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A Mobile Application to Track 
a Campus Bus

This design team created an 
online bus tracking system 
to help increase ridership 
on their university’s campus 
buses. A mobile GPS tracker on 
the bus communicates over a 
radio link to a base station. The 
system reliably and accurately 
predicts the bus location even 
when the vehicle is out of radio 
contact range.

By Chris Coulston, Daniel Hankewycz, 
and Austin Kelleher (US)

The continued expansion of the Penn State Erie campus in Erie, PA, 
has been accompanied by a shuttle bus service provided by the 

Erie Metro Transit Authority (EMTA). The shuttle services eight stops 
around our campus on a loop that covers approximately 3 miles in 20 
min. Riders can request stops anywhere on the loop and the bus picks 
up riders who flag it down between stops. Unfortunately, ridership 
on the bus is low, partly because of the bus’ unpredictable schedule. 
Riders want to know where the bus is and when it will arrive at a 
stop.

In addition to the environmental benefits of riding the bus, 
increased ridership would decrease the growing traffic problems 
encountered between classes. To address low ridership, a team of 
engineering students and faculty constructed an automated vehicle 
locator (AVL) to track our campus shuttle and provide accurate 
estimates of when the shuttle will arrive at each stop. 

THE BIG PICTURE
Before we dive into the bus tracker’s details, we’ll provide a 

broad overview of the hardware and software used in this project. 
If you don’t entirely understand how the system works after reading 
this section, don’t worry, that’s what the rest of the article is for! 
Figure 1 shows the bus tracker’s hardware, which consists of three 
components: the user’s smartphone, the base station placed at a 
fixed location on campus, and the mobile tracker that rides around 
on the bus.
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Early on, we decided against a cellular-
based solution. Instead we placed a code 
division multiple access (CDMA) modem (think 
cell phone) on the bus as the mobile tracker. 
While this concept benefits from wide-ranging 
cellular coverage, it incurs monthly cellar 
network access fees. The concept presented 
in Figure 1 requires the design to cope with a 
900-MHz radios’ limited range.

Figure 2 shows the software architecture 
running on the hardware from Figure 1. When 
the user’s smartphone loads the bus tracker 
webpage, the JavaScript on the page instructs 
the user’s web browser to use the Google Maps 
JavaScript API to load the campus map. The 
smartphone also makes an XMLHttpRequests 
request for a file on the server (stamp.txt) 
containing the bus’ current location and 
breadcrumb index (more on this later).

This information along with information 
about the bus stops is used to position the 

bus icon on the map, determine the bus’ next 
stop, and predict the bus’ arrival time at each 
of the seven bus stops. The bus’ location 
contained in stamp.txt is generated by a GPS 
(EM-408) in the form of an NMEA string. This 
string is sent to a microcontroller and then 
parsed. When the microcontroller receives 
a request for the bus’ location, it formats 
a message and sends it over the 900-MHz 
radio link. The base station compares the bus 
position against a canonical tour of campus 
(breadcrumb) and writes the best match to 
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FIGURE 1
The bus tracking system includes a 
user’s smartphone, the base station, 
and the mobile tracker.
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FIGURE 2
The bus tracker’s software architecture includes a GPS, the mobile tracker, a smartphone, and the base station.
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stamp.txt. 
Early in the project development, we 

decided to collect the bus’ position and 
heading information at 2-s intervals during 
the bus’ campus tour. This collection of strings 
is called “breadcrumbs” because, like the 
breadcrumbs dropped by Hansel and Gretel 
in the eponymously named story, we hope 
they will help us find our way around campus. 
Figure 3 shows a set of breadcrumbs (b1 – 
b10), which were collected as the bus travelled 
out-and-back along the same road.

The decision to collect breadcrumbs proved 
fortuitous as they serve an important role 
in each of the three hardware components 

shown in Figure 1. Now that you have the big 
picture, we’ll dive into the design decisions 
that converted this concept into a robust bus-
tracking system.

MOBILE TRACKER
The bus houses the mobile tracker. 

Figure 4 shows the schematic, which is 
deceptively simple. What you see is the third 
iteration of the mobile tracker hardware.

