likely life-
time of the systems, but no further than we are will-
ing to risk forecasting the future. When considering a
planning horizon as long as 20 or 30 years, we usu-
ally keep track of the year in which a weapon system
starts service and perhaps the year in which it stops
service. The former can correspond to the acquisition
decision year, the payment year, or the first service
year, or cohort year. For ease of exposition, we will
initially assume that these years coincide, although
reality is more complicated; we later consider the fact
that time lags usually separate these events. We also
track the weapon systems in inventory (adding new
purchases and deducting retirements of old weapon
systems), and we can account for operating costs
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that vary with the service life or age of each sys-
tem. An acquisition option a is endowed with spe-
cific start and stop years as well as minimum and
maximum yearly purchase quantities for its associ-
ated weapon system(s). For multiple-year planning,
converting costs to some base present-value year is an
inestimable convenience: For military planning, vari-
ous organizations publish discount rates, for example,
the US Office of Management and Budget (2004).
This gives rise to a generic multiple-year model:

1. Indices and Index Sets
a= acquisition option.
c= color of money.
w=weapon system.
y = year, alias y.
w�a� = set of weapon system(s) procured under

acquisition option a.

2. Parameters [units]
lawy �uawy� = lower (upper) limit on number of

weapon system w ∈ w�a� purchased in year y under
acquisition option a [w-units].

fixedcontrawy = fixed contribution of weapon sys-
tem w ∈w�a� towards the MOE in year y under acqui-
sition option a [value units].

varcontrawy = variable contribution per unit pur-
chased of weapon system w ∈w�a� towards the MOE
in year y under acquisition option a [value units/
w-unit].

fixedcostacy = fixed cost in color of money c in
year y incurred by selecting acquisition option a [$].

varcostacwy = variable cost in color of money c in
year y per unit purchased of weapon system w ∈w�a�
under acquisition option a [$/w-unit].

budgetcy = available color of money c budget in
year y [$].

3. Decision Variables
SELECTa = 1 if any units are purchased under

acquisition option a�= 0 otherwise [binary].
QUANTITYawy = number of units purchased of

weapon system w ∈ w�a� under acquisition option a
that begin operation at the end of year y [w-units].

SERVICEwyy = number of units of weapon sys-
tem w in service during year y that first served at the
end of year y [w-units].

RETIREwyy = number of units of weapon sys-
tem w taken out of service at the end of year y that
first served at the end of year y [w-units].

4. The Corresponding Linear Integer Program

max
∑

a�y�w∈w�a�

(
fixedcontrawySELECTa

+varcontrawyQUANTITYawy

)

s
t

∑
a

(
fixedcostacySELECTa

+ ∑
w∈w�a�

varcostacwyQUANTITYawy

)
≤budgetcy

∀c�y�
lawySELECTa≤QUANTITYawy

≤uawySELECTa ∀a�w∈w�a��y�∑
a�w∈w�a�

QUANTITYawy=SERVICEw�y+1�y ∀w�y�

SERVICEw�y�y=SERVICEw�y+1�y

+RETIREw�y�y ∀w�y�y<y�

SELECTa∈�0�1	 ∀a�
QUANTITYawy≥0 ∀a�w∈w�a��y�

SERVICEwyy≥0 ∀w�y�y�

RETIREwyy≥0 ∀w�y�y


A Single Procurement Can Accrue Multiple-Year
Fixed and Variable Costs
When we select an acquisition option a, it may inflict
fixed and variable costs over many years. The gener-
alized fixedcostacy and varcostacwy parameters allow us
to schedule both the fixed and variable costs for each
acquisition option annually and make them payable
over many years before and after the weapon system
begins service. These cost parameters allow a fixed
lag between the time a system is paid for and the time
it begins service.

