

Printed Organic Solar Cells: Pathway and Challenges to Competitive LCOE

Darin Laird
Director, Power Team (OPV)

Company Overview

Key Facts:

- > Founded in 2002
- ➤ Based in Pittsburgh, PA USA
- Approximately 70 employees
- ➤ 190+ individual and pending patents worldwide
- > Strategic Investors:

Business Model:

Develop and manufacture highperformance inks and leading-edge materials for printed electronics

Core Capabilities:

- Molecular design & synthesis
- Scaled polymer manufacturing
- High purity ink formulation
- Large-area processing expertise
- ➤ World class quality:

ISO 9001:2008 No. 43632

Target Markets:

- ➤ OLED Lighting & Displays
- > Printed Solar Power

Product Lines:

Plexcore® OC: Hole Injection Layer (HIL) ink for OLED lighting and displays

Plexcore® PV: Ink systems for OPV solar cells including matched Photoactive (p/n) ink and Hole Transport Layer (HTL) ink

Plexcore® OS: P3HT polymer powder for OPV and transistors

Outline

- OPV and enabling low LCOE
- Commercial activities for OPV at Plextronics
 - Efficiency
 - Lifetime
- OPV and future LCOE prospects
- OPV Industry Commercialization Gaps (Breakthroughs to accelerate progress)

OPV can achieve lowest LCOE

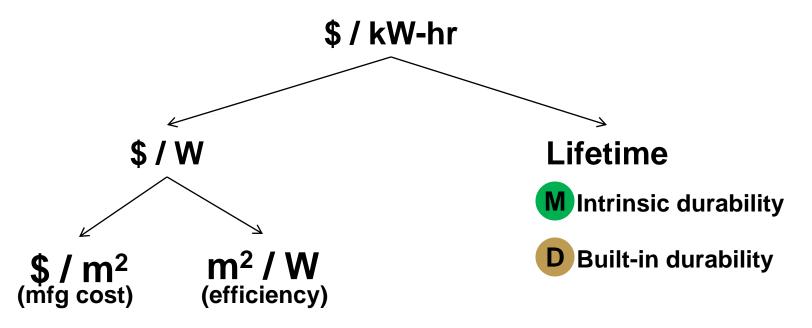
Pathway to lowest LCOE needs to focus on low cost materials for high-throughput processes

- Cost High throughput
 manufacturing lowers
 module cost
 - For R2R, materials costs dominate

LCOE

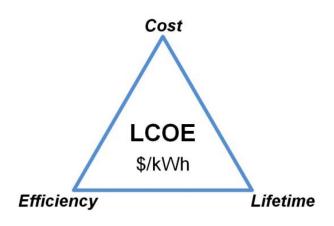
\$/kWh

Efficiency

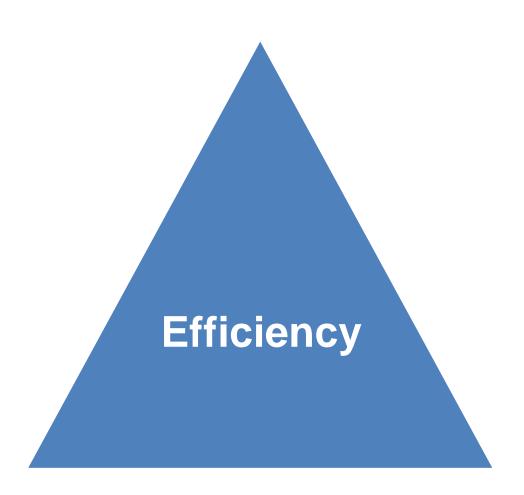

Higher efficiency = more kW's per module

Lifetime

Longer lifetime = more kWh's per module



OPV Technology Challenges


- M >50% of COGS M Key lever
- D Simple is better D Simple is better
- P High throughput

Need to focus on development of low cost, high efficiency materials compatible with high-throughput mfg. processes

Keys to OPV Commercialization

Plexcore® PV Ink System for Organic Photovoltaics

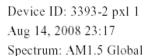
Plexcore® PV 1000 Series

Standard Ink System for OPV Applications
Typical Performance*: 3.0% - 4.0% Efficiency

Plexcore® PV 2000 Series

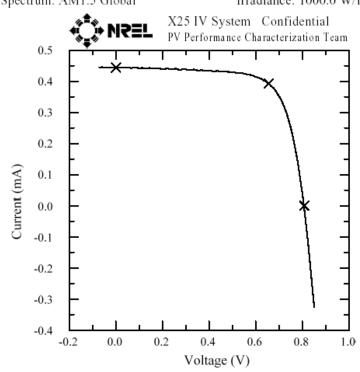
High-Performance Ink System for OPV Applications
Typical Performance*: 4.5% - 5.5% Efficiency

Various inks
available for
different
commercial coating
processes


Ready-to-Use Ink System commonly used for:

- Process development and scaling
- Novel architecture discovery
- Achieving world-leading performance

^{*} Performance achieved in Plextronics' lab-based single junction OPV cells and provided for informational purposes only.