In terms of hardware, the best decision 
we made was to abandon the idea of trying 
to integrate a 12-to-5-V converter onto the 
mobile tracker PCB. Instead we purchased a 
$40 CUI VYB15W-T DC-DC converter and fed 
the mobile tracker 5-V inputs.

Using an off-the-shelf isolated power 
supply reassured the EMTA that our circuit 
would not damage their bus and helped 
convince us that power spikes on the bus’ 
mains power would not damage our circuit. A 
pair of PTC thermal fuses between the power 
supply and circuitry provided additional 
safeguarding.

We used Micrel’s MIC5205 regulator to 
step down the 5 V for the 3.3-V GPS, which 
easily supplied its peak 80 mA. Since we 
ran the radio at 5 V for the best range, we 
ended up with mixed voltage signals. We used 
a Texas Instruments TXS0102 bidirectional 
voltage-level translator, which handles 
voltage-interfacing duties between the 5-V 
microcontroller and the 3.3-V GPS module.

We selected Microchip Technology’s 
PIC18F26K22 because it has two hardware 
serial ports, enabling it to simultaneously 
communicate with the GPS module and 
the radio modem when the bus is traveling 
around campus. We placed two switches in 
front of the serial ports. One switch toggles 
between the GPS module and the Microchip 
Technology PICkit 3 programming pins, which 
are necessary to program the microcontroller. 
The second switch toggles between the radio 
and a header connected to a PC serial port (via 
a Future Technology Devices FT232 USB-to-
serial bridge). This is useful when debugging 
from your desk. An RGB LED in a compact 
PLCC4 package provides state information 
about the mobile tracker. 

Digi International’s XTend RF modules are 
the big brothers to its popular XBee series. 
These radios come with an impressive 1 W of 
transmitting power over a 900-MHz frequency 
enabling ranges up to a mile in our heavily 
wooded campus environment. The radios use 
a standard serial interface requiring three 
connections: TX, RX, and ground. They are 
simple to set up. You just drop them into the 
Command mode, set the module’s source and 
destination addresses, store this configuration 
in flash memory, and exit. You never have to 

FIGURE 3
Breadcrumbs (b1 – b10) containing 
the bus’ position and orientation 
information were taken every 2 s 
during a test-run campus tour.
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FIGURE 4
The mobile tracker includes a 
Microchip Technology PIC18F26K22 
microcontroller, a Micrel MIC5205 
regulator, a Digi International XTend 
RF module, and a Texas Instruments 
TXS0102 bidirectional translator.
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LISTING 1
The code shows the mobile tracker’s 
executive function menu.

----------------- System Status --------
 Tour  0
 GPS src  USART2
 Sim type clean
 Output  USART1
----------------- WDT configuration --------
 WDT:  Enabled
 WDT pre: 1:4096
----------------- GPS Status -----------
 Time  133020.000
 Date  101013
 Lat:Lon   42.118458:-079.982588
 Velocity 13
 Heading: 62
 GPS signal: Locked
----------------- Query GPS ------------
?: help  s: gps String t: Time
p: Position l: Latitude g: lonGitude
v: Velocity m: map  h: Heading
i: GPS sIgnal status d: Date
--------------- Change system mode ------
o: tOggle source of NMEA strings between simulation and USART2
c: Change USART used by printf 
k: Kick simuation ahead 30 seconds 
f: conFigure GPS to 9600 baud RMC
F: configure GPS to Factory defaults
R: Reboot the system

LISTING 2
Python code runs on the base station to query the mobile tracker.

