
CIRCUIT CELLAR • JUNE 2014 #28722
FE

AT
U

RE
S

A Mobile Application to Track
a Campus Bus

This design team created an
online bus tracking system
to help increase ridership
on their university’s campus
buses. A mobile GPS tracker on
the bus communicates over a
radio link to a base station. The
system reliably and accurately
predicts the bus location even
when the vehicle is out of radio
contact range.

By Chris Coulston, Daniel Hankewycz,
and Austin Kelleher (US)

The continued expansion of the Penn State Erie campus in Erie, PA,
has been accompanied by a shuttle bus service provided by the

Erie Metro Transit Authority (EMTA). The shuttle services eight stops
around our campus on a loop that covers approximately 3 miles in 20
min. Riders can request stops anywhere on the loop and the bus picks
up riders who flag it down between stops. Unfortunately, ridership
on the bus is low, partly because of the bus’ unpredictable schedule.
Riders want to know where the bus is and when it will arrive at a
stop.

In addition to the environmental benefits of riding the bus,
increased ridership would decrease the growing traffic problems
encountered between classes. To address low ridership, a team of
engineering students and faculty constructed an automated vehicle
locator (AVL) to track our campus shuttle and provide accurate
estimates of when the shuttle will arrive at each stop.

THE BIG PICTURE
Before we dive into the bus tracker’s details, we’ll provide a

broad overview of the hardware and software used in this project.
If you don’t entirely understand how the system works after reading
this section, don’t worry, that’s what the rest of the article is for!
Figure 1 shows the bus tracker’s hardware, which consists of three
components: the user’s smartphone, the base station placed at a
fixed location on campus, and the mobile tracker that rides around
on the bus.

circuitcellar.com 23
FEATU

RES

Early on, we decided against a cellular-
based solution. Instead we placed a code
division multiple access (CDMA) modem (think
cell phone) on the bus as the mobile tracker.
While this concept benefits from wide-ranging
cellular coverage, it incurs monthly cellar
network access fees. The concept presented
in Figure 1 requires the design to cope with a
900-MHz radios’ limited range.

Figure 2 shows the software architecture
running on the hardware from Figure 1. When
the user’s smartphone loads the bus tracker
webpage, the JavaScript on the page instructs
the user’s web browser to use the Google Maps
JavaScript API to load the campus map. The
smartphone also makes an XMLHttpRequests
request for a file on the server (stamp.txt)
containing the bus’ current location and
breadcrumb index (more on this later).

This information along with information
about the bus stops is used to position the

bus icon on the map, determine the bus’ next
stop, and predict the bus’ arrival time at each
of the seven bus stops. The bus’ location
contained in stamp.txt is generated by a GPS
(EM-408) in the form of an NMEA string. This
string is sent to a microcontroller and then
parsed. When the microcontroller receives
a request for the bus’ location, it formats
a message and sends it over the 900-MHz
radio link. The base station compares the bus
position against a canonical tour of campus
(breadcrumb) and writes the best match to

146.186.177.198

Smartphone Base station Mobile tracker

Internet

900 MHz

GPS Satellite

Xtend radio
PIC Microcontroller

GPS

 Xtend radio
 Raspberry Pi

FIGURE 1
The bus tracking system includes a
user’s smartphone, the base station,
and the mobile tracker.

$GPRMC,173908.000,A, 4207.42…

Google Maps
JavaScript API

When a buffer is full
parse into components

Mobile tracker

Request position and
heading every 2 s

Smartphone

Bus stop information

stamp.txt

Current position or
LKP + 1 if invalid response

Base station

XML
Request

Behrend Campus
Pennsylvania
State University

Research and Economic
Development Center (REDC)

$m 42.12 ; -79.89 ; 140#3E

$m 42.12 ; -79.89 ; 140#3E

Format
message

Latitude

Longitude

H
eading

['U Gates', 42.124195, -79.980970, 0]
['Burke S.', 42.117839, -79.980989, 45]
['Ohio Hall', 42.116148, -79.985999, 92]
['Burke N.', 42. 117703, -79.979863, 136]
['Perry Hall', 42.118436, -79.983280, 164]
['Science', 42.119311, -79.988722, 278]
['Junker ', 42.120922, -79.977738, 333]

GPS

NMEA Format string
once every 2 s Alternate

Red buffer

Black buffer

ISR

[42.123220, -79.980913, 194]
[42.123081, -79.980968, 198]
[42.122935, -79.981041, 200]
[42.122775, -79.981115, 196]
[42.122448, -79.981170, 176]
[42.122295, -79.981138, 166]
[42.122146, -79.981070, 157]
[42.121998, -79.980980, 155]
[42.121853, -79.980906, 163]
[42.121705, -79.980866, 172]

Compare to each
breadcrumb

V
elocity

T
im

e

Response

$m 42.12 ; -79.89 ; 140#
174

3

6

e

1

7

42
5

FIGURE 2
The bus tracker’s software architecture includes a GPS, the mobile tracker, a smartphone, and the base station.

