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Centralized and Decentralized Train Scheduling for Intermodal
Operations

Abstract:

We investigate a spectrum of decision-making approaches, from centralized to decentral-

ized, within the context of scheduling direct and indirect (via a hub) trains and assigning

containers to trains for the rail (linehaul) portion of the intermodal trip. The goal is to

minimize operating costs, including a fixed charge for each train, variable transportation

and handling costs for each container and yard storage costs, while meeting on-time delivery

requirements. If shipping requirements are known, a centralized solution provides for better

coordination, thereby reducing costs. However, information may be not available to support

centralized decision-making. We present several methods for obtaining good solutions, and

show that carefully-designed decentralized approaches may perform as well as centralized

approaches for our problem.
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1 Introduction

The question of determining the best method of using information and planning large-

scale operations is not new. A wide variety of literature discusses the tradeoffs between

using centralized vs. decentralized strategies considering organizational design, resource

allocation and operational control.

A few authors focus on the degree to which decentralized information supports decision-

making. Most of these models are concerned with (de)centralization of decision-making

from an organizational perspective (e.g., Malone (1987), Malone and Smith (1988), Siebell

(1990), Kendall and Schuldt (1993), Obel (1978), Anandalingam, Chatterjee and Gangolly

(1987), Gazis (1987), and Leu, Rakes, Rees and Ceccucci (1992)).

Although optimization methods exist for coordinating decentralized decisions so as to

achieve all or most of the benefits of centralized planning (e.g, Dantzig-Wolfe decompo-

sition), relatively little research has been done to compare decentralized and centralized

decision-making for operational problems (e.g., Chu, Lin, and Ng (1991), Kung and Mars-

den (1995), and Kouvelis and Gutierrez (1997)).

Our study differs from most of the prior research in that we are concerned with ge-

ographically (de)centralized decision-making in an environment where decisions are made

over time. We allow operators in a subset of geographically distinct locations to make si-

multaneous decisions independently of each other, using only locally available data. This

eliminates the need for systemwide data availability and a centralized planning system.

The remainder of the paper is organized as follows: Directly below, we describe our

problem setting; then in Section 2, we present a formulation of the problem. In Section

3, we describe a range of decision-making strategies, from decentralized to centralized.

Although our decentralized methods lead to optimization subproblems that are smaller than

the original monolithic problem, some of these subproblems cannot be solved optimally for

realistic instances. In Section 4, we present a heuristic preprocessing step that enables us

to solve larger problems. We present numerical results in Section 5, and conclusions appear

in Section 6.

Our problem setting closely parallels the train scheduling and container routing problem

that we observed at the intermodal division of a Class I railroad. The company moves

primarily sea cargo for major international shipping lines, as well as cargo for smaller local
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customers, from an intermodal terminal on the west coast through a hub in the west-central

part of the U.S., and then to terminals east of the Mississippi River. The flow of traffic

eastbound is greater than it is westbound, which is a common situation for U.S. railroads.

Intermodal retailers typically act as middlemen between the trucking and rail companies,

reserve space on trains in advance, and then “sell” this space to their customers. These

reservations contribute to the predictability of demand for the railroad. Overall, demand

exhibits weekly patterns due to freighter schedules, and seasonal patterns due to factors

such as traditional cycles in retail demand, and agricultural and manufacturing production.

Trains may be routed either directly to a destination, or through an intermediate termi-

nal, where traffic originating at several locations but bound for a common destination may

be consolidated onto a single train. This consolidation may cause up to several days’ delay

for transferring containers, repositioning railcars between trains, and waiting for the arrival

of a train due to lack of coordination between inbound and outbound train schedules. We

observed that decisions regarding whether trains should be sent directly or indirectly, and

how the indirect trains should be coordinated at the hub are not made systematically. Fur-

thermore, the train scheduling and container routing decisions do not appear to be affected

strongly, if at all, by what speed of delivery has been promised, or what price has been

charged to the customer. These observations motivated us to investigate how to schedule

trains and route containers to achieve on-time delivery at minimum cost.

We address a short-term, finite-horizon, discrete-time scheduling problem for the rail

linehaul portion of the intermodal trip. Given container demands differentiated by origin,

destination, arrival date at origin, and due date at the destination, the objective is to

determine a train schedule (for both direct and indirect trains) and container shipment

plan to minimize the total cost over a horizon of a week to two weeks while meeting on-time

delivery requirements and adhering to train capacity restrictions. The total cost consists of

a fixed charge per limited-capacity train which depends on the transit time and locomotive

requirements for the specific rail segment, a variable transportation cost per container which

is proportional to the length of the rail segment, location-dependent container handling

costs, and location-independent inventory holding (yard storage) costs for containers held

at any terminal prior to their arrival at the destination. We assume that customers will

accept delivery upon arrival at the destination, so no inventory is held at the destinations.
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See Newman and Yano (1998) for a more detailed description of these costs.

We assume that hub delays and transit times are deterministic, constant across time,

and that both are expressed as an integral number of time periods, where a time period

is typically one day. Transit times are rarely predictable, but because time is expressed in

days, not hours or minutes, there is implicit slack in the schedule to accommodate most

unforeseen events. Explicit slack can be included (as is done in practice) to help ensure on-

time delivery by further inflating scheduled transit times between terminals and scheduled

delays at intermediate hubs.

We assume there is no limit on the number of trains that can be sent each day, although

in reality, locomotive availability may be limited with respect to location and time. We

further assume that the capacity of a train on each transportation segment is known, and

that containers are homogeneous in terms of their use of train capacity. We consider the flow

of trains and containers in one direction and do not address the repositioning of locomotives

or empty containers. For further discussion of these issues see Folk and Bharadwaj (1980),

Kikuchi (1985), Glickman and Sherali (1985), and Haghani (1989).

Research has been done on determining steady-state train frequencies over a horizon of

weeks to months. Keaton (1989, 1992) addresses the problem of determining the frequency

of service and the train type (i.e., direct or indirect) to be scheduled between terminals,

the routing of cars on trains and through intermediate terminals, and blocking (or group-

ing of cars into shipment units). He models the problem as a mixed integer program and

uses Lagrangian relaxation to solve it. Crainic and Rousseau (1986) develop an optimiza-

tion framework for medium- to long-term service network planning for multimode freight

transportation. Decisions include transportation modes and routes for various types of de-

mands, service frequencies, consolidation and transfer policies at terminals, and the routing

of freight. Their solution procedure relies on decomposition and column generation. Maŕın

and Salmerón (1996) investigate the problem of determining a train schedule for a rail net-

work, and the assignment of rail cars to these trains such that each train carries cars of a

single service class. They employ simulated annealing and tabu search to solve the prob-

lem. The most significant difference between these models and our model is that the former

determine only train frequencies based on aggregate demand rates, and not train timing,

whereas our model provides detailed day-of-week train scheduling and container routing
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plans, and allows for time-varying demands.