Aged Inventory
Costs, such as operating and maintenance costs, may
vary by planning year and also by the age of the
system. To this end, we can define varcostacwyy as the
variable cost in color of money c during year y for
a weapon system w under acquisition option a given
that the system is y− y years old. SERVICEwyy repre-
sents the units in service during year y that are y− y
years old (Figure 4).
Similarly, we may need to force overhaul and retire-

ment decisions by constraining maximum service
life or some burdened function of service life and
usage rate.
Aged inventory is always an issue, so it is curious

that textbooks rarely mention it.

Long-Term, Cumulative Budget Goals
We can relax the budget constraint in the above for-
mulation by accumulating both expenditures and the
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Figure 4: To track the age of an asset, we must account for both its intro-
duction (cohort) year y and its service year; each cohort is a unique
commodity, and we need conservation-of-flow constraints that retain this
distinction. Some service-life-extension actions can overhaul an old asset
to create a new one. Inventory aging is an essential complication when,
for example, maintenance cost varies by age or if the asset has a maxi-
mum planned service life; this can dramatically increase the size of long-
term capital-planning models.

budget allowance up to any current period to produce
the following set of cumulative constraints:

∑
a

y∑
y′=1

(
fixedcostacy′SELECTa

+ ∑
w∈w�a�

varcostacwy′QUANTITYawy′

)

≤
y∑

y′=1
budgetcy′ ∀ c� y


In this way, we can retain unused funds from one
year to pay for an acquisition in a subsequent year
with greater benefit. In reality, we may not be able
to apply past funds to future years: many budgets
are granted on a use-or-lose basis. However, by using
a model to forecast when we need funds, we may
be able to request a priori a distribution of funds to
match the optimal requirement.
Because the individual costs of acquisition options

are high relative to budgeted funding categories, it
can be very difficult to select a portfolio of acquisi-
tions for which the annual outlays fit exactly in each
funding category in each planning year of the hori-
zon. In other words, a superficially simple annual
budget constraint over a long planning horizon is
ridiculous in the real world.
To address this recurring problem, some planning

models employ a budget band over the planning hori-
zon made up of yearly lower and upper bounds on

each funding category in the short term and with
larger bands (greater separation between the upper
and lower bounds) farther into the future to reflect
planning uncertainties. The use of these bands pro-
vides some reasonable degree of freedom as to when
funds are spent, even if the total amount spent does
not change.
Even with budget bands, we can encounter an opti-

mal solution that is silly, such as leaving a large
amount of money unused in some category and
year, even though with just a few dollars more we
could select an attractive alternative. To avoid such
foolishness, we create an elastic constraint on the
budget. Rather than overlook some solution that is
almost, but not quite, feasible, we allow ourselves to
violate a budget band, albeit at a high elastic penalty
cost per unit of violation. Planners regard an insight-
ful solution with small, cosmetic elastic violations
much more positively than a strictly feasible solution
that nobody likes.
With elastic yearly budget bands, we can still

encounter an optimal solution with myopic elastic
violations over the planning years: violations that,
after some analysis, we can shift to sooner or later to
reduce their number or severity. To capture this in the
optimization model, we employ cumulative elastic con-
straints, replacing each (for example, upper) limit each
year by the sum of all such limits from the first year
up to and including that year. In this case, an elastic
budget violation in any year keeps reappearing and
inflicting further penalties in later years, unless and
until we offset (repay) it through some compensating
later event.

State Transitions
Military capital planning exercises monopsony over
large industrial sectors, key materiel and components.
To support the US national military strategy, the

national technology and industrial base includes
plants that are government owned and government
operated (GOGO), government owned and contrac-
tor operated (GOCO), and contractor owned and con-
tractor operated (COCO). These plants have industrial
capability that is critical to the US military, use
resources unique to the military, and have capacity far
in excess of peacetime needs.
For instance, the US Army manages the coun-