CIRCUIT CELLAR • JUNE 2014 #28724
FE

AT
U

RE
S

stamp.txt.
Early in the project development, we

decided to collect the bus’ position and
heading information at 2-s intervals during
the bus’ campus tour. This collection of strings
is called “breadcrumbs” because, like the
breadcrumbs dropped by Hansel and Gretel
in the eponymously named story, we hope
they will help us find our way around campus.
Figure 3 shows a set of breadcrumbs (b1 –
b10), which were collected as the bus travelled
out-and-back along the same road.

The decision to collect breadcrumbs proved
fortuitous as they serve an important role
in each of the three hardware components

shown in Figure 1. Now that you have the big
picture, we’ll dive into the design decisions
that converted this concept into a robust bus-
tracking system.

MOBILE TRACKER
The bus houses the mobile tracker.

Figure 4 shows the schematic, which is
deceptively simple. What you see is the third
iteration of the mobile tracker hardware.

In terms of hardware, the best decision
we made was to abandon the idea of trying
to integrate a 12-to-5-V converter onto the
mobile tracker PCB. Instead we purchased a
$40 CUI VYB15W-T DC-DC converter and fed
the mobile tracker 5-V inputs.

Using an off-the-shelf isolated power
supply reassured the EMTA that our circuit
would not damage their bus and helped
convince us that power spikes on the bus’
mains power would not damage our circuit. A
pair of PTC thermal fuses between the power
supply and circuitry provided additional
safeguarding.

We used Micrel’s MIC5205 regulator to
step down the 5 V for the 3.3-V GPS, which
easily supplied its peak 80 mA. Since we
ran the radio at 5 V for the best range, we
ended up with mixed voltage signals. We used
a Texas Instruments TXS0102 bidirectional
voltage-level translator, which handles
voltage-interfacing duties between the 5-V
microcontroller and the 3.3-V GPS module.

We selected Microchip Technology’s
PIC18F26K22 because it has two hardware
serial ports, enabling it to simultaneously
communicate with the GPS module and
the radio modem when the bus is traveling
around campus. We placed two switches in
front of the serial ports. One switch toggles
between the GPS module and the Microchip
Technology PICkit 3 programming pins, which
are necessary to program the microcontroller.
The second switch toggles between the radio
and a header connected to a PC serial port (via
a Future Technology Devices FT232 USB-to-
serial bridge). This is useful when debugging
from your desk. An RGB LED in a compact
PLCC4 package provides state information
about the mobile tracker.

Digi International’s XTend RF modules are
the big brothers to its popular XBee series.
These radios come with an impressive 1 W of
transmitting power over a 900-MHz frequency
enabling ranges up to a mile in our heavily
wooded campus environment. The radios use
a standard serial interface requiring three
connections: TX, RX, and ground. They are
simple to set up. You just drop them into the
Command mode, set the module’s source and
destination addresses, store this configuration
in flash memory, and exit. You never have to

FIGURE 3
Breadcrumbs (b1 – b10) containing
the bus’ position and orientation
information were taken every 2 s
during a test-run campus tour.

Test

b10

b1 b2

b9
b8

b3

b4

b7

b6

b5

2 s

FIGURE 4
The mobile tracker includes a
Microchip Technology PIC18F26K22
microcontroller, a Micrel MIC5205
regulator, a Digi International XTend
RF module, and a Texas Instruments
TXS0102 bidirectional translator.

circuitcellar.com 25
FEATU

RES

LISTING 1
The code shows the mobile tracker’s
executive function menu.