The research on determining short-term day-of-week train schedules is sparse, and most

of it is very recent. Barnhart and Ratliff (1993) develop a model that seeks to find the

least expensive routings for a set of trailer movements by truck and/or rail on a single

day, considering the possibility of transporting trailers from different sources on the same

(rail) flatcar for an intermediate segment of the journey. Morlok and Peterson (1970)

introduce a multi-period model to minimize the sum of fixed train and variable operating

costs while adhering to due date restrictions for time-sensitive goods. Decisions are which

trains to operate (differentiated by their departure time, routing, set of stops, and capacity)

and which freight to assign to each train. The authors use branch-and-bound to solve

a small instance of the resulting multicommodity network design problem. Nozick and

Morlok (1997) address the rail movement of intermodal freight within the context of rail-

truck intermodal transportation given a fixed train schedule over a finite horizon, taking

equipment and locomotive repositioning into account. The objective is to minimize the cost

of delivery such that the movements are feasible with respect to equipment availability, and

the goods are delivered on time. Gorman (1998a, 1998b) considers a problem similar to

ours: that of simultaneously establishing a train schedule and container routing to meet

service requirements and yard, line, and train capacity restrictions. He employs a tabu-

enhanced genetic search to arrive at solutions within 10% of the optimum for the special

case of a single origin and single destination with multiple routes between them. He then

uses his procedure to obtain a solution for one problem with multiple interdependent origins

and destinations. Although the solution he obtains represents a significant improvement

over current practice, a comparison with a bound or an exact solution is not provided.

Our model differs from prior work in that we simultaneously determine an explicit

direct and indirect train schedule and the corresponding container routing decisions for

multiple interdependent origins and destinations using a formal optimization approach.

This approach enables us to assess the tradeoffs between computation time and the quality

of solutions obtained from a centrally planned system and one in which various degrees of

decentralized decision-making are allowed.
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2 Mathematical Formulation and Problem Structure

Recall that our problem is to choose train schedules and container routes for each day in a

horizon, so as to achieve on-time delivery at minimum cost. The problem is difficult because

of: (i) the possibility of sending more than one train on each segment each day, (ii) the

option of sending both direct and indirect trains, (iii) the dynamic arrival of containers,

and (iv) distinct due dates for different customer orders.

The subscripts in the model are as follows:

i = index of origins, i = 1,...,I

j = index of hubs, j = 1,...,J

k = index of destinations, k = 1,...,K

t = index of days in the time horizon

l = index of level of service, i.e., the due date of the container at the destination

The parameters in the model are as follows:

αik = direct transportation time between origin i and destination k

βij = transportation time between origin i and hub j

γjk = transportation time between hub j and destination k

δj = delay time incurred from passing through hub j

C = capacity of a train (number of containers)

h = holding cost of a container ($/container/day)

ca
ik = variable unit cost of transporting a container directly from origin i to destination

k

ce
ijk = variable unit cost of transporting a container from origin i via hub j to desti-

nation k

Sao
ik = fixed cost of running a train directly between origin i and destination k, in-

cluding labor and train assembly
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Seo
ij = fixed cost of running a train between origin i and hub j, including labor and

train assembly

Sh
jk = fixed cost of running a train between hub j and destination k, including labor

and train assembly

go
i = cost of placing a container on the train at origin i

gh
j = cost of rearranging a container at hub j

gd
k = cost of removing a container from the train at destination k

biktl = the number of containers that arrive at origin i on day t bound for destination

k with a due date of time l

The decision variables are as follows:

Io
iktl = container inventory held at origin i at time t, which is due at destination k by

time l

Ih
ijktl = container inventory originating at i and held at hub j at time t, which is due

at destination k by time l

Id
iktl = container inventory from origin i due by time l which is held at destination k

at time t

xao
iktl = number of containers shipped directly from origin i to destination k at time t,

which are due by time l

xeo
ijktl = number of containers shipped from origin i to hub j at time t, which are due

at destination k by time l

xh
ijktl = number of containers which originated at i and are shipped at time t from

hub j to destination k, where they are due by time l

zao
ikt = the number of trains sent directly from origin i to destination k at time t

zeo
ijt = number of trains sent from origin i to hub j at time t

zh
jkt = number of trains sent from hub j to destination k at time t
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The formulation follows:

(P ) : min Z =

∑
iktl

h ∗ Io
iktl +

∑
ijktl

h ∗ Ih
ijktl +

∑
ijkl

t+βij+δj∑
w=t+βij

h ∗ xeo
ijkwl +

∑
iktl

ca
ik ∗ xao

iktl +
∑

ijktl

ce
ijk ∗ xeo

ijktl

+
∑
iktl

go
i ∗ xao

iktl +
∑

ijktl

go
i ∗ xeo

ijktl +
∑

ijktl

gh
j ∗ xh

ijktl +
∑
iktl

gd
k ∗ xao

iktl +
∑

ijktl

gd
k ∗ xh

ijktl

+
∑
ikt

Sao
ik ∗ zao

ikt +
∑
ijt

Seo
ij ∗ zeo

ijt +
∑
jkt

Sh
jk ∗ zh

jkt

subject to

biktl + Io
ik(t−1)l = Io

iktl + xao
iktl +

∑

j

xeo
ijktl ∀i, k, t, l (1)

Ih
ijk(t−1)l + xeo

ijk(t−βij−δj)l
= Ih

ijktl + xh
ijktl ∀i, j, k, t ∋ t ≥ 1 + βij + δj , l (2)

Id
ik(t−1)l + xao

ik(t−αik)l +
∑

j

xh
ijk(t−γjk)l = Id

iktl + biktl ∀i, k, t ∋ t ≥ 1 + αik, l (3)

∑

l

xao
iktl ≤ C ∗ zao

ikt ∀i, k, t (4)

∑

kl

xeo
ijktl ≤ C ∗ zeo

ijt ∀i, j, t (5)

∑

il

xh
ijktl ≤ C ∗ zh

jkt ∀j, k, t (6)

Io
iktl, xao

iktl, Id
iktl ≥ 0 and integer ∀i, k, t, l (7)

Ih
ijktl, xeo

ijktl, xh
ijktl ≥ 0 and integer ∀i, j, k, t, l (8)

zao
ikt ≥ 0 and integer ∀i, k, t (9)

zeo
ijt ≥ 0 and integer ∀i, j, t (10)

zh
jkt ≥ 0 and integer ∀j, k, t (11)

where Io
iktl is set equal to 0 unless t ≥ 1 and l > t + αik, Ih

ijktl is set equal to 0 unless

t ≥ 1 + βij + δj and l > t + γjk, and Id
iktl is set equal to 0 unless t ≥ 1 + αik and l > t. Note

also that xeo
ijktl = 0 if l < t + βij + γjk + δj and xh

ijktl = 0 if l < t + γjk.