try’s conventional ammunition production base that
meets the peacetime demands of the armed services
and maintains capacity to replenish wartime con-
sumption (Bayram 2002). Plants carry out production
on individual production lines that make up their
production-line complexes, and they occupy pieces of
real estate, which may be large when the operations
are hazardous. Each individual line, plant, and piece
of real estate can be managed as GOGO, GOCO, or
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COCO, independent of the management mode of any
other component. In addition, components may be
intentionally sold (disposed of), idled (mothballed),
operated minimally (kept warm), or operated in full
shifts.
The US Army’s capital planning for ammunition

decides not just how much of what to make when
and store where, but where to locate this produc-
tion infrastructure and how to manage and operate
it. Over the long term, it can change the locations
of plant equipment, the management modes of lines,
plants, and real estate, and the operating state of any
component.
Some of the greatest discretionary planning costs

can accrue from dictating such changes. Accordingly,
we need to model state transition costs for changing
locations, management modes, and operating states to
any feasible subsequent combination of these factors.
This is a dramatic generalization of the classic, text-
book binary close-open variable multiplied by a fixed
cost to open.
One simple way to capture a transition is with

a binary variable OPERATEs� s′�y that has value one
when the component is operating in state s (for exam-
ple, GOGOmothballed) in year y−1 andmakes a tran-
sition to state s′ (for example, GOGO open) in year y.
We add the transition costs as functions of these deci-
sion variables to the objective function and track the
yearly operating state using such constraints as∑

s� s′
OPERATEs� s′�y = 1 ∀y and

B3 operates

B2 operates

B1 operates

year

Concurrent dependence:
System B1 may operate
only while system A
operates.

A operates

A operates

A operates

Prerequisite dependence:
System B2 may start
no earlier than system A
starts.

 

Contiguous dependence:
System B3 must start
when system A
ends.

…

…

yy

Figure 5: When we begin operating a new system can depend on the timing of the other systems’ operations.
System A starts operating at the end of year y and stops at the end of 
y . The concurrent dependence of candidate
system B1 on A restricts it to operating only when A does. The prerequisite dependence of B2 on A prevents it
from starting before A does. The contiguous dependence of B3 on A requires it to start operating right after A
ceases operation.

∑
s′
OPERATEs′� s� y−1 =

∑
s′
OPERATEs� s′�y ∀ s� y


Time Dependencies Among Decisions
Operational considerations give rise to coercion sets
that ensure continuity of mission availability between
time periods, in addition to pairwise interactions that
can be applied to one or more time periods. For exam-
ple (Figure 5), we can use a coercion subset to denote
a weapon system w (or collection of weapon systems),
with its corresponding start- and stop-service years,
y and 
y, whose operation is dependent upon another
weapon system w′, with its own corresponding start-
and stop-years, y′ and 
y ′.
Weapon system w procured under acquisition opt-

ion a may be required to operate concurrently with
weapon system w′ procured under acquisition opt-
ion a′, provided y ≤ y′ ∧ 
y ≥ 
y ′. We term this concurrent
operation and impose the constraint

SELECTa′ ≤ SELECTa


We may be required to operate a weapon system w
procured under one of the acquisition options a ∈�
prior to operating weapon system w′ procured under
acquisition option a′, provided y ≤ y′. We term this
prerequisite operation and impose the constraint

SELECTa′ ≤
∑
a∈�

SELECTa
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We may be required to operate system w procured
under exactly one of the acquisition options a ∈ �
immediately after weapon system w′ procured under
acquisition option a′, provided y′ = 
y. We term this
contiguous operation and impose the constraint

SELECTa′ =
∑
a∈�

SELECTa


Persistence
After we refine a plan, and perhaps promulgate it to
senior leaders, we may have to revise it to accommo-
date changes. Optimization has a well-earned reputa-
tion for amplifying small changes to input parameters
into breathtaking changes to output plans. Often dis-
ruptive changes turn out to be unnecessary because
they change total costs very little. Brown et al.
(1997) explain how to incorporate persistence in
optimization-based decision-support models.
For example, suppose that we have a binary legacy

capital plan select∗a from which we derive the revision
SELECTa. The linear expression∑

a � select∗a=0
SELECTa +

∑
a � select∗a=1

�1−SELECTa�

sums the number of changes (the Hamming distance)
between the legacy plan and the revision, which can
be constrained or elastically penalized. Restricting the
differences between the two solutions, that is, pro-
viding an upper bound on this expression, will not
reduce costs but frequently reveals alternate solutions
that cost little more and exhibit much less turbulence.