xbee = serial.Serial( port=/dev/ttyAMA0, baudrate=9600, xonxoff=False, 
   dsrdtr=False,  writeTimeout=0, 
                     timeout=0.5,   stopbits=serial.STOPBITS_ONE,
   rtscts=False,  parity=serial.PARITY_NONE) 

while True:
    xbee.open()   # open the serial port
    fcntl.lockf(xbee,fcntl.LOCK_EX) # blocking lock for exclusive access
    xbee.flush()   # remove any remnant junk
    xbee.write(‘m’)            # query mobile position
    inLine = xbee.readline()   # read response and then
    fcntl.lockf(xbee,fcntl.LOCK_UN) # unlock the port for another user 
    xbee.close()               # and then close the port

    minIndex = closestBreadCrumb(inLine) # index of closest breadcrumb
    f = open(“/var/www/remote/stamp.txt”, “w”)
    if (minIndex != -1):   # error code = -1
f.write(inLine[0:string.find(inLine,’#’)+1]+’\n’ )
f.write(str(minIndex) + ‘\n’)
lkpIndex = minIndex           # refresh Last Know Position
    else:
lkpIndex += 1;
f.write(“$m “ + str(breadCrumb[lkpIndex][1]))
f.write(“ ; “ + str(breadCrumb[lkpIndex][2]))
f.write(“ ; “ + str(breadCrumb[lkpIndex][3]) + “#\n”)
f.write(str(lkpIndex)+’\n’)
    time.sleep(2.0)
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PHOTO 1
This is the bus tracker web application. 
Numbers are bus stops and the “e” is 
the bus’ location.

deal with them again. Any character sent to 
the radio appears on the destination modem’s 
RX line. 

The GPS receiver utilizes the CSR 
SiRFstarIII chip set, which is configured to 
output a recommended minimum specific 
(RMC) string every 2 s. An RMC string consists 
of several comma-delimited fields:

$GPRMC,173908.000,A,4207.4253,N,07
958.8668,W,5.23,140.26,290513,,,*73

From left to right, they are the header 
identifying the type of string, the time (24-h 
format), the lock status (A = valid), the latitude, 
the N/S indicator, the longitude, the east/west 
indicator, the speed (knots), the heading, the 
date, and an XOR-based checksum.

Take care when interpreting the latitude 
and longitude as they are in a DDMM.MMMM 
(degree, minute, second) format where D digits 
are degrees and the M digits are minutes. 
The Google Maps API expected latitude and 
longitude in DD.DDDDDD (decimal degree) 
format. The solution is to multiply the minute’s 
value by 100/60. Dividing it by 60 scales it to 
[1-0] and then multiplying it by 100 puts it in 
base 10 notation. The checksum is just the 

bitwise XOR of the characters following the $ 
and preceding the *.

The mobile tracker’s firmware listens for 
commands over the serial port and generates 
appropriate replies. Commands are issued by 
the developer (e.g., ?, which generates the 
help menu shown in Listing 1) or by the base 
station. The most common command issued 
by the base station is m, which generates 
a semicolon-delimited string consisting of 
the bus’ latitude, longitude, and heading, 
followed by a checksum (e.g., $m 42.121161 
; -079.982918 ; 256#4e).

Burning breadcrumbs into the mobile 
tracker’s flash memory proved to be a good 
design decision. With this capability, the 
mobile tracker can generate a simulated tour 
of campus while sitting in the lab bench.

BASE STATION
The base station consists of an XTend RF 

module connected to a Raspberry Pi’s serial 
port. The software running on the Raspberry 
Pi is responsible for everything from running 
a Nginx open-source web server to making 
requests for data from the mobile tracker. 
From Figure 1, the only additional hardware 
associated with the base station is the 900-
MHz XTend radio connected to the Raspberry 
Pi over a dedicated serial port on pins 8 (TX) 
and 10 (RX) of the Raspberry Pi’s GPIO header. 

The only code that runs on the base station 
is the Python program, which periodically 
uses the mobile tracker to request the bus’ 
position and heading (see Listing 2). The 
program starts by configuring the serial port 
in the common 9600,8,N,1 mode. Next, the 
program is put into an infinite loop to query 
the mobile tracker’s position every 2 s.

The serial port is opened with exclusive 
access to enable different processes to issue 
commands to the mobile tracker (through the 
serial port) without the responses becoming 
garbled with one another. This situation 
occurs frequently during development any 
time diagnostics need to be performed on the 
mobile tracker while the code in Listing 2 is 
executing. 