Although the formulation is written for the case in which there may be multiple hubs

and each container may pass through at most one hub, in our analysis, we assume there is
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only one hub. We also assume that direct travel time between an origin and a destination

is strictly less than the total transit and delay time for a container shipped indirectly, i.e.,

αik < βij + γjk + δj .

The objective function contains the following terms: the inventory holding cost at the

origin and at the hub; the transportation cost of directly and indirectly shipped goods; the

handling cost at the origin for both direct and indirect shipments, the handling cost at the

hub for indirect shipments, and the handling cost at the destination for direct and indirect

shipments; and finally, the fixed cost at the origin for direct trains and trains bound for a

hub, and the fixed cost at the hub for indirect trains.

Constraints (1), (2), and (3) represent conservation of flow of containers at the origin,

hub, and destination nodes, respectively. Constraints (4) require that for all origins, desti-

nations, and time periods, the number of containers sent on direct trains must not exceed

the total capacity of the trains departing. Likewise, constraints (5) and (6) ensure that

train capacity is not exceeded on trains bound for the hub and trains leaving the hub,

respectively. Finally, nonnegativity and integrality restrictions are imposed on all decision

variables. Appropriate inventory variables are initialized to zero; others are constrained

to be non-negative. Similarly, indirect container shipments are constrained to be zero if

shipment due dates necessitate direct routing.

Our problem is modeled as a piecewise-concave-cost multicommodity network flow prob-

lem. Problems of this type are both theoretically and computationally difficult to solve.

Even the fixed-charge (uncapacitated) multicommodity flow problem, which has a simpler

structure than our problem, has been shown to be NP-complete (Garey and Johnson, 1979).

Earlier work has examined special cases of the fixed-charge problem. Specifically, Palekar,

Karwan, and Zionts (1987), and Lamar, Sheffi, and Powell (1990) examine methods to im-

prove the performance of the fixed charge transportation problem. Schaffer and O’Leary

(1989) treat a special case of the fixed-charge problem in which the fixed charges are as-

sociated with the supply point. Hochbaum and Segev (1994) and Herrmann, Ioannou,

Proth, and Minis (1996) propose solution procedures for the general (single commodity)

fixed-charge problem. Aggarwal, Oblak, and Vermuganti (1994) and Barnhart, Hane, and

Vance (1996) treat multi-commodity flow problems with fixed upper bounds on the arc

capacities. The constraints in these classes of problems differ from ours because our arc
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capacities depend on the number of trains sent, and the capacity is shared among multiple

commodities.

Figure 1 depicts our network for two origins, two destinations and two time periods,

assuming, for simplicity, instantaneous transit times and no delays at the hub. The network

contains three sets of nodes, in addition to a source and sink. The first set consists of one

node for each (origin, time period) pair. In the second set, there is one node for each time

period, and the physical location is considered to be the hub. In the third set, there is one

node for each (destination, time period) pair. An arc links two nodes if a container may

travel from the location and time period associated with one node to those associated with

the adjacent node. Arcs from a location in one time period to the same location in the

subsequent time period permit inventory flows from period to period. The multicommodity

nature of the problem manifests itself in that direct shipments on the same arc may have

different due dates. Likewise, indirect shipments from an origin to a hub may have different

destinations and/or due dates. Finally, indirect shipments from the hub to a destination

may have different origins and/or different due dates. A variable cost is associated with

transporting a specific commodity on a given arc. A commodity is assigned an infinite cost

if its due date prohibits it from traveling along an arc at a given time period. The upper

bound on the total flow on each arc depends on the number of trains scheduled to travel

between the two locations in a given time period, and a fixed charge is assessed for each of

these trains.

A centralized planner would face the problem described and formulated above. Typ-

ical problem instances contain thousands of general integer variables and thousands of

constraints. Although some very small problems can be solved optimally in a matter of

seconds or minutes, realistic problems present computational challenges. In practice, the

problem is solved in a geographically decentralized manner with each terminal responding

to forecasted container arrivals. In the next section, we present a variety of decision-making

strategies with varying degrees of decentralization which afford, on the average, better

quality solutions much more quickly than the centralized approach.
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3 Decision-Making Strategies: From Decentralized to Cen-

tralized

There are many ways in which one can construct good, feasible solutions to the train

scheduling and container routing problem. We describe each of these methods in turn,

providing abbreviated formulations where appropriate. We first introduce the simplest

and most decentralized approach on our spectrum of alternatives, decentralized scheduling

and routing. For each origin, we solve the problem of how to schedule direct and indirect

trains and route containers outbound from the origin, using adjusted costs that include

an estimate of consequent costs incurred at the hub and between the hub and the final

destinations. We refer to each of these as an origin scheduling subproblem. Then, given the

resultant container arrivals at the hub, the train and container schedules outbound from

the hub to each destination are optimized. We refer to each of these as a hub scheduling

subproblem. We call this approach decentralized because each set of train scheduling and

container routing decisions can be made locally either at each separate origin or at each

hub, i.e., in a geographically decentralized way without the need to coordinate decisions

with other locations and without the intervention of a central planner.

In each origin scheduling subproblem (which must be solved for all but the centralized

solution approach), we assume that for each train inbound to the hub from origin i, there

is a train outbound from the hub whose fixed charge is the average of the fixed charges

incurred on all rail segments outbound from the hub to the various destinations. (If the

demands differ widely by destination, one could instead use an appropriate weighted average

of the fixed charges.) Also, the handling cost per container is the sum of the handling cost

at the origin and at the hub. Thus, rather than using fixed charges and handling costs that

reflect only the first transportation segment, we use adjusted costs that reflect estimates

for the entire route:

S̃eo
ij = Seo

ij + Sh
j

g̃o
ij = go

i + gh
j

where Sh
j is the fixed cost at hub j, obtained by using an average or a weighted average of

Sh
jk across destinations.

10



Note that because we assume that all containers incur variable costs proportional to

the distance they are hauled, and that direct and indirect routes are virtually identical,

transportation costs are sunk and equal, regardless of whether containers travel on a direct

or an indirect route. To accurately account for transportation costs for indirectly routed

containers in each origin scheduling subproblem, we assess the same variable cost for all

containers regardless of whether they are transported directly or indirectly.

Our motivation for making these cost adjustments is to incorporate the first-order effects

of sending trains from the origin to the hub on the costs that are incurred after the train

reaches the hub. In effect, the cost adjustment is an estimate of the “cost to go” outbound

from the hub. Although the number of trains into and out of the hub may not be exactly

equal within a short time horizon, in practical applications these values are fairly well

balanced. If the train capacities are well utilized inbound to the hub, on-time delivery

requirements make it difficult to hold containers at the hub long enough to achieve significant

additional consolidation outbound from the hub.