End Effects
Long-term capital-planning models have finite plan-
ning horizons. They require beginning and ending
states as input parameters. When our purpose in long-
term planning is to advise how to evolve, it seems
paradoxical that we must specify the end state as an
input, rather than learn it as an output. Worse, the end
state is a long time from now and not easy to reckon.
Errors and omissions in determining end states can
lead to end effects: outrageous behavior at the end of
the planning horizon.
We should use common sense in addressing end

effects. One way to mitigate end effects is to extend
the planning horizon beyond those years actually
reported. (Many analysts do this.) The theoretical and
practical problem is to determine just how long to
extend the time horizon.

When Objectives Are Constraints, and Vice Versa:
Dealing with Multiple, Conflicting Measures of
Effectiveness
We can use a weighted average to try to coerce hier-
archy among component objectives, assuming that
we can establish a well-ordered hierarchy. However,

doing so is problematic, even for just two objective
components. Textbook descriptions of the big-M mul-
tiplier method for achieving a feasible and optimal
solution illustrate the problem. Just how big does
big-M, the objective weight per unit of constraint
infeasibility, have to be to guarantee a hierarchical
distinction between feasibility and optimality? Our
military world record is a model sent to us with
14 hierarchical objectives: even if we give each objec-
tive a weight just one order of magnitude higher
than the next lower objective, the resulting weighted-
average objective would exceed the mantissa length of
our floating-point computer arithmetic, so (even with-
out a course in numerical analysis) you can see that
we have inflicted a worrisome, if not overwhelming,
rounding-error noise on our objective.
We can achieve purely hierarchical solutions with-

out weighted averages (Steuer 1986, Chapter 9). First,
we should optimize only with the highest-order objec-
tive and then state an aspiration constraint requiring
at least the resulting optimal value of this objective
function. We then add the aspiration constraint to
the existing set of constraints and reoptimize, this
time with the second-highest order objective. We
repeat this process with each successive lower-level
objective.
Pursuing strict hierarchies among conflicting objec-

tives can obscure good trade-offs. We can then relax
our aspiration constraint for each objective to an elas-
tic aspiration constraint that expresses some goal for
achievement and allows its violation with a linear
elastic penalty.
Sometimes we are given only a list of MOEs and

are left to determine what the aspiration levels should
be. This leads to a series of optimization problems in
which each requirement takes its turn in the objec-
tive, while its cohorts play the role of elastic aspiration
constraints. That is, we empirically discover MOE lev-
els that admit efficient solutions. A common heuris-
tic is to cycle through the MOEs in some priority
order, finding the extremal (maximizing or minimiz-
ing) value of each, setting some fraction of this value
as its aspiration, and continuing to the next MOE.
Bruggeman (2003) uses a procurement tier, a set

of munition-specific inventory targets that together
achieve some level of effectiveness with respect to
the (budget-infeasible) mission requirements. He pre-
scribes procurements that achieve all munition levels
in a tier before purchasing in another one for any of
40-odd categories of navy munitions over an eight-
year planning horizon, keeping track of the influ-
ence each procurement has on its civilian supplier,
volume price breaks, and future maintenance costs.
These procurement plans use available yearly budgets
to ramp up the military effectiveness of the inven-
tories achieved, given that the total requirement far
exceeds the budgets.
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Representing an Uncertain Future with
War Plan Scenarios
Military capital acquisitions maintain and strengthen
the capability of our forces to successfully complete
their missions. Although we do not know which
future missions we will actually be ordered to com-
plete, we do have a set of future scenarios (war plans)
depicting a variety of representative conflicts world-
wide. These scenarios are constantly gamed and
maintained by our armed services, and any major
capital acquisition will be evaluated by some means
to assess its contribution to the urgent necessity to,
for instance, prevail in one conflict while forestalling
another, then prevail in the second conflict.
For example, Borden (2001) justifies his conclu-