----------------- System Status --------
 Tour 0
 GPS src USART2
 Sim type clean
 Output USART1
----------------- WDT configuration --------
 WDT: Enabled
 WDT pre: 1:4096
----------------- GPS Status -----------
 Time 133020.000
 Date 101013
 Lat:Lon 42.118458:-079.982588
 Velocity 13
 Heading: 62
 GPS signal: Locked
----------------- Query GPS ------------
?: help s: gps String t: Time
p: Position l: Latitude g: lonGitude
v: Velocity m: map h: Heading
i: GPS sIgnal status d: Date
--------------- Change system mode ------
o: tOggle source of NMEA strings between simulation and USART2
c: Change USART used by printf
k: Kick simuation ahead 30 seconds
f: conFigure GPS to 9600 baud RMC
F: configure GPS to Factory defaults
R: Reboot the system

LISTING 2
Python code runs on the base station to query the mobile tracker.

xbee = serial.Serial(port=/dev/ttyAMA0, baudrate=9600, xonxoff=False,
 dsrdtr=False, writeTimeout=0,
 timeout=0.5, stopbits=serial.STOPBITS_ONE,
 rtscts=False, parity=serial.PARITY_NONE)

while True:
 xbee.open() # open the serial port
 fcntl.lockf(xbee,fcntl.LOCK_EX) # blocking lock for exclusive access
 xbee.flush() # remove any remnant junk
 xbee.write(‘m’) # query mobile position
 inLine = xbee.readline() # read response and then
 fcntl.lockf(xbee,fcntl.LOCK_UN) # unlock the port for another user
 xbee.close() # and then close the port

 minIndex = closestBreadCrumb(inLine) # index of closest breadcrumb
 f = open(“/var/www/remote/stamp.txt”, “w”)
 if (minIndex != -1): # error code = -1
f.write(inLine[0:string.find(inLine,’#’)+1]+’\n’)
f.write(str(minIndex) + ‘\n’)
lkpIndex = minIndex # refresh Last Know Position
 else:
lkpIndex += 1;
f.write(“$m “ + str(breadCrumb[lkpIndex][1]))
f.write(“ ; “ + str(breadCrumb[lkpIndex][2]))
f.write(“ ; “ + str(breadCrumb[lkpIndex][3]) + “#\n”)
f.write(str(lkpIndex)+’\n’)
 time.sleep(2.0)

CIRCUIT CELLAR • JUNE 2014 #28726
FE

AT
U

RE
S

PHOTO 1
This is the bus tracker web application.
Numbers are bus stops and the “e” is
the bus’ location.

deal with them again. Any character sent to
the radio appears on the destination modem’s
RX line.

The GPS receiver utilizes the CSR
SiRFstarIII chip set, which is configured to
output a recommended minimum specific
(RMC) string every 2 s. An RMC string consists
of several comma-delimited fields:

$GPRMC,173908.000,A,4207.4253,N,07
958.8668,W,5.23,140.26,290513,,,*73

From left to right, they are the header
identifying the type of string, the time (24-h
format), the lock status (A = valid), the latitude,
the N/S indicator, the longitude, the east/west
indicator, the speed (knots), the heading, the
date, and an XOR-based checksum.

Take care when interpreting the latitude
and longitude as they are in a DDMM.MMMM
(degree, minute, second) format where D digits
are degrees and the M digits are minutes.
The Google Maps API expected latitude and
longitude in DD.DDDDDD (decimal degree)
format. The solution is to multiply the minute’s
value by 100/60. Dividing it by 60 scales it to
[1-0] and then multiplying it by 100 puts it in
base 10 notation. The checksum is just the

bitwise XOR of the characters following the $
and preceding the *.

The mobile tracker’s firmware listens for
commands over the serial port and generates
appropriate replies. Commands are issued by
the developer (e.g., ?, which generates the
help menu shown in Listing 1) or by the base
station. The most common command issued
by the base station is m, which generates
a semicolon-delimited string consisting of
the bus’ latitude, longitude, and heading,
followed by a checksum (e.g., $m 42.121161
; -079.982918 ; 256#4e).

Burning breadcrumbs into the mobile
tracker’s flash memory proved to be a good
design decision. With this capability, the
mobile tracker can generate a simulated tour
of campus while sitting in the lab bench.

BASE STATION
The base station consists of an XTend RF

module connected to a Raspberry Pi’s serial
port. The software running on the Raspberry
Pi is responsible for everything from running
a Nginx open-source web server to making
requests for data from the mobile tracker.
From Figure 1, the only additional hardware
associated with the base station is the 900-
MHz XTend radio connected to the Raspberry
Pi over a dedicated serial port on pins 8 (TX)
and 10 (RX) of the Raspberry Pi’s GPIO header.

The only code that runs on the base station
is the Python program, which periodically
uses the mobile tracker to request the bus’
position and heading (see Listing 2). The
program starts by configuring the serial port
in the common 9600,8,N,1 mode. Next, the
program is put into an infinite loop to query
the mobile tracker’s position every 2 s.