In solving any subproblem for any of the methods described in this section, all relevant

constraints apply. For example, in solving each origin scheduling subproblem, we require

conservation of flow of containers at the origin and satisfaction of train capacity constraints

on both direct and indirect trains leaving the origin. For each hub scheduling subproblem,

we require conservation of flow of the containers at the hub, and adherence to capacity

constraints for all trains outbound from the hub. In both of these problems, containers

must be shipped far enough in advance to arrive at the destination on time. Formulations

of origin and hub scheduling subproblems for a single origin and for a single hub-destination

pair, respectively, are given in Appendix A. Note that the solution and objective function

value for the entire origin scheduling problem can be obtained by solving an origin scheduling

subproblem, P i
o , for each origin i, adding the objective function values, and taking the union

of the solutions. Equivalently, were it tractable, the origin scheduling problem could be

solved as a monolith, in which the objective function is summed across all origins, and

the constraint set is the union of constraints imposed at all origins. Analogous reasoning

holds for equivalently solving the independent hub scheduling subproblems for each hub-

destination pair as a single hub scheduling problem. Therefore, for ease of exposition, in

the ensuing discussion, we refer to the origin and hub scheduling problems as monoliths,
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and assume that they have been solved in a decoupled fashion to preserve computational

tractability.

Let Z represent the objective function value for the original problem, and Z∗ denote

the optimal objective function value. Also let:

Z1= the objective function value for the origin scheduling problem with the original cost

parameters Seo
ij and go

i

Z̃1= the objective function value for the origin scheduling problem with the adjusted

cost parameters, S̃eo
ij and g̃o

ij

Z2= the objective function value for the hub scheduling problem

Let xo
i and xh

j be shorthand notation for all container flows from origin i and hub j,

respectively:

xo
i = {xao

iktl, xeo
ijktl ∀j, k, t, l} ∀i and xo = {xo

i , i = 1, ..., I}

xh
j = {xh

ijktl ∀i, k, t, l} ∀j and xh = {xh
j , j = 1, ..., J}

Finally, let zo
i and zh

j denote the trains outbound from origin i and hub j, respectively:

zo
i = {zao

ikt, zeo
ijt ∀j, k, t} ∀i

zh
j = {zh

jkt ∀k, t} ∀j

Using the above notation, the decentralized scheduling and routing approach entails

solving the following optimization problems:

1. Solve : min
xo
i
,zo

i

Z̃1(x
o
i , zo

i ) ∀i

2. Then, given xo
i , i = 1, ..., I from step 1, solve : min

xh
j
,zh

j

Z2(x
h
j , zh

j |x
o
i ) ∀j

3. F inally, set Z(1) =
∑

i

Z1(x
o
i , zo

i ) +
∑

j

Z2(x
h
j , zh

j )
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where Z(1) denotes the objective function value for the monolithic problem when solved

with the decentralized scheduling and routing approach.

The second variation is similar to the decentralized scheduling and routing approach,

except that an intermediate step is interjected after the origin scheduling problem is solved.

Recall that the origin scheduling problem uses only simple estimates of the “cost to go,”

and does not account for detailed scheduling of trains at the hub. In reality, the “cost

to go” weakly decreases as containers arrive at the hub with more slack (providing more

flexibility and more opportunity for consolidation at the hub), and as more containers are

sent directly. Thus, while the origin scheduling problem may be indifferent among a variety

of container allocations to the various scheduled trains, the actual costs incurred at the

hub may differ widely. The purpose of the intermediate step is to make adjustments in the

assignments of containers to trains in a systematic (but heuristic) way in order to improve

the container routings and the train schedules outbound from the hub.

We make the adjustments by solving a variant of the container routing portion of the

origin scheduling problem (with the same train schedule outbound from the origin as that

found with the decentralized scheduling and routing approach). The form of the objective

remains the same as in the origin scheduling problem. Among alternate optimal solutions,

we wish to identify a container routing scheme that satisfies an earliest due date (EDD)

sequence, taking into account the actual train schedule and differences in travel times be-

tween direct and indirect trains. To this end, we add constraints to ensure that for each

origin-destination pair: (i) containers with a given due date are not shipped on a direct

train unless all available containers with an earlier due date have been either shipped or

already allocated to the direct train under consideration, and (ii) containers with a given

due date are not shipped on an indirect train unless all containers with an earlier due date

could be shipped, either on the current train, or on the next available direct train such

that they arrive at the destination at least as early as if they had been allocated to the

current train. (In Appendix B, we prove that if an alternate optimal solution to the origin

scheduling problem exists, the objective value remains the same even when imposing these

EDD constraints.) These constraints ensure that containers are sent in decreasing order of

urgency and that containers arrive at the hub in EDD order (subject to their availability

at the origin). We refer to this approach as the decentralized scheduling and routing with
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intermediate container adjustment approach. Observe that the container adjustments are

made locally at each origin, so the decision process remains decentralized.

The third variation attempts to better coordinate container flows through the system by

making all container routing decisions simultaneously after a train schedule is determined.

The steps are as follows: Solve an origin scheduling subproblem for each origin. Solve a

hub scheduling subproblem for each hub-destination pair using the container arrivals at

the hub as determined by the origin scheduling problem. Fix the resulting train schedules

outbound from the origin and outbound from the hub as determined from the origin and hub

scheduling problems, respectively, and re-optimize all container movements. We term this

the decentralized scheduling with ex post routing approach. Although the train schedules are

determined using only local container arrival data, the container routing decisions require

the entire (systemwide) train schedule. As such, the train schedules are determined locally,

but a central authority must impose the container routing scheme.

Mathematically, this corresponds to the following optimization problems:

1. Solve : min
xo
i
,zo

i

Z̃1(x
o
i , zo

i ) ∀i

2. Then, given xo
i , i = 1, ..., I from step 1, solve : min

xh
j
,zh

j

Z2(x
h
j , zh

j |x
o
i ) ∀j

3. F inally, given zo
i , i = 1, ..., I from step 1 and zh

j , j = 1, ..., J from step 2, solve :

Z(2) = min
xo,xh

{
∑

i

Z1(x
o
i |z

o
i ) +

∑

j

Z2(x
h
j |x

o, zh
j )}

where Z(2) denotes the objective function value for the monolithic problem when solved

with the decentralized scheduling with ex post routing approach.

The fourth approach is a variation of the third approach with an intermediate container

adjustment after the solution for the origin scheduling problem has been determined. Recall

that in the third approach, container flows are re-optimized after the train schedules have

been established. As such, the reason for the intermediate container adjustment in this

context is not to decide the exact container assignments, but to provide a pattern of con-

tainer arrivals at the hub from which we can construct a low-cost train schedule outbound

14



from the hub. Although adherence to an EDD shipping schedule outbound from the ori-

gins helps to reduce costs incurred outbound from the hub by increasing opportunities for

consolidation, in preliminary tests, we found that adherence to the EDD schedule alone did

not provide much benefit over the third approach (which is identical to this fourth approach

but has no intermediate container adjustment). A little reflection will reveal that shipping

additional containers on already-scheduled direct trains reduces the aggregate demand for

trains outbound from the hub, and shipping containers as early as possible using available

space on indirect trains inbound to the hub also contributes by improving consolidation op-

portunities. Our container adjustment scheme for the fourth approach takes these factors

into account.