sion that 11 new T-AKE logistics ships are required
by demonstrating with an optimization model that
schedules such ships supporting urgent deployment
of multiple naval strike groups worldwide over
a planning horizon of 120 days. He demonstrates
exactly how his new fleet would best serve the strike
groups in each of about a dozen scenarios.
Although we admire stochastic optimization and

teach its virtues, we have no military capital-planning
client willing to commit to the required stochastic rep-
resentation of future military exigencies. It’s hard to
sell even simple decision theory: military planners
worry about what is possible, rather than what is
likely.

Lessons from Computational
Experience
Military capital-planning problems typically con-
cern numerous assets, for example, weapon systems,
munitions, platforms, and vehicles; many years in
the planning horizon; and many acquisition options,
which are limited only by the procurement planners’
imaginations and the competing contractors’ respon-
siveness. As a result, optimization-based decision-
support models of military capital-planning problems
are large and complex, typically resulting in many
thousands of discrete and continuous variables and
thousands of constraints. Most of these models
require concave cost minimization.
Not all such models can be solved quickly. In our

view, a model is tractable only if we can rely on it
to produce a useful answer while we still remember
the question. But important problems deserve serious
analysis. We military analysts have lots of computing
power. We think nothing of solving hundreds or thou-
sands of planning scenarios. When the objective is bil-
lions of taxpayer dollars and the result is a durable
decision to invest in the future defense of our country,
analysis is everything.

We have an additional couple of tricks that can
make large capital-planning models easier to solve.
The US Air Force uses a capital-planning model
(Newman et al. 2000) that features about 10,000 vari-
ables and about 17,000 constraints; between two and
10 percent of the decision variables must be binary.
The model produces answers within two percent of
optimality in about three minutes on a Silicon Graph-
ics ONYX2 workstation with four gigabytes of RAM
using the CPLEX solver, Version 6.5 (ILOG 2002).
A capital-planning model designed for the

US Navy to use in planning procurement of ships
and aircraft for the next 25 years (Salmeron et al.
2002) has about 167,000 variables (about 6,000 binary)
and about 114,000 constraints. It produces heuristic
solutions in a second or two and solutions within
10 percent of optimality in about seven minutes on
a 1 GHz Pentium III computer with one gigabyte of
RAM using the CPLEX Solver, Version 6.5.

Time Discount Rate and Model Mischief
Discount Rate
In any real-world, long-term planning model, ana-
lysts make allowances for bad events, unavoidable
despite optimization. Given a choice, we prefer to
delay the effects of bad news as long as possible into
the future by discounting the penalties for such events
at a higher rate than their companion costs in the
models. We call this the fog-of-far-future planning fac-
tor or the model-mischief discount rate. Discounting
such penalties attenuates the influence of far-future
constraints that can cause trouble. Rarely is the part
of the solution corresponding to an out year in a
long-term model used as operational guidance in the
short term. Therefore, we would rather have a solv-
able model that provides specific, and good, guid-
ance in the short term, than an unsolvable model,
incapable of distinguishing between admissible solu-
tions, that tries to provide a good solution in the far
future.
We use present value for all costs and with this ref-