The serial port is opened with exclusive
access to enable different processes to issue
commands to the mobile tracker (through the
serial port) without the responses becoming
garbled with one another. This situation
occurs frequently during development any
time diagnostics need to be performed on the
mobile tracker while the code in Listing 2 is
executing.

The closestBreadCrumb(inLine)
function in Listing 2 determines how far along
the bus is in its route using the breadcrumb
array from Figure 3. The input to this function
is the current latitude, the longitude, and the
bus’ heading (“test” in Figure 3). It returns
the breadcrumb’s with the minimum distance
to the bus using:

dist head=

×() ×()
∆

∆ ∆

 +

 lat + 74,630 lng111 320 2 2,

Regardless of where you are on earth,

circuitcellar.com 27
FEATU

RES

a decimal degree of latitude (north/south)
is always 111,320 m. This is not so with
longitude. At our campus’ longitude, which is
42.12° north, a decimal degree is sin(42.12) ×
111,320 = 74,630 m. The square root term in
the equation converts the difference between
a breadcrumb’s position and bus’ position into
a distance in meters. The heading is included
in this calculation because without it, we would
not be able to tell if the bus was traveling
up the road toward the residence hall, or
down the same road toward the engineering
building. For example, in Figure 3 the point

LISTING 3
This Java code reads the GPS and sets the bus stop markers’ positions.

/**
* This function reads the contents of the stamp.txt file
* @return a string containing latitude, longitude, heading
*/
function readGPS() {

 var xmlhttp;
 if (window.XMLHttpRequest) {
 xmlhttp=new XMLHttpRequest();
 } else {
 xmlhttp=new ActiveXObject(“Microsoft.XMLHTTP”);
 }

 xmlhttp.onreadystatechange=function() {
 if (xmlhttp.readyState==4 && xmlhttp.status==200)
 gpsString=xmlhttp.responseText;
 }

 xmlhttp.open(“GET”,”./remote/stamp.txt”,true);
 xmlhttp.send();
}

/**
* This function updates the position of the bus and information available to users
* @param refreshBusStops Boolean directing function to update arrival times at bus stops
*/
function updateMapMarkers(refreshBusStops){

 var cords = new Array;

 readGPS(); // “returns” global gpsString
 setTimeout(function(){ // Since it takes a while to get a response
 cords = parsePosition(gpsString);
 bus.currLong = parseFloat(cords.pop());
 bus.currLat = parseFloat(cords.pop());
 bus.currHead = parseInt(cords.pop());
 bus.breadIndex = parseInt(cords.pop());
 if(refreshBusStops == “TRUE”) refreshBusStopMarkers();
 refreshBusPosition();
 }, 300);
} // end

PHOTO 2
The mobile tracker’s base station
includes a Raspberry Pi, an interface
board, and a radio modem.

CIRCUIT CELLAR • JUNE 2014 #28728
FE

AT
U

RE
S

labeled “test” is geographically closest to
breadcrumb b8. However, including the
heading it shows that it really is closest to b2.

If the closestBreadCrumb(inLine)
function returns a valid breadcrumb index
(the “if” case in Listing 2), the bus’ location
and heading along with the breadcrumb index
are written to the file stamp.txt. In addition,

this breadcrumb index is stored as the last-
known position index as lkpIndex. An
invalid breadcrumb index (the else case in
Listing 2) means the radio is out of the base
station’s range.

When this happens, the last-known
position index is incremented and the
breadcrumb at that index is stored in stamp.
txt, which creates an inferred position. This
inferred bus position is updated every 2 s
until the mobile tracker comes back in range
of the base station, at which point the code
in Listing 2 will resume storing the mobile
tracker’s actual position in stamp.txt.

This technique of fusing an inferred
position when radio contact is lost is beneficial
to users. The user is assured that the system
is properly functioning when he sees the bus
moving normally on its route.

The drawback of this technique is that the
bus position may “glitch” when transitioning
from the inferred position back to its actual
position. In practice, this technique works
exceptionally well, surpassing our highest
expectations. This is a good thing as the
mobile tracker is out of radio contact with the
base station during about 25% of its route.

SMARTPHONE
Photo 1 shows the user interface presented

by the Bus Locator web page. The Raspberry
Pi’s Nginx server delivers the user index.php,
which directs the browser to load a campus
map via the Google Maps JavaScript API and
JavaScript code, which overlays the bus and
bus stops.

Listing 3 shows two functions, readGPS
and updateMapMarkers, which overlay the
bus and bus stop icons on the campus map.
The readGPS function uses Asynchonous
JavaScript (AJAX) and XML to read the
contents of the stamp.txt file generated by
Listing 2. After creating a request object
(xmlhttp) and sending a request to read
stamp.txt, things get a little weird. The main

PROJECT FILES

circuitcellar.com/ccmaterials

RESOURCES

Nginx, http://nginx.org

PySerial, http://pyserial.
sourceforge.net.