We again make the container adjustments by solving a variant of the container routing

portion of the origin scheduling problem (using the train schedule outbound from the origin

found with the decentralized scheduling with ex post routing approach). In addition to the

terms in the standard origin scheduling problem (with a fixed train schedule), the objective

also includes, for each origin-destination pair, large fixed-charge rewards for adhering to the

EDD shipping sequence, as well as large fixed-charge rewards for each (due date, shipping

period) pair for which all available containers have been completely shipped. The latter

rewards tend to encourage shipment as soon as possible, to the extent space is available.

Additional small (linear) incentives for shipping directly rather than indirectly are also

included, which would, for example, encourage holding a container until the next day to

ship it on a direct train rather than shipping it on an indirect train today. These latter

incentives are small, however, so the fixed-charge rewards are the dominant influence. (We

note that this second container adjustment method did not perform as well as the first

one for the decentralized scheduling and routing approach, because the detailed container

assignments are more critical in that method, which does not include the solution of a

systemwide container routing problem at the end.)

The adjusted container flows are used as input to the hub scheduling problem. As in the

decentralized scheduling with ex post routing approach, only the train schedules from the hub

scheduling problem are fixed. Using the train schedule from the origin and hub scheduling

problems, the systemwide container flow problem is solved. We refer to this approach as

decentralized scheduling using intermediate container adjustment and ex post routing.
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A fifth solution approach, which we refer to as partially centralized scheduling and rout-

ing, proceeds as follows. First, solve the origin scheduling problem for each origin. Then,

fixing the resulting schedule of trains outbound from the origin, solve the problem of schedul-

ing the trains outbound from the hub and all container movements (i.e., both those out-

bound from the origin and those outbound from the hub). This approach allows each origin

to determine only its train schedule (and not the container flows) independently of the

other origins. The remainder of the decisions are determined simultaneously by a central

decision-maker, who requires train schedule and demand information at all origins. In other

words, this is the most centralized of the decomposition schemes we have introduced.

Mathematically, this corresponds to the following optimization problems:

1. Solve : min
xo
i
,zo

i

Z̃1(x
o
i , zo

i ) ∀i

2. Then, given zo
i , i = 1, ..., I from step 1, solve :

Z(3) = min
xo

{
∑

i

Z1(x
o
i |z

o
i ) +

∑

j

min
xh
j
,zh

j

Z2(x
h
j , zh

j |x
o)}

where Z(3) denotes the objective function value for the monolithic problem when solved

with the partially centralized scheduling and routing approach.

The final method is the centralized scheduling and routing approach, which involves

solving the entire monolithic problem. In this instance, all train scheduling and container

routing decisions are made simultaneously. This is in contrast to the decomposition schemes

we describe above in which at least a subset of the decisions are made locally. Note that

the original (monolithic) problem can be posed as a nested optimization problem:

Z∗ = min
zo
i
, i=1,..,I

{min
xo

{
∑

i

Z1(x
o
i |z

o
i ) +

∑

j

min
xh
j
,zh

j

Z2(x
h
j , zh

j |x
o)}}

The inner problem is the hub scheduling problem, given container flows into the hub. The

middle-level problem involves optimizing container flows outbound from the origin, taking

into account both the costs incurred at the origin and the resulting (optimal) cost for the

hub scheduling problem. The outer optimization problem establishes the train schedules

outbound from the origins. The problem could be solved, in principle, using this approach,

but would pose two formidable challenges. First, although the hub scheduling problem is
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easy to solve, the optimum cost for each destination is not a smooth function of the container

arrivals. Thus, choosing the container flows in the middle-level problem is not easy. Second,

choosing the train schedules outbound from the origins is a difficult combinatorial problem

because of the partial substitutability of direct and indirect trains, and of trains scheduled at

different times. It is also difficult because the impact of the train schedule at the origins on

the middle (and inner) problem is indirect: it only defines constraints on certain container

flows.

We do not solve the original problem using this nested optimization approach (instead,

we use commercial optimization software), but the above formulation strongly motivated

the various solution strategies outlined above. In essence, each of the first five solution

approaches is an approximate method for solving the nested optimization problem.

We might expect to obtain better solutions from more centralized approaches, if the

problems can be solved optimally or near-optimally. On the other hand, such approaches

have several drawbacks. In problems with many locations and/or time periods, the neces-

sary information may be difficult to gather and update. It also may be computationally

burdensome or impossible to obtain good solutions when many decisions must be made

simultaneously. Using one of the four decentralized methods allows us to decompose the

hub scheduling problem by hub and destination, and each of these problems can be solved

very efficiently (see Yano and Newman, 1998).

One important motivation for our particular approach for solving the origin scheduling

problem is that, for an arbitrary train schedule outbound from the origin, the container

routing portion of the origin scheduling problem can be represented as a single-commodity

network flow model, which allows us to relax the integrality constraints on the container

flows without loss of optimality. This contributes significantly to the computational ef-

ficiency of our procedures. However, as the number of destinations grows, it becomes

increasingly more difficult to obtain optimal solutions to the origin scheduling subproblems

(which must consider all destinations simultaneously). To deal with such situations, we

have developed a variation of our decomposition method that relies on a preprocessing step

to set certain direct train variables, as described in the next section.
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4 Preprocessing Method to Determine Direct Trains for Many

Destinations

Our method to obtain solutions for problems with a larger number of destinations relies on a

heuristic preprocessing step to set the values of direct train variables in the origin scheduling

subproblems. Our rationale for heuristically setting the direct train variables (to reduce the

size of the remaining problem) is that these decisions depend primarily upon the demand

between a single origin and a single destination, and are only indirectly affected by when

and how containers are sent to other destinations. Moreover, the primary indirect effect can

be captured largely in the flows of containers sent via the hub from the designated origin

to all other destinations. Our preprocessing method is motivated by these observations.

For each origin, the preprocessing step proceeds as follows. We construct K different

subproblems, where K is the number of destinations. In the kth subproblem, k = 1,..,K,

we partition the set of destinations into two groups: (i) a single destination, k, and (ii)

the remaining K − 1 destinations which we aggregate into a “super-destination.” Demands

are aggregated across destinations within the super-destination, making appropriate ad-

justments for differences in travel times by modifying due date requirements to accurately

reflect the latest departure date possible while ensuring on-time delivery for a given origin-

destination pair. Weighted average fixed and variable costs are assessed for the direct and

indirect routes between the origin and the aggregated destination.

This problem is now treated as an origin scheduling subproblem with two destinations.