Plexcore PV 2000 NREL Certified at 5.98%

Device Temperature: 25.0 ± 1.0 °C

Device Area: 0.043 cm² Irradiance: 1000.0 W/m²

Polymer-based OPV Solar Cell

Single Photoactive Layer OPV Cell

NREL Certified at 5.98%

Aperture = 0.043 cm² Cell Size ~ 0.1 cm²

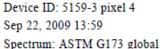
$$V_{oc} = 0.8079 \text{ V}$$

$$I_{\text{max}} = 0.39258 \text{ mA}$$

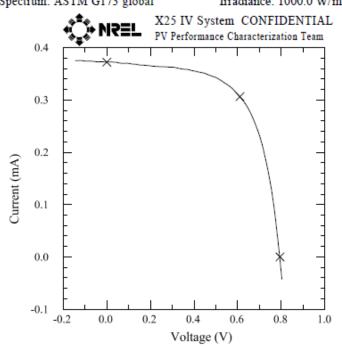
$$I_{sc} = 0.44438 \text{ mA}$$

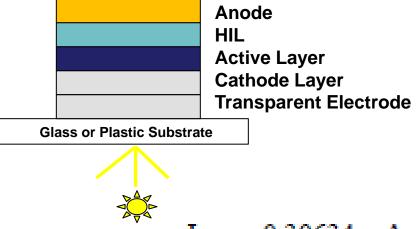
$$V_{max} = 0.6553 \text{ V}$$

$$J_{sc} = 10.321 \text{ mA/cm}^2$$


$$P_{\text{max}} = 0.25724 \text{ mW}$$



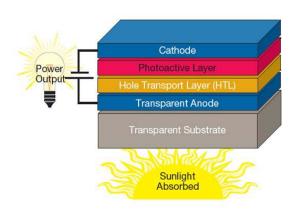

X25 IV System
PV Performance Characterization Team

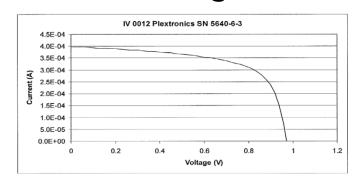


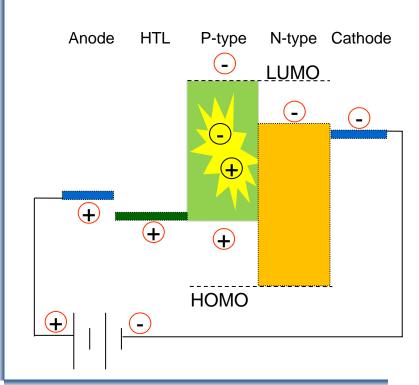
Plexcore PV 2000 Ink System in Inverted OPV Architecture (R2R-Friendly)

$$V_{oc} = 0.7942 \text{ V}$$

 $I_{sc} = 0.37227 \text{ mA}$
 $J_{sc} = 8.7614 \text{ mA/cm}^2$
Fill Factor = 63.27 %


$$I_{max} = 0.30634 \text{ mA}$$
 $V_{max} = 0.6107 \text{ V}$
 $P_{max} = 0.18707 \text{ mW}$
Efficiency = 4.40 %


Plexcore PV 2000 achieves 4.4% efficiency


- Inverted ZnO-based device with vapor deposited silver anode
- Voltage significantly improved over P3HT/PCBM
- Plexcore HIL utilized for spin coat on active layer

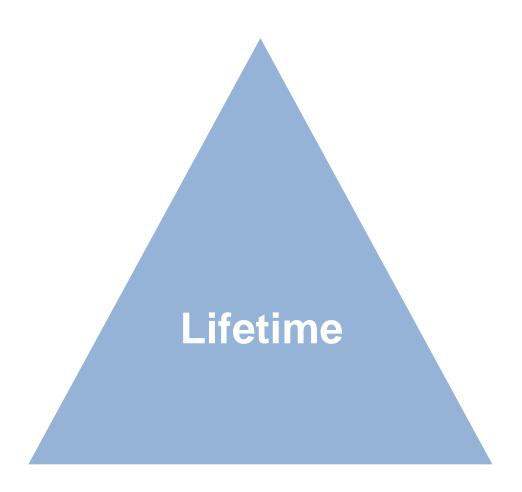
Beyond PV 2000, Low Band-Gap Systems with Matched HIL Enable High Performance