Raspberry Pi,
www.raspberrypi.org.

W3Schools, www.w3schools.com.

SOURCES

SiRFstarIII Chip set

CSR plc | www.csr.com

VYB15W-T DC-DC Converter

CUI, Inc. | www.cui.com

XTend and XBee RF modules

Digi International, Inc. | www.digi.com

LM7805 Linear regulator

Fairchild Semiconductor Corp. |
www.fairchildsemi.com

FT232 USB-to-Serial bridge

Future Technology Devices International, Ltd. |
www.ftdichip.com

MIC5205 Regulator

Micrel, Inc. | www.micrel.com

PIC18F26K22 Microcontroller and PICkit 3
debugger

Microchip Technology, Inc. | www.microchip.com

TXS0102 Bidirectional voltage-level
translator

Texas Instruments, Inc. | www.ti.com

PHOTO 3
The mobile unit (a) resides in the
black case, ready for installation in the
bus (b).

b)a)

circuitcellar.com 29
FEATU

RES

processing thread breaks into two parts;
one runs xmlhttp.onreadystatechange
and the other continues executing the main
thread. The xmlhttp object goes through
five states on its way from being created,
readyState==0, to being completed
with a response ready, readyState==4.
These state changes are monitored by
the callback function associated with the
onreadystatechange variable. When the
response is ready, the stamp.txt file’s entire
contents are available through xmlhttp.
responseText.

Since the thread that contains the XML
request split from the main thread, the
updateMapMarkers() function needs to
reunite them to use gpsString. setTimeout
does this by creating a 300-ms delay for
the read of stamp.txt before executing its
callback function. This function parses out
the information contained in stamp.txt,
occasionally refreshes the bus stop markers,
and redraws the bus icon. These last two
functions require information derived from the
breadcrumb array.

The breadcrumb array was analyzed
offline to determine the index in the array for
each bus stop. This is information is stored in
the bus stop array (see the rightmost column
in “Bus stop information” in Figure 2). The
bus’ estimated time of arrival (ETA) at a
particular stop is two times the difference
between the bus’ current breadcrumb index,
which is given by bus.breadIndex and the
bus stop’s breadcrumb index. The factor of
2 is introduced because there is 2 s between
each breadcrumb. Each stop’s ETA is provided
to the user whenever the user lingers over
a particular bus stop. Breadcrumbs also help
determine which bus stop the bus is headed
toward. This is accomplished by taking the
bus’ breadcrumb index and finding the next
highest bus stop breadcrumb index.

FINAL IMPLEMENTATION
Photo 2 and Photo 3 show the final

hardware implementation of the base station
and mobile tracker. The base station radio
is connected to an L-com 8 dBi flat-patch
antenna (white cable) covering a roughly 120°
arc. This is perfect for its location near Bus
Stop 4 in Photo 1. A Fairchild Semiconductor
LM7805 linear regulator on the interface board
provides auxiliary 5-V power for the radio.
The mobile tracker is installed entirely inside
the bus. Initial concerns about attenuation of
the GPS and radio signals through the bus’
fiberglass skin proved to be unmerited.

You can view the bus tracker’s final
implementation at http://bus.bd.psu.edu from
7:40 AM to 7:00 PM EST Monday through
Friday. The system works remarkably well,

providing reliable, accurate information about
our campus bus. Best of all, it does this
autonomously, with very little supervision on
our part. It has worked so well, we have
received additional funding to add another
base station to cover an extended campus
route next year.

ABOUT THE AUTHOR
Chris Coulston (coulston@psu.edu) holds a BA, Physics (Slippery Rock Univer-
sity); a BS and an MS, Computer Engineering (Penn State University); and a
PhD, Computer Science (Penn State University). He has worked at Penn State
Erie for 13 years an Electrical and Computer Engineering professor and cur-
rently serves as the Department Chair of the Computer Science and Software
Engineering department. His technical interests include embedded systems,
computer graphics algorithms, and sensor design.

Daniel Hankewycz (djh5533@psu.edu) is a second-year Computer Engineering
student at Penn State Behrend. Daniel enjoys working with embedded sys-
tems, PCB design, and computer numerical control (CNC) technology.

Austin Kelleher (alk5492@psu.edu) is a second-year Computer Science student
at Penn State Erie. His technical interests include cross-platform technologies,
network security, and artificial intelligence.