Direct and indirect train schedules for both the single (kth) and the aggregated destination

are derived, along with the corresponding container routing schemes, but only the direct

train schedule for the kth destination is retained. Therefore, at the end of this preprocessing

step, for each origin, we have established direct train schedules for all K destinations.

Having set the direct train variables for all origin-destination pairs in the preprocessing

step, we solve the origin scheduling subproblems to determine indirect train schedules and

all container flows.

This procedure generally will not provide an optimal solution to the original origin-

scheduling problem because the direct train schedules are determined without full consider-

ation of the details of the indirect train schedules. However, recall that the origin scheduling

problem is an approximation in itself. From the viewpoint of solving the original problem,
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it would appear there is greater loss of optimality from decoupling the origins to create the

origin scheduling subproblems (and from the inability of commercial software to find an

optimal solution to the original origin scheduling subproblems) than there is from the use

of this aggregation procedure in solving the individual origin scheduling subproblems.

5 Numerical Results

The purposes of our computational study are two-fold: to evaluate the performance of

various decentralized methods on small problems for which optimal solutions can be found,

and for more realistic problems, to compare the solutions of our various procedures with the

best solutions obtained from commercial optimization software, and versus lower bounds.

The problems are solved on a Sun SparcStation 20 with 128 megabytes of RAM. We

obtain solutions using all approaches described in Section 3 with CPLEX 6.0 as the un-

derlying solver. For all executions of CPLEX, either for the monolithic problem or for the

various subproblems arising in our decomposition procedures, we use a depth-first search,

and strong branching, i.e., the choice of the branching variable is derived from solving a

number of subproblems to determine which potential branch is likely to yield the greatest

improvement in the objective function value. We also use the CPLEX built-in rounding

heuristic, which attempts to determine an integer solution after every five nodes in the

branch and bound tree. This combination of rules provided the best results for our set of

problems. We also implemented a priority branching scheme, but it did not lead to sig-

nificant performance improvement. We next describe the data used, and then report the

results from these two studies.

Our main problem set consists of thirty instances with one hub, three to six origins

and destinations, and with different container demand patterns and cost structures. We

summarize problem characteristics in Tables 1 and 2. All problems have eight time periods

in which containers become available at the origins. All trains have a capacity of 200

containers.

Container demand was generated for each origin-destination-arrival time-due date com-

bination with a probability of 0.55 of being randomly generated from a discrete uniform

distribution between 10 and 65, and a probability of 0.45 of being 0. Scenarios in which less

expedited service was demanded were generated as described above, except that for each
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origin-destination-arrival time-due date combination such that the shipment necessitates

transport via a direct train (i.e., t + αik ≤ l < βij + γjk + δj), demands that were originally

positive were independently set to zero with probability 0.4 to 0.5.

Industry data suggest that fixed and variable transportation costs for shipping a full

train are approximately equal. We set the fixed charge associated with each train to be

proportional to the distance, based on our observation that train operator labor constitutes

the majority of this cost. Transportation costs are set appropriately based on the transit

distance. Handling costs per container are based on an hourly wage of yard operators and

the approximate time needed to load, unload, or rearrange a container. The yard storage

cost per container per day is assigned a small value which provides incentive to ship earlier

rather than later, all else being equal.

Because the monolithic versions of problems with the characteristics described above

could not be solved optimally by CPLEX, we also generated a set of 30 “smaller” problems

for our first computational study. These problems have three origins, one hub, and three

destinations, and possess the cost structures given in Table 2. However, the container

demand matrices are only about 12% as dense, i.e., roughly 20 to 25% as dense as in our

main problem sets. Although these problems have fewer variables which will be set to

non-zero values, the sparse demand matrices necessitate consideration of many different

consolidation alternatives: consolidating demands across time for a single destination and

sending them on a direct train, consolidating demands across destinations and sending them

on a (usually) earlier indirect train, etc. When demands are either larger or the demand

matrix is denser, fewer consolidation alternatives need to be considered, as train capacities

are reached more quickly.

As shown in Table 3, in 12 of the 30 test cases (denoted problems 1-12 for convenience),

CPLEX was not able to obtain an optimal solution to the monolithic version of the problem

within a two and a half hour time limit. Thus, this set of “small” problems should not be

regarded as easy. For problems 1-12 we report the ratio of the best integer solution found

to the lower bound. The gaps average 5.6% but range up to 20%. Because we do not have

optimal solutions for these problems, we do not compare our decomposition procedures

against them, but use the other 18 problems for this purpose.

The other 18 problems generally could be solved to optimality relatively quickly (i.e.,
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within a matter of seconds), although several problems require on the order of minutes

to over an hour to solve. Note that even the problems requiring considerable CPU time

for the centralized approach were not difficult to solve with our decomposition approaches.

All variations of the decomposition procedures produce the same solution. For 16 of the

18 problems, our decomposition procedures produce optimal solutions. The two remaining

problems deviate from the optimal by 3.8% and 8.2%, respectively. These deviations are

due to the fact that the origin scheduling problem is both myopic and has “tunnel vision.”

That is, it neither sees the details of downstream costs outbound from the hub, nor can it

anticipate consolidation opportunities that might be gained from coordinating shipments

from other origins into the hub. Although gaps in the range of 4% to 8% are not trivial, they

occur in only 10% of the problems. Moreover, because the problems are small, incorrect

decisions about even a single train result in relatively large percentage increases in costs.

Thus, these results should be regarded as providing very solid support for the performance

of the heuristics. We now turn to the results for our main problem set.

We solved the 30 problems in our main problem set using the four decentralized ap-

proaches, the partially centralized approach and the centralized approach. As mentioned

earlier, the centralized (monolithic) versions of the problems could not be solved optimally.

We imposed a time limit of two and a half hours when solving the centralized versions. This

time limit was based on the following observations: (i) the best identified integer solutions

are often found in one to two hours of CPU time, (ii) the lower bounds do not improve

substantially over their initial values, and (iii) even after several hours of CPU time, the

gap between the best integer solution and the lower bound remains large, i.e., about 20%.

For the larger problems in this set (six origins and six destinations), the origin scheduling

subproblems could not be solved optimally. To obtain a good solution, we used the heuristic

preprocessing method described in Section 4. Recall that this procedure sets the direct

train variables. Following this, remaining variables in the origin scheduling problem are

determined optimally with the direct train variables fixed.

In Table 4, we report objective values for the first through fourth, and sixth approaches,

expressed as a fraction of the objective value from the fifth approach, partially centralized

scheduling and routing, which provided the best solution in all thirty realistic cases. We also

report a lower bound, expressed as a fraction of the objective value from the fifth approach.
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This lower bound is derived by including valid inequalities (cf. Newman and Yano, 1998)

to strengthen the lower bounds provided by CPLEX. (Although these valid inequalities

significantly improve the lower bounds, they contribute very little to improving CPU times,

and require preprocessing effort to derive.)