I_{x}	393 ± 8 μA
V_{oc}	0.97 ± 0.02 V
Area	$0.0396 \pm 0.0001 \text{ cm}^2$
Efficiency	(6.2 ± 0.2)%

Voc

- Driven by HOMO-LUMO and HTL WF
- Very Low Loss system, Eg = 1.75, Voc = 1.0 V

<u>Isc</u>


- Driven by polymer absorption character
- EQE > 60%, absorption edge ~ 710 nm

Efficiency

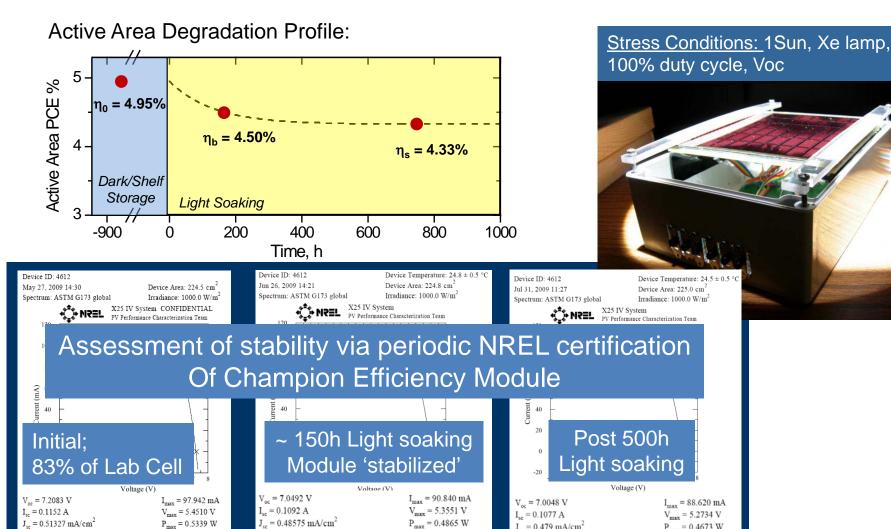
- 6.2% verified; Newer results to be reported
- Leverages Plexcore OC HTL for high Voc
- Plextronics is developing several scalable, high efficiency platform materials

Commercializing OPV

ISOS 2010 @ Roskilde, Denmark October 25-27 2010

https://conferences.dtu.dk/conferenceDisplay.py?confld=35

April 19 - 23, 2010 • Roskilde, Denmark



NREL-Verified OPV Module Lifetime (~'1yr')

(Plexcore PV2000 ink system)