The closestBreadCrumb(inLine) 
function in Listing 2 determines how far along 
the bus is in its route using the breadcrumb 
array from Figure 3. The input to this function 
is the current latitude, the longitude, and the 
bus’ heading (“test” in Figure 3). It returns 
the breadcrumb’s with the minimum distance 
to the bus using:

dist head=

×( ) ×( )
∆

∆ ∆

 + 

  lat  + 74,630  lng111 320 2 2,

Regardless of where you are on earth, 
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a decimal degree of latitude (north/south) 
is always 111,320 m. This is not so with 
longitude. At our campus’ longitude, which is 
42.12° north, a decimal degree is sin(42.12) × 
111,320 = 74,630 m. The square root term in 
the equation converts the difference between 
a breadcrumb’s position and bus’ position into 
a distance in meters. The heading is included 
in this calculation because without it, we would 
not be able to tell if the bus was traveling 
up the road toward the residence hall, or 
down the same road toward the engineering 
building. For example, in Figure 3 the point 

LISTING 3
This Java code reads the GPS and sets the bus stop markers’ positions.

/**
* This function reads the contents of the stamp.txt file
* @return a string containing latitude, longitude, heading 
*/
function readGPS() {

    var xmlhttp;
    if (window.XMLHttpRequest) {
 xmlhttp=new XMLHttpRequest();
    } else {
 xmlhttp=new ActiveXObject(“Microsoft.XMLHTTP”);
    }

    xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4 && xmlhttp.status==200)
     gpsString=xmlhttp.responseText;
    }

    xmlhttp.open(“GET”,”./remote/stamp.txt”,true);
    xmlhttp.send();
}

/**
* This function updates the position of the bus and information available to users
* @param refreshBusStops Boolean directing function to update arrival times at bus stops 
*/
function updateMapMarkers(refreshBusStops){

    var cords = new Array;

    readGPS();                  // “returns” global gpsString
    setTimeout(function(){      // Since it takes a while to get a response
 cords = parsePosition(gpsString);
 bus.currLong = parseFloat(cords.pop());
 bus.currLat = parseFloat(cords.pop());
 bus.currHead = parseInt(cords.pop());
 bus.breadIndex = parseInt(cords.pop());
 if(refreshBusStops == “TRUE”) refreshBusStopMarkers();
 refreshBusPosition();
    }, 300);
} // end

PHOTO 2
The mobile tracker’s base station 
includes a Raspberry Pi, an interface 
board, and a radio modem.
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labeled “test” is geographically closest to 
breadcrumb b8. However, including the 
heading it shows that it really is closest to b2.

If the closestBreadCrumb(inLine) 
function returns a valid breadcrumb index 
(the “if” case in Listing 2), the bus’ location 
and heading along with the breadcrumb index 
are written to the file stamp.txt. In addition, 

this breadcrumb index is stored as the last-
known position index as lkpIndex. An 
invalid breadcrumb index (the else case in 
Listing 2) means the radio is out of the base 
station’s range.

When this happens, the last-known 
position index is incremented and the 
breadcrumb at that index is stored in stamp.
txt, which creates an inferred position. This 
inferred bus position is updated every 2 s 
until the mobile tracker comes back in range 
of the base station, at which point the code 
in Listing 2 will resume storing the mobile 
tracker’s actual position in stamp.txt.

This technique of fusing an inferred 
position when radio contact is lost is beneficial 
to users. The user is assured that the system 
is properly functioning when he sees the bus 
moving normally on its route. 

The drawback of this technique is that the 
bus position may “glitch” when transitioning 
from the inferred position back to its actual 
position. In practice, this technique works 
exceptionally well, surpassing our highest 
expectations. This is a good thing as the 
mobile tracker is out of radio contact with the 
base station during about 25% of its route. 

SMARTPHONE
Photo 1 shows the user interface presented 

by the Bus Locator web page. The Raspberry 
Pi’s Nginx server delivers the user index.php, 
which directs the browser to load a campus 
map via the Google Maps JavaScript API and 
JavaScript code, which overlays the bus and 
bus stops.