The results show that in 80% of the problems, all decentralized approaches provide

results at least as good as those obtained from the centralized approach with the straight-

forward application of CPLEX to the monolithic problem. The lower bound ratios clearly

demonstrate that our heuristic procedures provide very good solutions in an absolute sense,

i.e., no more than 10% from the optimum, and, on average, solutions within 6% of the

optimal.

The container adjustment process for the decentralized scheduling and routing approach

results in only modest improvements of well less than 1% on the average. In one case, the

solution degraded. On the other hand, in many instances, the intermediate container ad-

justment led to improvements of roughly 1 to 2% in the results for decentralized scheduling

with ex post routing. These results may suggest that the container routing decisions are

secondary, and have a marginal effect on the solution once a train schedule has been estab-

lished. The decision-maker would need to decide whether a fraction of a percent up to 2%

improvement is worth the additional computational effort. However, for the six instances in

which the centralized solution was superior to that obtained either from the decentralized

approach or from the decentralized approach with ex post routing, for at least one of these

two approaches, container adjustment yielded a solution commensurate in quality to that

obtained from the centralized approach.

Table 5 contains summary CPU time statistics. We report a single run time statistic

for the decentralized approaches because their CPU times are very similar. On the average,

the decentralized approaches (approaches one through four) and the partially centralized

approach (approach five) require a matter of seconds, or, at most, minutes, of CPU time to

solve the smaller problems containing three to four origins and destinations. In contrast, the

centralized approach requires over an hour, on average, to find the best solution attainable

within a two and a half hour time limit. For problems with six origins and six destinations for

which the preprocessing step is employed, the average computing time for the decentralized

and partially centralized approaches increases to about 15 minutes. For the centralized
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approach, on the other hand, over one hour of CPU time, on average, was required to

identify the solutions reported in Table 4, and the time limit of 9000 seconds was reached

prior to confirming an optimal solution in all cases.

Thus, our procedures yield better solutions, on average, in significantly less time than

the centralized approach. These decomposition procedures permit the evaluation of multiple

scenarios to determine and quickly update weekly schedules in practice. Finally, our proce-

dures allow for decision-making on a partially to completely decentralized basis, providing

more flexibility for operational planners.

6 Conclusions

Although tradeoffs between centralized and decentralized decision-making are well under-

stood in a qualitative sense, the cost tradeoffs have been studied in detail in only a few oper-

ational settings. We use as our framework a train scheduling and container routing problem

that arises in rail intermodal operations. We present a spectrum of decision-making strate-

gies, from completely decentralized (but with some consideration of downstream effects) to

centralized. All of these approaches rely on the optimization of subproblems that vary with

the degree of centralization. Our numerical results suggest that decentralized approaches

may perform well.

For our application in particular, very good results can be obtained even with the use

of the most decentralized approach. In this approach, each origin determines its schedule

independently, using only a crude approximation of the costs incurred downstream for

trains and containers sent via the hub. Then, train schedules and container assignments

outbound from the hub are determined using the resultant container arrivals at the hub.

Such a method would be relatively easy to implement. We demonstrate elsewhere (Newman

and Yano, 1998) that even the most decentralized approach can provide for substantial cost

savings (approximately 12%) over approaches with a similar degree of decentralization in

which train schedules and container assignments are not optimized, but determined in a

more ad hoc manner.
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A Appendix: Subproblem Formulations

An origin scheduling subproblem for the single origin, ι, is formulated as follows:

(P ι
o) : min

∑

ktl

h ∗ Io
ιktl +

∑

ktl

ca
ιk ∗ xao

ιktl +
∑

jktl

ce
ιjk ∗ xeo

ιjktl +

∑

ktl

go
ι ∗ xao

ιktl +
∑

jktl

g̃o
ιj ∗ xeo

ιjktl +
∑

kt

Sao
ιk ∗ zao

ιkt +
∑

jt

S̃eo
ιj ∗ zeo

ιjt

subject to

bιktl + Io
ιk(t−1)l = Io

ιktl + xao
ιktl +

∑

j

xeo
ιjktl ∀k, t, l

∑

l

xao
ιktl ≤ C ∗ zao

ιkt ∀k, t

∑

kl

xeo
ιjktl ≤ C ∗ zeo

ιjt ∀j, t

All variables restricted to be nonnegative and integer.

The hub scheduling problem for the single hub, ρ, and destination, κ, is formulated as

follows:

(P ρκ
h ) : min

∑

itl

h ∗ Ih
iρκtl +

∑

itl

gh
ρ ∗ xh

iρκtl +
∑

itl

ce
iρκ ∗ xh

iρκtl +
∑

t

Sh
ρκ ∗ zh

ρκt

subject to

Ih
iρκ(t−1)l + xeo

iρκ(t−βiρ−δρ)l = Ih
iρκtl + xh

iρκtl ∀i, t ∋ t ≥ 1 + βiρ + δρ, l

∑

il

xh
iρκtl ≤ C ∗ zh

ρκt ∀t

All variables restricted to be nonnegative and integer.

Problem P
ρκ
h is solved using the solution xeo

iρκtl from {
⋃

i(P
i
o)} as input data (demand).
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B Appendix: Proof Regarding Effect of EDD constraints in

Intermediate Container Adjustment

The intermediate container adjustment described in Section 3 entails adding constraints to

the origin scheduling problem to ensure that (i) containers with a given due date are not

shipped on a direct train unless all available containers with an earlier due date have been

either shipped or already allocated to the direct train under consideration, and (ii) for each

origin-destination pair, containers with a given due date are not shipped on an indirect

train unless all containers with an earlier due date could be shipped, either on the current

train, or on the next available direct train such that they arrive at the destination at least

as early as if they had been allocated to the current train.

Below, we show that the imposition of these constraints serves to identify an alternate

optimum with the EDD property, if an alternate cost-minimizing solution exists.

Part 1: Consider constraints of type (i) for direct trains from an arbitrary origin i to an

arbitrary destination k in some time period t. Suppose that we have a cost-optimal schedule

that does not satisfy constraints of type (i). Then there exists at least one container with

a due date, say l which is assigned to (one of the) direct train(s) scheduled at time t, and

another container with due date l′ < l which is assigned to an indirect train in t or later,

or a direct train in t + 1 or later.

Now consider switching the assignments of these two containers. The assignments are

feasible and the cost remains the same. Repeat this process until the EDD rule is satisfied

for all containers. We have now constructed an alternate schedule with the same cost.

Thus, the imposition of constraints of type (i) does not increase costs, if an alternate cost-

minimizing solution exists.

Part 2: Consider constraints of type (ii) for an indirect train from an arbitrary origin

i to the hub, and consider containers bound for an arbitrary destination, k. Suppose that

we have a cost-optimal schedule that does not satisfy constraints of type (ii). Then there

exists at least one container with a due date, say l, which is assigned to (one of the) indirect

train(s) scheduled at time t, and another container with due date l′ < l which is assigned

to an indirect or a direct train in t + 1 or later.