erence point use discount rates (Newman et al. 2000)
to model capital planning for the US Air Force Space
Command. Base-case, nondiscounted model instances
require about an hour and a half to solve to an opti-
mality gap (a difference between the value of the
best solution found and a bound on the best solu-
tion potentially obtainable) of 10 percent. However,
applying a 2.5 percent annual discount factor reduces
solution times for these same instances to between
six minutes and an hour to solve to the same 10 per-
cent optimality gap. Analysis of the discounted model
solutions reveals no degradation in solution quality.
Salmeron et al. (2002) express all US Navy procure-

ment, operation, and maintenance costs in constant-
year dollars but add an extra inflation factor to
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realistically represent operation and maintenance
costs for older aircraft. The improvement they obtain
in solution effort is so dramatic that they no longer
attempt nondiscounted base cases. They also allow
violations of cumulative budget bands and use a
model mischief discount rate to move any such vio-
lations as far as possible into the future. Doing so
proves worthwhile, because their model also exhibits
end effects. For example, near the end of the long
planning horizon, ships are forced to retire without
alternate replacements on the drawing boards. It is
better to deliver workable advice with excellent near-
term fidelity than to let this far-term blemish shatter
the entire planning exercise.

Relaxation and Aggregation
We seldom decide at the outset to relax problem fea-
tures or to aggregate detail: these sacrifices of model
fidelity are attractive only after daunting computa-
tional experience proves them essential.
A decision to select an acquisition option in a

particular year may have to be binary in the near
term but not in the far term. We must obtain inte-
ger acquisition quantities if the quantities are small,
especially in the near term, but we frequently relax
integer-decision requirements in the intermediate and
far terms, which can dramatically improve model
responsiveness.
For example, we might replace binary alternatives

to select some acquisition option in exactly one out
of a set of future years with a relaxation that per-
mits us to select the alternative fractionally during
that epoch but fully by its end. We can thus spread
planned investments over years in the future, rather
than being forced to make them in some particular
year (Newman et al. 2000). Salmeron et al. (2002) use
continuous quantities for aircraft and all retirements,
and they account for the vast majority of the nearly
100,000 decision variables. Some ship quantities may
be continuous in the far future, permitting planned
procurements to span planning years.
These relaxations are not always easy to express,

for example, when interactions exist among far-term
decisions. We can use aggregation to limit model sizes
and hasten planning cycles while reducing the work-
load of preparing parameters for far-future alterna-
tives. In the near term, we might want a diversity of
alternatives, while in the far term we might just have
one alternative to select or reject. In the near term,
we might need yearly time fidelity, while in the far
term we can aggregate yearly constraints and vari-
ables to model an entire decade, reflecting the reality
that timing selections in the out years is less precise.
As the planning horizon rolls forward, we eventually
disaggregate all model features and amplify them to
then-present value.

We routinely relax our tolerance of the optimality
gap to, say, 10 percent. That may appear too coarse,
but many of our optimization models merely com-
pare alternatives. In this case, and as long as the gap
(or interval of uncertainty) of the winner is strictly
better than that of each loser, we obtain more benefit
from a faster response time and a larger optimality
gap, than from a smaller gap and no additional infor-
mation as to which solution we prefer. Even if we
are not comparing alternatives, we are contrasting a
modus operandi with an optimization solution, and if
the objective function of the modus operandi lies out-
side of the optimality gap interval, then we can con-
clude that the solution gained through optimization is
preferable to the modus operandi. In either case, once
we have found a winner, or a portfolio of winners, we
can try to reduce the gap of each of these as much as
possible, even if this means a lot of computing. Fortu-
nately, there are very few excursions that survive our
competitions long enough to require this extra effort.

Conclusion
The military has employed mathematical optimiza-
tion of capital planning for over 50 years and has
made many contributions to this field. While military
capital planning differs from private-sector capi-
tal budgeting—principally in the sheer amounts of
money involved and the long planning horizons—
anyone making long-term capital investments likely
faces many of the same issues the military does. Many
of these recurrent planning issues can be expressed in
mathematical models. We recommend the references
in our bibliography for more detail.
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