 $J_{sc} = 0.479 \text{ mA/cm}^2$

Fill Factor = 61.96 %

Efficiency = 2.16 %

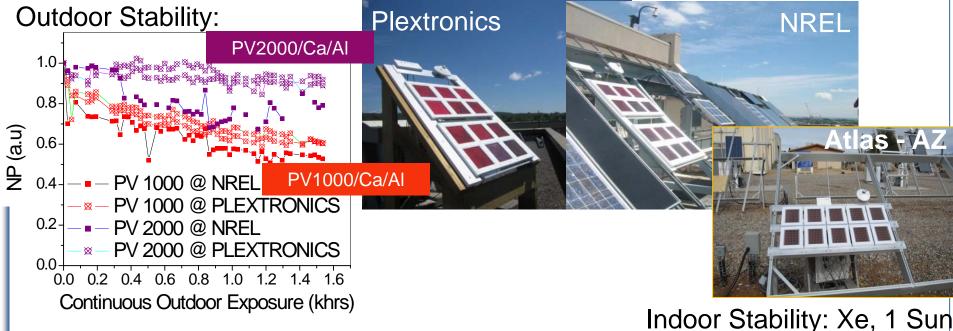
 $J_{sc} = 0.51327 \text{ mA/cm}^2$

Fill Factor = 64.27 %

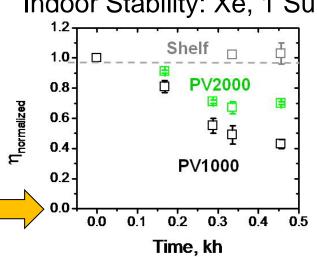
X25 IV System

Efficiency = 2.38 %

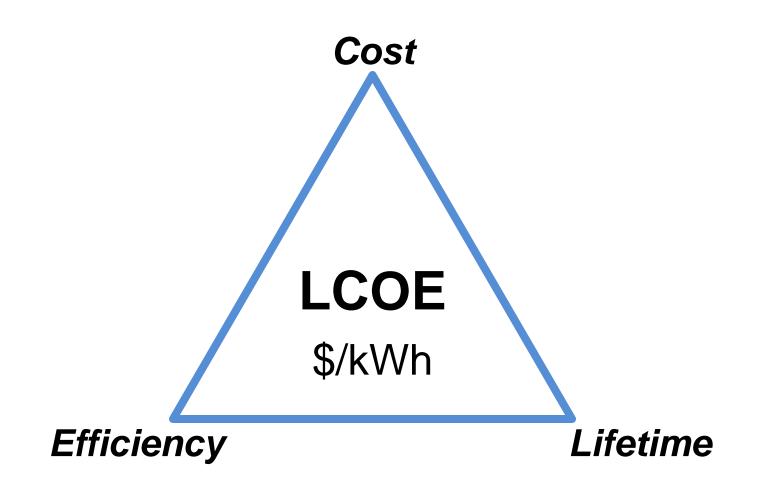
PV Performance Characterization Team


Fill Factor = 63.21 %

 $P_{max} = 0.4673 \text{ W}$


Efficiency = 2.08 %

Fullerene Dependent Stability of OPV Cells: P3HT:PCBM vs. P3HT:bis-indene[c60]



- PV2000 exhibits improved stability over PV1000
- Plex degradation slower than @ NREL
 - Higher Irradiance is initial primary suspect
 - 35% higher irradiance in CO vs. PA
- Consistent with indoor testing

OPV can achieve lowest LCOE

Sub \$0.50/W is a Key Target

\$ / kW-hr

me		<i>y</i>	\rightarrow	
mprovements over time	Module Efficiency	Lifetime	Module Cost	LCOE
ents (5%	5 year	\$1.25 / W	n/a
vem	5%	10 year	\$1.00 / W	\$.35 / kWh
mpro	7%	15 year	\$.75 / W	\$.17 / kWh
	10%	20 year	\$.50 / W	\$.10 / kWh

OPV performance improvements drive lower LCOE.

Sub \$0.50/W is a Key Target

\$ / kW-hr

Module Efficiency	Lifetime	Module Cost	LCOE
5%	5 year	\$1.25 / W	n/a
5%	10 year	\$1.00 / W	\$.35 / kWh
7%	15 year	\$.75 / W	\$.17 / kWh
10%	20 year	\$.50 / W	\$.10 / kWh

Initial offerings meets requirements for off-grid markets.

Sub \$0.50/W is a Key Target

\$ / kW-hr

Module Efficiency	Lifetime	Module Cost	LCOE
5%	5 year	¢1 25 / \\\	n/a
5%	10 year	\$1.00 / W	\$.35 / kWh
7%	15 year	\$.75 / W	\$.17 / kWh
10%	20 year	\$.50 / W	\$.10 / kWh

Performance increases drive BIPV applications and on-grid projects (in higher cost markets).

Sub \$0.50/W is a Key Target

\$ / kW-hr

rate /		***	———	
to Accelerate < \$0.50/W	Module Efficiency	Lifetime	Module Cost	LCOE
hs to , to < \$	5%	5 year	\$1.25 / W	n/a
Breakthroughs Progress to	5%	10 year	\$1.00 / W	\$.35 / kWh
reaktl Pro	7%	15 year	\$ 75 / \N/	\$.17 / kWh
m	10%	20 year	\$.50 / W	\$.10 / kWh

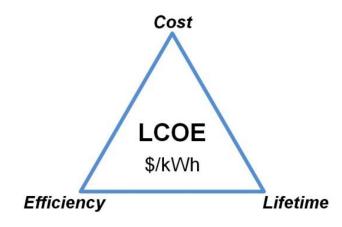
Ultimately, OPV provides a cost structure which is better than grid competitive

OPV Industry Commercialization Gaps Funding Opportunities for Acceleration

Need to drive:

High module efficiency (>5% at production)

- >10% lab cells (8% current SOA)
- R2R-Friendly high performance device stacks
- Translate performance from lab to R2R processes
- Large-area module design (low electrical losses, aperture ratio, etc)


<u>And</u>

- > 10 years device stability
 - Understand fundamentals of metal/organic contact interactions
 - Reduce device sensitivity to water/oxygen
 - Elucidate & Mitigate photochemical-related degradation processes

<u>And</u>

Low materials cost

- Scale materials to multi-kilogram production
- Utilize production processes with
 - High throughput
 - High materials utilization

2180 William Pitt Way | Pittsburgh, PA 15238 | www.plextronics.com | (412) 423-2030

Thank You

Darin Laird
Director, OPV Technology
dlaird@plextronics.com

R&D volumes of select products available through:

www.aldrich.com