Listing 3 shows two functions, readGPS 
and updateMapMarkers, which overlay the 
bus and bus stop icons on the campus map. 
The readGPS function uses Asynchonous 
JavaScript (AJAX) and XML  to read the 
contents of the stamp.txt file generated by 
Listing 2. After creating a request object 
(xmlhttp) and sending a request to read 
stamp.txt, things get a little weird. The main 

PROJECT FILES

circuitcellar.com/ccmaterials

RESOURCES

Nginx, http://nginx.org

PySerial, http://pyserial.
sourceforge.net.

Raspberry Pi,  
www.raspberrypi.org.

W3Schools, www.w3schools.com.

SOURCES

SiRFstarIII Chip set

CSR plc | www.csr.com

VYB15W-T DC-DC Converter

CUI, Inc. | www.cui.com

XTend and XBee RF modules

Digi International, Inc. | www.digi.com

LM7805 Linear regulator

Fairchild Semiconductor Corp. |  
www.fairchildsemi.com

FT232 USB-to-Serial bridge

Future Technology Devices International, Ltd. | 
www.ftdichip.com

MIC5205 Regulator

Micrel, Inc. | www.micrel.com

PIC18F26K22 Microcontroller and PICkit 3 
debugger

Microchip Technology, Inc. | www.microchip.com

TXS0102 Bidirectional voltage-level 
translator

Texas Instruments, Inc. | www.ti.com

PHOTO 3
The mobile unit (a) resides in the 
black case, ready for installation in the 
bus (b).

b)a)
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processing thread breaks into two parts; 
one runs xmlhttp.onreadystatechange 
and the other continues executing the main 
thread. The xmlhttp object goes through 
five states on its way from being created, 
readyState==0, to being completed 
with a response ready, readyState==4. 
These state changes are monitored by 
the callback function associated with the 
onreadystatechange variable. When the 
response is ready, the stamp.txt file’s entire 
contents are available through xmlhttp.
responseText.

Since the thread that contains the XML 
request split from the main thread, the 
updateMapMarkers() function needs to 
reunite them to use gpsString. setTimeout 
does this by creating a 300-ms delay for 
the read of stamp.txt before executing its 
callback function. This function parses out 
the information contained in stamp.txt, 
occasionally refreshes the bus stop markers, 
and redraws the bus icon. These last two 
functions require information derived from the 
breadcrumb array.

The breadcrumb array was analyzed 
offline to determine the index in the array for 
each bus stop. This is information is stored in 
the bus stop array (see the rightmost column 
in “Bus stop information” in Figure 2). The 
bus’ estimated time of arrival (ETA) at a 
particular stop is two times the difference 
between the bus’ current breadcrumb index, 
which is given by bus.breadIndex and the 
bus stop’s breadcrumb index. The factor of 
2 is introduced because there is 2 s between 
each breadcrumb. Each stop’s ETA is provided 
to the user whenever the user lingers over 
a particular bus stop. Breadcrumbs also help 
determine which bus stop the bus is headed 
toward. This is accomplished by taking the 
bus’ breadcrumb index and finding the next 
highest bus stop breadcrumb index.

FINAL IMPLEMENTATION
Photo 2 and Photo 3 show the final 

hardware implementation of the base station 
and mobile tracker. The base station radio 
is connected to an L-com 8 dBi flat-patch 
antenna (white cable) covering a roughly 120° 
arc. This is perfect for its location near Bus 
Stop 4 in Photo 1. A Fairchild Semiconductor 
LM7805 linear regulator on the interface board 
provides auxiliary 5-V power for the radio. 
The mobile tracker is installed entirely inside 
the bus. Initial concerns about attenuation of 
the GPS and radio signals through the bus’ 
fiberglass skin proved to be unmerited. 

You can view the bus tracker’s final 
implementation at http://bus.bd.psu.edu from 
7:40 AM to 7:00 PM EST Monday through 
Friday. The system works remarkably well, 

providing reliable, accurate information about 
our campus bus. Best of all, it does this 
autonomously, with very little supervision on 
our part. It has worked so well, we have 
received additional funding to add another 
base station to cover an extended campus 
route next year. 
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