Now consider switching the assignments of these two containers. The assignments are

feasible and the cost remains the same. Repeat this process until the EDD rule is satisfied
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for all containers. We have now constructed an alternate schedule with the same cost.

Thus, the imposition of constraints of type (ii) does not increase costs, if an alternate

cost-minimizing solution exists.
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Figure 1: Multi-Commodity Network Depiction of our Problem

Table 1: Test Problem Characteristics

problems number of relative proportion
origins-hubs expedited service
destinations demanded

1-5 3-1-3 ∼ 20%
6-10 3-1-3 ∼ 10%
11-13 3-1-4 ∼ 20%
14-15 3-1-4 ∼ 10%
16-18 4-1-3 ∼ 20%
19-20 4-1-3 ∼ 10%
21-25 6-1-6 ∼ 20%
26-30 6-1-6 ∼ 10%

Table 2: Parameters for Test Problem Instances

parameter range used
in test problems

container arrival rate per day 0-65
fixed cost at origin (direct train) ($/train) 11000-15000
fixed cost at origin (indirect train) ($/train) 5000-8500
fixed cost at hub ($/train) 6200-9800
transportation cost ($/container) 40-100
handling cost ($/container) 1-2
inventory holding cost ($/container/day) 1.5-2
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Table 3: Results for Small Problems

Problem Centralized Decentralized Centralized
Objective / Objective / CPU Time

Lower Bound Optimum (sec.)

1 1.11 n/a ‡
2 1.07 n/a ‡
3 1.20 n/a ‡
4 1.02 n/a ‡
5 1.05 n/a ‡
6 1.06 n/a ‡
7 1.01 n/a ‡
8 1.01 n/a ‡
9 1.05 n/a ‡
10 1.03 n/a ‡
11 1.03 n/a ‡
12 1.03 n/a ‡
13 * * †
14 * * †
15 * * 3974
16 * * †
17 * * †
18 * * †
19 * 1.04 †
20 * * †
21 * * †
22 * * †
23 * * 3000
24 * * 474
25 * 1.08 †
26 * * 1023
27 * * †
28 * * †
29 * * †
30 * * †

∗ Indicates problem was solved to optimality
† Indicates CPU time is less than five seconds

‡ Time limit of 9000 seconds or memory limit is reached
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Table 4: Ratio of Objective Value to that from the Partially Centralized Approach

Prob- Decen- Decentralized Decentralized Decentralized Cen- Lower
lem tralized Scheduling with ex post with ex post tralized Bound

Scheduling and Routing Routing Routing and
and with Container Container

Routing Adjustment Adjustment

1 1.00 † 1.00 † 1.02 ‡ 0.98
2 1.00 † 1.00 † 1.00 ‡ 0.98
3 1.00 † 1.00 † 1.01 ‡ 0.96
4 1.00 † 1.00 † 1.02 ‡ 0.99
5 1.00 † 1.00 † 1.00 ‡ 0.97
6 1.00 † 1.00 † 1.01 ‡ 0.93
7 1.00 † 1.00 † 1.00 ‡ 0.90
8 1.01 1.02 1.01 1.01 1.05 ‡ 0.93
9 1.00 † 1.00 † 1.03 ‡ 0.92
10 1.00 † 1.00 † 1.03 ‡ 0.94
11 1.00 † 1.00 † 1.01 ‡ 0.94
12 1.00 † 1.00 † 1.01 ‡ 0.97
13 1.00 † 1.00 † 1.01 ‡ 0.96
14 1.00 † 1.00 † 1.04 ‡ 0.91
15 1.02 1.02 1.02 1.02 1.02 ‡ 0.91
16 1.01 1.01 1.01 1.00 1.00 ‡ 0.97
17 1.00 † 1.00 † 1.01 ‡ 0.97
18 1.00 † 1.00 † 1.00 ‡ 0.96
19 1.00 † 1.00 † 1.03 ‡ 0.93
20 1.00 † 1.00 † 1.02 ‡ 0.93
21 1.02* 1.01* 1.02* 1.00* 1.01 ‡ 0.93
22 1.02* 1.02* 1.02* 1.01* 1.01 ‡ 0.94
23 1.01* 1.01* 1.01* 1.01* 1.01 ‡ 0.94
24 1.01* 1.01* 1.01* 1.01* 1.01 ‡ 0.95
25 1.01* 1.01* 1.01* 1.00* 1.01 ‡ 0.95
26 1.02* 1.02* 1.02* 1.00* 1.01 ‡ 0.92
27 1.02* 1.01* 1.02* 1.01* 1.02 ‡ 0.91
28 1.02* 1.02* 1.02* 1.01* 1.01 ‡ 0.91
29 1.03* 1.02* 1.03* 1.01* 1.00 ‡ 0.90
30 1.01* 1.01* 1.01* 1.01* 1.01 ‡ 0.91

∗ Indicates the preprocessing heuristic is used
† Indicates no benefit can be gained from container adjustment

‡ Terminated at a time limit of 9000 seconds
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Table 5: CPU Times for the Decentralized Approaches, the Partially Centralized Approach
and the Centralized Approach

Problem Number of Decentralized Partially Centralized
origins-hubs Approaches Centralized Approach
destinations (sec.) Approach (sec.) (sec.)*

1 3-1-3 † † 1825 ‡
2 3-1-3 † † 9000 ‡
3 3-1-3 † † 6802 ‡
4 3-1-3 † † 6051 ‡
5 3-1-3 † † 4605 ‡
6 3-1-3 † † 7892 ‡
7 3-1-3 142 115 8622 ‡
8 3-1-3 103 100 5662 ‡
9 3-1-3 † † 192 ‡
10 3-1-3 † † 5008 ‡
11 3-1-4 250 250 3824 ‡
12 3-1-4 97 97 1266 ‡
13 3-1-4 † † 534 ‡
14 3-1-4 517 517 2258 ‡
15 3-1-4 2112 2112 4700 ‡
16 4-1-3 † † 3008 ‡
17 4-1-3 † † 683 ‡
18 4-1-3 † † 497 ‡
19 4-1-3 † † 2910 ‡
20 4-1-3 † † 2800 ‡
21 6-1-6 972 951 1295 ‡
22 6-1-6 158 164 6469 ‡
23 6-1-6 114 120 1223 ‡
24 6-1-6 736 742 5870 ‡
25 6-1-6 810 818 1185 ‡
26 6-1-6 2492 2482 2642 ‡
27 6-1-6 1019 996 6383 ‡
28 6-1-6 912 886 1000 ‡
29 6-1-6 536 532 5498 ‡
30 6-1-6 670 680 8708 ‡

† Indicates CPU time is less than five seconds
∗ Time when best integer solution is first identified

‡ Time limit of 9000 seconds is reached without confirming optimality
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